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Design, Modeling, and Implementation of Robust
Migration of Stateful Edge Microservices

Antonio Calagna, Student Member, IEEE, Yenchia Yu, Student Member, IEEE,
Paolo Giaccone, Senior Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE

Abstract—Stateful migration has emerged as the key solution to
support latency-sensitive microservices at the edge while ensuring
a satisfying experience for mobile users. In this paper, we
address two relevant issues affecting stateful migration, namely,
the migration of containerized microservices and that of the
associated data connection. We do so by first introducing a novel
network solution, based on OvS, that permits to preserve the
established connection with mobile end users upon migrating a
microservice. Then, using Podman and CRIU, we experimentally
characterize the fundamental migration KPIs, i.e., migration
duration and microservice downtime, and we devise an analytical
model that, accounting for all the relevant real-world aspects of
stateful migration, provides an accurate upper bound on such
KPIs. We validate our model using real-world microservices,
namely, MQTT Broker and Memcached, and show that it can
predict KPIs values with an error that is up to 99.7% smaller
than that yielded by the state of the art. Finally, we consider a
UAV controller as relevant microservice use case and demonstrate
how our model can be exploited to effectively configure the system
parameters so that the required QoE level is met.

Index Terms—Migration, Network Function Virtualization,
Microservices, Experimental analysis, Modeling

I. INTRODUCTION

Network Function Virtualization (NFV) has been acknowl-
edged as the pivotal technology to meet the challenges
of placement, management, chaining, and orchestration of
network services. According to NFV, network services and
user applications are represented by service function chains,
composed of a set of Virtual Network Functions (VNFs).
Along with NFV, the concept of microservice (MS) has
emerged with the aim to make VNFs cloud-oriented by design,
thus being implemented through lightweight, general-purpose
containers [1]. In this context, live migration has gathered
momentum as a mean to enable container migration and,
hence, ensure continuous proximity of latency-sensitive or
bandwidth-consuming MSs to mobile end users. Additionally,
live migration can be used as a dynamic resource management
tool for load balancing and fault tolerance.

In this context, we focus on stateful migration, which is
used whenever keeping track of the service state is essential
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to guarantee service continuity. In other words, in stateful
migration, besides the service template image, the following
pieces of information must be made available at the destination
host: (i) the CPU-context state, e.g., registers, processes tree
structure, and namespaces, (ii) the memory content, i.e., the
pages allocated in the main memory, (iii) the network sockets,
and (iv) the open file descriptors. It is worth noting that,
despite the current trend favoring the development of stateless
MSs, stateful MSs are extremely common due to the complex-
ity in refactoring legacy monolithic applications [2]. Moreover,
according to service-oriented architecture patterns [3], some
essential stateful utility services will still be required, even if
stateless service implementation will become dominant.

Motivation. While stateless migration has already been
investigated thoroughly and implemented in relevant orches-
tration systems like Kubernetes, stateful migration is more
challenging and still exhibits several open issues. Indeed,
despite MS migration is supposed to be seamless, in practice,
some service disruption must be accounted for, mainly due to
(i) the traditional stateful container migration techniques that
require freezing the MS state, and (ii) the need to migrate,
along with the MS, the network connection between the server
hosting the MS and the mobile end users. Although several
recent studies have experimentally demonstrated the potential
and effectiveness of stateful container migration techniques,
just few of them have investigated the related connection
migration issue. Moreover, such existing solutions are mostly
application-specific and based on either kernel or protocol
customization, thus making their integration with off-the-shelf
container virtualization technologies impractical.

Our contribution. In this work, we tackle the above two
causes of service disruption during stateful MS migration by
proposing effective and efficient solutions. Specifically,

• We propose a novel network solution, named Container
OverlAy TCP (COAT), that is independent of the specific
MS and enables MS migration while preserving its TCP
(and, virtually, any transport-layer protocol) connection
with the mobile end users. The benefit of COAT is
threefold: (i) it migrates a generic MS container with
an established transport-layer connection, avoiding recon-
nection procedures, (ii) it prevents data losses, and (iii)
it performs MS stateful migration in an agnostic way
with respect to either the server or the client side of the
connection;

• We assess experimentally the performance of container
stateful migration controlled through off-the-shelf tools,
under both the traditional and the COAT procedure;
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• Using our experiments, we develop a Processing-Aware
Migration (PAM) model that provides an accurate up-
per bound on the migration key performance indicators
(KPIs), namely, migration duration and MS downtime.
Importantly, PAM captures all the relevant real-world
aspects of stateful migration. In particular, unlike state-
of-the-art models (e.g., [4]), it accounts for the processing
time overhead introduced by de-facto standard migration
tools and its impact on the service disruption time.
Our work demonstrates that such component, neglected
in previous work, is often a dominant contribution to
the latency of the migration process. Further, PAM en-
compasses both the traditional and the COAT migration
process;

• We validate PAM in a realistic scenario and using real-
world MSs, like MQTT Broker and Memcached. Our
results demonstrate that PAM can model the system be-
havior much more accurately than state-of-the-art models;

• Finally, we exploit the PAM model to effectively control
stateful migration latency, enabling a configuration of the
system parameters that meets the target KPI values. In
particular, we show how the PAM model is pivotal to
guaranteeing a satisfying quality of experience (QoE) in
the practical use case of an Unmanned Aerial Vehicle
(UAV) controller migration.

Paper organization. The rest of the paper is organized as
follows. Sec. II introduces stateful migration and the tools
to implement it. Sec. III presents our COAT solution, while
Sec. IV describes the testbed we developed to perform our
experimental analysis of the migration process, which is then
used in Sec. VI to derive the PAM model. We validate and
exploit the PAM model in, respectively, Sec. VII and Sec. VIII.
Finally, Sec. IX discusses some relevant related work while
highlighting the novelty of our study, and Sec. X draws our
conclusions.

II. OVERVIEW OF MS MIGRATION AND CONTAINER
MANAGEMENT

This section gives an overview of container stateful migra-
tion (Sec. II-A), along with its KPIs, and it describes CRIU, the
primary enabling tool to effectively implement it (Sec. II-B).
Then it presents additional tools for container creation, ex-
ecution, and management (Sec. II-C). Finally, it tackles the
migration of MSs requiring an end-to-end data connection and
highlights the issues that still need to be addressed to ensure
a successful QoE-aware migration of such MSs (Sec. II-D).

A. Stateful container migration

We consider MSs running on containers, whose internal
state, i.e., CPU-context state, memory content, network sock-
ets, and file descriptors, must be migrated. Since stateful mi-
gration involves transferring MS’s memory content, multiple
strategies, namely, PreCopy, PostCopy, and HybridCopy, have
been devised to minimize the time needed to perform such
transfer by leveraging the MS dirty page rate concept, i.e.,
the number of memory pages the MS modifies per time unit.
Since PostCopy and HybridCopy do not yet support container
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Fig. 1: Live migration diagram under the Iterative PreCopy strategy.

migration and are still at an early implementation stage [5],
we focus on PreCopy. In particular, we tackle an extension
of the PreCopy strategy, named Iterative PreCopy, which, to
minimize the MS disruption time, transfers the dirty pages to
the destination host iteratively while the MS is still running
at the source and till the new user connection is established
or a deadline is reached. As depicted in Fig. 1, this approach
allows for the set-up of the destination host and for keeping
it continuously up-to-date, before the final MS migration is
executed. Such final procedure is known as Stop&Copy stage,
during which the MS is stopped at the source host, and its
state is transferred to the destination host where the service
will eventually be resumed. After migration, the source host
is notified about the successful restoration, and the resources
reserved therein are released.

We remark that the duration of the Stop&Copy phase
determines the service disruption experienced by the final user,
which is commonly referred to as downtime (T down). The total
migration duration consists of the duration of both the Iterative
PreCopy and the Stop&Copy stage, i.e.,

Tmig =

I∑
i=0

Ti + T down , (1)

where Ti is the generic iteration duration and I+1 indicates
the number of iterations required for migration. Given that our
study aims to characterize the migration cost for the network
operator as well as the user’s QoE, we take both the overall
migration duration and the downtime as migration KPIs.

