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The linear and nonlinear evolutions of the tearing instability in a collisionless plasma with
a strong guide field are analyzed on the basis of a two-field Hamiltonian gyrofluid model.
The model is valid for a low ion temperature and a finite βe. The finite βe effect implies
a magnetic perturbation along the guide field direction and electron finite Larmor radius
effects. A Hamiltonian derivation of the model is presented. A new dispersion relation
of the tearing instability is derived for the case βe = 0 and tested against numerical
simulations. For βe � 1 the equilibrium electron temperature is seen to enhance the linear
growth rate, whereas we observe a stabilizing role when electron finite Larmor radius
effects become more relevant. In the nonlinear phase, a double "faster-than-exponential"
growth is observed, similarly to what occurs in the presence of ion finite Larmor radius
effects. Energy transfers are analyzed and the conservation laws associated with the
Casimir invariants of the model are also discussed. Numerical simulations seem to indicate
that finite βe effects do not produce qualtitative modifications in the structures of the
Lagrangian invariants associated with Casimirs of the model.

1. Introduction
Magnetic reconnection plays a crucial role in a broad range of plasma environments,

from laboratory plasma experiments to astrophysical plasmas. It is a fundamental energy
conversion process, as a result of which magnetic field energy is converted into kinetic
energy and heat. In a reconnection even, the tearing instability is believed to play an
important role as an onset mechanism of the process. A considerable progress in the
understanding of this mechanism has been achieved through the fluid description of
plasmas. The fluid framework is less costly in terms of computational resources, and
physically more intuitive when compared to the kinetic framework. Fluid models, in
general, are also more suitable for analytical treatment. In the non-collisional case, some
reduced fluid models were designed to retain two-fluid effects (e.g. Schep et al. (1994);
Grasso et al. (1999); Grasso & Tassi (2015); Del Sarto et al. (2006); Fitzpatrick & Porcelli
(2007)), such as, for instance, electron inertia which is known to develop a thin current
layer where modifications of the topology of the magnetic field lines can occur. These
fluid models, on the other hand, neglect the effects of the electron Larmor radius, which
makes it impossible to describe phenomena taking place at a microscopic scale comparable
to that of the electron thermal gyro-radius. Gyrofluid models are the effective tools to
fill this gap. Indeed, although obtained by truncating the infinite hierarchy of equations
evolving the moments of the gyrokinetic equations, gyrofluid models, unlike fluid models,
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retain finite Larmor radius (FLR) effects and are thus valid on thermal Larmor radius
scales. Also, most of the reduced fluid models neglect the perturbations of the magnetic
field along the direction of a guide field, the latter typically corresponding to the mean
magnetic field in astrophysical plasmas (e.g. Schekochihin et al. (2009)) or to an imposed
external field in laboratory plasmas. However, even in the case of a strong guide field,
such perturbations can be relevant in some nearly collisionless environments such as the
solar wind, which motivates their inclusion in an analysis of collisionless reconnection.

In this work, we make use of a gyrofluid model to study the linear and nonlinear
evolution of the tearing instability in a collisionless plasma with strong guide field. This
study is based on a two-field gyrofluid model that has been derived from gyrokinetic
equations in Tassi et al. (2020), assuming a quasi-static closure. With respect to the
above mentioned reduced fluid models, such gyrofluid model accounts for both finite
electron Larmor radius effects and perturbations parallel to the direction of the guide
field. The model is taken within the asymptotic cold ion limit, although we present a small
set of simulations performed in the limit of hot ions to reflect the differences and possible
consequences of this limit. A more in-depth study of the hot ion limit could be done in a
subsequent work. Our gyrofluid model is valid for finite βe values, where βe is the ratio
between the electron pressure and the magnetic pressure based on the guide field. We
remark that finite βe effects were taken into account also in the model by Fitzpatrick &
Porcelli (2004, 2007). However, in that model, electron FLR effects were neglected. The
study of reconnection for a finite βe can be relevant especially for astrophysical plasmas
with large temperatures, such as in the Earth magnetosheath, where some β > 1 values
are observed, in the presence of a guide field, during reconnection events (Man et al.
(2020); Eastwood et al. (2018)).

We consider magnetic reconnection taking place in a two dimensional (2D) plane,
perpendicular to the guide field component. Reconnection is mediated by electron inertia
and by electron FLR, which makes the process non-dissipative, unlike reconnection driven
by electrical collisional resistivity. As many dissipationless fluid and gyrofluid models, also
the gyrofluid model under consideration possesses a Hamiltonian structure, which reveals
the presence of two Lagrangian invariants and gives the expression of the conserved total
energy of the system. With this we can obtain further information about how βe can
influence the distribution of the different components of the total energy.

In the limit βe → 0 (in the following also referred to as the "fluid" limit), the model
corresponds to the two-field fluid model of Schep et al. (1994). This fluid model has
long been used to study the tearing instability, and a relevant dispersion relation for the
collisionless tearing mode, applicable to this model, has been derived in Porcelli (1991).
We present in this article a new analytical formula, valid assuming the constant-psi
approximation (Furth et al. (1963)), which differs from the relation of Porcelli (1991),
taken in the limit where the tearing stability parameter ∆′ is small, by the presence of a
small corrective term. These two formulas are tested against numerical simulations and,
in its regime of validity, our new relation shows a better agreement with the numerical
growth rate.

We studied numerically the effect of a finite βe in the linear and nonlinear phase
of the tearing instability. For the linear phase, we first isolate the effect of varying βe
by keeping fixed all the other parameters of the system. In this setting we observe a
stabilizing role of the βe parameter. The stabilizing effect is then seen to be reduced
when increasing the normalized electron skin depth de. A partial justification of this
behavior can be given analytically considering the small FLR limit of the model. We
remark that varying βe with fixed de and ρs amounts to varying the normalized thermal
electron Larmor radius ρe at fixed ρs. Subsequently, we consider the effect of varying
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βe while keeping a fixed mass ratio. The previously mentioned stabilizing role of βe is
then concomitant with the destabilizing role of the normalized sonic Larmor radius ρs.
The growth rate is thus evaluated for different values of the parameters de, ρs and ρe.
These parameters are associated with different physical scales and are absent in the usual
reduced magnetohydrodynamics (MHD) description. The results we find turn out to be
in agreement with those of Numata et al. (2011) and of Numata & Loureiro (2015), which
were obtained with a gyrokinetic model. In the nonlinear phase, we find the explosive
growth rate (Aydemir (1992)) which has been obtained as well in the gyrofluid study of
Biancalani & Scott (2012) that was considering low βe and ion FLR but no electron FLR
effects. We investigate how the effects of βe affects this faster than exponential growth.

The reconnection process described by Hamiltonian reduced fluid and gyrofluid models
has been analyzed in terms of Lagrangian invariants in several cases in the past (Cafaro
et al. (1998); Grasso et al. (2001, 2010); Comisso et al. (2013); Grasso & Tassi (2015)). The
effect of both electron FLR effects and parallel magnetic perturbations on the structure
of such invariants has not been studied so far, though. In this paper we present the
behavior of the two topological invariants of the system. They extend the Lagrangian
invariants of simpler models that do not account for βe effects and behave similarly.

The paper is organized as follows. In Sec. 2 we derive the gyrofluid model adopted
for the analysis. The procedure we follow for the derivation automatically provides the
Hamiltonian structure of the model. Section 3 contains a review of the linear theory and
a new dispersion relation for the case βe = 0. We also present the results of numerical
simulations in the linear phase, for arbitrary βe. In Sec. 4 the results obtained in the
non-linear phase are presented and the gyrofluid version is compared to the fluid version.
In this Section, we also study the impact of a finite βe on the evolution of the different
energy components. Section 5 presents the conservation laws and the evolution of the
Lagrangian invariants of the model. In the Appendix we present the derivation of the
new dispersion relation, which is based on the asymptotic matching theory.

