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Featured Application: Extension of the laser profilometer industrial applicability from static to
dynamic measurements.

Abstract: This paper investigates a cantilever beam nonlinear dynamic behaviour, on which the
nonlinearity is introduced with permanent magnet interactions or with a non-holonomic contact.
The experimental time domain responses obtained from non-zero initial conditions are measured
using a laser profilometer, conventionally adopted for product shape detections in online industrial
applications. The Fourier transform, Continuous Wavelet transform, and Hilbert transform are
used to investigate nonlinear phenomena in the frequency content, highlighting advantages and
drawbacks of the three methods in catching instantaneous phenomena. Then, a Multi-Phi approach
is proposed to describe the time evolution of nonlinear systems by means of a discrete number of
linearised systems. Therefore, two linearised models have been developed and tuned to describe the
dynamic behaviour of different Euler–Bernoulli cantilever beam configurations. The experimental
data of nonlinear systems are compared with the corresponding ones of the linear system to evaluate
the effects of introduced nonlinearities on the overall dynamic properties.

Keywords: laser profilometer; cantilever beam; non holonomic constraints; magnetic stiffness; time
frequency analysis

1. Introduction

In structural dynamics, linearisation is a common practice in approximating system be-
haviour. From a physical perspective, the behaviour is well approximated if deformations
are small enough to not exceed the material limit of linear proportionality [1,2] and dis-
placements do not introduce geometrical nonlinearities [3,4]. Additionally, devices such as
rolling bearings [5,6], hyperelastic springs/beams [7,8], non-holonomic constraints [9–11],
and mechanisms such as play and hysteresis [1], friction [12], polynomial forms of restoring
forces [13,14], and bistability [15] are usually neglected if their influences on the macro-
scopic behaviour of the system are marginal.

From an analytical perspective, a linear system can be studied with second order
linear differential equations, hence the superposition of the free and forced behaviour of
the system. Moreover, modal analysis and techniques directly linked with the linearity of
the model can be used [16]. The linearised model behaviour allows the assessment of the
stability of the equilibrium [17]. The differences between the actual behaviour of a structure
and the predicted one are often explained by the departure from linearity.

The linearisation of models is affirmed strategy in Model Order Reduction (MOR)
methods, developed to reduce the number of Degrees of Freedoms (DoFs) and, therefore,
computational cost, with a marginal loss of accuracy. In structural dynamics, two classes of
MOR methods can be identified: data based and model based.

Data-based MOR methods are based on a database of previous simulations of the full
original nonlinear system [18,19]. Instead, model-based MOR methods are based on the
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full model itself and no preliminary simulations are required. Methods of this class aimed
to nonlinear systems have been proposed, both retaining the nonlinearities [20–22] and
linearising them [23–26].

In [27], a novel model-based MOR method called Multi-Phi was introduced, in which
the nonlinear system is projected in the configuration space, followed by a separate reduc-
tion of each of the linearised systems. Therefore, the nonlinear system is described through
a subset of the mode shapes and the static deformed shapes of each of the linearised sys-
tems. The nonlinearities are implicit in the differences between mode shapes and static
deformed shapes of the various configurations, which are practically depicted by Finite
Element models. The reduced system has a lower computational cost, and it is, therefore,
useful for simulations, both in time and frequency domain.

The Multi-Phi approach has been adopted in describing the effect of localised non-
smooth nonlinearities: in [11], a non-holonomic contact constraint is introduced on a clamped-
free beam and two linearised configurations of the system are numerically and experimentally
identified. The nonlinear displacement of characteristic beam nodes has been monitored by
Keyence Laser spot sensors [28], which demonstrated the methodology effectiveness.

The cantilever beam is a common case study in several applications in which nonlinear-
ity contributions are analysed for system dynamics modelling. In [29,30], a multi-layered
beam is analysed assessing the role of different layer distributions in correct dynamic
behaviour estimation. Instead, an aeroelastic structural coupling of a beam-based an-
tenna component is identified and discussed in [31]. Moreover, beam dynamics are often
exploited for energy harvesting applications, as performed in [32].

Without loss of generality, it is also possible to evaluate localised smooth nonlinearities.
Hence, in this paper, different localised nonlinearities are introduced on a cantilever beam
with permanent magnet interactions or non-holonomic contacts, which can be described by
polynomial form of the restoring forces [33,34]. The magnets introduce nonlinearity in the
overall elastic characteristic with softening or hardening effects, but also may influence the
electromagnetic properties due to material nonlinearities [35–37].

In this work, the experimental time domain responses obtained from non-zero initial
conditions are measured using a Keyence Laser profilometer, conventionally adopted for
product shape detections in online industrial applications [38–40]. Experimental tests are
carried out and the frequency contents are examined to spot the nonlinear characteris-
tics with respect to the linearised configurations of the structure. Moreover, numerical
simulations with LUPOS [41,42] are performed to fully interpret the obtained results.

Finally, experimental test frequency contents are post-processed with the use of dif-
ferent time–frequency analysis approaches: the Fast Fourier Transform (FFT) converting
signals to frequency domains as the summation of harmonics; the Continuous Wavelet
Transform (CWT) [43–46], now widespread in Structural Health Monitoring [47,48], which
employs fundamental waves called “wavelets” of various shapes, allowing the description
of different time scale phenomena occurring; and the Hilbert transform [49,50] allowing
the monitoring of instantaneous frequency of nonlinear single DoF systems.

The paper is organised in sections. In Section 2, the experimental test-rig is shown
with attention to the system equipment. In Section 3, the experimental results are depicted
and discussed; the FFT and the CWT time–frequency analyses are adopted and compared
in results; also, Hilbert transform and Finite Element models of linearised configurations of
the system are adopted in the analysis. Finally, some comments on this work are discussed
in the conclusions in Section 4.