Further, we write the amount of data to be transferred from
source to destination host during the generic iteration i as:

Vi =

{
ρ(τ1 ·M + ε) if i = 0

ρ(τ2 ·Ni · σ + ε) if i > 0 ,
(2)

where M is the MS state size, Ni is the number of dirty
memory pages at iteration i, and σ is the size of each page,
which depends on the considered architecture and kernel
settings. During the first iteration (i=0), the data volume
consists of the whole memory content of the MS, while for
i>0, only the dirty memory pages, i.e., those that have been
modified with respect to the previous iteration, are considered.
Coefficients τ1 and τ2 account for the amount of transferred
data, including the encapsulation overhead introduced by a
migration tool (which, for any i>0, depends upon the dirty
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Fig. 2: Live migration diagram: CRIU implementation.

page rate). Parameter ρ accounts for data compression and is
the ratio of the compressed data volume to the uncompressed
one, while ε is the additive volume contribution due to the
CPU-context state and network socket state; being negligible,
it will be omitted in the following.

B. Migration tool: CRIU

CRIU is considered the key tool to implement stateful
migration. It defines: (i) a checkpoint procedure, which seizes
a running process, collects its state, and encapsulates it into an
image, and (ii) a restore procedure that leverages a previously
created checkpoint image to create a process and resume its
state at the destination host. To successfully retrieve the MS
state, CRIU requires to temporarily freeze the MS at the source
at every iteration during the Iterative PreCopy stage; this yields
a service disruption period, named frozen time, that adds to
the aforementioned downtime. Our aim is to characterize both
such components that contribute to service disruption.

More specifically, CRIU provides two kinds of checkpoint
procedures: predump and dump, corresponding to, respec-
tively, the first and the generic iteration of the Iterative Pre-
Copy. Dump leverages ptrace system call to inject CRIU’s
parasite code into the running task and seize it (freezing
period). During this inactivity period, CRIU extracts relevant
memory pages, the content of CPU registers, the sockets cur-
rently being used, files currently open for I/O operations, and
mount point-related information, and it eventually encapsulates
them into a checkpoint image [6]. Thanks to the distinction
between predump and dump, and the option for dirtiness
tracking, CRIU allows for an effective implementation of the
Iterative PreCopy migration.

Fig. 2 depicts the Iterative PreCopy and Stop&Copy phases
from an implementation perspective, by leveraging CRIU
functionalities. The predump duration, T p

criu, consists of three
major contributions: (i) the freezing time T p,freeze

criu , needed to
seize a process, (ii) the frozen time T p,frozen

criu , during which
the MS state and the memory pages to transfer are identified,
and (iii) the memory time T p,mem

criu , necessary to extract and
encapsulate such memory pages. For the dump stage, instead,
the memory time is already part of the frozen time T d,frozen

criu,i .
In summary, the predump and dump durations are given by:

T p
criu=T

p,freeze
criu +T p,frozen

criu +T p,mem
criu , (3)

T d
criu,i=T

d,freeze
criu,i +T d,frozen

criu,i . (4)

Then, denoting with T net
i the time needed to transfer the

dirty memory pages at each iteration and considering that the
iterations in (1) correspond to a predump stage for i=0 and to
a generic dump iteration for i>0, we can write the iteration
duration at CRIU layer, as:

Tcriu,i =

{
T p

criu + T net
0 if i = 0

T d
criu,i + T net

i if i > 0 .
(5)

Let Ri be the average MS dirty page rate at dump iteration i;
the corresponding number of dirty memory pages then is:

N d
i = Ri−1 · (Tcriu,i−1 − T x,frozen

criu,i−1) , (6)

where Tcriu,i−1 is the duration of the previous iteration, and
T x,frozen

criu,i−1 is the corresponding frozen time.
Finally, Stop&Copy at the CRIU layer consists of (i) one last

dump execution, which also stops the MS at the source host;
(ii) the transfer of this final checkpoint image to the destination
host, and (iii) the restoration of the MS state at the destination
host. Thus, the overall downtime during Stop&Copy is:

T down
criu = T d

criu,I+1 + T net
I+1 + T r

criu , (7)

where T r
criu is the restore time during which CRIU forks a new

process tree for the MS. Specifically, the restore time consists
of relocating the MS state in terms of CPU state and memory
content [6], i.e.,

T r
criu = T fork

criu + T reloc
criu . (8)

C. Creation, running, and management of containerized MSs

Besides CRIU, we leverage runC as container runtime and
Podman as container engine.

runC [7] is an Open Container Initiative (OCI)-compliant
container runtime at the basis of most container engines and
orchestration systems, including Podman. One of the main
perks of runC is its integration with CRIU. Although directly
experimenting with runC is possible [8], [9], our aim is to
analyze the migration duration and the downtime experienced
at the MS layer. For this reason, our experimental setup takes a
higher-layer perspective and focuses on the Podman container
engine, to evaluate the performance of live migration in a
realistic MS scenario.

Podman [10] is an open-source product, designed to de-
velop, manage, and run containers and pods. It has been
proposed by CRIU developers as a solid alternative to Docker,
whose integration with CRIU is still at an experimental stage
and almost deprecated. While Docker relies on a daemon as
intermediate element to run containers, Podman directly lever-
ages runC APIs, thus leading to better performance [11]. Also,
Podman has been designed to organize containers in pods,
allowing their definition to be exported into a Kubernetes-
compatible file. These features, along with the fact that it
can be easily integrated with CRIU, strongly motivate the use
of Podman as container engine. As for the migration latency,
similarly to (5), we can write:

Tpodman,i =

{
T p

podman + T net
0 if i = 0

T d
podman,i + T net

i if i > 0 .
(9)
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TABLE I: Notation

Symbol Unit Meaning
Tmig ms Total migration duration
Ti ms Generic iteration duration

T down ms Stop&Copy stage duration
T p, T d, T r ms Predump/dump/restore durations

T freeze, T frozen, Tmem ms Freezing/frozen/memory times
T fork, T reloc ms Forking/relocation times

Vi Bytes Data volume to transfer
Ni – Number of written memory pages
T net
i ms Network delay
M Bytes MS (memory) state size
Ri s−1 Dirty (memory) page rate

Likewise, the downtime, corresponding to the Stop&Copy
stage duration in (7), can be expressed at Podman layer as:

T down
podman = T d

podman,I+1 + T net
I+1 + T r

podman . (10)

As mentioned, our study also characterizes experimentally
the processing time overhead introduced by runC and Podman,
with respect to the underlying CRIU layer.

The main notation we used is summarized in Table I.

D. End-to-end data connection migration

Connection migration is a crucial issue whenever a data
connection with the end user must be preserved during the
migration of containerized MSs. While the migration process
takes place in the network infrastructure that connects edge
servers, we focus on preserving the network connection over
the wireless link connecting the MS hosted at the edge and the
mobile end user. Indeed, regardless of which transport layer
protocol is adopted, multiple challenges related to connection
migration still need to be properly addressed. Below, we focus
on TCP as transport protocol, since it is the de-facto standard
for legacy and modern edge applications [12], besides being
the most challenging one due to its connection-oriented nature.
Nevertheless, the considerations drawn in the following hold
also for other transport protocols, such as UDP.

Notably, once a TCP connection is established, the protocol
does not provide a way to modify or redirect such connec-
tion, unless through a complete re-connection procedure. To
overcome this issue, a special option for the TCP socket
has been introduced from Linux kernel version 3.5 onward,
namely, TCP_REPAIR [13]. When this option is used, the
TCP socket is switched into a special mode in which no
native TCP action performed on the socket has any effect [14].
Importantly, to leverage such special mode, CRIU features the
tcp-established option, which instructs CRIU to collect,
along with the internal state of the container, the information
related to the currently active TCP connection. This allows for
a successful restoration of the TCP connection state during
migration, with a probe packet being eventually sent to notify
the other connection endpoint that the communication can be
resumed. However, the TCP_REPAIR option is not widely
used, since the following conditions are required to attain a
successful connection restoration: (i) address consistency, i.e.,
the MS container, when migrating from source to destination
host, has to be assigned the same IP address, and (ii) network
reachability, i.e., when moved to the destination host, the MS
container must be able to directly reach the other end involved

MS MSPublic
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Server 2

MS Migration

Initial
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Migrated
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Fig. 3: COAT migration scenario.
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in the communication. In other words, the TCP_REPAIR
option only provides the possibility to freeze and collect the
state of the TCP socket, but it does not tackle scenarios in
which the IP address may change after migration. Moreover, to
successfully resume the communication, the probe packet has
to be correctly received at the destination, which is not trivial
in the case of migration between distinct private networks.