2. The gyrofluid model

We begin by considering the model given by the evolution equations

∂Ni
∂t

+ [G10iφ+ τ⊥iρ
2
s⊥

2G20iB‖, Ni]− [G10iA‖, Ui] = 0, (2.1)

∂

∂t
(Ui +G10iA‖) + [G10iφ+ τ⊥iρ

2
s⊥

2G20iB‖, Ui +G10iA‖]−
τ⊥iρ

2
s⊥

Θi
[G10iA‖, Ni] = 0,

(2.2)
∂Ne
∂t

+ [G10eφ− ρ2
s⊥

2G20eB‖, Ne]− [G10eA‖, Ue] = 0, (2.3)

∂

∂t
(G10eA‖ − d2

eUe) + [G10eφ− ρ2
s⊥

2G20eB‖, G10eA‖ − d2
eUe] +

ρ2
s⊥

Θe
[G10eA‖, Ne] = 0,

(2.4)
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complemented by the static relations

G10iNi −G10eNe + (1−Θi)Γ0i
φ

τ⊥iρ
2
s⊥

+ (1−Θe)Γ0e
φ

ρ2
s⊥

+ (ΘiG
2
10i − 1)

φ

τ⊥iρ
2
s⊥

+ (ΘeG
2
10e − 1)

φ

ρ2
s⊥

+ (ΘiG10i2G20i −ΘeG10e2G20e)B‖

+ ((1−Θi)(Γ0i − Γ1i)− (1−Θe)(Γ0e − Γ1e))B‖ = 0, (2.5)

∇2
⊥A‖ =

((
1− 1

Θe

)
(1− Γ0e)

1

d2
e

+

(
1− 1

Θi

)
(1− Γ0i)

1

d2
i

)
A‖

+G10eUe −G10iUi, (2.6)

B‖ = −β⊥e
2

(
τ⊥i2G20iNi + 2G20eNe + (1−Θi)(Γ0i − Γ1i)

φ

ρ2
s⊥

− (1−Θe)(Γ0e − Γ1e)
φ

ρ2
s⊥

+ΘiG10i2G20i
φ

ρ2
s⊥

−ΘeG10e2G20e
φ

ρ2
s⊥

+Θiτ⊥i4G
2
20iB‖

+Θe4G
2
20eB‖ + τ⊥i2(1−Θi)(Γ0i − Γ1i)B‖ + 2(1−Θe)(Γ0e − Γ1e)B‖

)
(2.7)

Equations (2.1) and (2.3) correspond to the ion and electron gyrocenter continuity equa-
tions, respectively, whereas Eqs. (2.2) and (2.4) refer to the ion and electron momentum
conservation laws, along the guide field direction.

The static relations (2.5), (2.6) and (2.7) descend from quasi-neutrality and from the
projections of Ampère’s law along directions parallel and perpendicular to the guide field,
respectively.

The system (2.1)-(2.7), although written with a different normalization, consists to
the Hamiltonian four-field model derived by Tassi et al. (2020), taken in the 2D limit
(assuming that all the independent variables do not vary along the direction of the guide
field). This model has been derived by considering a quasi-static closure which fixes all
the moments, except for the gyrocenter density and velocity parallel to the guide field,
for both species. Strictly speaking, the derivation of the quasi-static closure, followed by
Tassi et al. (2020), does not hold in the purely 2D case, which we consider then as a
limit of the 3D case as the component of the wave-vector of the perturbation along the
guide field, goes to zero. We recall that the quasi-static closure adopted by Tassi et al.
(2020) is valid in 3D, when, for each particle species, the phase velocity of the fluctuations
along the guide field direction is much less than the thermal speed based on the parallel
equilibrium temperature of the corresponding species.

The model is formulated in a slab geometry adopting a Cartesian coordinate system
(x, y, z). We indicated with Ns and Us the fluctuations of the gyrocenter densities and
velocities parallel to the guide field, respectively, for the species s, with s = e for electrons
and s = i for ions. The symbols A‖, B‖ and φ, on the other hand, corresponds to the
fluctuations of the z component of the magnetic vector potential, to the parallel magnetic
perturbations and to the fluctuations of the electrostatic potential, respectively. The fields
Ne,i, Ue,i, A‖, B‖ and φ depend on the time variable t and on the spatial coordinates x
and y, which belong to the domain D = {−Lx 6 x 6 Lx , −Ly 6 y 6 Ly}, with Lx and
Ly positive constants. Periodic boundary conditions are imposed on the domain D. The
operator [ , ] is the canonical Poisson bracket and is defined by [f, g] = ∂xf∂yg−∂yf∂xg,
for two functions f and g.

We write the normalized magnetic field in the form

B(x, y, z, t) ≈ ẑ +
d̂i
L
B‖(x, y, z, t)z +∇A‖(x, y, z, t)× ẑ, (2.8)
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with ẑ indicating the unit vector along the z direction, with L a characteristic equilibrium
scale length, and with d̂i = c

√
mi/(4πe2n0) the ion skin depth. We denote by mi the

ion mass, by e the proton charge, by c the speed of light and n0 the equilibrium density
(equal for ions and electrons). The first term on the right-hand side of (2.8) accounts for
the strong guide field. In Eq. (2.8) only up to the first order terms in the fluctuations
are shown, and the higher-order contributions, which guarantee ∇·B = 0, are neglected.
The normalization of the variables used in Eqs. (2.1)-(2.7) is the following:

t =
vA
L
t̂, x =

x̂

L
, y =

ŷ

L
, (2.9)

Ne,i =
L

d̂i

N̂e,i
n0

, Ue,i =
L

d̂i

Ûe,i
vA

, (2.10)

A‖ =
Â‖

LB0
, B‖ =

L

d̂i

B̂‖

B0
, φ =

c

vA

φ̂

LB0
, (2.11)

where the hat indicates dimensional quantities, B0 is the amplitude of the guide field
and vA = B0/

√
4πmin0 is the Alfvén speed.

Independent parameters in the model are β⊥e , τ⊥i , ρs⊥ , Θe, Θi and de, corresponding
to the ratio between equilibrium electron pressure and magnetic guide field pressure,
to the ratio between equilibrium perpendicular ion and electron temperatures, to the
normalized sonic Larmor radius, to the ratio between the equilibrium perpendicular and
parallel temperature for electrons and ions and to the normalized perpendicular electron
skin depth, respectively. These parameters are defined as

β⊥e = 8π
n0T0⊥e

B2
0

, τ⊥i =
T0⊥i

T0⊥e

, ρs⊥ =
1

L

√
T0⊥e

mi

mic

eB0
, (2.12)

Θe =
T0⊥e

T0‖e

, Θi =
T0⊥i

T0‖i

, de =
1

L
c

√
me

4πe2n0
, (2.13)

where T0⊥s and T0‖s are the perpendicular and parallel equilibrium temperatures for the
species s, respectively, and me is the electron mass. Note that ρs⊥/

√
β⊥e/2 = di, where

di = d̂i/L is the normalized ion skin depth.
Electron and ion gyroaverage operators are associated with corresponding Fourier

multipliers in the following way:

G10e = 2G20e → e−k
2
⊥
β⊥e

4 d2e , (2.14)

G10i = 2G20i → e−k
2
⊥
τ⊥i
2 ρ2s⊥ . (2.15)

and

Γ0e → I0

(
k2
⊥
β⊥e

2
d2
e

)
e−k

2
⊥
β⊥e

2 d2e , Γ1e → I1

(
k2
⊥
β⊥e

2
d2
e

)
e−k

2
⊥
β⊥e

2 d2e , (2.16)

Γ0i → I0
(
k2
⊥τ⊥iρ

2
s⊥

)
e−k

2
⊥τ⊥iρ

2
s⊥ , Γ1i → I1

(
k2
⊥τ⊥iρ

2
s⊥

)
e−k

2
⊥τ⊥iρ

2
s⊥ , (2.17)

where In are the modified Bessel functions of order n and k2
⊥ =

√
k2
x + ky

2
is the

perpendicular wave number.
For the range of parameters adopted in our analysis, the gyroaverage operators G10e

and G10i, corresponding to those introduced by Brizard (1992), are shown to be ade-
quate. Nevertheless, different gyroaverage operators, described in the papers Dorland &
Hammett (1993), Mandell et al. (2018), have proven to provide a very good agreement
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with the linear kinetic theory for a wider range of scales and are widespread in gyrofluid
numerical codes.
We define the dynamical variables

Ai = G10iA‖ + d2
iUi, Ae = G10eA‖ − d2

eUe. (2.18)

The fields Ai and Ae are proportional to the parallel canonical fluid momenta, based on
gyroaveraged magnetic potentials.

The two static relations (2.5) and (2.7) can be seen, in Fourier space, as an inhomo-
geneous linear system with the Fourier coefficients of φ and B‖ as unknowns, for given
Ni,e. From the solution of this system, one can express the fields φ and B‖ in terms of
Ni and Ne, by means of relations of the form

B‖ = LB(Ni, Ne), φ = Lφ(Ni, Ne), (2.19)

where LB and Lφ are linear operators, the explicit form of which can easily be provided
in Fourier space. Similarly, using the relations (2.6) and (2.18), one can express Ue and
Ui in the form

Ue = LUe(Ai, Ae), Ui = LUi(Ai, Ae), (2.20)
where LUe and LUi are also linear operators.

The model (2.1)-(2.7) can be formulated as an infinite dimensional Hamiltonian system,
adopting as dynamical variables the four fields Ni, Ne, Ai and Ae (Tassi et al. 2020).