2. Experimental Test Measurements

In this paper, an experimental campaign has been carried out to measure the time
domain response obtained from non-zero initial conditions of a cantilever beam in different
linear and nonlinear configurations.
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2.1. Application Case

The case study for the detection of nonlinear dynamics using a laser profilometer is the
Euler–Bernoulli cantilever beam, reported in Figure 1. It has been tested in three different
configurations, as follows:

1. The simple and typical clamped-free beam with a lumped mass at the free end.
Although a nonlinearity can be present due to a large initial condition displacement,
which does not allow the application of small deformation theory, it represents the
reference linear case;

2. Two pairs of permanent magnets acting in attraction (#2a) or repulsion (#2r), as in
Figure 2a. This introduces a nonlinearity owed to the asymmetric characteristic of the
force carried out by these elements;

3. A non-holonomic constraint that acts similar to a pin located at a certain distance
from the clamp during the time instants in which it is in contact with the beam, as in
Figure 2b. This introduces a nonlinearity owed to the contact of the beam with the
new introduced constraint.
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Figure 2. Sketch of the nonlinear system in configurations #2a-#2r (a) and #3 (b) with relevant
dimensions expressed in millimetres.

The clamp is composed by two steel parts connected by two screws, as reported in
Figure 3a. The four threaded rods that properly lock the system give it great torsional
stiffness. Furthermore, the Bosch profile in the upper part of the clamp is in contact only
with the biggest part of it, ensuring an ideal clamp since the contact does not give more
stiffness to the constraint. On the other side, the contact in the non-holonomic constraint is
guaranteed along all the width of the beam, as depicted in Figure 3b,c.
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Geometrical and mass properties for beam, clamp, and lumped mass are listed in Table 1.

Table 1. Weight and property of experimental setup objects.

Item Weight
(g) Material Density

(kg/m3)

Young
Modulus

(GPa)

Poisson
Ratio

(-)

Constraint base 2990.5 Steel 7800 200 0.3
Constraint plate 193.1 Steel 7800 200 0.3

Screws and washers 20.4 Steel 7800 200 0.3
Total constraint 3204.0 Steel 7800 200 0.3

Euler–Bernoulli beam
(600 mm × 30 mm × 3 mm) 144.1 Aluminium 2699.2 1 69 0.33

Lumped mass disk 203.37 Steel 8225 200 0.3
Lumped mass

fasteners 9.51 Steel 7800 200 0.3

Beam magnets
(#2 Ø12h4) 7.1 Nd2Fe14B

magnet 7500 - -

Constraint magnets
(#2 Ø12h4

and #1 Ø8h8)
13.3 Nd2Fe14B

magnet 7500 - -

Bosch profiled beams S 1740 1

R 3040 2 Aluminium 2700 69 0.33

1 The density of “Euler–Bernoulli beam” is computed directly thanks to the dimensions reported in Figure 2 and
considering 2 holes Ø 5.5 and 1 hole Ø 10. 2 Bosch profile masses are expressed in unit length for square (S) or
rectangular (R) cross-sections.

2.2. Instrumentation

Experimental data are acquired using two different sets of hardware. The former
consists of three point-lasers, produced by Keyence, of type LK-H082 and LK-H152, while
the latter includes the Keyence laser profilometer LJ-X8900, which has the possibility to
monitor the displacement of 3200 points at the same time. Lasers are connected to a
Siemens SCADAS Mobile, and their sensitivity S is set in the software Siemens Test.Lab in
compliance to the margin of error ∆V = 20 V of the output voltage, corresponding to ±10 V.
Therefore, the sensitivity is computed as:

S =
∆V
2d

(1)

The displacements of the three monitored points of the cantilever beam must stay
within the range d given in Table 2, hence their position with respect to the length of the
beam has been decided to satisfy this condition, since the greater the distance from the
beam the greater the measured displacement will be.
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Table 2. Point-laser characteristics.

Label Product Name Distance D
(mm) Range d (mm) Sensitivity S

(mV/mm)

L1 LK-H152 150 ±40 250
L2 LK-H082 80 ±18 555.56
L3 LK-H082 80 ±18 555.56

The lasers measure, according to the reference system shown in Figure 2, the displace-
ment of three points, namely:

• a point (L1) at the end of the beam on the lumped mass (x = 545 mm);
• a point (L2) near to the permanent magnets or to the non-holonomic constraint (x = 390 mm);
• a point (L3) between the clamp and the constraints (x = 210 mm).

The laser profilometer LX-J8900 is fixed to a rigid table, using the specific support
reported in Figure 4a, and projects a laser beam at 980 mm from the cantilever beam to
monitor the displacement of 12 fixed points, as displayed in Figure 4b.
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By analysing Figure 4b, the measured points are labelled from P1 to P14, and their
distance in x direction from the origin of reference system are reported in Table 3.

Table 3. Coordinates of measured points using a profilometer.

Points P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

Distance
x [mm] −25 40 80 120 160 200 240 280 320 360 400 440 480 545

The point L1, measured with single-point laser, is coincident with the point P14, acquired
with the profilometer. For sake of clarity, the profilometer acquisition system is completely
independent and not synchronised with the SCADAS Mobile used for the single-point lasers.

2.3. Testing Procedure

The experimental setups, realised to analyse the effect of nonlinearity on the cantilever
beam dynamic behaviour in case of magnets in attraction, non-symmetric constraint, and
large initial displacement conditions, are reported in Figure 5.

The excitation of the structure is performed with a wire which can be pulled from two
different positions:

• the hole near the lumped mass located at 493 mm from the clamp;
• the hole located at 295 mm from the clamp.

