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a b s t r a c t 

A huge research effort is being spent worldwide by automotive companies and academic institutions for 

developing vehicles with high levels of autonomy, ranging from advanced driving-assisted systems to fully 

automated vehicles. Nonlinear Model Predictive Control (NMPC) has the potential to become a key tech- 

nology in this context, thanks to its capability to deal with linear and nonlinear systems, manage physical 

constraints and satisfy multi-objective performance criteria. However, NMPC is based on the on-line so- 

lution of a nonconvex optimization problem and this operation may require a high computational cost, 

compromising its real-time implementation. In this paper, a “fast” data-aided NMPC approach is devel- 

oped, aimed at trajectory planning and control for autonomous vehicles. In particular, a Set Membership 

approximation method is used to derive from data tight bounds on the optimal NMPC control law. These 

bounds are used to restrict the search domain of the underlying NMPC optimization process, allowing a 

significant reduction of the computation time. The proposed NMPC trajectory planning and control ap- 

proach is tested in simulation and compared with other state-of-the-art methods, considering different 

road scenarios. 

© 2023 The Authors. Published by Elsevier Ltd on behalf of European Control Association. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Autonomous driving is considered one of the most ground- 

reaking technologies of the near future and is expected to com- 

letely reshape the sector of transportation systems (see, e.g., 

7,9,13] ). In this regard, a huge research effort is being spent world- 

ide by automotive companies and academic institutions for de- 

eloping vehicles with high levels of autonomy, ranging from ad- 

anced driving-assisted systems to fully automated vehicles (see, 

.g., [29,34] ). 

Modern control theory offers a multitude of approaches and de- 

ign paradigms that can be exploited for these applications. Among 

hem, Model Predictive Control (MPC) has the potential to be- 

ome a key technology, thanks to its capability to design con- 

rol algorithms for multivariable systems under state, input, and 

utput constraints (see, e.g., [14,25,31,32] ). To cope with nonlin- 

ar dynamics and constraints, as well as with nonconvex perfor- 
� This work was supported by the NewControl project, within the Electronic Com- 

onents and Systems For European Leadership Joint Undertaking (ECSEL JU) in col- 

aboration with the European Union’s Horizon 2020 Framework Programme and Na- 

ional Authorities, under grant agreement no. 826653-2 . 
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ance indexes, Nonlinear MPC (NMPC) has been introduced (see, 

.g., [2,10] and references therein). 

For both NMPC and MPC, fast and reliable optimization algo- 

ithms are needed, able to meet the hard time constraints of real- 

ime closed-loop control applications. Serious issues may occur 

specially in the case of NMPC, where on-line solutions of non- 

onvex optimizations rely on the use of sophisticated algorithms 

ith higher computational costs than linear MPC. During the past 

ecades, significant progress has been carried out in reducing the 

omputational complexity of NMPC approach. In [23] , a method 

as developed for linearizing the nonlinear model around a nomi- 

al trajectory and then solving a unique Sequential Quadratic Pro- 

ramming (SQP) over the time horizon. In [11] , a Real-Time Itera- 

ion (RTI) scheme was introduced that performs a single SQP itera- 

ion per sampling time. It uses the direct multiple shooting method 

f [5] for simultaneous Nonlinear Program (NLP) parametrization, 

ith full derivatives and condensing. The implementation of the 

ulti-level version of RTI is described in Bock et al. [4] , allowing 

or further reduction of the computational load. Moreover, the con- 

inuation/GMRES of Ohtsuka [28] and the advanced-step controller 

f Zavala and Biegler [35] can be mentioned. These improvements 

ave allowed the NMPC implementation also in real-time systems 

ith high sampling rate requirements, see, e.g., [1,15,16] . 
Association. This is an open access article under the CC BY license 
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Fig. 1. Parallel parking scenario. 
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In this paper, a “fast” data-aided NMPC approach is pro- 

osed, called Set Membership Nonlinear Model Predictive 

ontrol (SM-NMPC), aimed at trajectory planning and control 

or autonomous vehicles. In particular, a Set Membership (SM) 

pproximation method is used to derive directly from data tight 

ounds on the optimal NMPC control law. Indeed, unlike classical 

stimation methods that rely on statistical assumptions, the SM 

pproach makes use of the so-called interval bounds to compute 

he estimate of an unknown function, also ensuring that the true 

alue is contained inside the resulting uncertainty band [27] . In 

he SM-NMPC approach, these bounds are exploited to restrict the 

earch domain of the optimization process, allowing a significant 

eduction of the computation time and enabling, consequently, the 

eal-time NMPC implementation in many situations where a high 

ampling rate is necessary. 

More in detail, the method proposed in this paper is based on 

he following basic operations: 

1) Approximating the NMPC control law, i.e., the nonlinear func- 

tion that links the state of the system to the optimal command 

and using this approximation for the warm start of the nonlin- 

ear optimization algorithm. 

2) Deriving tight bounds on the NMPC control law, in order to re- 

duce the search domain. 