The corresponding Hamiltonian structure consists of the Hamiltonian functional

H(Ni, Ne, Ai, Ae) =
1

2

∫
d2x

(
τ⊥iρ

2
s⊥

Θi
N2
i +

ρ2
s⊥

Θe
N2
e +AiLUi(Ai, Ae)

−AeLUe(Ai, Ae) +Ni(G10iLφ(Ni, Ne) + τ⊥iρ
2
s⊥

2G20iLB(Ni, Ne))

−Ne(G10eLφ(Ni, Ne)− ρ2
s⊥

2G20eLB(Ni, Ne))
)
, (2.21)

and of the Poisson bracket

{F,G} = −
∫
d2x

(
Ni

(
[FNi , GNi ] + τ⊥i

2

β⊥e

ρ4
s⊥

Θi
[FAi , GAi ]

)

+Ai ([FAi , GNi ] + [FNi , GAi ])−Ne([FNe , GNe ] + d2
e

ρ2
s⊥

Θe
[FAe , GAe ])

−Ae([FAe , GNe ] + [FNe , GAe ])) , (2.22)

where subscripts on functionals indicate functional derivatives, so that, for instance,
FNi = δF/δNi. Using the Hamiltonian (2.21) and the Poisson bracket (2.22), the four
equations (2.1)-(2.4) can be obtained from the Hamiltonian form (Morrison 1998)

∂χ

∂t
= {χ,H}, (2.23)

replacing χ withNi,Ne,Ai andAe. This Hamiltonian four-field gyrofluid model, although
greatly simplified with respect to the original gyrokinetic system, is still amenable to a
further reduction, concerning in particular the ion dynamics which, for the analysis of
reconnection of interest here, was shown not to be crucially relevant (Comisso et al.
(2013), Numata et al. (2011)). Also, we carry out most of the analysis in the isotropic
cold-ion limit, a simplifying assumption which is also helpful for the comparison with
previous works. Nevertheless, some comments will be provided also with regard to the
opposite limit of equilibrium ion temperature much larger than the electron one. On the
other hand, in carrying out the reduction procedure, we find it important to preserve a
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Hamiltonian structure, which avoids the introduction of uncontrolled dissipation in the
system and also allows for a more direct comparison with previous Hamiltonian models
for reconnection, in particular with the two-field model considered by Cafaro et al. (1998),
Grasso et al. (2001), Del Sarto et al. (2006), Del Sarto et al. (2003). In particular, we
intend to obtain a Hamiltonian reduced version of the four-field model (2.1)-(2.7), in
which the gyrocenter ion density fluctuations Ni and ion gyrocenter parallel velocity
fluctuations Ui are neglected, the ion equilibrium temperature is isotropic, and ions are
taken to be cold. The latter four conditions amount to impose

Ni = 0, Ui = 0, Θi = 1, (2.24)

and take the limit
τ⊥i → 0. (2.25)

Because we want to perform this reduction while preserving a Hamiltonian structure, we
apply the conditions (2.24) and (2.25) at the level of the Hamiltonian structure, instead
of applying them directly to the equations of motion. The latter procedure would indeed
produce no information about the Hamiltonian structure of the resulting model.

As first step, we impose the conditions (2.24)-(2.25) in the static relations (2.5)-(2.7),
which leads to

(
(1−Θe)
ρ2
s⊥

Γ0e +
(ΘeG

2
10e − 1)

ρ2
s⊥

+∇2
⊥

)
φ

− (ΘeG10e2G20e − 1 + (1−Θe)(Γ0e − Γ1e))B‖ = G10eNe, (2.26)
((

1− 1

Θe

)
(Γ0e − 1)

d2
e

+∇2
⊥

)
A‖ = G10eUe, (2.27)

(ΘeG10e2G20e + (1−Θe)(Γ0e − Γ1e)− 1)
φ

ρ2
s⊥

−
(

2

β⊥e
+ 2(1−Θe)(Γ0e − Γ1e) + 4ΘeG

2
20e

)
B‖ = 2G20eNe. (2.28)

The three relations (2.26)-(2.28), together with the definition of Ae in Eq. (2.18), make
it possible to express B‖, φ and Ue, in terms of the two dynamical variables Ne and Ae,
according to

B‖ = LB0Ne, φ = Lφ0Ne, Ue = LUe0Ae, (2.29)
where LB0, Lφ0 and LUe0 are linear symmetric operators.

As next step, we impose the conditions (2.24)-(2.25) on the Hamiltonian (2.21), which
reduces the Hamiltonian to the following functional of the only two dynamical variables
Ne and Ae:

H(Ne, Ae) =
1

2

∫
d2x

(
ρ2
s⊥

Θe
N2
e −AeLUe0Ae −Ne(G10eLφ0Ne − ρ2

s⊥
2G20eLB0Ne)

)
.

(2.30)

With regard to the Poisson bracket (2.22), we can consider its limit as τ⊥i → 0, given
that the bilinear form (2.22) is a valid Poisson bracket for any value of τ⊥i . On the other
hand, in general, we cannot impose directly the conditions (2.24) in the bracket, as this
operation does not guarantee that the resulting bilinear form satisfies the Jacobi identity.
However, we remark that the set of functionals of the two dynamical variables Ne and
Ae, which the reduced Hamiltonian (2.30) belongs to, forms a sub-algebra of the algebra
of functionals of Ni, Ne, Ai and Ae, with respect to the Poisson bracket (2.22). Indeed,
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if F and G are two functionals of Ne and Ae only, {F,G} is again a functional of Ne
and Ae only. One can in particular restrict to the part of the bracket (2.22) involving
functional derivatives only with respect to Ne and Ae, the other terms yielding vanishing
contributions when evaluated on functionals of Ne and Ae only. The resulting Poisson
bracket therefore reads

{F,G} =

∫
d2x

(
Ne([FNe , GNe ] + d2

e

ρ2
s⊥

Θe
[FAe , GAe ]) +Ae([FAe , GNe ] + [FNe , GAe ])

)
.

(2.31)

We remark that the Poisson bracket (2.31) has the same form as that of the model
investigated by Cafaro et al. (1998) and by Grasso et al. (2001).

The resulting reduced two-field model, accounting for the conditions (2.24)-(2.25),
can then be obtained from the Hamiltonian (2.30) and the Poisson bracket (2.31). The
corresponding evolution equations read

∂Ne
∂t

+ [G10eφ− ρ2
s⊥

2G20eB‖, Ne]− [G10eA‖, Ue] = 0, (2.32)

∂Ae
∂t

+ [G10eφ− ρ2
s⊥

2G20eB‖, Ae] +
ρ2
s⊥

Θe
[G10eA‖, Ne] = 0, (2.33)

where B‖, φ and Ue are related to Ne and Ae by means of Eqs. (2.18) and (2.26)-(2.28).
We impose now electron temperature isotropy (i.e. setting T0⊥e = T0‖e = T0e,

corresponding to Θe = 1) and the evolution equations are reduced to

∂Ne
∂t

+ [G10eφ− ρ2
s2G20eB‖, Ne]− [G10eA‖, Ue] = 0, (2.34)

∂Ae
∂t

+ [G10eφ− ρ2
s2G20eB‖, Ae] + ρ2

s[G10eA‖, Ne] = 0, (2.35)

complemented by the equations
(
G2

10e − 1

ρ2
s

+∇2
⊥

)
φ− (G10e2G20e − 1)B‖ = G10eNe, (2.36)

∇2
⊥A‖ = G10eUe, (2.37)

(G10e2G20e − 1)
φ

ρ2
s

−
(

2

βe
+ 4G2

20e

)
B‖ = 2G20eNe. (2.38)

Eqs. (2.34), (2.35) and (2.36)-(2.38) correspond to the gyrofluid model adopted for the
subsequent analysis of magnetic reconnection.

3. Linear phase
3.1. Linear theory for βe → 0

In this Subsection we focus on the regime for which the electron FLR effects and the
parallel magnetic perturbations are negligible. The limit of vanishing thermal electron
Larmor radius, i.e. ρe = de

√
βe/2 → 0, is adopted by considering βe → 0 and a fixed

de. This limit enables to reduce the gyrofluid model (2.34)-(2.38) to the fluid model of
Schep et al. (1994); Cafaro et al. (1998), for which the analytical study of the tearing
instability has been extensively studied in the past (Porcelli (1991); Grasso et al. (2001,
1999)).
When assuming βe → 0 for a fixed de, the gyroaverge operators can be approximated in
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the Fourier space in the following way

G10ef(x, y) =
(
1 + ρ2

e∇2
⊥
)
f(x, y) +O(ρ4

e),

G20ef(x, y) =
1

2

(
1 + ρ2

e∇2
⊥
)
f(x, y) +O(ρ4

e).
(3.1)

Using this development in Eqs. (2.34)-(2.38) and neglecting the first order correction, we
obtain the evolution equations (Schep et al. (1994))

∂∇2
⊥φ

∂t
+ [φ,∇2

⊥φ]− [A‖,∇2
⊥A‖] = 0, (3.2)

∂

∂t

(
A‖ − d2

e∇2
⊥A‖

)
+
[
φ,A‖ − d2

e∇2
⊥A‖

]
− ρ2

s[∇2
⊥φ,A‖] = 0. (3.3)

We assume an equilibrium given by

φ(0)(x) = 0, A
(0)
‖ (x) =

λ

cosh2
(
x
λ

) , (3.4)

where λ is a parameter that stretches the equilibrium scale length and modifies the
equilibrium amplitude. We consider the perturbations

A
(1)
‖ (x, y, t) = Ã(x)eγt+ikyy + ¯̃A(x)eγt−ikyy, φ(1)(x, y, t) = φ̃(x)eγt+ikyy +

¯̃
φ(x)eγt−ikyy,

(3.5)
where γ is the growth rate of the instability, ky = πm/Ly is the wave number, with
m ∈ N and the overbar refers to the complex conjugate. The collisionless tearing mode
has been studied in Porcelli (1991) for the m = 1 mode in toroidal geometry and the
results can be adapted to the model (3.2)-(3.3). In particular, a dispersion relation has
been obtained analytically and is valid for small and large values of the tearing stability
parameter ∆′, with