In this way, it is possible to separately excite the first two typical bending vibration
modes of the Euler–Bernoulli beam: in particular, pulling the wire from the first position, a
static deformation equivalent to the 1st bending mode shape is given to the system, while
using the second one the static deformation typical of the 2nd bending mode is assigned
to the beam. To excite the structure with only a non-null initial displacement, the wire is
set with to the desired initial condition (IC): the acquisition software is used to display the
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chosen IC. Then, the wire is locked and finally cut by a pair of scissors, which allows to have
null initial velocity thanks to the instantaneity of the action. Moreover, this procedure has
the advantage of being easily repeatable. Additionally, it is important to set the wire along
the middle transversal plane of the beam, because, in this way, the torsional modes of the
structure are not excited. For sake of clarity, Figure 6 shows how the initial conditions are set.
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of permanent magnets acting in attraction or repulsion (centre), and beam with a non-holonomic
constraint (right).

A sampling frequency fs = 16,384 Hz is chosen for the single-point lasers, while the
maximum sampling frequency of 1000 Hz is chosen for the profilometer acquisition system.
Single-point lasers are addressed to high-frequency dynamics measurement, while the
profilometer is conventionally adopted for static detections of manufactured products in
the production line. Moreover, acquired time histories using the profilometer are limited to
20 s due to acquisition system limits.
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From the good agreement of single-point lasers time data and profilometer corre-
sponding point acquisitions comparison, the use of the latter as a reasonable new tool for
dynamic tests is proved.

3. Results and Discussion

Several tests have been performed with different configurations of the test rig and
Ics. Results of only one acquisition for each testing condition will be shown and discussed
in this section. The static deformations of the beam are chosen using the single-point
laser software.

3.1. Experimental Data Collection: Time Domain Analysis

In Table 4, the most significant tests have been reported, with the IC of points P11
and P14 coincident with the single-point laser L2 and L1, respectively, evaluated from the
acquired time histories of Figures 7–9.

Table 4. Tests carried out during experimental campaign.

Test Label L2 (P11) (mm) L1 (P14) (mm) Description

1 BD −9.95 −16.42 Only beam dynamics
2a MaD −14.74 −24.17 Beam dynamics + attractive magnets
2r MrD −14.38 −23.61 Beam dynamics + repulsive magnets
3 CD −11.68 −19.07 Beam dynamics + contact (non-holonomic)

The BD test is used to evaluate the first natural frequency of the beam in a clamped-
free configuration and to properly update the numerical model, which will be used for
computing the dynamic properties in case of clamped-pinned-free beam. Moreover, the
BD test is used to calibrate the single-point laser offsets to obtain the beam displacement
perfectly symmetric with respect to static equilibrium. Only results of the profilometer are
analysed, addressing the paper aim. The acquired time history of the BD test is reported
in Figure 7.
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Instead, in Figure 8, the time histories of the MaD test, i.e., the test with magnets in
attraction, are shown. From the two details of Figure 8b, it is possible to notice that the
points of the beam oscillate around a non-null value, hence a positive drift, due to magnets
in attraction and forward the fixed magnets, is present.
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Instead, in case of magnets in repulsion, a negative drift would be seen. Similar be-
haviour but with more extended semi-oscillations along negative displacements is evinced
in the MrD test, i.e., the test with magnets in repulsion, not shown in this work.

The CD test aims at investigating the nonlinear behaviour in the beam’s dynamics,
due to the non-holonomic constraint, which modifies the beam’s boundary conditions, and,
consequently, the beam’s natural frequencies.
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Figure 9. Time history of CD test using profilometer (a), with details at 0–2 s and 18–20 s (b); red line
identifies the detected intermedial point, blue line the point detected at the mass..

By analysing CD test, the acquired point P11 and P14 time histories are reported
in Figure 9. The point P11 corresponds to the contact point of the beam with the non-
symmetric constraint, while point P14 is the beam’s free end, where the lumped mass is
attached. As it is possible to notice from Figure 9b, the oscillation frequency changes in
time, passing from ~4.5 Hz in the first two seconds to ~3 Hz in the last two seconds, in
which the contact with the non-holonomic constraint is almost no longer occurring. The
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point P11 displacement is flat when the contact with the constraint occurs, as indicated by
the green horizontal line.

3.2. Post-Processing Methodology

The acquired time histories have been post-processed with a time–frequency analysis,
using both Fourier transform and Continuous Wavelet transform with the aim of detecting
frequency variations in the time evolution, which can be addressed to nonlinear phenomena.

3.2.1. Fast Fourier Transform Analysis

The time–frequency analysis using Fourier transform consists of a series of frequency
analyses on windowed time histories with high overlapping percentages. For time–frequency
co-domains directing the Fast Fourier Transform (fft) (Equation (2)) and the inverse the
Fast Fourier Transform (ifft) (Equation (3)) relationships for the discrete time signal x(t)
and the signal Fourier transform X(ω) are dual and commonly used.

X(ω) = X(x(t), ω) =
∫ +∞

−∞
eiwtx(t)dt = fft(x(t)) ∈ C (2)

x(t) =
∫ +∞

−∞
e−iwtX(x(t), ω)dω =ifft(X(ω)) = ifft(fft(x(t))) ∈ R (3)

In the adopted fft and ifft approaches and amplitudes are normalised with the follow-
ing scale factor Amp, where N is the total amount of samples in x(t), then:

Amp =
2

N − 1
(4)

Hence, in the performed FFT time–frequency analysis, a Tw = 4 s has been chosen as
time of single windowed signal, with an overlap of 97% and Hamming window.