Below, we address the above requirements by defining a
proper logical overlay network in which traffic flows can be
dynamically managed. To do so, we leverage Open vSwitch
(OvS) [15], a multilayer virtual switch that provides two
crucial functions: (i) overlay network creation, and (ii) network
flow management. In fact, OvS creates overlay networks
based on Virtual Extensible LAN (VXLAN) – a technique
that encapsulates OSI layer 2 Ethernet frames within layer 4
UDP datagrams. Once the overlay network is established, the
behavior of the virtual switches, e.g., forwarding rules, can be
easily defined or changed through the OpenFlow protocol. It
is worth remarking that our approach can cope with different
communication technologies, both at the edge and over the
wireless link.

III. CONNECTION-AWARE MIGRATION OF STATEFUL MSS

This section presents COAT (Container OverlAy TCP),
which migrates an MS container according to the Iterative Pre-
Copy strategy, while preserving the associated end-to-end data
connection with the mobile end users. COAT encompasses
both an effective, yet practical, network solution (Sec. III-A)
and an enhanced stateful migration procedure (Sec. III-B),
which, combined together, enable a connection-aware MS
migration.

A. The COAT network solution

The COAT network solution aims to support the simple,
yet crucial, connection migration scenario depicted in Fig. 3.
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Therein, the mobile end device is a UAV, which connects to
different base stations (BSs) as it moves across the network.
Due to the UAV’s limited computational resources, some of its
critical functions (e.g., flight control with collision avoidance
algorithm) must be deployed at the edge in the form of
MSs and connected to the UAV using the TCP protocol. We
consider a service orchestrator at the edge that, to minimize
the experienced latency, deploys such MSs on the nearest
edge server, i.e., the one co-located with the BS the UAV
is currently connected to. We thus consider stateful container
migration (see Sec. II-A) as the key technology leveraged by
the orchestrator, to address such mobility challenge and ensure
continuous proximity of edge MSs with mobile end devices.
As thoroughly discussed in Sec. II-D, the problem of migrating
the established TCP connection along with the MS container
is still to be properly addressed.

COAT supports connection migration and addresses the akin
networking challenges by leveraging the tools introduced in
Sec. II-D. Even if our solution can be applied to multiple
transport layer protocols, in the following, we focus again
on TCP, as it is the one that poses the major challenges in
connection migration. The COAT network solution is depicted
in Fig. 4, which includes three fundamental blocks: the source
host, the destination host, and the mobile end device. Source
and destination hosts run an MS, respectively, before and after
the migration process. The mobile end device, instead, is the
node hosting the containerized client application that generates
requests to be served by the MS. The connectivity between
the MS and the client container is enabled by an overlay
network implemented using interconnected virtual switches
and customized network namespaces, and operating under a
generic software-defined network (SDN) controller.

Fig. 5 summarizes the interaction between the different sys-
tem components. Specifically, by encompassing all the relevant
aspects concerning user’s mobility, the edge service orchestra-
tor is responsible for: (i) issuing the migration commands that
have to be executed in the form of remote scripts by either
the source or the destination edge host, and (ii) instructing
the SDN controller on how to configure the overlay network.
Importantly, we remark that the design and implementation
of both the service orchestrator and the SDN controller are
orthogonal to our work, as our solution is independent of the
specific orchestration solution and SDN technology that are
used.

To effectively implement COAT, the SDN controller, by
leveraging the features provided by OvS, firstly creates a
virtual switch for each physical host and configures them to
ensure their interconnection, thus defining the “backbone” of
the overlay network. Secondly, the orchestrator creates two
custom network namespaces, one for the MS at the source host
and the other for the client container at the mobile end device.
Both are then connected with the virtual switches, to complete
the overlay network. Thirdly, the orchestrator deploys both the
MS and the client, and binds them to their dedicated network
namespaces, hence connecting them with the overlay network.
Once this third step is completed, the MS and the client can
communicate using the TCP protocol on top of the newly
defined overlay network.

SDN
Controller

Edge Service
Orchestrator Edge Hosts

Network
configuration
commands

Mobile End
Device

Migration commands

Overlay Network

Fig. 5: COAT control flow.

Note that, when an MS migration is performed, the TCP
connection between the MS and the client is preserved by
(i) leveraging the TCP_REPAIR option to collect the con-
nection state, and (ii) imposing an exact recreation of the
MS namespace at the destination host, especially in terms of
its IP address configuration. Thus, COAT effectively solves
the network address consistency problem since, thanks to the
overlay network, the same IP address can be easily replicated
at the destination host. Further, since overlay networks enable
the creation of a distributed network among multiple machines
and to dynamically manage the traffic flows, direct reachability
between the MS and the client is always guaranteed, even after
the migration process is completed. However, to effectively in-
tegrate our solution with the traditional migration process (see
Sec. II-A), additional operations are needed, which involve the
creation and replication of customized network namespaces
and the management of the flow control rules.

B. The COAT migration procedure

To address the above issues, we introduce the COAT mi-
gration procedure, which includes an enhanced version of the
Stop&Copy stage of the stateful container migration process.
The steps of the COAT procedure are illustrated in Fig. 6 and
detailed below.
• Step 1: Checkpoint the running container at the source

host using Podman with the tcp-established option.
Both the MS state and the established TCP connection state
are now dumped into the checkpoint image and the MS stops
running.
• Step 2: Clear the network namespace, thus preventing

network configuration conflicts in the following steps.
• Step 3: Transfer the checkpoint image from source to

destination host.
• Step 4: Re-create and configure the network namespace

at the destination to match the original one, so that the later
container restore procedure can successfully take place.
• Step 5: Update the network flow of the TCP connection,

i.e., the flow control rule in OvS. During the network names-
pace recreation, a new virtual network interface is generated,
along with a new MAC address. The ARP table at the client
host is then cleared, to ensure a successful ARP discovery
process once the TCP connection is restored.
• Step 6: Restore the container from the checkpoint image.

The MS and its established TCP connection can resume from
their previous working state.

Extending (10) with the additional time components related
to COAT, the enhanced Stop&Copy stage duration at Podman
layer can be rewritten as:

T down
coat = T down

podman + T ns_clear
podman + T ns_conf

podman + T flow
podman , (11)
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where T down
podman is the downtime during the traditional

Stop&Copy (encompassing Steps 1, 3, and 6), T ns_clear
podman is the

time needed to clear the namespace at the source host (Step 2),
T ns_conf

podman is the time required to reconfigure the new namespace
at the destination host (Step 4) and, finally, T flow

podman is the time
needed to update the network flow at the end device (Step 5).

Consequently, combining (1), (9), and (11), the total dura-
tion of the COAT migration procedure is given by:

Tmig
coat =

I∑
i=0

Tpodman,i + T down
coat . (12)

To summarize, COAT makes it possible to define an en-
hanced stateful container migration procedure to effectively
support MSs that rely on an already established end-to-end
data connection. In particular, the proposed network solution
(i) allows for the migration of the connection state, thus
avoiding any reconnection procedure, (ii) preserves all the data
queued inside the network socket, hence avoiding packet loss,
and, (iii) does not require any modification at either the server
or the client application to support a stateful migration.

With the aim to develop an analytical model that effectively
characterizes the fundamental migration KPIs, below we per-
form a thorough experimental analysis of both COAT and the
traditional stateful migration based on Iterative PreCopy.