∆′ = lim
x→0+

Ã′out

Ãout
− lim
x→0−

Ã′out

Ãout
, (3.6)

where Ãout is the solution for Ã of the linearized system in the outer region (see also
the Appendix). The tearing index, ∆′, is a common measure of the discontinuity of the
logarithmic derivative of Ãout at the resonant surface. The dispersion relation is given
by (Porcelli (1991), Fitzpatrick (2010))

π

2

(
γ

2ky

)2

= −ρs
π

∆′
+ ρ2

sde
2ky
γ
. (3.7)

In the limit d2/3
e ρ

1/3
s ∆′ � 1, the relation (3.7) is reduced to

γ = 2ky
deρs
π

∆′. (3.8)

In the Appendix of this paper, we present the derivation of a new dispersion relation valid
in the limit (γde/(kyρs))∆

′ � 1. In the appropriate regime of validity, the new dispersion
relation includes a corrective term to Eq. (3.8). We derived this dispersion relation using
an asymptotic matching method and various assumptions, slightly different from those
adopted by Porcelli (1991). Table 1 gives a review of the assumptions that were adopted
on the parameters during our the analysis. The assumption No. 1 indicates a slow time
variation of the perturbation. The No. 2 is the assumption on the scales of the inner
region, where electron inertia becomes important and allows the break of the frozen flux
condition. The assumption No. 3 allows the use of the so-called constant ψ approximation,
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Table 1. Table summarizing the various assumptions

No. Assumptions used

1 Time variation of the perturbation is slow γ
ky
� 1

2 Smallness of the inner scales γde
kyρs

� ρs � 1

3 Use of the constant ψ approximation γde
kyρs

∆′ � 1

4 Neglecting FLR effects in the inner regions ρe � γde
kyρs

,

implying that the dispersion relation is valid for large wave numbers (Furth et al. (1963)).
The condition 4, imposed to neglect electron FLR, can be verified for a low-βe plasma.
From a technical point of view, our new dispersion relation is obtained by solving the
equations in the inner layer in real space, unlike in Porcelli (1991) where the corresponding
equations are transformed and solved in Fourier space. The result of our linear theory,
which is described in more detail in the Appendix, is given by the dispersion relation,

γ = 2ky
deρs
πλ

∆′ +
γ2deπλ

4kyρ2
s

. (3.9)

The first term in the right hand side of (3.9) is exactly that of the formula (3.8), for
λ = 1. In the parameter regime indicated by Table 1, the second term in (3.9) is a small
term that provides a correction to the formula (3.8).
A solution of the dispersion relation (3.9), considered in the regime identified by the
assumptions of Table 1, is

γu = 2ky

(
ρ2
s

πdeλ
− ρ

3/2
s

√
ρs − 2d2

e∆
′

πdeλ

)
, (3.10)

and is real for ρs > 2d2
e∆
′.

This new dispersion relation is tested against numerical simulations and compared
to the expression (3.8). The numerical solver is pseudo-spectral and is based on a third
order Adam-Bashforth scheme. The scheme uses numerical filters acting on typical length
scales much smaller than the physical scales of the system (Lele (1992)). The instability
is triggered by perturbing the equilibrium with a disturbance of the parallel electron
gyrocenter velocity field. Because of the requirement of periodic boundary conditions,
the equilibrium (3.4) is approximated by

A
(0)
‖ (x) =

30∑

n=−30

ane
inx, (3.11)

where an are the Fourier coefficients of the function f(x) = λ/ cosh
(
x
λ

)2 (Grasso et al.
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8
·10−2

γ given by Eq. (3.8)
γu
γN

ρs

γ

Equilibrium A
(0)
‖ = λ/ cosh2(x/λ)

1

Figure 1. Comparison between the analytical growth rate γu obtained from the new formula
(3.10) (dashed line), the analytical growth rate obtained from the formula (3.8) (solid line) and
the numerical growth rate γN defined in Eq. (3.12) (circles). The parameters are de = 0.1, λ = 1,
∆′ = 0.72, m = 1. The box size is given by −10π < x < 10π, −0.48π < y < 0.48π. The values
of the parameters lie in the regime of validity of the new formula (3.10). One can see that, for
different values of ρs, the correction present in Eq. (3.10) yields a better agreement with the
numerical values.

8.5 · 10−2 9 · 10−2 9.5 · 10−2 0.1 0.11 0.11 0.12

1.8

2

2.2

2.4

·10−4

γ given by Eq. (3.8)
γu
γN

ρs

γ

Equilibrium A
(0)
‖ = −λ ln cosh (x/λ)

1

Figure 2. This plot is showing additional tests, analogous to those of Fig. 1, but with the Harris
sheet equilibrium A

(0)

‖ (x) = −λ ln cosh(x/λ), and φ(0)(x) = 0, for which ∆′ = 2
λ

(
1
kyλ
− kyλ

)
and using the mode m = 1. The parameters are de = 0.2 and λ = 3. The box size is
−10π < x < 10π, −4π < y < 4π. For this case, ∆′ = 0.38. For this equilibrium the dispersion
relation determining γu corresponds to Eq. (3.10) with the right-hand side multiplied by a factor
1/2. Symbols are the same as in Fig. 1. Also in this case, the new formula (3.10) yields a better
agreement with the numerical values.

(2006)). The numerical growth rate is determined by the formula

γN =
d

dt
log
∣∣∣A(1)
‖

(π
2
, 0, t

)∣∣∣ , (3.12)

so that A(1)
‖ is evaluated at the X-point, where reconnection takes place.

As shown in Figs. 1 and 2, the agreement between the theoretical and the numerical
values appears to be improved by this new formula, when the latter is applied in its
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0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

·10−2

γu

γ given by Eq. (3.7)
γ given by Eq. (3.8)

γN

ky

γ

1

Figure 3. Comparison between the theoretical growth rate predicted by Eqs. (3.7), (3.8) and
(3.10), and the numerical growth rate γN . The parameters are de = 0.03, ρs = 0.03, λ = 1.
The runs were done with the modes 1 6 m 6 4. The box along y is 1.789π < y < 1.789π. The
corresponding values of the tearing stability parameter lie in the interval 0.005 6 ∆′ 6 47.86.

regime of validity. We also performed additional tests on a different equilibrium (the
Harris sheet), as shown on Fig. 2. Also in this case, we observe that our new dispersion
relation provides a better agreement with the numerical values.

Consequently, (3.10) can be seen as an upgrade of the formula (3.8) in the regime of
parameters indicated by the Table 1. Figure 3 gives a comparison between the theoretical
growth rate predicted by Eqs. (3.7), (3.8) and (3.10), and the numerical growth rate
γN as a function of the wave number ky. According to these tests, γu seems to give a
very good prediction for wave numbers ky > 1.1. The discrepancy observed for lower
values of ky comes from the fact that the condition allowing the use of the constant ψ
approximation, (γde/(kyρs))∆

′ � 1, is no longer satisfied for a small wave number, and
for ∆′ > ρs/(2d

2
e), the solution is no longer real.
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ρe = de
√
βe/2

me/mi = (ρe/ρs)
2

βe

γ

1

Figure 4. Numerical growth rates of the collisionless tearing mode as function of βe, for three
different values of de. The box length along y is such that −0.45π < y < 0.45π, yielding a value
of the tearing instability parameter of ∆′ = 0.067 for the largest mode in the system. We stand
in a very small ∆′ regime, close to a marginal stability when βe < 0.1. One sees that for higher
values of βe, and depending on the value of de, the mode is stabilized.

3.2. Numerical results for βe 6= 0

We now proceed to a numerical study of the model (2.34) and (2.35), complemented
by (2.36), (2.37) and (2.38). This will allow to take into account the effects of finite βe.

The numerical set-ups are the same as those presented in the previous Section, relative
to the equilibrium (3.4), but the code accounts now for finite βe effects. The gyroaverage
operators are introduced as they are defined in the Fourier space by Eqs. (2.14) and
(2.15). For the linear tests we focus on a weakly unstable regime for which 0 < ∆′ < 1.
The strongly unstable case shows interesting behaviors in the non-linear phase and will
be studied in the next Section. For all the tests, we will use λ = 1. In order to isolate
the contribution coming from purely varying βe, we first scan βe from 10−3 to 1 while
ρs and de remain fixed, which is equivalent to considering a different mass ratio for each
βe value. We recall that the parameters are indeed linked by the relations

ρe = ρs

√
me

mi
= de

√
βe
2
. (3.13)

Then we repeat the scan for different values of de. The results are presented in Fig. 4
and show that the single effect of βe in the model equations is stabilizing the tearing
mode. This is consistent with the results obtained in the gyrokinetic and non-collisional
study of Numata et al. (2011), where βe and the mass ratio are also varied. Figure 4
also shows the competition between the destabilizing effect of the electron inertia and
the stabilizing effect of βe. For this set of parameter, the influence of βe on the weakly
unstable regimes is almost negligible until βe = 1. For relatively low values of βe, the
highest growth rate corresponds to that for which the parameter de is the largest. We
recall in fact, from Section 3.1, that, for βe � 1, the formulas (3.8) and (3.10) hold. Such
formulas, for de � 1, predict that the growth rate increases linearly with de. Conversely,
when βe becomes large enough, as appears for βe > 0.15, the growth rate for which de
is the largest, decreases drastically under the effect of the finite ρe and of the parallel
magnetic perturbations induced by βe.