For the BD test shown in Figure 10, a constant harmonic at ~3 Hz is evident, which
corresponds to the frequency of the first bending mode in the clamped-free configuration.
Instead, the several light horizontal superharmonics are due to leakage phenomena related
to Hamming windowing. Moreover, to confirm the softening nonlinearities for large
displacements of the clamped-free beam are quite negligible, it is suggested to see the
wavelet analysis in the next section.
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By analysing Figure 11, processed for MaD test with magnets in attraction, it is possible
to notice two nonlinear effects. The former is the presence of the 2nd superharmonics of
the fundamental frequency, while the latter is the softening effect. In this configuration, the
softening behaviour reduces the global stiffness of the cantilever beam and, consequently,
decreases the fundamental frequency and its superharmonics at the beginning of the time
history with respect to the end, as noticeable from the markers in Figure 11b. Moreover, the
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softening effect is more evident when the magnetic restoring force variability is higher, due
to larger oscillations of the cantilever beam.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 25 
 

Hence, in the performed FFT time–frequency analysis, a w
T  = 4 s has been chosen as 

time of single windowed signal, with an overlap of 97% and Hamming window. 

For the BD test shown in Figure 10, a constant harmonic at ~3 Hz is evident, which 

corresponds to the frequency of the first bending mode in the clamped-free configuration. 

Instead, the several light horizontal superharmonics are due to leakage phenomena re-

lated to Hamming windowing. Moreover, to confirm the softening nonlinearities for large 

displacements of the clamped-free beam are quite negligible, it is suggested to see the 

wavelet analysis in the next section. 

  
(a) (b) 

Figure 10. Time–frequency contents of “BD” for P11 (intermedial) (a) and P14 (mass) (b) profilome-

ter points. 

By analysing Figure 11, processed for MaD test with magnets in attraction, it is pos-

sible to notice two nonlinear effects. The former is the presence of the 2nd superharmonics 

of the fundamental frequency, while the latter is the softening effect. In this configuration, 

the softening behaviour reduces the global stiffness of the cantilever beam and, conse-

quently, decreases the fundamental frequency and its superharmonics at the beginning of 

the time history with respect to the end, as noticeable from the markers in Figure 11b. 

Moreover, the softening effect is more evident when the magnetic restoring force varia-

bility is higher, due to larger oscillations of the cantilever beam. 

  
(a) (b) 

Figure 11. Time–frequency contents of MaD test for P11 (magnet) (a) and P14 (mass) (b) profilome-

ter points. 

Results of the time–frequency analysis for the CD test are shown in Figure 12. By 

analysing the mass point P14, reported in Figure 12b, it is evident the 1st frequency tran-

sitions with a decrement in time. The 1st natural frequency decreases from a value of ~5 

Hz to ~3 Hz when the contact is no longer present. Moreover, the superharmonics of the 
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Results of the time–frequency analysis for the CD test are shown in Figure 12. By
analysing the mass point P14, reported in Figure 12b, it is evident the 1st frequency
transitions with a decrement in time. The 1st natural frequency decreases from a value
of ~5 Hz to ~3 Hz when the contact is no longer present. Moreover, the superharmonics
of the fundamental natural frequencies are visible in both signals, while, in Figure 12a, it
is possible to distinguish the 2nd resonance frequency corresponding to the point near
the contact, appearing at ~37 Hz, which agrees with Table 5. This frequency is more
evident in Figure 12a since the contact is the main physical cause exciting this second
vibrational mode. Hence, the contact corresponds to the point where the beam assumes
this behaviour the most.
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3.2.2. Continuous Wavelet Method

An alternative time–frequency analysis approach to FFT is the CWT approach. CWT
consists of a set of projections W(τ, s) of the signal x(t) in time τ and frequency scale s onto
rescaled and translated versions of an analysing function ψ(t), also called a “wavelet” [43–46].
The projection is translated in a frequency domain integral in which ΨP,γ ∗ (ω) is the
complex conjugate of the Fourier transform of the Morse reference wavelet, and X(ω) is
the Fourier transform of x(t).

W(τ, s) = 1
s
∫ ∞
−∞ ψP,γ ∗

( t−τ
s
)
x(t)dt =

= 1
2π

∫ ∞
−∞ ΨP,γ ∗ (sω)X(ω)eiwtdω

(5)
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Hence, the Fourier transform of the generalised Morse wavelet is:

ΨP,γ(ω) = U(ω)2
(

e
γ2

P2

) P2

γ2

ω
P2
γ e−ωγ

(6)

where U(ω) is the unit step Fourier transform; 2
(

e γ2

P2

) P2

γ2 is a normalising constant; P2 is
the time-bandwidth product; and γ characterises the symmetry of the Morse wavelet, used
in this work for its versatility. By adjusting the time-bandwidth product and symmetry
parameters it is possible to obtain wavelets with different behaviours.

Therefore, a time–frequency analysis of the evolution of the measured points is per-
formed with CWT based on Morse wavelets.

The use of CWT does not provide further details for the BD test, where the beam
is analysed in clamped-free conditions. Results reported in Figure 13 are similar to the
time–frequency analysis using FFT reported in Figure 10. The two labels at the beginning
and at the end of time history confirm the nonlinear effects due to large oscillations are
negligible, since the frequency is the same of the first bending mode at ~3 Hz.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 25 
 

frequency analysis using FFT reported in Figure 10. The two labels at the beginning and 

at the end of time history confirm the nonlinear effects due to large oscillations are negli-

gible, since the frequency is the same of the first bending mode at ~3 Hz. 

  

(a) (b) 

Figure 13. Time–frequency contents of BD test using CWT method for P11 (intermedial) (a) and P14 

(mass) (b) profilometer points. 