The approximation of the MPC/NMPC control law has been ex- 

ensively investigated in the literature. For instance, Parisini and 

oppoli [30] proposes an off-line computation of the control law 

y approximating the receding horizon regulator with a multi- 

ayer feedforward neural network. Another technique presented in 

anale et al. [8] introduces a “fast” MPC implementation based 

n off-line nonlinear function approximation using the Set Mem- 

ership approach [27] . However, these methods become inefficient 

hen the number of system states is large, complex/time-varying 

onstraints must be satisfied, or time-varying references have to be 

racked. 

Building upon these prior approaches, the SM-NMPC approach 

roposed in the present paper introduces novel contributions in 

wo key aspects. Firstly, it approximates the NMPC control law 

nd uses this approximation as the initial guess for the opti- 

ization algorithm. This warm start reduces the computational 

ime required to converge to a solution. Previous methods have 

rimarily focused on using off-line approximating functions only 

o replicate the MPC/NMPC law, rather than leveraging them as 

 warm start for optimization. Secondly, the method uses tight 

ounds on the NMPC control law to narrow down the search 

omain during on-line optimization. By restricting the range in 

hich the solver explores for a solution, the computational bur- 

en is further reduced. To the best of our knowledge, this as- 

ect of the developed approach, employing guaranteed bounds to 

educe the search domain, is novel compared to existing tech- 

iques. Furthermore, it must be noted that the SM-NMPC approach 

s not restricted to a specific optimization approach. It can be 

sed in combination with any algorithm to increase its numerical 

fficiency. 

The developed SM-NMPC trajectory planning and control ap- 

roach is tested in simulation considering realistic autonomous 

ehicle scenarios, concerned with parallel parking and lane 

eeping. Performance comparisons with a standard NMPC ap- 

roach are presented, showing significantly better results in 

erms of computation time and optimality of the solutions 

ound. 

The paper is organized as follows. Section 2 outlines the inves- 

igated autonomous scenarios. In Section 3 , the NMPC mathemati- 

al formulation is introduced. Section 4 describes the Nonlinear Set 

embership Approximation. In Section 5 , the developed SM-NMPC 

pproach is presented in detail. The obtained results and the com- 
2 
arison with respect to a standard NMPC are shown in Section 6 . 

inally, the conclusions are drawn in Section 7 . 

. Autonomous driving scenario 

This section describes the realistic autonomous vehicle scenar- 

os considered in our work, providing also the motivations behind 

he choice of these particular maneuvers. 

.1. Parallel parking 

While many advanced driver assistance systems (ADAS) are 

sed in everyday transportation, implementing a fully autonomous 

pplication remains a challenge due to safety and legal concerns. 

utonomous parking may become the first application to achieve 

ull autonomy in the near future due to well-known environments 

nd relatively low risks. Additionally, the increasing number of ve- 

icles has created a significant challenge in metropolitan areas, 

here finding a suitable location to park is becoming increas- 

ngly difficult. This situation is exacerbated by the shrinking size 

f available parking spaces, which in turn makes it more challeng- 

ng to park manually and contributes to traffic congestion. The au- 

onomous parking technology would simplify as much as possible 

he actions required by the driver to complete the parking, reduc- 

ng time (to perform all the maneuvers) and spaces. In this regard, 

any control algorithms have been developed in recent years (see, 

.g., [17–19] ). 

In our work, the Parallel Parking scenario is taken into account, 

ee Fig. 1 . Starting from an initial pose, the ego vehicle must first 

ull alongside the front vehicle (Target 1) and then perform the 

ecessary maneuvers for entering the parking lot (Target 2) with- 

ut colliding with other vehicles. 

.2. Lane keeping 

In recent years, with the increasing number of cars, the total 

umber of traffic accidents has been rising. Driving safety issues 

ave become a major concern in the social transportation and au- 

omotive sectors. Extensive investigation and analysis of the causes 

f these accidents have revealed that unintentional lane departures 

re a leading factor in road accidents involving passenger cars (see, 

.g., [12,22] ). Advanced driver assistance systems and autonomous 

riving functions, such as lane keeping, offer great potential in mit- 

gating or even preventing a large number of such accidents [33] . 

ecause of this huge potential with regard to traffic safety, the con- 

rol of the lateral dynamics of the vehicle has been extensively re- 

earched in the last few years (see, e.g., [3] ). In the paper, a si-

usoidal signal η(ξ ) = A s sin (ω s ξ ) is considered as road profile for 

he lane keeping system, where A s and ω s are the amplitude and 

he wave number of the signal, respectively. An example of the 

oad profile considered for this case study is shown in Fig. 5 . 

.3. Vehicle model and control method 

To simulate the real vehicle, the Matlab Dual-Track Vehicle 

ody 3DOF block (see MATLAB [24] ) is used, which implements 
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 rigid two-axle vehicle body model to calculate longitudinal, lat- 

ral, and yaw motion. The block accounts for body mass, aerody- 

amic drag, and weight distribution between the axles due to ac- 

eleration and steering. The NMPC has been used to address the 

utonomous trajectory planning and control of the described sce- 

arios. This approach is formulated in detail in the following sec- 

ion. 