IV. COAT TESTBED AND EXPERIMENTAL SETTINGS

We now describe our testbed for the analysis of con-
tainerized MSs migration. While the testbed exploits CRIU,
runC, and Podman, introduced in Sec. II-B–II-C, here we
present the testing software we developed to finely control our
experiments (Sec. IV-A) and the settings we used (Sec. IV-B).

A. Dirty page rate generator

To run extensive, yet controlled, experiments, we devel-
oped a testing software, named Dirty Page Rate Generator
(DPRGen), which mimics an actual MS with memory alloca-
tion and dirty page rate that can be finely controlled. DPRGen
implements the MS state as a circular buffer of size M bytes
whose content is continuously, yet properly, updated to achieve
a given value of dirty page rate R.

We recall that CRIU identifies the memory pages that have
been changed in the MS state with respect to the previous

1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B

Circular Buffer of M bytes

Memory
Page 1

Memory
Page 2

Memory
Page 3

rand()

rand()

rand() rand() rand()

rand() rand()

1B 1B 1B 1B

rand()

rand()

Memory
Page 4

rand()

Memory
Page N

Page size, 

rand() rand()

Fig. 7: An example of how DPRGen works, with R=2 pages/s and
∆T=1 s, yielding NR=2.

predump/dump checkpoint image. Thus, to achieve a target
value of dirty page rate R, DPRGen sequentially selects
NR=R · ∆T pages over an arbitrary time interval ∆T , and,
in each of them, modifies some bytes by replacing them with
random values. Fig. 7 shows an example in which ∆T=1 s
and the target dirty page rate is R=2 pages/s, thus leading to
NR=2 pages. Note that, within ∆T , in each page bytes are
modified continuously, to ensure that CRIU detects that the
page has been changed. Indeed, predump and dump stages
are performed just once within ∆T , in an asynchronous way
with respect to memory changes. Importantly, DPRGen can
yield any discrete value of target dirty page rate, ranging from
Rmin=1 page/∆T to Rmax=⌊M/σ⌋/∆T , with ⌊M/σ⌋ being
the total number of memory pages allocated in the memory.

We implemented DPRGen in C language, using malloc to
allocate the circular buffer. To run the experiments presented
in the following section, we considered a scratch container
image and containerized DPRGen by encapsulating it along
with its library dependencies. So doing, we obtain a synthetic
MS whose behavior in terms of memory allocation and dirty
page rate can be finely controlled1.

B. Testbed and experimental settings

We use a cloud computing architecture featuring Intel Xeon
Skylake CPU and instantiate three identical virtual machines
(VMs). VM1 and VM2 represent two edge servers, acting,
respectively, as source and destination of the migration pro-
cess. Further, as part of our COAT solution (Sec. III-A), VM3
acts as end device that interacts with the edge servers. The
three VMs, with Ubuntu 20.4 LTS as operating system2, are
assigned 4 vCPUs and 16 GB of RAM each.

For any of the MSs that we consider in our experiments,
we initialize their state to random values to maximize entropy
and, hence, avoid compression during the MS state transfer
from source to destination host. Also, we set the size of
each memory page to σ=4, 096B. To obtain the statistics
characterizing the system behavior, we leverage the Podman
print-stats command, which collects information on how
long each stage of the checkpointing/restoring process takes

1The source code of DPRGen will be made publicly available on GitHub
upon acceptance of this paper.

2Since the release of Linux Kernel v. 5.5 in 2020, CRIU developers
optimized the restore process, mostly the PID cloning stage, by leveraging
the clone3 system call and its setTID feature. Thus, to fully exploit CRIU
functionalities, we deployed Linux Kernel v. 5.8.18 on both VM1 and VM2.
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Fig. 8: Predump, dump, and restore duration at Podman layer vs. the
MS state size, for maximum and minimum dirty page rate.

to be completed. Such statistics can be classified into three
groups, depending upon the actual tool responsible for the
performance collection: Podman, runC, and CRIU, operating
on engine, runtime, and process layer, respectively. The results
shown in the following were obtained by averaging over 200
runs and computing the 90% confidence interval.

V. EXPERIMENTAL ANALYSIS

We use our testbed to experimentally characterize the dif-
ferent stages of a stateful MS migration under the Iterative
PreCopy strategy and the COAT migration process. Specifi-
cally, we focus on the duration of the predump, dump, and
restore phases, and their internal components, accounting for
the Podman and runC layers overhead, the impact of parasite-
code injection and processing operations in memory, and the
effectiveness of the memory-change tracking system.

Our analysis leverages the DPRGen tool we developed (see
Sec. IV-A), to create two different scenarios, namely, with
minimum dirty page rate (Ri=Rmin,∀i) and maximum dirty
page rate (Ri=Rmax,∀i), representing, respectively, the best
and the worst-case scenario.

Predump, dump, and restore duration. To characterize
the migration duration and the experienced downtime, we
first analyze the duration of predump, dump, and restore,
at Podman layer, as functions of the MS state size, for the
maximum and minimum dirty page rate. It is interesting to
observe that, as shown in Fig. 8, in almost all cases these
phases exhibit an increasing duration, and their dependency
on the state size can be well approximated by a linear relation.
The only exception is represented by the duration of the dump
phase at Rmin, which remains constant as the state size grows.
Indeed, given the low value set for Rmin, once the initial
MS state is migrated, no significant additional state has to
be transferred towards the destination in the subsequent dump
phase. This leads to an increasing gap between the dump
duration under Rmin and Rmax, which grows up to one order
of magnitude. A similar gap can be observed between the
restore duration at Rmin and at Rmax, due to a double full-
sized checkpoint image processing, namely, the predump and
the dump ones, which occurs at Rmax.

Next, to assess the processing time overhead introduced by
runC and Podman with respect to the underlying CRIU layer,
Fig. 9 compares the predump, dump, and restore duration
at Podman and runC layers, and at runC and CRIU layer.
For both predump and dump, such ratios are approximately

constant as the state size varies. On the contrary, during
restore, the Podman to runC time ratio increases abruptly
for an MS state size greater than 100 MB, while the runC
to CRIU ratio linearly decreases. However, as shown in the
following, this effect, due to memory processing overloading
the system, has no significant impact, and considering such
ratio as constant still provides an accurate estimation of the
migration latency components. In summary, the following
holds:

Observation 1 (Linear dependency and layer overhead). The
behavior of the predump, dump, and restore duration are well
approximated by a linear relation with respect to the MS state
size, regardless of the value of dirty page rate. Moreover, the
processing time overhead introduced by Podman and runC can
be accounted for through multiplicative constants.

Checkpoint mechanism. Fig. 10 depicts the behavior of
the time components appearing in (3) and (4). Specifically,
Figures 10(left) and 10(center) present the freezing and frozen
durations as functions of the MS state size in the predump
and dump phases. Interestingly, for any phase and value of
dirty page rate, the freezing time is always equal to 100 ms.
As mentioned in Sec. II-B, this is because the predump and
dump procedures currently use the same technique for process
freezing (e.g., parasite code injection).

Observation 2 (Impact of the parasite code injection on the
freezing time). For any MS state size and migration phase, a
constant processing time overhead is experienced when seizing
a process that runs in a container.

Conversely, the frozen time exhibits a more complex be-
havior. At predump, it is practically independent of the dirty
page rate, since the predump stage does not cope with the
dirtiness produced by the MS. At dump, instead, a linear
dependency on the state size emerges. Also, the gap between
the behavior at Rmax and at Rmin is negligible for values of
MS state size lower than 10 MB, but it then grows over one
order of magnitude. This is due to the amount of memory
pages to be extracted, which is minimum at Rmin, while it
equals the whole MS state size at Rmax, thus requiring a
higher processing time. Further, a significant difference can
be observed when comparing the frozen time for predump to
that for dump operations at Rmax (blue and orange curves in
Fig. 10(center)). The reason is that the predump procedure
(see Sec. II-B) has been designed to minimize the frozen
time by performing memory copy after a process is resumed.
During dump, instead, the process is resumed only after both
the memory content and the system context state have been
successfully retrieved and stored in the checkpoint image.