Regarding the MaD test, the softening effect that decreases the starting value of each 

harmonic when the amplitude of oscillations is higher is more evident respect to the FFT 

analysis, where overlapping is applied to the time history, with a subsequential averaging 

of results. 

From Figure 14a, the 2nd and the 3rd superharmonics can be noticed in the first 4 s. 

This is the confirmation that a nonlinear magnetic force in the equation of motion, if de-

veloped up to the 3rd term, completely describes the action of the magnets. The signal 

contributions at a near zero frequency at the beginning and end of time history are related 

to the wavelet cone of influence, which shows where the edge effects of the CWT become 

significant, hence this region should be excluded from the analysis. Moreover, by chang-

ing wavelet parameters to have a better frequency resolution, the cone of influence 

changes as well. 

  

(a) (b) 

Figure 14. Time–frequency contents of MaD test using CWT method for P11 (magnets) (a) and P14 

(mass) (b) profilometer points. 

The application of the CWT method to the CD test returns the most interesting re-

sults, as shown in Figure 15. From a global point of view, several high spectral contents 

can be noticed at different frequencies. The markers in Figure 15a, which represent the 

time–frequency analysis for the contact point, show a frequency contribution at ~86 Hz 

Figure 13. Time–frequency contents of BD test using CWT method for P11 (intermedial) (a) and P14
(mass) (b) profilometer points.

Regarding the MaD test, the softening effect that decreases the starting value of each
harmonic when the amplitude of oscillations is higher is more evident respect to the FFT
analysis, where overlapping is applied to the time history, with a subsequential averaging
of results.

From Figure 14a, the 2nd and the 3rd superharmonics can be noticed in the first 4 s. This
is the confirmation that a nonlinear magnetic force in the equation of motion, if developed up
to the 3rd term, completely describes the action of the magnets. The signal contributions at a
near zero frequency at the beginning and end of time history are related to the wavelet cone
of influence, which shows where the edge effects of the CWT become significant, hence this
region should be excluded from the analysis. Moreover, by changing wavelet parameters to
have a better frequency resolution, the cone of influence changes as well.

The application of the CWT method to the CD test returns the most interesting re-
sults, as shown in Figure 15. From a global point of view, several high spectral contents
can be noticed at different frequencies. The markers in Figure 15a, which represent the
time–frequency analysis for the contact point, show a frequency contribution at ~86 Hz
and ~114 Hz, which are the 2nd natural frequency of the system in clamped-pinned-free
conditions and the and 3rd natural frequency of the system in a clamped-free configuration,
as stated in Table 5.
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(mass) (b) profilometer points.

For a deeper analysis, a detail of the time interval of 1 ÷ 5 s and in the frequency range
of 0 ÷ 50 Hz is shown for both P11 (contact) and P14 (mass), as reported below.

In Figure 16, there is the evidence of some relevant frequency contents.
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For sake of clarity, a list of all marked frequencies, also summarised in Table 5, is
provided to investigate the system dynamics in frequency domain:
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• ~4.7 Hz identifies a mixed frequency, which is a weighted average of the first natural
frequencies of the clamped-free and clamped-pinned-free configurations over the time
in each configuration. This is confirmed by the periods corresponding to these bending
modes which are larger than the contact time of about 0.032 s, as shown in Figure 17;

• ~9.4 Hz is the 2nd superhamonics of the mixed frequency at ~4.7 Hz. It is usual to have
superharmonics of even order even if a magnet is not present, indeed this contribution
comes from the truncation of the displacement when there is the contact;

• ~14.1 Hz is the 3rd superharmonics of the mixed frequency of ~4.7 Hz. It is not visible
on the contact since it is stopped by the angular profile which does not allow the
nonlinearity to locally develop its effect, since this displacement is not as describable
as at the mass point with an expansion mainly characterised by terms of 3rd order;

• ~18.8 Hz is the 4th superhamonics of the mixed frequency at ~4.7 Hz;
• ~37.6 Hz is related to the 2nd bending mode of beam in clamped-free configuration.

Table 5. Main frequencies.

Frequency (Hz) Description

4.7 Mixed frequency
9.4 2nd superharmonics of the mixed frequency

14.1 3rd superharmonics of the mixed frequency
18.8 4th superharmonics of the mixed frequency
37.6 Clamped-free 2nd mode frequency

The time–frequency analysis performed at the mass point in Figure 16b shows a
frequency bouncing between the 2nd mode of the clamped-free (~37.6 Hz) and the 2nd
superharmonics of the mixed frequency (~9.4 Hz). On the other side, the time–frequency
analysis performed at the contact point in Figure 16a shows a frequency bouncing between
the 2nd mode of the clamped-free system (~37.6 Hz) and the 4th superharmonics of the
mixed frequency (~18.8 Hz). The lower frequency value of the bouncing changes since the
time–frequency analysis of the measurements performed at the contact point does not show
the behaviour related at the 3rd superharmonics of the 1st mode because of the asymmetry
of the contact, hence the closer and higher frequency is the 4th superharmonics of the first
mode at ~18.8 Hz.

Figure 17 is used to clarify that the contact of the beam with the constraint during the
first fully acquired oscillation lasts from 1.366 s to 1.398 s, while the complete oscillation
ends at 1.577 s.
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Therefore, the value of ~4.7 Hz derives from Equations (7) and (8).

fmean = 2.97x + 13.88(1− x) = 4.627Hz (7)
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which is a weighted average of values of the fundamental frequencies of the clamped-
free and clamped-pinned-free configurations, i.e., 2.97 Hz and 13.88 Hz, respectively, as
reported in Table 6. The x value corresponds to the time in which the beam is not in contact,
and it is computed with the instants marked in Figure 17a and is equal to:

x =
1.577− 1.398
1.577− 1.366

= 84.83% (8)

3.3. Numerical Modelling

Due to the large variety of nonlinearities, a suitable choice of methods is mandatory to
emphasize their contribution in the system dynamics according to the scale of the effect
with respect to the macroscopic system behaviour.

