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Journal of Statistical Physics, Vol. 70, Nos. 5/6, 1993 

Solutions of Singular Integral Equations 
from Gas Dynamics and Plasma Physics 

Lamberto Rondoni ~ and Paul F. ZweifeP 

Received May 4, 1992; final September 14, 1992 

In this paper we give the explicit form of the solutions of the singular integral 
equations associated with some models of gas dynamics and plasma physics 
which are extensively investigated in the existing literature. In particular, we 
deal with equations on infinite and semi-infinite contours, where the data are 
assumed to be meromorphic functions. In this context we rederive some 
published results and present some new results which show how our method 
can be successfully used to obtain the explicit form of the solutions in much 
more general cases than those found in the literature. 

KEY WORDS: Plasma oscillations; electron swarms; slip-flow problem. 

1. I N T R O D U C T I O N  

In two previous  papers ,  (1'2~ we have ob ta ined  cons iderab le  s implif icat ions 
to the so lu t ion  of s ingular  integral  equa t ions  on closed contours  (1) and  on 
intervals.  (2) In  par t icu lar ,  the pr inc ipa l  value integrals  which appea r  in the 
u s u a l  form of the so lu t ion  (3'4) can be carr ied out  explici t ly under  the 
a s sumpt ion  tha t  the i nhomogeneous  term in the equa t ion  is a m e r o m o r p h i c  
function;  we have t rea ted  the po lynomia l  and  ra t iona l  funct ion cases as 
examples.  In  ref. 2 an app l i ca t ion  was made  to one-speed t r anspor t  theory  
and,  in par t icular ,  a s imple express ion was der ived for the reflected dis- 
t r ibut ion.  In  this paper ,  we present  s imilar  results for s ingular  integral  
equa t ions  on infinite and  semi-infinite con tours  such as those which arise 
in gas dynamics  (5 7) p rob lems  and  p la sma  physics. (8-~2) O u r  result  for the 
slip-flow p rob l em has been ob ta ined  by  Siewert and  T h o m a s  ('3) for a 
mat r ix  gas dynamics  p rob lem,  but  they do  not  expla in  how they ma na ge d  
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1298 Rondoni and Zweifel 

to perform the principal value integral which appears in the usual presenta- 
tion of the slip-flow result. (s'6) We speculate that they used an identity 
similar to that used by Cercignani in obtaining a similar result for a special 
case of the equation described in ref. 2. Our general method has allowed us 
to solve the "generalized slip-flow problem" (cf. Section 3). 

2. B A C K G R O U N D  

For many problems of linear transport theory, the solution can 
be reduced to solving a singular integral equation. A full treatment has 
been given in ref. 11. Here we sketch some of the details to motivate the 
subsequent discussion. 

In general, a linear transport equation is an equation of the form (x4) 

Of Af =O, x e E  (2.1a) 

where # e I c  E, I being a closed interval. I is equipped with a measure d#; 
in the Hilbert space H =  L2(L d#), A is a self-adjoint and quasipositive 
operator (i.e., positive except perhaps on a finite-dimensional subspace 
of H); h(#) is some function. Equation (2.1) is to be solved subject to 
boundary conditions, for example, 

f ~ 0  as x--, oo (2.2a) 

or possibly 

f = 0 ( 1 )  as [xl--,oo (2.2b) 

depending on the physics. At x = 0  a typical condition might be the 
"full-range" condition 

f(0, # ) =  fo(#) 

or the "half-range condition" 

f(0, #) = fo(#), # e I+  

I + = {#eI ;  h(#) > 0} 

(2.3a) 

(2.3b) 

(2.3c) 

Strictly speaking, a true "transport problem" requires the conditions (2.3), 
which express the physical statement that the particle distribution is 
determined by the flux incident at x = O, but by abuse of nomenclature we 
often refer to problems involving (2.2) also as transport problems. 
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The forms of I, h, and A in the abstract equation (2.1) define the 
physical problem under consideration. For example, the "standard 
problem" (one-speed transport with isotropic scattering) has (11) 

I = [ - 1 , 1 ]  or [0,1]  

h(#) =/~ (2.4) 

- f ( x ,  # ' )  d#' (a f ) ( x ,  # ) = f ( x ,  lz) 2 -1 

In this paper we consider two different transport problems. The 
problems describing plasma oscillations (~'15) are of the full-range type, 
with x representing the time. We have 

I = N  

h = l  

(Af ) (x ,  #) = ik ( f  - 
k 

,~ t~ f(s) ds) 

(2.5) 

where r/is a constant involving the plasma frequency and the constant k is 
the wave number of the oscillation. 