Observation 3 (Frozen time during checkpoint). The frozen
time at predump is substantially shorter than at dump, with
the value of the latter depending upon the dirty page rate.
For both predump and dump, the frozen time exhibits a linear
relationship with respect to the MS state size.

Next, Fig. 10(right) depicts the total contribution due to
memory processing operations, as the state size varies, for
both the predump and the dump phase. Firstly, it can be seen
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Fig. 10: Checkpoint time contributions at CRIU layer, namely, freezing time (left), frozen time (center), and memory time (right).

that at predump, the memory time is practically independent
of the dirty page rate. Since predump performs a full memory
copy regardless of the MS dirtiness, the amount of memory
pages that must be extracted and copied is identical for
Rmin and Rmax. Secondly, under Rmax, predump and dump
achieve identical performance. Indeed, for Rmax, the amount
of memory pages that must be extracted and copied into a
checkpoint image corresponds to the whole state size, hence
no significant difference is observed between predump and
dump in terms of memory processing.

Observation 4 (Impact of memory operations). The process-
ing contribution to the predump/dump duration due to memory
operations exhibits a linear dependency on the state size,
whereas it depends on the dirty page rate only at dump. Also,
under Rmax, predump and dump show identical performance.

We then notice that, in a dump iteration, the memory
time under Rmin and Rmax differs by up to two orders of
magnitude. As mentioned, such gap is due to the dirtiness
tracking mechanism (see Sec. II-B), i.e., the fact that at Rmin

only a minimum amount of dirty pages is extracted and
copied into the checkpoint image. To further highlight the
effectiveness of the dirtiness tracking mechanism, Figures 11a
and 11b present the total size of the pages that, after being
scanned, are actually copied into the checkpoint image, and
of those that are restored at the destination host.

Some relevant findings can be highlighted: (i) at predump,
when a full memory copy is expected, the value of copied
pages is lower than the reported memory usage, suggesting that
CRIU recognizes and selects only meaningful pages; (ii) some
overhead (additional memory pages) with respect to the actual
state size is generated, due to page granularity and the way
the operative system manages dynamic memory allocation;
(iii) at dump, for Rmin and, especially, Rmax, the amount
of copied pages closely approaches the state size, i.e., the

overhead becomes negligible; (iv) the amount of pages written
at dump for Rmin is extremely low and independent of the
memory allocation, thus suggesting that the dirtiness tracking
mechanism is working effectively, extracting the minimum
amount of memory pages possible. We can therefore conclude
the following:

Observation 5 (Effectiveness of the memory changes tracking
system). The amount of memory pages copied into the check-
point image exhibits a linear dependency on the MS state size.
Moreover, during dump, such amount closely approaches the
state size at Rmax, while it is constant for Rmin, and for small
values of state size regardless of R.

Consistently with the intuition, the amount of pages restored
is identical to that of pages copied during predump. This
confirms that the MS state is successfully restored at the
destination host, with no evident differences in the memory
content with respect to the original instance.

Finally, Fig. 11c presents the encapsulation overhead that
CRIU introduces after it extracts the relevant memory pages
and copies them into the checkpoint image (see (2)). Im-
portantly, such overhead is negligible at predump and it is
independent of the dirty page rate. This is consistent with
the fact that, regardless of the MS dirtiness, a number of
memory pages corresponding to the whole state size are
extracted at predump. On the contrary, in the dump phase,
the encapsulation overhead strongly depends on the value of
state size and dirty page rate. Thus, the following holds:

Observation 6 (Encapsulation overhead). The memory page
encapsulation overhead can be considered as constant at
predump. On the contrary, at dump, it strongly depends on
both state size and dirty page rate.

Restore mechanism. We now investigate the CRIU time
performance in the restore phase, during which Podman uses
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Fig. 12: Restore operations time at CRIU, runC, and Podman layer.

the checkpoint image created during the Iterative PreCopy
phase to instantiate a new container at the destination host
and restore the previously acquired MS state. Fig. 12 presents
the restore duration at the destination (see (8)), and assesses
how relevant the forking time is to the restore time. As
expected, both metrics can be considered to be independent
of the dirty page rate, since the restore procedure does not
address MS dirtiness, rather it simply relies on the previously
created checkpoint images. Further, the forking time is also
independent of the state size, and it is shorter than the restore
time by at least two orders of magnitude. This is something
expected because the forking time is only related to the
capability of the operating system to start a new blank process,
which depends on neither the MS nor its state.

Observation 7 (Restore and forking times). Forking time is
negligible when compared to the total restore duration.

Looking at the restore time, two interesting behaviors can
be identified: (i) the restore duration at every layer, i.e., CRIU,
runC and Podman, has the same linear trend with respect
to the state size, and the mutual ratio of such durations is
practically constant, as already discussed in Observation 1,
(ii) the restore duration is essentially constant for any value of
state size below 50 MB. This is due to the fact that, up to such
state size value, the time needed to copy the checkpoint image
content to the destination host memory space is dominated by
the processing time required to first instantiate the MS and
then restore its state and context.

Observation 8 (Impact of restore duration). The restore
procedure is an intensive task that causes service disruption.
Its duration linearly depends on the MS state size, while it is
independent of the dirty page rate.

TABLE II: Duration of the COAT migration steps (average and 90%
confidence interval)

Duration Average Value 90% C.I.
T ns_clear

podman 69 ms [61.4, 76.6] ms
T ns_conf

podman 101 ms [98.3, 103.5] ms
T flow

podman 71 ms [67.0, 74.2] ms

COAT migration. We now investigate the duration of the
COAT migration procedure. We focus on the additional steps
we defined to integrate the COAT network solution in the tra-
ditional Stop&Copy procedure, i.e., clear network namespace
(Step 2), reconfigure network namespace (Step 4), and update
network flow (Step 6), and we report in Table II the duration of
such steps that we experimentally measured. Note that such
duration values are independent of the considered MS, but
they are affected by the number of established connections and
the amount of data queued in the network sockets. Since we
aim to characterize the stateful migration KPIs as functions of
the state size and the dirty page rate, we considered a single
connection scenario featuring negligible data queued in the
network socket. From the obtained results, the following can
be inferred:

Observation 9 (COAT steps duration). Regardless of the
MS state size and dirty page rate, the steps introduced by
the COAT solution for seamless connection migration imply
limited additional overhead, roughly amounting to 240 ms.

VI. PROCESSING-AWARE MIGRATION MODEL

We now leverage our experimental observations to model
the duration of stateful container migration. The PAM model
we obtain characterizes the checkpoint and restore duration
(Sec. VI-A–VI-B), and then provides an analytical expression
for the migration KPIs (Sec. VI-C). Importantly, the PAM
model holds for both the traditional stateful migration process
and our COAT migration procedure.

A. Checkpoint duration
Observation 1 suggests that the overhead introduced by

Podman with respect to the underlying runC and CRIU layers
can be approximated through multiplicative constant factors,
which we denote with α1 and α2 (resp.). Combining this
observation with (3) and (4), we get:

T p
podman = α1α2 · (T p,freeze

criu + T p,frozen
criu + T p,mem

criu ) (13)

T d
podman,i = α1α2 · (T d,freeze

criu,i + T d,frozen
criu,i ) . (14)
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Looking at the CRIU level, for any MS state size and
dirty page rate, process freezing at predump and at any
dump iteration i implies a constant processing time overhead
(Observation 2), i.e.,

T p,freeze
criu = β ; T d,freeze

criu,i = T freeze
criu = β ∀i (15)

where β is a constant. Also, Observation 3 provides experi-
mental evidence that the frozen time has a linear relationship
with the MS state size M , and such time component depends
upon both the dirty page rate and the migration phase. Thus,

T p,frozen
criu (M) = φp + γp ·M (16)

T d,frozen
criu,i (M,Ri) = φd + γd(Ri) ·M (17)

γp = Γ · ζ , γd = Γ · ξ(Ri) . (18)

Note that the φp and φd constants act as lower bounds on the
frozen time and that, according to the specific implementation
of the CRIU algorithms, there may be additional contributions
that depend on the state size. Specifically, γp and γd are
sensitivity factors that relate the processing time to memory
allocation; they consist of a constant Γ scaled by parameters ζ
and ξ (resp.), with the latter depending on the dirty page rate.