In this scenario, MOR methods are affirmed techniques, which can strongly reduce
the computational cost mainly acting on the DoF amount.

In case of magnet interaction, the magnet continuous displacement characteristics
induces a smooth behaviour in dynamics. Eventually, the macroscopic system dynamics
can be linearised around the static equilibrium position [51]. Instead, if the nonlinearity is
not negligible, the system can be reduced by single DoF modelling and a Hilbert transform
is suitable for the study of the nonlinearity.

Non-smooth nonlinearities [52] such as contact phenomena have been successfully
described with model-based MOR methods. In this scenario, the identification of different
linearised configurations of the system and the description of the transition through them as
convolutions in time through the application of boundary conditions on reduced models is a
successful strategy. Therefore, the Multi-Phi approach is introduced and the configurational
nature of the system with non-holonomic constraints is demonstrated by the identification
of its configurations with finite element model modal analysis depicting their major natural
frequencies, which are also observed in previous time–frequency analyses.

3.3.1. Effect of Magnets on a Cantilever Beam: Hardening or Softening Behaviours

The mechanical and dynamic properties of the cantilever beam resulting from the
numerical model are used to develop a single DoF system model that approximates the first
bending mode of the numerical model. Thus, the analytical model is used to investigate
the nonlinear effect given by the magnets when they are used in attraction or repulsion.

The elasto-magnetic system represented in Figure 2a can be described by the following
nonlinear equation:

m
..
z + k(z− ze) + Fm = 0 (9)

where z is the position of the beam; ze is the static equilibrium; Fm is the magnetic force
which can be attractive or repulsive, depending on the sign positive or negative, respectively,
and it is modelled through the empirical formula of Equation (10); while m and k are the
equivalent mass and stiffness, given by Equation (11):

Fm = ± A(
1− z

B
)n (10)

m = ml + mb

k = m(2π fn)
2

(11)

where parameters A, B, and n may be evaluated through magnetic models based on
equivalent currents method [33,34,53], while ml and mb are the lumped mass and the beam
mass participating to the first mode, equal to one third of the total one (without considering
the clamped part), which, according to Table 6, has a natural frequency of fn = 2.97 Hz.

Figure 18 shows on the top the forces acting on the system, namely, the elastic force
of the beam, the magnetic force with a different sign in case of attraction (a) or repulsion
(b), and also the total force because of the superposition of these two effects. Points
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O corresponding to null displacement identify beam static positions in attractive and
repulsive magnetic configurations. Since points P correspond to the equilibrium beam
position without magnets, offsets between the respective cases with and without magnets
can be noticed. The two static magnetic configurations are reached when magnetic and
elastic forces reach opposite values that balance each other.

Secondly, point S of attraction magnet configuration corresponds to the transition
between the stable region and unstable region. The attractive magnetic force is high
enough to interrupt beam oscillation because magnets attach each other when the analysed
beam point reaches this unstable region. Point S corresponds to the balance of elastic and
magnetic stiffness reached when the derivative of the total force is null, i.e., when the
elastic and magnetic stiffness, shown on the bottom of Figure 18, assume opposite values.
Consequently, this unstable region is not present in the repulsion magnetic case since the
two stiffnesses never assume opposite values, thus the system is always stable.

Finally, by analysing total stiffness trends it is possible to identify softening and hard-
ening behaviours caused by the nonlinearities due to magnets: hardening occurs when the
total stiffness is higher than the respective linearised value, while, in the opposite case, the
behaviour is softening. Both attraction and repulsion cases show two regions of softening
and hardening, hence the global dynamic behaviour of the beam is a consequence of which
one of these two overcomes the other during one oscillation period. The system with
attraction magnets shows softening behaviour for positive displacements and hardening
for negative ones.
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The system with repulsion magnets shows softening behaviour for positive displace-
ments and hardening for negative ones. The overall effects of attraction and repulsion
magnetic system are, respectively, softening and hardening behaviours, as highlighted by
frequency analyses. To confirm the results obtained with both time–frequency analyses
about the nonlinear characteristics of the system, the Hilbert transform is used, according
to the non-parametric Feldman’s method [49,50].
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3.3.2. Hilbert Transform

With reference to the methodology developed by Hilbert [49], recalling the approach
that has already been used in [50], the unforced behaviour of a nonlinear mechanical single
degree of freedom (sdof) system can be expressed in the form:

m
..
z(t) + c(t)

.
z(t) + k(t)z(t) = 0 (12)

where the nonlinear damping coefficient c(t) and the nonlinear stiffness coefficient k(t)
depend on displacement and velocity. The linear canonical form of the equation of motion
is written as follows:

..
z(t) + 2ζ(t)ωn(t)

.
z(t) + ω2

n(t)z(t) = 0 (13)

where the non-dimensional damping factor ζ(t) and the natural frequency ωn(t) are time
dependent. By considering the definition of the complex analytic signal of z(t), expressed
in exponential form, it holds:

Z(t) = z(t) + iz̃(t) = A(t)eiΨ(t) (14)

where z̃(t) is the Hilbert transform of the real signal z(t). The real envelope function A(t)
and the real instantaneous phase function Ψ(t), which are both time-dependent, result
in, respectively:

A(t) =
√

z(t)2 + z̃(t)2

Ψ(t) = tan−1 z̃(t)
z(t)

(15)

where ω(t) =
.