One problem describing gas dynamics in the so-called "linearized 
BGK model ''(7,s) is of the half-range type. It has 

I = ~ +  

h = #  (2.6) 

E ; 1 (Af ) (x ,  #) = v o f , q(#) f ( x ,  s) ds 
- - o o  

where v0 is the (constant) collision frequency of gas molecules and r/(#) is 
the Maxwellian distribution shifted by the drift velocity of the gas. (7) 

Case introduced in 1960 (15) the idea of treating Eq. (2.1) by separation 
of variables: 

f ( x ,  #) = q)v(#) e-X/v, v ~ ~ (2.7) 

with v playing the role of an "eigenvalue" (the spectrum actually contains 
both point and continuous spectra). The ~b v are called "Case eigenfunc- 
tions." Ultimately, the solution is expressed as a superposition of the 
fundamental solutions (2.7) 

f(x,  #) = ~ A(v)~v(#)e-X/Vdv,  1 1 ~ I  (2.8) 
1 
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The coefficient A(v) is determined by the boundary conditions (2.2) or 
(2.3) as the case may be, 

( ,  

fo = | A(v) Ov(#) dv (2.9) 
1 

Since typically! 11'15) ~b~(#) contains factors like ( v - # )  -1, Eq. (2.9) is a 
singular integral equation of Cauchy type which must be solved for A(v), 
after which the solution is given by (2.8). The solution of such equations 
is well known(3'4'16); it is expressed in terms of principal value integrals 
which must in general be evaluated numerically. Our contribution in refs. 
1 and 2 was to show that for a large (and dense) class of data fo, these 
integrals could be evaluated analytically, thus drastically simplifying the 
numerical evaluation of the solutions to singular integral equations. In the 
present paper we apply these methods specifically to the two problems 
expressed in (2.5) and (2.6). No knowledge of transport theory is required 
to understand our analysis; it is all based on rather simple applications of 
Cauchy's theorem! A rather crucial function which enters all of transport 
theories is the so-called "dispersion function" A(z), whose zeros given the 
discrete spectrum [see Eq. (2.7)]. It is always analytic on C\I with bound- 
ary values on the branch cut I denoted by A+(p)=lim~oA(#• 
Another crucial function is the analytic Riemann-Hilbert function X(z), 
which is related to A + in that its boundary values on I1, X -+, obey 

X+(~) A+(~) 
X-- (#) A -  (/~)' /-t ~ I1 (2.10) 

If 11 = / ,  the solution to (2.10) is trivially X =  A; otherwise a solution must 
be constructed; since for any solution Xo(Z ) of Eq. (2.10) P(z)Y(o(Z) is 
also a solution for any polynomial P(z), the determination of the proper 
solution is a somewhat delicate matter which we do not discuss here; 
we assume in the subsequent discussion that the appropriate solution has 
been obtained; it depends on the so-called "index" of the singular integral 
equation (2.9). (3'4'16'17) 

3. A P P L I C A T I O N S  

3.1. Full Range 

A well-known example of full-range problems is the Vlasov Poisson 
system describing plasma oscillations, which can be solved in terms of Case 
eigenfunctions.<9 12~ After Fourier transformation with respect to space, one 
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seeks a solution fk(v, t) with initial value f o (v )  which represents a perturba- 
tion from the equilibrium distribution (v is the dimensionless velocity 
variable and t the time). In the simplest case (no discrete spectrum) the 
solution for the electric field Ek( t )  is given by (1~ 

f 
oO 

Ek( t  ) oc Ak( s )  e - i~ '  ds (3.1) 
- - 0 9  

where Ak(s )  is a solution of the singular integral equation (l~ 

f o~ s' ds' (3.2) 
fo(S)  = 2(s) Ak(s )  + qk(s) ~ Ak(  ) s' -- s 

- - o 0  

Here r/ is related to the equilibrium distribution F by 

co2 
qk(V) = -- 1) F , t ,~  (3.2a) 

k2 ~v~ 

where cop is the plasma frequency. (Typically, but not necessarily, F is 
a Maxwellian, in which case r/ is an odd function.) Defining the plasma 
dispersion function as 

f 
~ ds 

Ak ( z  ) = 1 + tl~(s) - - ,  x + iy = z e C (3.2b) 
- o o  S - -  Z 

we find that its boundary values for y ~ 0  +-, A ~ ( s ) ,  are 

Aft (s) = 2k(S ) _+ rcitlk(S ) 

with 

f 
oO 

2k(s) = 1 + ~ ~k(s')  as' 
- c o  S '  - -  S 

In terms of these quantities, the solution to Eq. (2) is found to be (n'12) 