Some information about the stabilizing role of βe can be inferred by taking the small
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FLR limit of the equation (2.35), which consists in considering the regime of parameters

de � 1, ρs � 1,
de
ρs
� 1, βe = O(1), (3.14)

and assuming,
∇2
⊥ = O(1). (3.15)

If we retain the first-order FLR corrections as de, ρs → 0, the resulting Ohm’s law reads

∂

∂t

(
A‖ +

(
βe
4
− 1

)
d2
e∇2
⊥A‖

)
+

[
φ,A‖ +

(
βe
4
− 1

)
d2
e∇2
⊥A‖

]

+

(
βe
4
d2
e + ρ2

s

(
βe

2 + βe
− 1

))
[∇2
⊥φ,A‖] = 0. (3.16)

The new contributions in Eq. (3.16) are those due to finite βe and are not present in
the usual two-field model by Schep et al. (1994). In particular, the contributions propor-
tional to (βe/4)d2

e come from electron FLR effects and the contribution proportional to
βeρ

2
s/(2 + βe) is due to the presence of the finite B‖. In Eq. (3.16), comparing with Eqs.

(3.2)-(3.3), it is possible to identify an effective electron skin depth d′e and an effective
sonic Larmor radius ρ′s, given by,

d′e =

√
1− βe

4
de, (3.17)

and

ρ′s =

√
ρ2
s

(
1− βe

βe + 2

)
− d2

e

βe
4
, (3.18)

respectively. Therefore, considering, as first approximation, the relation 3.8 with d′e and
ρ′s replacing de and ρs, respectively, one can identify some of the stabilizing effects of βe,
given that d′e < de and ρ′s < ρs. However, the small FLR limit (3.14)-(3.15) only gives us
a limited insight, as it neglects higher-order derivatives contributions coming from the
gyroaverage operators, which can become important around the resonant surface. On
the other hand, this insight is arguably easier to obtain with the gyrofluid model, with
respect to the gyrokinetic model.

A further analysis we carried out consists of investigating the effect of βe on the
linear growth rate, but at a fixed mass ratio. Physically, this might be interpreted as
investigating the effect of the variation of the equilibrium electron temperature T0e or
of the background density n0 of the plasma, on the stability of the tearing mode. In
order to keep a constant mass ratio during the scan in βe, we carried out a study with βe
ranging from 10−3 to 2 with ρs varying simultaneously. We fix the relation de =

√
me/mi

(implying ρs =
√
βe/2) and we evaluate the cases de = 0.07, de = 0.15, de = 0.1. Figure 5

shows that when βe and ρs are increased simultaneously there seems to be a competition
between the destabilizing effect of ρs and the stabilizing effect of βe. Also in this case,
the behavior at small βe, can be interpreted on the basis of the formulas (3.8) and (3.10),
predicting an increase of the growth rate with increasing ρs. When electron FLR effects
come into play at larger βe, the growth rates decreases. The values chosen for the mass
ratio are not realistic but make it possible to reduce the need of grid points. In the
case of the artificial value of de =

√
me/mi = 0.15, the stabilizing effect takes over the

destabilizing effect of ρs even for βe < 1. However, for the case
√
me/mi = 0.07, much

closer to a real mass ratio, the effect of ρs appears to be dominant. Indeed, decreasing de
at a fixed βe amounts to decreasing ρe. Thus, for de = 0.07 the stabilizing effect of the
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Figure 5. Numerical growth rates of the collisionless tearing mode as function of βe and ρs,
for different values of de =

√
me/mi. The box size is −π < x < π, −0.47π < y < 0.47π, which

leads to ∆′ = 0.59.
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1.5
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2.5
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γ = β
−1/2
e
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ρs = 0.3

me/mi = 0.01

ρe = 0.03

Varying:

de = ρs
√

2me
βemi

βe

γ

1

Figure 6. The value of de for each run increases as de =
√

2me/(βemi)ρs. The box size is
−π < x < π, −0.47π < y < 0.47π. The numerical values (triangles) are compared with the
curve γ = β

−1/2
e (dotted line), which is the scaling predicted by Fitzpatrick & Porcelli (2007) on

the basis of a fluid model, and confirmed by gyrokinetic simulations by Numata et al. (2011).
The comparison shows that also our gyrofluid model confirms such scaling.

electron FLR terms gets weakened, with respect to the other values of de, even at large
βe.
Figure 6 shows the variation of the growth rate of the tearing instability as a function of
βe, for a fixed value of ρs = 10ρe = 0.3. The obtained results are confirming the scaling of
the growth rate as β−1/2

e (or, equivalently, as de) has been determined with the gyrokinetic
study of Numata & Loureiro (2015). This shows the capability of the gyrofluid model
to reasonably reproduce gyrokinetic results (Numata et al. (2011); Numata & Loureiro
(2015)) and the fluid theory of Fitzpatrick & Porcelli (2007), in a quantitative way.
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Figure 7. Comparison between the linear growth rate obtained in the cold-ion regime and the
hot-ion regime. The box size is −π < x < π, −0.47π < y < 0.47π, which leads to ∆′ = 0.59.

3.2.1. Hot ion limit, τi → +∞
In this article we have focused, so far, on the cold ion limit, but in this Subsection

we temporarily deviate from the cold-ion case, to consider the opposite limit, in which
τi = τ⊥i → +∞. The sole purpose of this Subsection is to have a consistent and concise
comparison of the two regimes, therefore we will only study the linear behavior of the hot
ion limit and leave the study of its non-linear evolution for a future work. The hot-ion
limit can actually be of greater interest for space plasmas such as the solar wind. The ion
gyrocenter density fluctuation and the ion gyrocenter parallel velocity are still neglected,
and therefore the evolution equations remain unchanged. Only the assumption (2.25) is
taken in the opposed limit, which has an impact on the development of ion gyroaverage
operators. The static relations (2.36) and (2.38) are thus changed to

φ =
ρ2
sNe(

1− βe
2

)
G10e −G−1

10e

, (3.19)

B‖ =
βe
2ρ2
s

φ. (3.20)

The linear results obtained in the hot-ion limit are compared to the results obtained in
the cold-ion regime on Figure 7. The parameters are de = 0.1, ρs = 0.1. Our results seem
to indicate that, for βe > 0.5, the growth rate is very insensitive to the temperature of the
ions, which is in agreement with the results obtained by Numata et al. (2011). Studies
have been carried out with arbitrary ratio between the equilibrium ion and electron
temperature in the low-β limit, by Porcelli (1991); Grasso et al. (1999), and predict
that the growth rate is significantly higher when the temperature of the ion background
temperature is higher than that of the electrons. This is indeed what we observe for
βe < 10−2.

4. Nonlinear phase
To study the impact of a finite βe on the non-linear evolution of the magnetic island,

we focus on the strongly unstable case, ∆′ = 14.31, resulting from a box length along y
given by −π < y < π. In this case, the mode m = 2 has a positive tearing parameter
∆′2 = 1.23. The higher harmonics are linearly unstable. The box along x is chosen to
be −1.5π < x < 1.5π and allows to reach a large island without incurring in boundary
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Figure 8. Plot of the effective growth rate d
dt

log
∣∣∣A(1)

‖
(
π
2
, 0, t

)∣∣∣, as a function of time. The
corresponding values of βe are shown in the table. The value of the electron skin depth is kept
fixed to de = 0.08, whereas ρs is varied (and ranges from 0.17 to 0.69) so to keep the mass
ratio fixed to me/mi = 0.01. All the growth rates, except for the case βe = 1.5 exhibit the
same behavior, characterized by linear, faster than exponential and saturation phase. The case
βe = 1.5 exhibits also a slow-down phase.

effects. We make use of a resolution up to 2880 × 2880 grid points. The mass ratio will
be taken as me/mi = 0.01 for the following tests.
The first tests are carried out by making a scan in βe from βe = 0.1 to βe = 1.5 while
keeping de = 0.08 and varying ρs as ρs = 0.8

√
βe/
√

2. Increasing βe and ρs simultaneously
in this way, as stated in Sec. 3.2, amounts to varying the electron background temperature
T0e. Figure 8 shows the evolution in time of the effective growth rate, given by Eq. (3.12),
for each simulation. In all these cases, with the exception of βe = 1.5, we identify three
phases; (1) a linear phase during which the perturbation evolution scales as exp(γt), (2) a
faster than exponential phase, which is delayed in the case βe = 0.1, given that the linear
growth rate is smaller, with respect to the case βe = 0.8 for which the instability reaches
the nonlinear phase faster (3) a saturation during which the growth rate drops to 0. We
point out that, the fact that the linear growth rate increases with increasing βe is related
to the fact that ρs is also increased for each run. As discussed in the previous Section,
the isolated effect of an increasing βe in the equations actually implies a stabilization of
the linear growth rate. For the case βe = 1.5, we observe an intermediate phase, during
which the growth of the island is slowed down. It is also visible for the case βe = 0.8 that
the growth rate shows a slowing down at t = 38 when it seemed to have already entered
the explosive phase. Similar evolution and double faster than exponential phase have
been studied in Comisso et al. (2013), where a finite ion Larmor radius is considered.