Ψ(t) is the instantaneous angular frequency. The time-dependent damping
ζ(t) and natural frequency ωn(t) functions are related to the envelope and phase functions
through the relations:

ζ(t) = − 1
ωn

( .
A
A +

.
ω

2ω

)
ωn(t) =

√
ω2 +

.
A

.
ω

Aω + 2
.
A

2

A2 −
..
A
A

(16)

The Hilbert transform is applied to the BD (simple clamped-free beam case), MaD
(beam with attraction magnetic configuration), and MrD (beam with repulsive magnetic
configuration) tests.

The outcomes in Figure 19 (left) show the correlation between envelope and damping
trends, highlighting how the latter are not characterised by wide variations. A similar
behaviour has been observed in as small-scale application i.e. the Levitron © device,
in which the contact between moving and fixed parts due to constraints is absent [54].
Furthermore, Figure 19 (right) shows the correlation between frequency and envelope
trends that confirm the linear, softening, and hardening behaviours, respectively, caused
by the presence of magnetic nonlinearities, in similarity with other applications such
as Levitron ©.

Red and blue trajectories correspond to points P11 and P14, respectively, demonstrat-
ing the filtering effects of the free mass with respect to points closer to the nonlinear effect.
The natural frequency for smaller oscillations, hence for smaller envelopes, converges to the
natural frequency of the magnetic configurations that are linearised about the respective
equilibrium positions, demonstrating the nature of the nonlinear characteristics, which
appears to depend on displacement.

3.3.3. Multi-Phi Approach

A numerical model of the Euler–Bernoulli cantilever beam, with about 400 DoFs, has
been developed using LUPOS [41,42] for the validation of the experimental campaign. Two
linearised models have been developed and tuned to describe the nonlinear dynamics in
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case of non-holonomic constraints. Mass and material properties, according to Table 1,
have been assigned to the different components of the experimental setup. Real modal
analysis is used for computing natural frequencies and mode shapes of the system in the
two different configurations:

1. beam clamped free;
2. beam clamped pinned free.
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Figure 19. Envelope function A(t) and damping ζ(t) (left), and envelope function A(t) and instan-
taneous frequency ω(t) (right), of signal z(t) in case of simple clamped-free beam (a), beam with
attractive magnet (b), and beam with repulsive magnet (c) configurations.

Considering the two configurations as two linear systems, for a generic l linear system,
the equations of motions are described by Equation (17), which is written for active DoFs n,
after which the boundary conditions or other reductions are applied:

M(l) ..
x(l) + C(l) .

x(l) + K(l)x(l) = f(t) (17)
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where x(l),
.
x(l),

..
x(l) ∈ Rnx1 are the system displacements, velocities, and accelerations,

respectively; M(l), C(l), K(l) are the mass, damping, and stiffness matrices of the considered
l linear system; and f(t) is the time depending external forcing function applied to the
system. Neglecting static generalised external forces, and assuming a proportional damping
matrix, Equation (17) can be written using the homogeneous expression:

M(l) ..
x(l) + K(l)x(l) = 0 (18)

Hence, modal analysis is performed on each level of the system, i.e., in clamped-free
and clamped-pinned-free conditions of the CD test. For each level, to evaluate a non-
null stationary oscillating behaviour, a generalised exponential solution is assumed, as
in Equation (19): 

x = x0eiωt

.
x = iωx0eiωt

..
x = −ω2x0eiωt

(19)

Hence, time is separable and erasable from the equation:(
K−ω2M

)
x0 = 0 (20)

Apart the trivial solution x0 = 0 that corresponds to the static undeformed condition,
Equation (20) presents non-null solutions when the rank is non-full, hence an eigenproblem
is definable to evaluate eigenvalues ω2

r and eigenvectors ϕr, finding the non-null solutions
of the eigenproblem in Equation (21) by the means of Equation (22):(

K−ω2
r M
)
ϕr = 0 (21)

det
(

K−ω2M
)
= 0 (22)

Thus, for each eigenvalue ω2
r , its corresponding eigenvector ϕr is computed and then

normalised to unitary modal mass Φr. Equation (21) can be written as:(
K−ω2

r M
)

Φr = 0 or KΦ = MΦdiag
(
ω2

r

)
(23)

Assuming a proportional damping matrix, the modal superposition of physical coor-
dinates x(l) results in: 

x(l) = Φ(l)η(l)(t) + x∞
(l)

.
x(l) = Φ(l) .

η
(l)
(t)

..
x(l) = Φ(l) ..

η
(l)
(t)

(24)

where Φ(l) ∈ Rn×rl and η(l) ∈ Rrl×1. In Equation (24), the addition of x∞
(l), called

asymptotic configuration, is necessary whenever the set of mode shapes is used to simulate
the system evolution cannot describe the system state because of non-null boundary
conditions. It is considered function of time because it depends on the linearised system
considered at each time instant. It is determined, using Guyan reduction [55], by means
of Equation (25), where xk represents the boundary conditions (known DoFs), while xu
represents the not constrained DoFs (unknown).

x∞ =

 −(K(l)
uu

)−1
K(l)

uk

I

xk

.
x∞ = 0

(25)
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The evolution of the full system, during the span of time in which the l-th configuration
dynamics is triggered, depends only by the transition to another level occurring when a
certain kinematic condition is respected. The transition is governed by Equation (26), in
which the initial conditions of the modal coordinates of the level m are described by means
of the final conditions of modal coordinates of the level l:{

ηm,0 = Φ−1
m
(
Φlηl,end + x∞,l − x∞,m

)
.
ηm,0 = Φ−1

m Φl
.
ηl,end

(26)

Figure 20 shows the two linearised configurations available in the CD test. The two
configurations are modelled in the LUPOS environment.
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Figure 20. LUPOS model for clamped-free beam (a) and clamped-pinned-free beam (b).