,~(s) fo(s) ~k(s) 
Ak(s )  -- 

A ~ ( s )  A ~ ( s )  A ~ ( s )  A f t ( s )  
F o~ , a s '  

J o~ fo(s ) s" Z s (3.3) 

where the symbol ~ denotes the Cauchy principal value. 
If we use the following, somewhat bizarre identity 

l - A ~ ( s )  -- A f t ( s )  

2~zir/k(S) 
(3.4a) 



1302 Rondoni and Zweifel  

as well as the Plemelj formulas (3) 

ds ' ds ' 
= lim , F- ~i6(s' - s) ds' (3.4b) 

s ' - s  e~o s +_ie--s- 

in Eq. (3.3), we easily obtain, after evaluating the integrals containing the 
3 functions, 

.~(s) 1 ,. f ~  F-Ak+(s') 
Ak(s) . . . .  um 

A [ ( s )  A ; ( s )  2zci ~+o _~  ks' + i e -  s 
A k (s') ] fo ( s ' )  , ,  

 -sj .-27i as 

(3.5) 

The integral in Eq. (3.5) can be carried out analytically for a suitable choice 
offo(s).  Here we choose a perturbation from the equilibrium distribution 
of the form 

~(v) 
fo(v) = l + v  2 

Then Ak can be reexpressed in terms of contour integrals: 

1 A~(s)= A ; ( s )  A ; ( s ) 2 n i  , z - s  l + z  2 2 z - s  l + z  2 

Here, the closed contour C1 runs on the positive direction of the real axis 
and thence in the positive sense around the upper half-plane, while C2 runs 
along the negative side of the real axis and closes in a negative sense about 
the lower half-plane. These two integrals can be evaluated by residues to 
yield 

r]k(s ) l (A~(i)_ A~_!u_i)~ (3.6) 
A k ( S ) - A ; ( s ) A ; ( s ) 2 i k s - i  s + i  / 

Of course, the expression for A k is manifestly real; also, Ak(i) is real for 
odd F(v). Equation (3.6) can now be inserted into Eq. (3.1) and integrated 
by residues. Let us assume that k < 0. Then, the contour in Eq. (3.1) can be 
closed in the upper-half plane. Substituting 

A~ (s) = A~ (s) - 2niqk(s) 

in Eq. (3.6), we find 

Ak(i) ~c qk(Z) e_ikz, dz (3.7) 
Ek(t) oc - - ~  I Ak(z)[Ak(Z)- -  2z~it/k(Z)] Z-- i 
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Note that the analytic function 

t/k(z) 
A x ( z ) [  A k ( z  ) - 2r~it/k(z) ] 

is bounded on C~. Then, evaluating (3.7) by residues and assuming Ak and 
A k -  2rcit/k have no zeros, we find 

Ek( t )  oC e kt 

that is, Landau damping (s-m) is explicitly exhibited. (In other words, the 
electric field introduced into the plasma by the initial perturbation decays 
exponentially.) Naturally, for k > 0, we would have expressed A ~  ( s ) A ~ ( s )  
[Eq. (3.5)] in terms of A ~ ( s ) ,  and closed the contour in the lower half- 
plane. 

The assumption that A k has no zeros is not essential. If there are 
zeros, the electric field is given by discrete terms m'12) plus the same 
contour integral (3.6) as here. [Additional residues are introduced by the 
zeros of Ak(Z)- -2~i t lk (Z) ,  but these also are damped out.] The discrete 
terms in general lead to linear instabilities of the electric field. (H'12) 

More generally, suppose 

fo(V) = t/(v) I_[M = 1( v _ bj) (3.8) 

with the be distinct. Then, calculating as above, we get 

Q M N--M m/l(m) 1 
A ~ ( V ) - A ~ ( v ) A k ( v )  I=0 v - b t  m=l 

(3.9) 

Im b?~O 

where 

and 

U N = l ( b l - - a i )  
Ak(b,) (3.10a) Pt = M b 

A~k ~ 1 

f 
oo 

A{k m) = -- tlk(S ) S '~- ~ ds, m > 0 
oo 

(3.lOb) 