We focus now on the case βe = 0.8. We scan the values of de from 0.06 to 0.1, and
ρs = 10ρe = 10

√
0.4de ≈ 6.32de. The results are shown on Fig. 9. These curves are

compared for a fixed time unit (fixed vA), while keeping βe and the mass ratio constant,
which corresponds to varying B0 ∼ n1/2

0 while keeping the electron temperature T0e fixed.
For the case of de = 0.1, which corresponds to ρs ∼ 0.63, we observe that the slowdown
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Figure 9. On the left: plot of the effective growth rate d
dt

log
∣∣∣A(1)

‖
(
π
2
, 0, t

)∣∣∣, as a function of

time. The parameters are βe = 0.8, implying ρe =
√
0.4de and ρs = 10

√
0.4de. On the right:

Evolution of half-width of the magnetic island until saturation. The simulations correspond to
those in the left panel.

at the end of the linear phase. On the other hand, in the case of de = 0.06, for which
ρs = 0.37, it appears at an earlier stage of the evolution process, when the nonlinear
phase is already entered and it is followed by an explosive growth. The "double faster
than exponential" behavior, which is observed in the cases de > 0.08, is similar to that
observed in Comisso et al. (2013) for large ion Larmor radius values.
The evolution of the width of the magnetic island for these five runs is shown on the
right plot of Fig. 9. The last point for each run corresponds to the width of the island
when γmax is reached, just before the saturation phase. In conclusion, the growth of the
island simply seems to be delayed, but the maximum width before saturation is identical
for each case since the amount of initial magnetic energy is the same for each simulation.

The last test consists in studying an extreme case for which the slowing down phase is
accentuated, which corresponds to the case of de = 0.06, ρs = 0.519, βe = 1.5. We also
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Figure 10. On the left: plot of the effective growth rate d
dt

log
∣∣∣A(1)

‖
(
π
2
, 0, t

)∣∣∣, for the cases
βe = 0 (black curve) and βe = 1.5 (purple curve). The other parameters are ρs = 0.519 and
de = 0.06. On the right: Log of the time evolution of the reconnected flux at the X-point and
the first 6 modes, from the simulation with βe = 1.5.

perform the simulation for βe = 0, using a code that solves the fluid equations (3.2) -
(3.3). Figure 10 shows the overplot of the evolution of the growth rate for both simulation
as a function of time. The slowing down phase is followed by an oscillation of the non-
linear growth rate. This oscillation was obtained in other tests for which βe = 1.5 and is
due to a slight displacement of the X-point during the reconnection.

4.1. Energy considerations
The time variations of the different components of the energy for the cases βe = 0 and

βe = 1.5, whose rate of growth is shown in Fig. 10, are shown in Fig. 11. The variations are
defined as (1/2)

∫
dx2(ξ(x, y, t)−ξ(x, y, 0))/H(0) where the function ξ can be replaced by

the different contributions of the Hamiltonian (2.30). In terms of the gyrofluid variables
and in the presence of FLR effects, it is not obvious to identify the physical meaning of all
the contributions to the energy. Therefore we use the terminology adopted in Tassi et al.
(2018) and which refers to the fluid limit βe = 0. The different contributions are, the
magnetic energy, Emag, for which ξ = −UeG10eA‖ (reduced to |∇⊥A‖|2 in the fluid case),
the parallel electron kinetic energy, Eke, for which ξ = d2

eU
2
e (reduced to d2

e(∇2
⊥A‖)

2 in
the fluid case), the energy due to the fluctuation of the electron density, Epe, for which
ξ = ρ2

sN
2
e (reduced to ρ2

s(∇2
⊥φ)2 in the fluid case) and the perpendicular electrostatic

energy of the electrons combined with the energy of the parallel magnetic perturbations,
Ekp, for which ξ = −(G10eφ − ρ2

s2G20eB‖)Ne (reduced to |∇⊥φ|2 in the fluid case). We
consider the simulation as being reliable until the time at which the percentage of the
total energy that gets dissipated numerically (black curve) reaches 1%.
By comparing the two simulations, one can see that there appears to be a comparable
amount of magnetic energy being converted. The remarkable difference is the evolution
of the component that combines the electrostatic energy and the energy of the parallel
magnetic perturbations, Ekp, which, in the case βe = 1.5, also seems to be converted into
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Figure 11. Time evolution of the energy variations for the cases βe = 0 (plot at the top) and
βe = 1.5 (plot at the bottom). The parameters are de = 0.06, ρs = 0.519 and their corresponding
growth rate is shown in Fig. 10.

electron thermal energy (Epe), resulting in an increase in this component. This decrease
of the electrostatic energy has been observed only in the case βe = 1.5. In the cases
βe = 0.8, it appears that this component stays rather close to its initial value.
We also carried out the test with βe = 1.5 by artificially removing the parallel magnetic
perturbation B‖ from the code, and consequently it was not appearing in the expression
of Ekp. It appeared first that the presence of B‖ has a stabilizing effect on the tearing
mode (which is consistent with the linear results discussed in Sec. 3.2), and secondly,
the energy component Ekp was slightly increasing instead of decreasing. This allows us
to conclude that the energy related to the parallel magnetic perturbations is in fact the
decreasing component that seems to be converted into electron thermal energy Epe.

5. Conservation laws of the model
In this Section we discuss the conservation laws of the gyrofluid model and its La-

grangian invariants. Equations (2.34)-(2.35) can be recast in the form

∂A±
∂t

+ v± · ∇A± = 0, (5.1)

where

A± = G10eA‖ − d2
eUe ± deρsNe, (5.2)

v± = ẑ ×∇
(
G10eφ− ρ2

s2G20eB‖ ±
ρs
de
G10eA‖

)
. (5.3)
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We define by

φ± = G10eφ− ρ2
s2G20eB‖ ±

ρs
de
G10eA‖, (5.4)

the stream functions of the velocity fields v± = ẑ ×∇φ±. The formulation (5.1) makes
it evident the presence of Lagrangian invariants, corresponding to the fields A±, in the
model. Such Lagrangian invariants are advected by the incompressible velocity fields
v±. The presence of such Lagrangian invariants is a feature common to many 2D
Hamiltonian reduced gyrofluid models (Waelbroeck et al. 2009; Waelbroeck & Tassi
2012; Keramidas Charidakos et al. 2015; Tassi 2019, 2017; Passot et al. 2018; Grasso
et al. 2010; Grasso & Tassi 2015) and is related to the existence of infinite families of
Casimir invariants of the Poisson bracket.

For Eqs. (2.34)-(2.35) , such invariants correspond to the two families

C+ =

∫
d2x C+(A+), C− =

∫
d2x C−(A−), (5.5)

where C± are arbitrary functions. Equations (5.1) imply that contour lines of the fields
A± cannot reconnect, as the corresponding vector fields B± = ∇A± × ẑ are frozen in
the velocity fields v±. On the other hand, the same model allows magnetic field lines to
reconnect. In particular, it is useful to illustrate the mechanisms breaking the frozen-in
condition in this model. This can be done by inspection of Eq. (2.35), governing the
evolution of A‖, and consequently, of the magnetic field in the plane perpendicular to
the guide field, which is given by B⊥ = ∇A‖ × ẑ. Equation (2.4) can be rewritten in the
following way:

∂A‖

∂t
+ u · ∇A‖

= − DDt

((
βe
4
− 1

)
d2
e∇2
⊥A‖ +

+∞∑

n=2

(
βe
4n
− (−1)n−1

)(
βe
4

)n−1
(d2
e∇2
⊥)n

(n− 1)!
A‖

)
(5.6)

− ρ2
s

+∞∑

n=1

1

n!

(
βe
4
d2
e

)n
[(∇2
⊥)

n
A‖, Ne],

where
u = ẑ ×∇(G10eφ− ρ2

s2G20eB‖ − ρ2
sNe), (5.7)

and where the operator D/Dt is defined by

Df
Dt =

∂f

∂t
+ [G10eφ− ρ2

s2G20eB‖, f ] (5.8)

for a function f . In Eq. (5.6) we also used the formal expansions

G10e =

+∞∑

n=0

1

n!

(
βe
4
d2
e∇2
⊥

)n
, G−1

10e =

+∞∑

n=0

(−1)n

n!