. Nonlinear model predictive control 

Consider a Multiple-Input-Multiple-Output (MIMO) nonlinear 

ynamic system described by the following state equations: 

˙ 
 = f (x, u ) 

 = h (x, u ) (1) 

here x ∈ R 

n x is the state, u ∈ R 

n u is the command input and y ∈
 

n y is the output; f : R 

n x × R 

n u → R 

n x and h : R 

n x × R 

n u → R 

n y are

wo functions characterizing the system dynamics and output vari- 

bles, respectively. Assume that the state is measured in real-time, 

ith a sampling time T s , according to: x (t k ) , t k = T s k, k = 0 , 1 . . . . If

he state is not measured, an observer or a model of (1) in input-

utput form has to be employed. 

NMPC is based on two key operations: prediction and optimiza- 

ion. At each time t = t k , the system state and output are predicted

ver the time interval [ t, t + T p ] , where T p ≥ T s is called the predic-

ion horizon . The prediction is obtained by integration of (1) . For 

ny τ ∈ [ t, t + T p ] , the predicted output ˆ y ( τ ) is a function of the

initial” state x (t) and the input signal: 

ˆ 
 ( τ ) ≡ ˆ y ( τ, x (t) , u (t : τ ) ) (2) 

here u (t : τ ) denotes the input signal in the interval [ t, τ ] . The

asic idea of NMPC (and of the most predictive approaches) is to 

ook for an input signal u ∗(t : τ ) at each time t = t k , such that the

rediction ˆ y ( τ, x (t) , u ∗(t : τ ) ) has a desired behavior in the time 

nterval [ t, t + T p ] . The concept of desired behavior is formalized

y defining the objective function 

 ( u (t : t + T p ) ) 
. = 

∫ t+ T p 

t 

(‖ 

e p (τ ) ‖ 

2 
Q + ‖ 

u (τ ) ‖ 

2 
R 

)
dτ + ‖ 

e p (t + T p ) ‖ 

2 
P 

(3) 

here e p (τ ) 
. = r(τ ) − ˆ y (τ ) is the predicted tracking error, r(τ ) ∈ 

 ⊂ R 

n y is a reference to track, Y is a bounded set, and ‖ ·‖ ∗ is

 weighted Euclidean norm. For example, letting Q be a positive 

efinite weight matrix, the norm of a column vector w is defined 

s ‖ w ‖ 2 Q 
. = w 

	 Qw. 

The input signal u ∗(t : t + T p ) is chosen as one minimizing the

bjective function J 
(
u (t : t + T p ) 

)
. In particular, at each time t = 

 k , for τ ∈ [ t, t + T p ] , the following nonlinear Optimization Control

roblem (OCP) is solved: 

u 

∗(t : t + T p ) = arg min 

u (·) 
J ( u (t : t + T p ) ) 

subject to: 
˙ ˆ x (τ ) = f 

(
ˆ x (τ ) , u (τ ) 

)
, ˆ x (t) = x (t) 

ˆ y (τ ) = h 

(
ˆ x (τ ) , u (τ ) 

)
ˆ x (τ ) ∈ X c , ˆ y (τ ) ∈ Y c , u (τ ) ∈ U c . 

(4) 

he first two constraints in this problem ensure that the predicted 

tate and output are consistent with the system equation (1) . The 

ets X c and Y c account for other constraints that may hold for 

he predicted state/output (e.g., obstacles, barriers). The set U c ac- 

ounts for input constraints (e.g., input saturation). 

The optimization problem (4) is generally nonconvex. More- 

ver, the decision variable u (·) is a signal, and optimizing a 

unction with respect to a signal is generally a difficult task. 

o overcome this problem, the prediction interval [ t k , t k + T p ] can
3

e divided into n s sub-intervals [ t k + τi , t k + τi +1 ] ⊂ [ t k , t k + T p ] , i ∈
 1 , 2 , . . . , n s } , where the τi ’s are called the nodes, and u and r

an be kept constant on each sub-interval. Hence, u ki and r ki de- 

ote the command and reference values at time k in the i th sub-

nterval, respectively. The command and reference sequences in 

he prediction interval are indicated with u k 
. = (u k 1 , . . . , u kn s ) and 

 k 
. = (r k 1 , . . . , r kn s ) , respectively. In this way, the optimization prob-

em reduces to a finite-dimensional problem, which can be solved 

sing an efficient numerical optimization algorithm. 

The NMPC closed-loop command is obtained according to a 

o-called receding horizon strategy . At time t = t k , the input signal

 

∗(t : t + T p ) is computed by solving (4) . Then, only the first op-

imal input value u (τ ) = u ∗(t k ) is applied to the plant, keeping it

onstant for ∀ τ ∈ [ t k , t k +1 ] . The complete procedure is repeated at

he next time steps t = t k +1 , t k +2 . . . . 

In the reminder of the paper, it is assumed that, for some 

hoice of the parameters T s , T p , Q, R, P , the NMPC algorithm defined

y (4) , applied according to the receding horizon strategy to the 

lant (1) , provides a bounded tracking error e (t) 
. = r(t) − y (t) , for

ll t ≥ 0 and for every reference signal r such that r(t) ∈ Y , ∀ t ≥ 0 .