Then, a simple application of the residue theorem, assuming k < 0 as 
above, proves 

M p t b U - M q k ( b t )  e-ikbtt 
&(t)  < y, (3.10c) 

t= o Ak(bt )  - 2~iqk(bl) 
Im b l > O  
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If Ak(z ) has zeros, or if Ak(z) -- 2~it/k(z) has zeros, there will be additional 
terms in the above sum coming from the zeros in the upper half-plane, as 
well as discrete modes. As in the simpler case discussed previously, the 
continuum modes exhibit Landau damping explicitly. The calculations 
which have been presented here are reminiscent of the argument used by 
Landau, ~8/ who u~ed an entirely different (Laplace transform) method. In 
particular, he stressed the necessity for f0 to be an analytic function. 

The result, Eq. (3.10c), can be used to prove Landau damping for 
the initial value problem in ~3. The constant of proportionality in this 
equation is actually ik/1~ noting Eqs. (3.2a) and (3.2b), we can see that 
Eq. (3.10c) is of the form 

Ctk 
Ek(t)= ~, k~+ D e ilklblt 

Im b l > 0  f l 

for constants Ct and Dr. Then 

E(x, t) = eik~Ek(t) dk 
- -  o e  

tends to zero as t---, oe. I am indebted to Robert Glassey for suggesting this 
computation; he has actually obtained this result another way. 

We next consider the full-range gas dynamics problem described in 
ref. 7. A solution is sought of the following singular integral equation: 

f ( v ) - a o ~ l ( v l w ) = 2 ( v l w ) B ( v ) + ~ l ( v l w ) ~  f~o~ B(s) s-vs ds (3.11a) 

where v is the dimensionless particle velocity and t/(vl w) is the Maxwellian 
shifted by the peculiar velocity w: 

t/(vl w) = ~ e ~v- w? (3.1 lb) 

The dispersion function A(zlw)  is given by 
t 2 

Z f o e  e A(v lw)=  l + - -  dt, z e C \ N  (3.11c) t - -(z-  w) 

and its boundary values on ~ + are 

A(tl w) = 2(tj w) +_ izrttl(t] w) (3.11d) 

with 

f 2( t lw)= 1 + ~  - ~l(slw) ds (3.1 le) 
oes t 
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It is further required (7) that 

f 
oO 

O< vf(v) < oo (3.1 lf) 
- - o 0  

The solution as given in ref. 7, Eqs. (3.9) and (3,10), is 

2(slw) f(s) tl(slw) ~ f~  vf(V) dv (3.12a) 
B(s)=A+(slw)A-(sfw) A+(slw)~t-(sfw) ~ v----~ 

and 

If we choose 

ao = -  vf(v) dv (3.12b) 
W - - o o  

f(v)=V~rl(VtW), nodd  (3.13) 

and apply the same technique as in the case of the Vlasov equation [except 
that here we have 

A + ( v l w ) - A - ( v ] w )  
v = (3.14) 

2~iq(vl w) 

instead of Eq. (3,4a)], Eq. (3.12a) reduces to 

r/(s I w) i~  c znA(z]W)dz (3.15) 
B ( s ) - 2 ~ i A + ( s [ w ) A - ( s t w  ~ z - s  

The contour is taken around an infinite circle, in the positive sense. The 
integrals are easily evaluated in terms of the moments of A as in the case 
of the Vlasov equation. Then 

and 

~(slw) 
B ( S ) = A + ( s l w ) A  (slw) A(t~(w)s"-l 

l ~ l  

(3.16a) 

1 
ao-~-q~+1(w) (3.16b) 

W 

with 

A(t)(w) = O, l = 0 
(3.17a) 

= -~/l(W), / > 0  
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and 

f 
co 

t/t(w ) = t/(t[ w) t l dt (3.17b) 
oo 

Again, this procedure can be easily generalized to the case in which 
f(v) is of the form offo(v) in Eq. (3.8). In this case, the solution takes the 
form 

~(sl w) 
B(s) = -- 2~iA + (s[ w) A -  (s[ w) 

fo~ yIy= l (v_  a; ) dv 
• oo HM_I(v-- bj) [ A + ( v [ w ) - A - ( v [ w ) ]  v----ss (3.18) 

The contribution from the circle at infinity is exactly what we have 
previously calculated, Eq. (3.16a), except for the change n--+ N - M .  Such 
a term vanishes if M ~> N. In addition, there is a contribution from the 
poles of f ,  which is 