(
βe
4
d2
e∇2
⊥

)n
. (5.9)

The right-hand side of Eq. (5.6) contains all the terms that break the frozen-in condition.
Indeed, if the right-hand side of Eq. (5.6) vanishes, the perpendicular magnetic field is
frozen in the velocity field u. From Eq. (5.6) one thus sees that the frozen-in condition can
be violated by electron inertia (associated with the parameter de) and by electron FLR
effects (associated with the combination (βe/4)d2

e). In the limit βe = 0 only electron
inertia remains to break the frozen-in condition. On the other hand, because electron
FLR terms are associated with the product between βe/4 and d2

e, in the limit de = 0
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Figure 12. Contour plot of the Lagrangian invariant A−. Left panel: βe = 0, right panel:
βe = 1.5. The parameters are de = 0.06, ρs = 0.519. The dashed lines are the separatrices. The
contour plots refer to the normalized time γt = 5.18

both electron inertia and electron FLR terms disappear and the right-hand side of Eq.
(5.6) vanishes, thus restoring the frozen-in condition. We remark that the presence of a
finite βe is also responsible for finite parallel magnetic perturbations B‖. However, these
do not violate the frozen-in condition for the perpendicular magnetic field, as they only
contribute to modify the advecting velocity field u (the parallel magnetic field lines, on
the other hand, might undergo reconnection).

We consider here the qualitative structures of the contour plots of the Lagrangian
invariants A± referring to the choice of parameters already adopted for Fig. 10. From
comparing the contour plots of A−, in the case βe = 0 (left panel of Fig. 12) and βe = 1.5
(middle panel of Fig. 12), the structures look qualitatively similar. The contour lines of
A− are induced by the velocity fields φ− and undergo a phase mixing (the field A+ is
winding up identically in the opposite direction, induced by φ+). The duration of the
transient and linear phases are not identical, consequently we compared the fields at the
normalized time γt = 5.18, which makes it possible to compare the fields when the islands
are of comparable size so that they reached the same stage of evolution. The separatrices
are displayed on each plot by dashed lines. We observe a different shape of the island
in the two cases, which reflects the different distribution of the spectral power of the
magnetic field. The effect of βe gives a more elongated island along y and thinner along
x. If we take a βe > 1 and keep a low enough mass ratio, then we are forced to stand
in a regime with ρs/de much greater than 1. The ratio considered in this simulation is
ρs/de = 8.65. In this case A± is advected by a velocity field which can be approximated
by v± = ±ẑ ×∇

(
ρs
de
G10eA‖

)
, since φ± tends to coincide with ±ρsdeG10eA‖. Performing

other tests (whose results are not shown here) with de ∼ ρs, βe ∈ {0, 0.5} and a mass
ratio 20 times higher, did not show any obvious difference in the mixing phase either.

The electron density Ne can be obtained by a linear combination of the invariants A±

Ne =
A+ −A−

2deρs
. (5.10)

The contour plot of the electron density is displayed on Fig. 13 and shows the fine
structures produced by the mixing of the Lagrangian invariants A±. The case βe = 1.5
shows nested quadripolar structures. From the difference between the profiles of Ne on
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Figure 13. Contour plot of the electron density. Left panel: βe = 0, middle panel: βe = 1.5.
On the right panel are the profiles of Ne at y = π/3 in the cases βe = 0 (purple) and βe = 1.5
(blue). The parameters are de = 0.06, ρs = 0.519. The dashed lines are the separatrices. The
contour plots and profiles refer to the normalized time γt = 5.18

Fig. 13 it is visible that increasing βe will smooth the gradients in the inner region of the
electron density.

6. Conclusion
In this article, we have attempted to provide an overview of the impact of finite electron

plasma beta effects on the tearing instability in non-collisional plasma with cold ions and
a strong guide field. Adopting a gyrofluid model, we have studied the effects of electron
gyration and of a parallel magnetic perturbation. There is a wide variety of systems for
which this study can be useful, such as magnetosheat plasmas, where current sheets form
in the presence of a guide field and a large βe value. Recently, for instance, studies of
observations of the MMS space mission in the magnetotail have revealed electron-only
reconnecting current sheet, where ions do not participate and where βe values can be
observed to be greater than 1 (Man et al. (2020)).

Our main results are the following. First, increasing βe and ρs while keeping de and the
mass ratio fixed, the evolution of the reconnection growth rate seems to be dominated
by the destabilizing effect of ρs, up to a certain threshold where the effects of ρe become
important and the grfowth rate diminishes (Fig. 5). This can also be interpreted as
fixing the background density, n0, the ion mass (so that de is fixed) and the guide field
amplitude B0, while increasing the electron temperature T0e. In the case of a small ∆′
regime, a high βe can eventually stabilize the tearing mode and prevents reconnection
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from occurring.
Secondly, in the nonlinear regime of the case ρs � de with βe ∼ me/mi � 1, (which is
referred to as being the fluid regime in this article), we retrieved the well-know collisionless
faster than exponential growth which leads to an explosive growth of the magnetic island.
However, when we increase βe, this explosive paradigm is modified with the appearance
of a slow down phase preceding the explosive growth.
A further conclusion is that the effect of βe on the Lagrangian invariants of the gyrofluid
model does not seem to reduce the filamentary structure, produced by a "phase mixing",
characteristic of these invariants.

The results obtained with our gyrofluid model are in agreement with results obtained
by gyrokinetic studies (Numata et al. (2011); Numata & Loureiro (2015)). They also
complement some two-fluid studies where a consistent accounting for βe effects, including
both electron FLR and parallel magnetic perturbations were neglected (Schep et al.
(1994); Grasso et al. (1999); Del Sarto et al. (2006); Fitzpatrick & Porcelli (2007)).
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Appendix: Calculation of γu
We start from the linearized Eqs. (3.2)-(3.3), using the equilibrium (3.4) and the

perturbations (3.5). The perturbations are subject to the boundary conditions Ã, φ̃→ 0,
as x → ±∞. We look for even solutions of Ã(x) and odd solutions for φ̃(x), which are
standard parities for the classical tearing problem.

We consider the time variation of the perturbation being slow,

g =
γ

ky
� 1, (6.1)

and the normalized electron skin depth as a small parameter, i.e.

de � 1. (6.2)

The linearized equations are given by

γ(φ̃′′ − k2
yφ̃)− ikyA‖B′′y0 + ikyBy0(Ã′′ − k2

yÃ) = 0, (6.3)

γ(Ã− d2
e(Ã
′′ − k2

yÃ)) + ikyφ̃(By0 − d2
eB
′′
y0)− ikyρ2

sBy0(φ̃′′ − k2
yφ̃) = 0, (6.4)

where By0 = −d.A(0)
‖ /d.x is the equilibrium magnetic field. In order to solve (6.3) and

(6.4) we have to adopt an asymptotic matching method because the vanishing of the
two small parameters g and de leads to a boundary layer at the resonant surface x = 0.
We will consider two spatial regions involving two spatial scales. Far from the resonant
surface, located at x = 0, the plasma can be assumed to be ideal and electron inertia
can be neglected. This region is commonly called the outer region. Close to the resonant
surface, we will proceed to a spatial rescaling and get to a scale at which electron inertia
becomes important and drives the reconnection process. This second region is called the
inner region. We anticipate that we will find a second boundary layer inside the inner
region and will need the use of a second asymptotic matching.
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6.1. Outer region
As mentioned before, we assume de � 1 and g � 1. We then neglect terms of order

d2
e and g2 in Eqs. (6.3) and (6.4). The outer equations are given by

Ã′′out −
(
k2
y +

B
′′

y0

By0

)
Ãout = 0 (6.5)

φ̃out(x) =
igÃout(x)

By0
, (6.6)

where we indicate with the prime symbol, the derivative with respect to the argument
of the function. The solution for Ãout is given by

Ãout(x) = e−
|x|
√
λ2k2y+4

λ




15 tanh3
(
|x|
λ

)

λ2k2
y

√
λ2k2

y + 4
+

15 tanh2
(
|x|
λ

)

λ2k2
y

+

(
6
(
λ2k2

y + 4
)
− 9
)

tanh
(
|x|
λ

)

λ2k2
y

√
λ2k2

y + 4
+ 1


 (6.7)

From Eq. (6.6), on the other hand, one sees that the solution for φ̃out is not defined at
the resonant surface x = 0, where By0 vanishes. This indicates the presence of the above
mentioned boundary layer at x = 0. We measure the logarithmic derivative of the of the
discontinuity of the outer solutions (6.7) at x = 0 with the formula (3.6) of the standard
tearing parameter and we obtain the expression

∆′ =
2
(
5− λ2k2

y

) (
λ2k2

y + 3
)

λ3k2
y

√
λ2k2

y + 4
. (6.8)

In the limit |x| → 0 the solution for Ãout can be develop using its Taylor expansion

Ãout = 1 +
∆′

2
|x|+O(x2). (6.9)

If ∆′ is small enough, the solution Ã can be approximated to be equal to 1 in the region
where x � 1. This is standard procedure called the constant ψ approximation (Furth
et al. (1963)).