. Set Membership approximation and tight guaranteed bounds 

The optimal NMPC command must be computed in real-time 

nd this task may require a large computational time, since a non- 

rivial optimization problem has to be solved. In order to overcome 

his problem, an approximation of the NMPC control law is de- 

ived, based on the nonlinear Set Membership (SM) Identification 

ethod. This method is now summarized. 

According to the formulation of Section 3 , the optimal NMPC 

ommand u k 
. = u ∗(t k ) is a static nonlinear function of the current 

tate x k 
. = x (t k ) and the reference sequence r k . The NMPC com- 

and u ki at time t k in the i th prediction sub-interval is thus given

y 

 ki = φ(w k ) (5) 

here w k 
. = (x k , r k ) and φ is a static nonlinear function. For sim- 

licity, in this section n u = 1 is assumed. The generalization to the 

ase n u > 1 is trivial and can be accomplished by applying the SM 

ethod to each component of u ki . See also Section 5.2 . In general,

ue to the complexity of the OCP (4) , writing the function φ in 

losed-form is not possible. To overcome this issue, an approxima- 

ion of φ is derived, based on the off-line computation of its values 

t a given number of points, using the nonlinear SM approach of 

ilanese and Novara [27] . 

Let W ⊂ R 

n x + n y be a region where the regressor w k can evolve, 

nd assume that the function φ is Lipschitz continuous on W . Note 

hat this region is bounded since the NMPC algorithm is assumed 

o guarantee a bounded tracking error and the reference is as- 

umed bounded. A number M of values of φ is generated by solv- 

ng off-line the OCP (4) , starting from different initial conditions 

˜  l ∈ W , so that 

˜ 
 l = φ( ̃  w l ) , l = 1 , . . . , M, (6) 

here the tilde is used to indicate the collected data. From these 

alues of ˜ u l and ˜ w l , the known properties of φ, and the input limi- 

ations u ≤ ˜ u l ≤ u , an approximation of φ and tight function bounds 

re derived using the nonlinear SM approach. These functions will 

e key elements of the NMPC method proposed in Section 5 . 

The nonlinear SM approach of Milanese and Novara [27] is now 

riefly summarized (in particular, its “local” version is presented 

ere). Let us define the following functions: 

 (H, γ , w ) 
. = min [ u , min 

l=1 , ... ,M 

(h l + γ ‖ (w − ˜ w l ) ‖ )] 

 (H, γ , w ) 
. = max [ u , max 

l=1 , ... ,M 

(h l − γ ‖ (w − ˜ w l ) ‖ )] (7) 
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Algorithm 1 SM-NMPC off-line algorithm. 

Input: Model of the plant (1); NMPC parameters T p , Q, R, P . 

Output: φ, φ and φc . 

1: Several off-line simulations are carried out to generate the 

dataset { ̃  w l 
. = ( ̃  x l , r l ) } M 

l=1 
. 

2: For each ˜ w l , the optimal control command ˜ u l is computed by 

solving the NMPC optimization problem (4) off-line, thus ob- 

taining the design dataset { ̃  w l , ̃  u l } M 

l=1 
. 

3: K-Medoids clustering is applied to reduce the size of the design 

dataset from M to K ≤ M 

10 . 

4: On the basis of the reduced dataset, φ, φ and φc are derived 

according to (8). 

5

p

i  

{
a

r

l

b

m  

c  

n

i

b

A

I

O

 

5

φ  

l

c

fi

d

5

i

c

u

u

t

here H = { h l } M 

l=1 
, h l ∈ R , γ ∈ R and w ∈ W are the independent

ariables of the functions. Define now the functions 

g (w ) 
. = 

(
b (H φ, γφ, w ) + b (H φ, γφ, w ) 

)
/ 2 

(w ) 
. = φg (w ) + b (H �, γ�, w ) 

(w ) 
. = φg (w ) + b (H �, γ�, w ) 

c (w ) 
. = 

(
φ(w ) + φ(w ) 

)
/ 2 (8) 

here H φ
. = { ̃  u l } M 

l=1 
, H �

. = { ̃  u l − φg ( ̃  w l ) } M 

l=1 
, γφ and γ� are the Lips-

hitz constants of φ and φ − φg on W , respectively. These constants 

an be systematically estimated using the validation procedure in 

ilanese and Novara [27] . 

The following theoretical properties are proven in Milanese and 

ovara [27] : 

• The functions φ and φ are optimal bounds of φ: they are the 

tightest upper and lower bounds that can be derived from the 

available prior information on the function and the data. 

• The function φc is an optimal approximation of φ: it minimizes 

the so-called worst-case identification error , defined as the max- 

imum error given by all possible approximations that are com- 

patible with the prior information and the data. 

. Set Membership nonlinear model predictive control 

This section describes how the nonlinear SM identification 

ethod is exploited to improve the computational performance of 

n NMPC algorithm. In the first subsection, the off-line SM-NMPC 

esign procedure is described. In the second one, the on-line algo- 

ithm is presented. A preliminary version of this approach, called 

educed Domain NMPC, can be found in Boggio et al. [6] . 