Table 6. Results of modal analysis in the xz eigenspace.

Mode Clamped-Free (Hz) Clamped-Pinned-Free (Hz) Description

1 2.973 13.88 First bending xz
2 38.75 85.18 Second bending xz
3 117.9 224.6 Third bending xz
4 224.9 280.1 Fourth bending xz

In the clamped-free configuration, the beam nodes at the clamp have been locked
imposing on the BCs for the six DoFs of each node, while the pinned configuration has
been realised locking only the z displacement of the beam in correspondence with the non-
symmetric constraint. The modal analysis in the two system configurations returns natural
frequency values, which are collected in Table 6, only for the bending modes in xz plane.

The frequencies in Table 6 are now used to justify and proper interpret the graphs of
the frequency contents of previous section, especially of experimental test CD in the 1st
campaign. The natural frequency at 2.97 ÷ 3 Hz is visible in most of the figures displayed
in the paper, and it is a validation of the experimental activity. The first four bending mode
shapes in the xz plane for the two linearised systems are illustrated in Figure 21.



Appl. Sci. 2023, 13, 3295 20 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 25 
 

in the paper, and it is a validation of the experimental activity. The first four bending mode 

shapes in the xz plane for the two linearised systems are illustrated in Figure 21. 

 

 

 

 

 

 

 

 
(a) (b) 

Figure 21. Bending mode shapes for clamped-free beam (a) and clamped-pinned-free beam (b) 

with colour scale, from blue to red, related to the displacement field. 

4. Conclusions 

Results of the experimental campaign, carried out using Keyence laser profilometer 

LJ-X8900, have proven the feasibility of conducting high-frequency dynamic analyses 

with an instrument conventionally adopted in the production line for static detections of 

dimensions and tolerances in manufactured products. 

The analyses were performed on experimental data measured in different setups, i.e., 

the common Euler–Bernoulli cantilever beam alone, the same subject to continuous non-

linearity of attractive or repulsive magnets, and, finally, the cantilever beam subject to 

non-holonomic contact. 

The post-processing of the profilometer acquisitions show advantages and draw-

backs in the exploited time–frequency analysis methods, which can be summarised in the 

following final remarks: 

• The FFT allows to globally investigate the system behaviour, mainly concerning the 

fundamental frequencies and their superharmonics due to non-linearities, since the 

frequency resolution is defined, and it is maintained constant in the time–frequency 

analysis, from low to high frequencies. On the other hand, since the FFT frequency 

resolution is inversely proportional to the time resolution, an appropriate compro-

mise between these two parameters is required. Consequently, the choice of a short 

Figure 21. Bending mode shapes for clamped-free beam (a) and clamped-pinned-free beam (b) with
colour scale, from blue to red, related to the displacement field.

4. Conclusions

Results of the experimental campaign, carried out using Keyence laser profilometer
LJ-X8900, have proven the feasibility of conducting high-frequency dynamic analyses
with an instrument conventionally adopted in the production line for static detections of
dimensions and tolerances in manufactured products.

The analyses were performed on experimental data measured in different setups,
i.e., the common Euler–Bernoulli cantilever beam alone, the same subject to continuous
nonlinearity of attractive or repulsive magnets, and, finally, the cantilever beam subject to
non-holonomic contact.

The post-processing of the profilometer acquisitions show advantages and draw-
backs in the exploited time–frequency analysis methods, which can be summarised in the
following final remarks:

• The FFT allows to globally investigate the system behaviour, mainly concerning the
fundamental frequencies and their superharmonics due to non-linearities, since the
frequency resolution is defined, and it is maintained constant in the time–frequency
analysis, from low to high frequencies. On the other hand, since the FFT frequency
resolution is inversely proportional to the time resolution, an appropriate compromise
between these two parameters is required. Consequently, the choice of a short time
window that allows one to study fast-varying phenomena would result in a low
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frequency resolution that cannot properly allow one to obtain detailed frequency
content information about the system;

• The CWT is used in addition to the latter, since the results of this approach demon-
strate that it suits the analysis of dynamics characterised by almost instantaneous
phenomena. The main drawback is a worsening of frequency resolution with the
increment of frequency, in contrast with FFT analysis;

• FFT and CWT are both useful to study the same system from different perspectives and,
together, allow to investigate both nonlinearities with their respective superharmonics
and almost instantaneous phenomena.

The results achieved with the approaches above described are validated using the
Hilbert transform to evaluate the instantaneous lowest frequency of the system, relating it
with both time and displacement envelope. In addition to the described time–frequency
analysis methods, two linear numerical models are developed to assess the experimental
frequency overcomes, based on the averaged superposition of the natural frequencies of
the two linear systems.

The correlation between the experimental data and the numerical data will be ad-
dressed in future research, based on Multi-Phi methodology, to investigate how nonlinear
phenomena can be efficiently described by the convolution of linear systems effects.

Finally, the correlation between the experimental data and the numerical ones in the
case of attractive magnets is highlighted by Figure 22, which confirms the compliance
between CWT method and Multi-Phi frequencies (a) and between the CWT approach and
the Hilbert mean frequency (b), respectively. In Figure 22a, taking Table 6 into account, the
blue lines correspond to the first three frequencies of the clamped free (CF) beam modes; the
red lines to the first two ones of clamped pinned free (CPF) system modes; the continuous
green line to the mixed frequency obtained as superposition of the first frequencies of CF and
CPF systems, calculated in Equation (7); and the dashed green lines to the superharmonics
of the latter. Figure 22b shows the correlation between the CWT time–frequency analysis
and the mean frequency calculated with the Hilbert transform, instead.
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