Next, as per Observation 4, the processing time due to
memory operations, i.e., page selection and extraction, linearly
depends upon M . Thus, we can write:

T p,mem
criu (M) = δ + Λ ·M (19)

T d,mem
criu,i (M,Ri) = δ + Λ · η(Ri) ·M (20)

0 < η(Ri) ≤ 1 (21)

where δ and Λ are constant, while η(Ri), as per Observation 4,
models the impact of the dirtiness tracking system adopted in
a dump iteration and its relationship with Ri.

According to the experimental behavior described by Ob-
servation 5, the number of memory pages copied into the
checkpoint image linearly depends upon the MS state size:

N p(M) = µp + νp ·M (22)

N d
i (M,Ri−1) = µd + νd(Ri−1) ·M (23)

where µp and µd, and slopes νp and νd, describe, respectively,
the minimum number of pages extracted and the overhead with
respect to the actual MS state size.

In addition, consistently with Observation 6, the amount
of data to be transmitted from source to destination host at
predump stage (i=0) is independent of the dirty page rate.
We thus enhance (2) by writing:

V0(M) = ρ(τ1(M) ·N p(M) · σ + ε) . (24)

Instead, for a generic dump iteration (i≥1), such data volume
depends upon both state size and dirty page rate:

Vi(M,Ri−1) = ρ(τ2(M,Ri−1) ·N d
i (M,Ri−1) · σ+ε) . (25)

All parameters in (24)–(25) have been introduced in Sec. II.
Finally, we write the time needed to transfer Vi data over a link
of capacity L as T net

i =Vi/L. Although more complex models
could be considered, we found that such an expression gives
already a good approximation of the system real-world behav-
ior, as shown by the excellent match between the analytical
and experimental results presented in Sec. VII.

B. Restore duration

To model the restoration of the MS state at the destination
host, we leverage the experimental evidence in Observation 1,
which, similarly to what has been shown for the predump and
dump phases, relates the restoration time to the duration at the
runC layer, and the latter to the restore duration at the CRIU
layer, through constant values (below denoted with α3 and α4,
resp.).

Furthermore, considering (8), the restore duration at CRIU
layer is due to the forking time and the context relocation time.
Since the forking time can be neglected (as per Observation 7)
and the context relocation time linearly depends upon M (as
per Observation 8), we have:

T r
podman ≈ α3α4T

reloc
criu = α3α4(ψ + ω ·M) . (26)

In (26), ψ denotes the minimum time needed to complete
a restore procedure, regardless of the value of M , while ω
models the impact of the state size on the total restore duration.

C. Migration KPIs

We now derive the PAM model for the fundamental migra-
tion KPIs. Combining (9), (13), (14), and (15), the duration
of the Iterative PreCopy stage at Podman layer, for iterations
0 and i>0, can be written as:

T0 = α1α2 · (T freeze
criu + T p,frozen

criu + T p,mem
criu ) + T net

0 (27)

Ti = α1α2 · (T freeze
criu + T d,frozen

criu,i ) + T net
i . (28)

Then, using (10), (14), and (26), the downtime, at Podman
layer and according to the traditional stateful migration pro-
cedure, is given by:

T down = α1α2 ·(T freeze
criu +T d,frozen

criu,I+1)+T
net
I+1+α3α4T

reloc
criu . (29)

Next, let us focus on the worst case, i.e., let Ri take always
the value of maximum dirty page rate of the considered MS,
denoted with R̂. We underline that, so doing, we obtain an
upper bound to the migration and downtime duration, and
that in this case the duration of any dump iteration and
of the data transfer time become constant, thus allowing us
to drop subscript i from the corresponding notation. Then,
combining (1), (27), (28), and (29), we obtain the total duration
of the traditional migration procedure, as:

Tmig=α1α2

(
T freeze

criu +T p,frozen
criu +T p,mem

criu

)
+T net

0 +(I + 1)·(
α1α2 · (T freeze

criu +T d,frozen
criu )+T net

)
+ α3α4T

reloc
criu . (30)

With regard to COAT, according to Observation 9, three
additional components contribute to the downtime duration.
Notably, they are independent of the MS state size and the
dirty page rate. Hence, combining (11) and (29), the COAT
migration procedure downtime is:

T down
coat = α1α2 · (T freeze

criu + T d,frozen
criu ) + T net+

α3α4T
reloc
criu + T ns_clear

podman + T ns_conf
podman + T flow

podman . (31)
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TABLE III: Experimental parameter settings in the PAM model (when
two values are shown, they refer to R̂=Rmin and R̂=Rmax (resp.))

Parameter Value Parameter Value
α1 1.6 α2 1.2
α3 3.3 α4 1.9
σ 4096 B β 84 ms
φp 6.0 ms φd 40 ms
ζ 1.0 ξ(Rmin), ξ(Rmax) 0, 30
δ 1.8 ms Λ 3 · 10−6 ms/B
Γ 10−7 ms/B η(Rmin), η(Rmax) 0.0075, 0.75
τ1 1.0 τ2(Rmin), τ2(Rmax) 4.0, τ1
µp 45 µd 10
νp 2.5 · 10−4 1/B νd(Rmin), νd(Rmax) 0, νp

ψ 60 ms ω 8 · 10−7 ms/B

Similarly, using (12), (27), (28), and (31), the total migration
duration under the COAT procedure is given by:

Tmig
coat = α1α2 ·

(
T freeze

criu + T p,frozen
criu + T p,mem

criu

)
+ T net

0 +

(I + 1) ·
(
α1α2 · (T freeze

criu + T d,frozen
criu )+T net

)
+

α3α4T
reloc
criu + T ns_clear

podman + T ns_conf
podman + T flow

podman . (32)

We underline that the parameters appearing in PAM can
be easily estimated for any scenario at hand, using DPRGen
(Sec. IV-A) and the Podman native feature for statistics collec-
tion (Sec. IV-B). Table III presents the model parameter values
measured through our testbed for R̂=Rmin and R̂=Rmax.

VII. MODEL VALIDATION

We now validate the PAM model using popular, real-
world MSs, namely, MQTT Broker and Memcached. As shown
below, our results demonstrate that PAM accurately describes
the COAT migration performance and remarkably outperforms
the state-of-the-art model in [4].

A. Microservices setup

MQTT [16] is a publish/subscribe protocol, commonly used
for IoT applications, which involves three main logical entities:
broker, publisher, and subscriber. An MQTT broker is an MS
that receives publishers’ messages and distributes them among
subscribers according to topic structures. In a mobile scenario
in which both publishers and subscribers may dynamically
change their location, the MQTT broker stateful migration can
help minimize communication latency. Even more importantly,
since the MQTT broker manages the connections between the
system entities and stores in its internal queue the messages
that have to be delivered, a stateful approach is fundamental
to prevent information loss during migration.

Memcached [17] is an in-memory, key-value store intended
as user-defined, high-performance caching system. Besides
speeding up applications by alleviating the load on the
database, it is widely exploited to define distributed virtual
pools of memory. Due to its memory-related nature, Mem-
cached migration must be stateful to prevent information loss.

To thoroughly evaluate the migration performance, we de-
fine a validation setup that allows for a fine tuning of the
MS state size and dirty page rate. While for Memcached
this can be easily attained by leveraging its Python APIs and

arbitrarily setting key-value pairs, an ad-hoc method needs to
be envisioned for the MQTT broker. Our strategy to achieve
precise and stable control of the MQTT state size consists
in controlling the broker’s memory usage by maintaining the
number of queued messages constant. To this end, in-flight
messages (i.e., the messages yet to be delivered) have to be
kept in the broker’s queue. This is done by making both
publisher and subscriber ask for a reliable QoS level (i.e., level
2), which guarantees that in-flight messages are not discarded
from the queue so as to enable re-transmissions. Additionally,
we control the transmission time of the messages to slow down
their delivery and keep them in the queue for a given time. To
do so, we set the bandwidth of the broker network interface
using Linux tool tc. Similarly, the dirty page rate is controlled
by replacing the messages in the broker’s queue at a frequency
that matches the desired value of dirty page rate.