.1. SM-NMPC off-line design procedure 

Data collection. To describe the evolution of the system, several 

ff-line simulations are performed. In particular, a set of state data 

˜  l and reference signals r l , with l = 1 . . . , M, are generated, col-

ecting the regressor ˜ w l 
. = ( ̃  x l , r l ) . Starting from each ˜ w l , the cor-

esponding optimal control command is computed, on the basis of 

4) , giving rise to a set of control data ˜ u l . The resulting dataset is

hus given by { ̃  w l , ̃  u l } M 

l=1 
. 

Clustering. Since, in general, the number M of collected data can 

e very large, firstly a clustering process is performed using the K- 

edoids approach [21] . This method uses the medoids to represent 

he clusters. A medoid is an element of the dataset whose sum of 

issimilarities to all the elements in the cluster is minimal. Among 

any algorithms for K -medoids clustering, due to the large dataset, 

Lustering LARge Applications (CLARA) [20] is used. 

At the end of the clustering process, the size of the dataset 

ust be reduced by at least 10 times. This means that K ≤ M 

10 , 

here K is the number of clusters and then the number of data 

sed to identify the function φ. The resulting dataset, that best 

haracterizes the overall system, is { ̃  w ml , ̃  u ml } K l=1 
, composed of K

egressors ˜ w ml and commands ˜ u ml . The subscript m is used to in- 

icate that the data are the medoids of the clusters found in this 

tep. 

Set Membership approximation. On the basis of the dataset 

 ̃  w ml , ̃  u ml } K l=1 
, the optimal bounds φ and φ, and approximated con- 

rol law φc are computed by means of the SM approach [27] . If 

he command u is multi-dimensional, and u and r are not constant 

over the prediction horizon), the SM approach is applied to each 

omponent of ˜ u ml and for each sub-interval of the entire prediction 

ime interval. 

Summary of the off-line procedure. The off-line steps of the SM- 

MPC design procedure are summarized in Algorithm 1 . 
4

.2. SM-NMPC on-line algorithm 

As discussed in Section 3 , in order to make the optimization 

roblem numerically tractable, the prediction interval [ t k , t k + T p ] 

s divided into n s sub-intervals [ t k + τi , t k + τi +1 ] ⊂ [ t k , t k + T p ] , i ∈
 1 , 2 , . . . , n s } , where the τi ’s are called the nodes. Then, u and r

re assumed constant on each sub-interval. In particular, u ki and 

 ki denote their values at time k in the i th sub-interval. Simi- 

arly, φc 
i 
, φi and φ

i 
denote the SM optimal approximation and 

ounds of the optimal command in the i th sub-interval. If the com- 

and is of dimension n u > 1 , then φc 
i 
, φi and φ

i 
are vectors with

omponents φc 
ji 

, φ ji and φ
ji 

, j = 1 , . . . , n u . Each of these compo-

ents is obtained using the SM approximation method described 

n Section 4 . The SM-NMPC on-line algorithm is formally presented 

elow ( Algorithm 2 ). 

lgorithm 2 SM-NMPC on-line algorithm, applied at each time t k . 

nput: x k , r k 
. = (r k 1 , . . . , r kn s ) . 

utput: u (τ ) , τ ∈ [ t k , t k +1 ] . 

1: For i = 1 , . . . , n s and j = 1 , . . . , n u , define the interval 

U ji 
. = [ φ

ji 
(w k ) , φ ji (w k )] 

where w k 
. = (x k , r k ) ∈ R 

n x + n y n s . 
2: Solve the OCP (4) with: 

1. u (τ ) = u ki , τ ∈ [ t k + τi , t k + τi +1 ] , i = 1 , . . . , n s . 

2. Warm start command sequence: 

u 0 = φc (w k ) = (φc 
1 
(w k ) , . . . , φ

c 
n s 

(w k )) . 

3. Reduced search domain: U c = 

∏ 

ji U ji , where 
∏ 

ji denotes the 

Cartesian product. 

3: Set the optimal command as u (τ ) = u ∗
k 1 

, τ ∈ [ t k , t k +1 ] , where

u ∗
k 1 

is the first sample of the OCP solution u ∗
k 
. 

The main features of the on-line algorithm are now discussed. 

.2.1. Search domain reduction 

Each input constraint set U ji is defined by the optimal bounds 

ji 
(w k ) and φ ji (w k ) , that shrink the initial search domain U c . This

eads to a reduction of the number of cost function evaluations and 

onsequently to a shortening of the computation time needed to 

nd u k . Such a search domain reduction is not operated in stan- 

ard NMPC algorithms. 

.2.2. Warm start 

The optimization algorithm is warm-started using the optimal 

nitial condition φc (w k ) , computed through the SM approximated 

ontrol law. On the other hand, many standard NMPC algorithms 

se the so-called shift initialization strategy, where the starting val- 

es of the decision variables are taken equal to the solution ob- 

ained in the previous time step. This latter strategy works well 
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Table 1 

NMPC design parameters. 

Parameter Value 

T s 0.1 s 

T p 15 s 

Q diag (0 . 25 , 0 . 25 , 0 . 5) 

R diag (0 . 5 , 0 . 5) 

P diag (2 , 10 , 20) 

Upper bounds [2 m/s , π/ 4 , 2 m/s , π/ 4] 

Lower bounds [ −2 m/s , −π/ 4 , −2 m/s , −π/ 4] 
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f the new optimal solution is not far from the previous one, but 

ay lead to non-satisfactory local solutions if this condition does 

ot hold. 