6.2. Inner region: first boundary layer
In the inner region, we proceed to a first spatial rescaling using an inner variable, x̂,

such that
x = εx̂, (6.10)

where ε� 1 is a stretching parameter. The rescaling (6.10) implies ky � ∂x̂, and allows
to use a Taylor expansion of the equilibria (3.4)

By0(εx̂) =
2x̂ε

λ
+O(ε2). (6.11)

We obtain the two inner equations

Ã′′in =
igλ

2εx̂
φ̃′′in, (6.12)
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g

(
Ãin −

d2
e

ε2
Ã′′in

)
+ i

2εx̂

λ
φ̃in − i

ρ2
s2x̂

λε
φ̃′′in = 0. (6.13)

We introduce the real-valued displacement function

ξin = − i
g
φ̃in, (6.14)

and injecting (6.12) in (6.13), we obtain the layer equation

ξ′′in
ε2
− 2εx̂

λρ2
s

(
g2d2e
ρ2s

+ 4ε2x̂2

λ2

)
(
εx̂

2λ
ξin − 1

)
= 0, (6.15)

where we used the constant ψ approximation, which, we recall, consists in approximating
Ãin ∼ 1 close to x = 0. In order to solve (6.15) we will assume

gde � ρ2
s � 1, (6.16)

and will make use of a second asymptotic matching inside the inner region. We will have
indeed two boundary layers at x = 0, defining two spatial regions in which the equations
can be solved. A boundary layer exists at the scale ε1 = ρs and a second one at a smaller
scale, for ε2 = gde

ρs
.

In the first layer we use

ε = ε1 = ρs, ξin =
ξ̂

ε1
, (6.17)

where ξ̂ is the rescaled displacement function. This choice for ε yields a distinguished limit
allowing to retain the maximum number of terms in Eq. (6.15), as ε → 0, accounting
for the condition (6.16), which allows to neglect the term g2d2

e/ρ
2
s in the denominator

of Eq. (6.15). We restrict our study to the case of negligible FLR effects in the inner
region, which implies that ρe � ε1. This condition ensures that the terms responsible for
the electron FLR effects remain smaller than those responsible for the effects of electron
inertia.
The rescaling leads to the layer equation

ξ̂′′ − ξ̂ = −2λ

x̂
. (6.18)

The solution of Eq. (6.18) is

ξ̂ =
λ

4
ex̂E1(x̂) +

λ

4
e−x̂

(
Ei(x̂)− λgde

ρ2
s

π

2

)
. (6.19)

Where we already fixed the constants of integration in order to ensure limz→+∞ ξ̃ = 0
and to ensure the matching with the solution in the second layer. In (6.19) we used the
expression of the exponential integral functions

E1(x) =

∫ +∞

x

e−t

t
dt, and Ei(x) =

∫ x

−∞

et

t
dt. for x > 0, (6.20)

6.3. Inner region : second boundary layer
In the second layer, where x̂ ∼ gde/ρ2

s, the solution (6.19) is no longer valid. Therefore,
in the second layer, we perform the following rescaling

ε = ε2 =
gde
ρs

, ξin =
de
ρ3
s

ξ̄, (6.21)



Guidelines for authors 27

and introduce the second inner variable x̄ = x/ε2 (so that x̂ = (gde/ρ
2
s)x̄). Since we

are at an even smaller spatial scale than that of the previous layer, we emphasize the
condition of neglecting the FLR effects also in this second inner layer, i.e. ρe � ε2.
Considering our assumption (6.16), the equation (6.15) becomes,

ξ̄′′ +
2x̄

λ
(
1 + 4x̄2

λ2

) = 0. (6.22)

The solution of Eq. (6.22), written bellow, in terms of the variables x̂ and ξ̂ reads

ξ̂(x̂) = λ

(
1− γE +

λgde
2ρ2
s

π

2
+ log

(
ρ2
s

gde

))
x̂− λ2 gde

4ρ2
s

arctan

(
ρ2
s2x̂

gdeλ

)

− λ

4
log

((ρ2
sx̂

gde

)2

+
λ

q

)
x̂.

(6.23)

This solution satisfies the boundary condition ξ̂(0) = 0, descending from the requirement
of φ̃ being an odd function. In Eq. (6.23) γE is the Euler constant.

6.4. ∆′ matching
We add the following matching condition concerning the derivatives of the solutions:

∆′ =
1

ε1

∫ ∞

−∞
Ã′′indx̂. (6.24)

Using the relations (6.12) and (6.22) and using the variables x̂ and ξ̂ we write

∆′ =
2g2

ρ3
s

∫ +∞

0

(
1− 2x̂

λ ξ̂
)

(
g2d2e
ρ4s

+ 4x̂2

λ2

)dx̂. (6.25)

We separate the integral referring to the second term on the right-hand side of Eq. (6.25)
in two parts, one from 0 to σ and one from σ to +∞, with σ a parameter constrained in
the overlap region such that

gde
ρ2
s

� σ � 1

log
(
gde
ρ2s

) . (6.26)

We also recall that gde
ρ2s
� 1 is our assumption (6.16). Equation (6.25) can then be

rewritten as

∆′ =
2g2

ρ3
s

∫ +∞

0

1(
g2d2e
ρ4s

+ 4x̂2

λ2

)dx̂− 4g2

λρ3
s

∫ σ

0

x̂ξ̂(
g2d2e
ρ4s

+ 4x̂2

λ2

)dx̂− 4g2

λρ3
s

∫ ∞

σ

x̂ξ̂(
g2d2e
ρ4s

+ 4x̂2

λ2

)dx̂.

=
gλπ

2deρs
+W2 +W1.

(6.27)

We calculate the expression (6.27) accurate to g2/ρ3
s so smaller terms are neglected (the

next higher term is of order g2

ρ3s
σ log gde

ρ2s
and thanks to the constraint (6.26) we have

σ log gde
ρ2s
� 1).

In the interval between σ and +∞, we use the hypothesis (6.16), given by gde � ρ2
s � 1
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to simplify the denominator.

W1 = − 4g2

λρ3
s

∫ ∞

σ

x̂ξ̂(
g2d2e
ρ4s

+ 4x̂2

λ2

)dx̂.

= −g
2

ρ3
s

∫ ∞

σ

x̂(
g2d2e
ρ4s

+ 4x̂2

λ2

)
(
ex̂E1(x̂) + e−x̂

(
Ei(x̂)− λgde

ρ2
s

π

2

))
dx̂.

= −λ
2g2

4ρ3
s

∫ ∞

σ

1

x̂

(
ex̂E1(x̂) + e−x̂Ei(x̂)

)
dx̂+

λ3g3de
4ρ5
s

π

2

∫ ∞

σ

e−x̂

x̂
dx̂.

(6.28)

Using the identity euE1(u) + e−uEi(u) = 2
∫∞

0
u

u2+t2 sin(t)dt (from Geller & Ng (1969)
(id. 22 Tab. 3.3)) and knowing that Γ (0, σ) =

∫∞
σ

e−x̂

x̂ dx̂ is the incomplete gamma
function whose dominant contribution, as σ → 0+, is log(σ), we obtain

W1 =
λ2g2

ρ3
s

(∫ ∞

0

∫ ∞

σ

sin(t)

x̂2 + t2
dx̂ dt+O

(
gde
ρ2
s

log(σ)

))
dx̂, (6.29)

when σ → 0+ and gde/(ρ2
sσ)→ 0+. Focusing now on the remaining double integral,

∫ ∞

0

∫ ∞

σ

sin(t)

x̂2 + t2
dx̂ dt =

∫ ∞

0

sin(t)
arctan(x̂/t)

t

∣∣∣
∞

σ
dt

=
π

2

∫ ∞

0

sin(t)

t
dt−

∫ ∞

0

sin(t)

t
arctan(σ/t) dt.

(6.30)

We can prove that the second term is negligible when σ → 0+ by introducing a new
small parameter κ such as σ � κ� 1, splitting the integral into the sum of an integral
from 0 to κ with an integral from κ to +∞, and using that in the region 0 < t < κ,
arctan(σ/t) < π

2 and sin(t) ∼ t and in the region κ < t, one has arctan(σ/t) ∼ (σ/t). We
thus obtain

W1 = −λ
2g2

4ρ3
s

(
π2

2
+O

(
gde
ρ2
s

log(σ)

))
, (6.31)

when σ → 0+ and gde/(ρ2
sσ)→ 0+.

It is then possible to show, using (6.26) and (6.16) that

W2 = O

(
gde
ρ2
s

log

(
gde
ρ2
s

))
+O

(
gde
ρ2
s

log (σ)

)
+O (σ log (σ)) +O

(
σ log

(
gde
ρ2
s

))
,

(6.32)

when σ → 0+ and gde/(ρ2
sσ)→ 0+.

Summing all the leading order terms and neglecting the higher order contributions, we
obtain the dispersion relation

∆′ =
gλπ

2deρs
− g2λ2

4ρ3
s

π2

2
. (6.33)

It is possible, in virtue of (6.16), to verify that the second term on the right-hand side of
Eq. (6.33) is smaller than the first one (g/(deρs)� g2/ρ3

s).
Retaining only the first term in Eq. (6.33) gives the growth rate predicted by Porcelli
(1991) and corresponding to the dispersion relation (3.8). When taking into account the
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corrective term, we obtain the expression for the growth rate

γu = 2ky

(
ρ2
s

πdeλ
− ρ

3/2
s

√
ρs − 2d2

e∆
′

πdeλ

)
, (6.34)

corresponding to Eq. (3.10). We remark that, because of the parity properties we required
on φ̃ and Ã, the growth rate γu has to be real, which enforces a further condition of
validity, corresponding to

ρs > 2d2
e∆
′. (6.35)

We performed high precision tests to verify the corrective term of the dispersion relation
(6.34).
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