B. Experimental results

Through the above setup, we validate our PAM model
for the COAT migration process in terms of the main KPIs,
namely, downtime and total migration duration (see (31) and
(32), resp.). Specifically, we validate the upper bound we get
on such KPIs by considering for each MS both the R̂=Rmin

and the R̂=Rmax dirty page rate scenarios.
Figures 13a–13c present the total migration duration as a

function of state size M and for different values of the num-
ber of dump iterations I . The experimental results obtained
through real-world MSs are compared against those of our
PAM model (under the settings reported in Table III) and the
state-of-the-art (SotA) model in [4]. Observe how PAM (blue
and green curves for Rmin and Rmax, resp.) matches very
closely the experimental results obtained with real-world MSs
("x" and "+" markers) in all cases, while the SotA model
(orange and brown curves) is unable to do so. Indeed, by
averaging across all the considered samples and scenarios,
our model yields a prediction error that is 99.7% smaller than
that of the SotA model. The reason is that, not accounting
for the processing contribution (as in [4]), the duration of
each iteration consists of the network transfer time only. In
this case, the number of pages to be transmitted decreases
at each iteration, and so does the iteration duration. Instead,
PAM accounts for the fact that the number of memory pages
written during the i-th dump iteration depends upon both the
processing overhead and the network transfer (see (5) and (6)),
with the former being the dominant component, especially for
large values of network bandwidth L.

Figures 13d–13f show the downtime values versus state
size M , for varying values of L. Again, note how our
model well approximates the migration performance, yielding
a reduction of the prediction error of 64.4% with respect to the
SotA model. Indeed, consistently with (31), the larger L, the
more significant the processing contribution to the downtime,
resulting in a gap with respect to the SotA model that increases
very evidently with L. Also, looking at Figures 13c and 13d,
one can see that dirtiness has a noticeable impact for large
values of M , while, for lower M , the KPIs are practically
independent of the dirty page rate.
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Fig. 13: Model validation: migration duration vs. MS state size, for a varying no. of iterations I and L = 1Gbps (top), and downtime vs.
MS state size, for varying L (bottom). Note that the downtime is independent of I .
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Fig. 14: Model validation: components of the migration KPIs vs. MS state size, for both the Rmax and Rmin scenarios.

Finally, Fig. 14 underlines that also the components of the
migration KPIs are well predicted by our model. Specifically,
Figures 14a-14c present the main components of a generic
dump iteration (namely, frozen time, memory time, and the
data volume to be transmitted, described in (17), (20) and (25),
resp.), while Figures 14d-14f show the predump, dump, and
restore duration (modeled in (13), (14), and (26), resp.). The
results highlight again (i) the significant dependency upon state
size M and the maximum dirty page rate for the considered
MS, as well as (ii) the excellent match between our model and
the experimental results.

VIII. MODEL EXPLOITATION

We now show how PAM can be used to assess whether
and under which conditions the COAT migration is feasible
and meets the target KPI values, and how our model helps
configure MS migration events. We start by using PAM to
determine the setting of the migration parameters that allows
the process duration and the downtime to meet their target
maximum values (Sec. VIII-A). Then, to demonstrate the ben-
efits of using our solution in real-world scenarios, we consider
an autopilot MS controlling UAVs that provide connectivity
to users in a geographical area, and use the PAM model to
properly configure the MS migration events (Sec. VIII-B).
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Fig. 15: Model exploitation: downtime vs. dirty page rate.
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Fig. 16: Model exploitation: migration duration vs. dirty page rate, for L = 1Gbps.

A. Configuring the migration parameters

We first show how the PAM model enables to analytically
determine the system parameters that should be used to meet
the target values of the migration KPIs. Let θdown be the
maximum downtime and let T add

coat be the additional time
contribution due to the COAT solution. Given (10) and (11),
and imposing T down

coat ≤θdown, we can write:

L >
V (M, R̂)

θdown − T d
podman(M, R̂)− T r

podman(M)− T add
coat

. (33)

Similarly, using (12) and imposing a maximum migration
duration θmig, we get Tmig

coat=T0+I·Ti+T down
coat ≤θmig, which,

combined with (9), leads to:

I =

⌊
θmig − T0(M,L)− T down

coat (M, R̂, L)

T d
podman(M, R̂) + T net(M, R̂, L)

⌋
. (34)

Figures 15 and 16 present the behavior of the migration
KPIs obtained by applying (33) and (34). The results are
shown as we vary the normalized dirty page rate, defined as
r= R̂−Rmin

Rmax−Rmin
, and for different values of state size, M . In

particular, in Fig. 15, we consider two different values for
θdown, namely, 5 s and 30 s. While for small values of M
(Fig. 15a) such targets can be met easily, for a larger state
size (Fig. 15c), it is critical to carefully select the values of
allocated network bandwidth L that allow the system to meet
such constraints. Interestingly, Fig. 16, where θmig = 10, 100 s,
highlights that for small values of state size (Fig. 16a) the
migration duration is almost independent of the dirty page
rate, therefore Iterative PreCopy is not the most appropriate
migration strategy under such conditions. On the other hand,
the effectiveness of the Iterative PreCopy strategy becomes
evident for larger values of M (Fig. 16b–Fig. 16c), since it
can properly cope with the dirty pages of the MS.

Autopilot 
MS

5G Network Slice

UAV Autopilot 
MS

Migration
Orchestrator
PAM model

Metrics
AggregatorMigration

gNB 2

gNB 1

Edge 2

Edge 3

Edge 1

Fig. 17: UAV controller migration scenario.

B. UAV autopilot migration

We now focus on an exemplary practical scenario, depicted
in Fig. 17, featuring UAVs controlled by an autopilot MS
residing at the network edge. The UAVs provide services with
low latency requirements to the end users, whose QoE is
monitored by an edge service. As the users’ QoE degrades
because of the increased service network latency, the service
orchestrator exploits the PAM model to properly configure the
migration of the autopilot controller. Notice that, to minimize
the impact of the migration process on the users’ QoE, during
the downtime, a UAV can continue to travel according to the
previous flight mission. However, if the UAV is on a course
of collision with a moving obstacle (e.g., a bird), the flight
mission must be promptly updated, e.g., by slowing down the
UAV or changing the UAV’s moving direction. Considering
that the autopilot MS leverages computer vision techniques
(i.e., it takes the video stream from the UAV as input), it
will transmit a stopping signal if an obstacle is detected,
so that the UAV can stop and hover until the flight can be
safely resumed. Given a UAV featuring maximum speed v, the
required distance from an obstacle to safely stop the UAV, i.e.,
the worst-case stopping distance, is denoted by Ds(v). Clearly,
the larger the stopping distance, the larger the UAV collision
zone, such that, if an obstacle appears within this zone, the
UAV will not be able to dodge quickly enough to avoid the
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Fig. 18: Model exploitation: Required network bandwidth for safe UAV control vs. the maximum UAV speed, for varying normalized dirty
page rate (a), video latency (b), UAV mass (c).