.3. General considerations on the SM-NMPC approach 

.3.1. Presence of disturbances/uncertainties 

On one hand, the computation of the optimal SM approxima- 

ion and bounds is not affected by any kind of disturbance or 

ncertainty. Indeed, they are computed from a set of data gener- 

ted solving the NMPC optimization problem off-line. This data- 

eneration mechanism is fully deterministic and not affected by 

isturbances/uncertainties. On the other hand, the effects of dis- 

urbances or uncertainties may show up when NMPC is used to 

ontrol in closed-loop some plant, but this effect is exactly the 

ame using an NMPC algorithm with the SM domain reduction or 

 pure NMPC algorithm without the reduction. The SM domain re- 

uction can be used in combination with any NMPC algorithm to 

ncrease the performance in terms of computational speed but it 

eaves unchanged all the control performance of the original NMPC 

lgorithm. 

.3.2. Data used for SM-NMPC design 

The SM bounds are defined on the whole domain of the NMPC 

lgorithm and thus they hold true in all possible working condi- 

ions of the plant. However, the amplitude of the command range 

efined by the bounds depends on how the collected data are dis- 

ributed in the NMPC domain: the amplitude is smaller in regions 

here the data are more “densely” distributed, larger in regions 

ot “densely” explored by the data. Hence, in order to obtain a 

ignificant shrink of the range, and a subsequent reduction of the 

MPC computation time for all the driving conditions of interest, 

t is necessary to collect data that explore the regions correspond- 

ng to these conditions. A “learning” version of the SM-NMPC al- 

orithm could also be developed, where the data are collected on- 

ine and the SM bounds and approximation are improved at each 

ime step. 

. Autonomous driving simulation results 

In this section, the presented approach is validated and com- 

ared with a standard NMPC implementation considering the road 

cenarios described in Section 2 . 

.1. Parallel parking 

To show the effectiveness of the proposed method, the SM- 

MPC algorithm has been tested in simulation on a real road sce- 

ario regarding a Parallel Parking maneuver. 

The models used to describe the ego vehicle are first intro- 

uced. When using the NMPC approach, it is necessary to distin- 

uish between two models: a “high-fidelity” plant model, used to 

imulate the real vehicle, and a prediction model, used within the 

MPC optimization algorithm to predict the future behavior of the 

ystem (this latter model is typically simpler than the former). 

As mentioned in Section 2 , to simulate the real vehicle, the 

atlab Dual-Track Vehicle Body 3DOF block is used. Regarding 

he NMPC prediction model, the classical kinematic bicycle equa- 

ions are considered. Since the vehicle travels at low speed, these 

quations provide a sufficiently accurate description of the vehicle 

otion. The kinematic bicycle model is the following: 

˙ = v ξ cos ψ 

˙ = v ξ sin ψ 

˙ 
 = 

v ξ
w 

tan (δ f ) (9) 

b 

5 
here ξ and η denote the position of the vehicle, ψ its yaw angle, 

nd the parameter w b = 2 . 8 m represents the wheelbase of the ve-

icle. The longitudinal speed v ξ and the steering angle δ f are the 

ontrol variables. The output of the system is (ξ , η, ψ) . Concern- 

ng the state constraint, safety ellipses were designed around the 

arking vehicles in order to avoid possible collisions. 

Below are reported the steps, described in Section 5 , for this 

ase study. 

.1.1. Data collection 

A starting set of initial state conditions x 0 p , p = 1 , . . . , 10 0 0 of

he vehicle was obtained through the Latin Hypercube Sampling 

LHS) technique (see McKay et al. [26] ). Starting from these ini- 

ial conditions, a Monte Carlo (MC) campaign was carried out us- 

ng the NMPC algorithm (4) without domain reduction (the de- 

ign parameters are listed in Table 1 ). The optimization prob- 

em was solved using the Matlab function fmincon with the Se- 

uential Quadratic Programming (SQP) algorithm. In the following, 

his algorithm without domain reduction will be called ”Standard 

MPC”. Note that the NMPC command is parametrized considering 

wo nodes, i.e., n s = 2 . This means that there are a total of 4 com-

ands: 2 for the speed v ξ and 2 for the steering angle δ f . At the

nd of this campaign, a dataset of about M = 3 e 5 samples ( ̃  w l , ̃  u l )

as obtained. 

.1.2. Clustering 

A clustering procedure was carried out to reduce the size of the 

ataset generated in the previous step. In particular, the K-medoids 

lustering method with the CLARA algorithm was used. After sev- 

ral trials, a reduced set of 1 e 4 data was found as an “optimal”

ompromise between quantity of data (and then memory occupa- 

ion) and exploration of the control law domain. As mentioned in 

ection 5.1 , the benefit of using K -medoids is that the center point 

f each cluster, i.e., the medoid, is an actual element of the dataset. 

his allows to always associate a sample of the regressor with the 

orresponding optimal command. 