TABLE IV: Parameter setting for the UAV autopilot MS migration

UAV Autopilot MS
Parameter Value Parameter Value
D∗

s 30 m r 0.25
mUAV 3 kg M 20 MB
Fb 5 N T proc 10 ms
T v 30 ms

collision3. As we consider safety to be the primary concern for
the UAV, we take Ds(v) as the reference performance metric
for the UAV migration, and impose that Ds(v)≤D∗

s , with D∗
s

being the safety threshold.
It is intuitive to see that Ds(v) is correlated with the MS

downtime. Indeed, we have: Ds(v)=Dr(v)+Db(v) where Dr
and Db are the reaction and braking distance (resp.). The
former is the distance travelled by the UAV while an obstacle
appears and a stopping signal is transmitted from the autopilot
MS to the UAV; it can be written as:

Dr(v) = v · (T down
coat + T v + T proc), (35)

where T down
coat denotes the downtime, T v is the video streaming

latency between the UAV and the autopilot MS, and T proc is
the processing time required by the autopilot MS to detect
obstacles. The second component of Ds(v) is instead the
distance travelled by the UAV from the activation of the
braking procedure till its successful stop, which depends on
both the mass of the UAV, mUAV, and the braking force, Fb,
that can be produced. Hence,

Db(v) =
v2 ·mUAV

2 · Fb
. (36)

Clearly, the worst-case stopping distance Ds(v) is determined
by the worst-case values of both the reaction and the braking
distance. Considering the worst case also for the dirty rate of
the MS autopilot (i.e., Ri=R̂ ∀i), the consequent upper bound
on the downtime, (obtained by combining (33), (35), and (36)),
and imposing Ds(v)≤D∗

s , we can derive the required network
bandwidth between the edge servers involved in the migration
process, as:

L ≥ v · V (M, R̂)

D∗
s −Db(v)− v · (T v + T proc + T down

coat − T net)
. (37)

3We underline that the PAM model exploitation can be easily extended to
more complex models of the physics of the UAV.

Fig. 18 depicts the required values of L obtained using (37),
as a function of the maximum UAV speed v, for varying
values of both UAV and autopilot MS parameters. The default
parameter setting for the UAV autopilot migration is given
in Table IV, while the value of the parameters characterizing
the COAT migration process are presented in Table III. The
results highlight that, regardless of the specific settings, the
required bandwidth always increases with v, which is mainly
due to the reduction of the reaction distance margin. Moreover,
by varying the normalized dirty page r of the autopilot MS,
defined in Sec. VIII-A, the required network bandwidth has a
positive correlation with r (see Fig. 18a). Hence, the higher
the autopilot MS dirty page rate, the tighter the constraint on
the value of L to ensure a safe UAV flight.

In Fig. 18b, we vary the video streaming latency T v.
Although this parameter strongly depends on many system
features, e.g., video quality and the adopted source coding
techniques, here we consider some typical values adopted
in the literature [18], ranging from 30 ms to 300 ms. The
results indicate that the streaming latency has negligible impact
on the required value of L for values of maximum UAV
speed lower than 7.5 m/s. On the contrary, for higher values
of speed, i.e., when the UAV braking distance approaches
the considered threshold, the effect of the streaming latency
becomes significant. Finally, Fig. 18c refers to the case where
a UAV may carry different loads, e.g., a camera or a package,
and thus have a different mass. The effect on the required
bandwidth is not significant when the UAV is moving at low
speeds (i.e., less than 5 m/s); instead, for higher values of
speed, the UAV total mass becomes relevant, with a non-
negligible impact on the required value of L.

To conclude, we remark that our approach is independent
of the specific MS and the underlying edge technology.
Consequently, besides the UAV autopilot MS, other relevant
scenarios could be considered, e.g., migrating MSs for con-
nected cars or streaming applications.

IX. RELATED WORK

A growing body of work has investigated container live
migration. Below, we focus on the aspects that are most
relevant to our study.

Starting with connection migration, many existing studies,
e.g., [19], [20], have tackled re-connection after a container
migration. From a practical perspective, such an approach
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TABLE V: Literature comparative review highlighting the most relevant requirements for each study, at application, server, and network level

Solutions Application Requirements Server Requirements Network Requirements
Bao et al. [19] and Bellavista et al. [20] Reconnection procedures support – –

Qiu et al. [21] and Le et al. [22] – Kernel Customization MPTCP protocol
Conforti et al. [9] and Puliafito et al. [23] Server-side migration support – QUIC protocol
Junior et al. [24], Benjaponpitak et al. [8] Proxy – –

Kassahun et al. [25], and Bernaschi et al. [26] Proxy – –
Raad et al. [27] – – LISP protocol
An et al. [28] UAV controller specific – SDN-based

Yu et al. [29], i.e., our COAT Solution – – Overlay Network

implies a customization of the client application source code
to let it support the reconnection procedure. Only few works
discuss solutions to enable connection mobility in a completely
transparent manner for the client. Such solutions, summarized
in Table V, are mostly based on dedicated protocols, network
proxy, overlay network tunneling, and SDN.

The studies in [21], [22] propose the Multi-Path TCP
(MPTCP) protocol as an effective solution to implement
connection migration, since it permits to define multiple sub-
flows for the same connection in a transparent way with
respect to the client application. However, MPTCP requires
kernel customization, implying practical limitations in real-
world scenarios and unfeasible integration with container
virtualization technology. Similarly, [9], [23] thoroughly inves-
tigate the QUIC protocol and propose an extension thereof, to
effectively support server-side connection migration. Despite
being quite effective, this solution cannot be extended to other
protocols, such as TCP. Other approaches [8], [24] leverage
the cloud platform’s network proxy to hold and redirect active
connections with external clients while performing intra-cloud
or inter-cloud service migration. Likewise, [25], [26] design
dedicated network proxies to redirect the network flows for
general connection migration purposes. However, the use of
centralized proxies is unfit for latency-critical edge computing
scenarios since it breaks the proximity principle with mobile
end users. Furthermore, [27] investigates the Locator/Identifier
Separation Protocol (LISP), i.e., an overlay routing level on
top of legacy IP, and suggests how to enhance it to effectively
support VMs mobility management. This approach relies on
a specific protocol customization, which limits the generality
of the solution. As solution tightened to a specific use case,
[28] addresses the connection migration issue by manipulating
the MAC addresses and leveraging the SDN flow duplication
functionality in an SDN-based testbed for UAV controller
migration.

We recall that our work aims at enhancing the stateful
migration process to effectively support MSs with an estab-
lished transport-layer connection. To do so, we have defined
an architectural solution that leverages an overlay network
and, unlike previous work, is application independent, requires
no dedicated protocol, and no modifications to the kernel or
application source code.

As for service migration, there exists a large body of work
on VNF placement and provisioning [30]–[33], and on relevant
applications of migration techniques, e.g., an SDN-based dy-
namic placement of mobile video streaming MSs [34], a solu-
tion for task roaming and offloading in IoT scenarios [35], and,
a proactive algorithm to ensure service continuity for vehicular
mobility [36]. Nevertheless, little attention has been paid to

MS migration modeling. The recent work in [37] explores
container orchestration in a hybrid computing environment
and aims to achieve minimal downtime for fault recovery by
either re-instantiating or migrating containers. Further, [38]
proposes a priority-induced migration algorithm to minimize
service downtime and traffic congestion, while [39] defines
a regression model for predicting delay values in SDN-
based IoT-Fog networks. To address the lack of a migration
model that characterizes the fundamental KPIs, [4] presents
an ideal model that serves as a starting point for planning and
scheduling of multiple VMs. Although it has been designed for
VM-based VNFs, this model can be extended to containerized
MSs. We recall that one of our main objectives is to enhance
such model, by accounting for all relevant real-world aspects
of MSs migration and, in particular, processing time.

At last, we mention that an initial version of this work has
been presented in [29], [40], sketching stateful migration mod-
eling and connection migration, respectively. Here, we have
significantly enhanced our contribution on PAM and COAT,
and showcased their effectiveness in practical scenarios.

X. CONCLUSIONS

We tackled stateful MS migration with the aim to charac-
terize and minimize the service disruption time. To this end,
we first introduced COAT, a novel network solution based on
overlay network technology, which permits to preserve the
connection existing between the MS and the mobile end users.
Then, leveraging our testbed and a thorough experimental
analysis based on Podman and CRIU, we developed PAM,
a novel processing-aware migration model that effectively
characterizes the fundamental migration KPIs, i.e., downtime
and migration duration, in the case of both the traditional
and the COAT migration process. We validated the COAT
approach and the PAM model using realistic settings and the
MQTT Broker and Memcached MSs, and showed that our
model accurately predicts the values of the downtime and the
migration duration, reducing the prediction error by 64.6%
and 99.7% (resp.), when compared to the state of the art.
Furthermore, we demonstrated that PAM can be effectively
used to configure the migration parameters so as to meet the
requirements of latency-sensitive MSs, and we showed how
to exploit our model in the practical scenario requiring the
migration of the UAV autopilot.
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