.1.3. Set Membership approximation 

After the clustering process, the dataset was reduced from 3 e 5 

o 1 e 4 samples { ̃  w ml , ̃  u ml } 1 e 4 l=1 
. On the basis of them, the approx-

mated control law φc , and the corresponding bounds φ and φ
ere computed by means of the SM approach shown in Section 4 . 

igure 2 shows the approximation and the relative bounds of the 

elocity control command. As it can be seen, the bounds were re- 

uced by about 10 times with respect to the original ones. 

.1.4. Comparison between SM-NMPC and standard NMPC 

Once the approximate Set Membership model was created, it 

s used in combination with the NMPC for reducing the computa- 

ional time of the optimization algorithm. In order to test the ef- 

ectiveness of this technique and the robustness of the obtained 

odel, different initial state conditions of the ego vehicle, from 

hose considered previously, were taken into account. Then, a MC 

ampaign of 100 simulations was carried out. 
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Table 2 

Comparison between standard NMPC and SM-NMPC for a MC campaign of 100 simulations. 

Standard NMPC SM-NMPC 

Mean value Maximum value Mean value Maximum value 

Eval. Cost. Funct. 94.4 106.1 5.46 12.16 

Comp. Time [s] 0.0313 0.0365 0.0057 0.0059 

Pos. T.E. [m] 0.1237 0.7 0.1106 0.1388 

Orient. T.E. [rad] 0.0241 0.29 0.0213 0.029 

Fig. 2. Set Membership approximation of v ξ . 
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Fig. 3. Example of autonomous parallel parking performed by SM-NMPC. 
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The standard NMPC and the developed SM-NMPC were simu- 

ated on a Dell Precision 5820 (Processor: Intel(R) Xeon(R) W-2123 

PU @ 3.60 GHz). The optimization problem was solved using the 

atlab function fmincon with the Sequential Quadratic Program- 

ing (SQP) algorithm. It is important to emphasize that the pro- 

osed approach is not limited to a particular optimization algo- 

ithm. Instead, it can be employed in combination with any algo- 

ithm to enhance its computational efficiency. 

The metrics used for comparing the performance of the two al- 

orithms are: 

1. Number of evaluated cost functions (Eval. Cost. Funct.) for find- 

ing the minimum; 

2. Computational time (Comp. Time); 

3. Accuracy in reaching the final target. 

In Table 2 , the mean and maximum values of the above perfor- 

ance indexes are shown for the two NMPC algorithms. Note that 

he term Mean Value refers to the average number of evaluated 

ost functions, computational times, and tracking errors through- 

ut the simulation. For example, mean number of evaluated cost 

unctions ( M ec f ) means: 

 ec f = 

∑ n t 
k =1 

ec f k 

n t 
(10) 

here ec f k is the number of evaluated functions for the k th iter- 

tion and n t is the number of iterations required to complete the 

imulation. The term Maximum Value refers to the highest value 

uring the 100 simulations. 

Regarding the number of evaluated cost functions, with the SM- 

MPC a reduction of about 17 times, on average, is obtained. Note 

hat, since in this nonlinear optimization problem there are 4 vari- 

bles to be optimized, at least 5 evaluations of the cost function 

re required to obtain a numerical estimate of the gradient. Thus, 

n the case of SM-NMPC, results very close to this minimum num- 

er are obtained. For the computational time, the use of SM-NMPC 
6

eads to an improvement in the performance of about 6 times, on 

verage. The discrepancy between the enhancement found for the 

ost functions and this one is due to the fact that the SM-NMPC 

lgorithm requires, before the optimization, the evaluation of the 

M approximated control law. This operation, not present in the 

tandard NMPC, implies additional computation time. Note that the 

ode for accomplishing this operation is at a preliminary stage and 

urther improvements are expected. The same considerations also 

pply to the maximum values of both metrics. With regard to the 

racking error, since the values of the position (ξ , η) are gener- 

lly larger than those of the orientation ψ , it is split into: Posi- 

ion Tracking Error (Pos. T.E.) and Orientation Tracking Error (Ori- 

nt. T.E.). For the computation of the Position Tracking Error, the 

uclidean distance between Target 2 in Fig. 3 and the final pose 

f the vehicle is considered. Regarding the Mean Value, the ob- 

ained results are quite similar. Instead for the Maximum Value, 

here is a considerable difference. Indeed, in the case of standard 

MPC, the very high value reported in Table 2 is due to the fact 

hat out of 100 simulations the parking maneuver fails four times. 

he SM-NMPC, instead, always succeeds in completing it. Thus, be- 

ides being more efficient from a computational point of view, this 

pproach is also more robust. An example of a complete maneuver 

erformed by the SM-NMPC is shown in Fig. 3 . 

.2. Lane keeping 

As road profile, the sinusoidal signal defined in Section 2 was 

sed. For the plant, the same model of the previous example was 

onsidered. Regarding the one for the NMPC prediction, the kine- 

atic model is no longer used. Indeed, it becomes inadapted when 

he velocity is high and then the vehicle is brought to its limit of 

dherence and tires start to lose grip on the road (this is referred 

s drifting). For this reason, a standard model of the lateral and 

ongitudinal dynamics of a vehicle is considered, called the Dy- 

amic Single-Track (DST) Model. Although simple, this model cap- 



M. Boggio, C. Novara and M. Taragna European Journal of Control 74 (2023) 100857 

Table 3 

NMPC design parameters. 

Parameter Value 

T s 0.1 s 

T p 3 s 

Q diag (1 , 1) 

R diag (0 . 01 , 1) 

Upper bounds [3 m/s 
2 
, π/ 4 , 3 m/s 

2 
, π/ 4] 

Lower bounds [ −3 m/s 
2 
, −π/ 4 , −3 m/s 

2 
, −π/ 4] 
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Fig. 4. Set Membership approximation of δ f . 

Fig. 5. Example of SM-NMPC lane keeping with lateral and orientation errors. 
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5

t

ures the main aspects of the vehicle dynamics and, for this reason, 

t is suitable for the design and preliminary test of vehicle control 

ystems. The state equations of the DST model are: 

˙ = v ξ cos ψ − v η sin ψ 

˙ = v ξ sin ψ + v η cos ψ 

˙ 
 = ω 

˙ 
 ξ = v ηω + a ξ

˙ 
 η = −v ξω + 

2 

m 

(
F η f + F ηr 

)
˙  = 

2 

I z 

(
l f F η f − l r F ηr 

)
(11) 

here ξ and η denote the position of the vehicle, ψ the yaw 

ngle, ω the yaw rate, v ξ , v η the longitudinal and lateral speeds, 

 = 1575 kg and I z = 40 0 0 kg m 

2 
the mass and yaw polar inertia,

nd l f = 1 . 2 m and l r = 1 . 6 m the distance CoG - front/rear wheel

enter. F η f and F ηr are the lateral forces between the wheels and 

he vehicle: 

 η f = −c f β f , F ηr = −c r βr (12) 

here c f = 2 . 7 × 10 4 N/rad and c r = 2 × 10 4 N/rad are the

ront/rear cornering stiffnesses. The tire slip angles β f and βr 

re defined as: 

f = atan 

(
v η + l f ω 

v ξ

)
− δ f , βr = atan 

(
v η − l r ω 

v ξ

)
. (13) 

he longitudinal acceleration a ξ and the steering angle δ f are the 

ontrol variables. The output of the system is (ξ , η) . 

The same steps were performed as in the previous ex- 

mple. Note that for the data collection, 10 0 0 different sinu- 

oidal references were considered, with 5 < A s [ m ] < 10 and 0 . 01 <

 s [ rad/m ] < 0 . 04 . For the generation of the values in these inter-

als, the LHS technique was used. Then, a MC campaign was car- 

ied out using the standard NMPC ( Table 3 lists the design param- 

ters). Even in this case, the command u was parametrized con- 

idering two nodes, and so there are a total of 4 commands. At 

he end of the MC campaign, a dataset of about M = 5 e 5 sam-

les was obtained. Afterward, the clustering was performed using 

 -medoids, with K = 2 e 4 . Then the approximating control law φc ,

nd the corresponding bounds φ and φ were computed by means 

f Set Membership approach. Figure 4 shows the approximation 

nd the relative bounds of one of the steering angle command. 

nce the SM model was created, it is used in combination with 
Table 4 

Comparison between standard NMPC and SM-NMP

Standard NMPC 

Mean value Maximum

Eval. Cost Funct. 107.36 109.35 

Comp. Time [s] 0.041 0.043 

RMS Lat. E. [m] 0.0254 0.0785 

RMS Orient. E. [rad] 0.00049 0.0011 

7 
he NMPC. In order to test the SM-NMPC and compare it with the 

tandard NMPC implementation, different values of A s and ω s , from 

hose considered previously, were considered. Then, a MC cam- 

aign of 100 simulations was carried out on the Dell Precision 

820. Table 4 reports the results considering the same metrics as 

he previous example. Even in this case, the SM-NMPC outperforms 
C. 

SM-NMPC 

 value Mean value Maximum value 

7 7.74 

0.0088 0.0089 

0.0208 0.0454 

0.00048 0.0007 
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he standard implementation. Note that for the accuracy, the Root- 

ean-Square (RMS) error is used for evaluating the Lateral Error 

Lat. E.) and the Orientation Error (Orient. E.). An example of a si- 

usoidal road profile and the corresponding trajectory, lateral and 

rientation errors obtained with the SM-NMPC is shown in Fig. 5 . 

. Conclusions 

The last decades have seen increasingly rapid progress in driver- 

ess vehicle technology. In this context, the paper proposes a “fast”

ata-aided NMPC approach, called Set Membership based Non- 

inear Model Predictive Control (SM-NMPC), aimed at trajectory 

lanning and control for autonomous vehicles. In particular, a Set 

embership approximation method is applied to derive from data 

ight bounds on the optimal NMPC control law. This results in a 

ignificant reduction of the computation time, thus enabling the 

eal-time NMPC implementation even in systems with high sam- 

ling rate. Realistic autonomous vehicle scenarios, concerned with 

arallel parking and lane keeping, are taken into account for test- 

ng in simulation the developed SM-NMPC approach. The obtained 

erformances are compared with a standard NMPC implementa- 

ion, demonstrating the effectiveness of the proposed method. 
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