M 
q(slw) ~ PtA(bt[w) (3.19) 

A+(slw) A-(s[ w) /=1 bt - s  
I m  b / ~ O  

Also, for the coefficient a0 we get 

1 M 1 
ao = -  ~ p,A(bzlw)+--tlN M+~(W) 

W l = 1  W 
Im b l~  O 

(3.20) 

3.2 .  Ha l f  R a n g e  

The equation we now deal with is found in ref. 7, Section 5: 

f(v) - aotl(vlw) = 2(v I w) B(v) + t/(v I w) ~ f ;  
S 

8(s) as (3.21) 
S - - P  

Note that, for w = 0, this reduces to the BGK equation considered in 
refs. 5 and 6. The solution is given by (v) 

,~(sl w) f(s) 
B(S)=A+(s[w)A (s]w) 

stl(slw) ~ f 5  X+(ulw)f (v)  dv 
+ X ~ ( s l w ) A - ( s l w )  v A + ( v l w ) ( s - v )  

(3.22a) 

ao = = f ( v )X+(v]w)A+(v lw)  1dr (3.22b) 
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Here, Xl(zfw ) is the solution of the homogeneous Riemann-Hilbert 
problem [cf. Eq. (2.1a)] 

X+(sl w) A+(slw) 
s E ~ (3.23) 

XF(slw) A-(srw)' 

which is analytic in C\N and bounded at infinity. 
Using methods as discussed above (cf. also ref. 2), we find 

s~l(s[w) ~c Xl(zlw) f(z) dz 
B(s) = X~-(sl w) a-(s l  w) ~ z - ~  ztl(z] w~) (3.24) 

where Coo is a positively oriented contour at infinity. In obtaining (3.24) 
from (3.22a) we have used the Plemelj formulas, (3.4b), as well as the 
identity 

x+(vlw) X + @ l w ) - X / ( v l w )  
A+(v[w) 2zffq(vlw) 

Note that there is a difference of notation between refs. 5 and 6 and ref. 7. 
In particular, the dependent variable in the dynamic equation (2.1) of ref. 7 
differs by a Maxwellian from that of refs. 5 and 6; this is merely a matter 
of notation, and we have adopted the same notation as in ref. 7. 

The "generalized slip-flow" problem assumes f(z)=z"t/(z[ w), where 
n = 1 and w = 0 correspond to the usual slip-flow problem. For the above 
f, the contour integral in Eq. (3.24) can be evaluated pretty much as in 
ref. 2, i.e., in terms of the moments of Xl(z). We find 

s~(sl w) "- 
~=oX~Osn t (3.25a) B ( s l = x ~ ( s l w ) A - ( s l w )  ,= 

and 

ao = X ]n)( w ) (3.25b) 

The dependence of B(s) and the moments Jf]l)(w) on X~(w) can be 
removed by utilizing the Wiener-Hopf factorization of A(z[w). (17) Since 
this differs for w > 0  EA(zlw) is nonsymmetric] and w = 0  I-A(zl0) is 
symmetric], we derive both cases in the Appendix. The results are as 
follows. 

( a )  w = 0 

B(s)= ~(sl0) Xl(-sl0) "y' x~,)(o) s._ ~ (3.26) 
2sA+(slO) A-(slO) t= 
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and 

X]~ = 1 

X~')(O) = 2 [~o 
S2+I~( s I  O) 
X-~(~ ( -~  I ~ as 

1 

Jo 

(3.27) 

a0 is, of course, still given by (3.25b). 
(b) w # 0  

w,(slw) r , ( -s lw)"~ ~ xi'~(w)s" ' 
B(s)= - A+(slw)A_(slw ) ,=0 

(3.28) 

Yx(slw) is an auxiliary function needed in nonsymmetric problems. (17) 
See the Appendix. The moments of Xl(zlw) are 

x~~ = 1 

x ? ( w ) =  ~ Io  S'+ l~(sl w) 
ds 

Y~(-s lw)  

(3.29) 

For w = 0, XI can be calculated from a nonsingular, nonlinear integral 
equation, which is a modified version of the Chandrasekhar H-equation for 
the transport problem considered in ref. 7. See the Appendix. For w r  
there are two coupled equations for X1 and Y~, also given in the Appendix. 

For the classical slip-flow problem (w =0,  n = 1) one gets 

e(s) = - 
~(slO)Xl(-slO) 

2sA+(slO) A-(slO) 

and 

ao = X]l/(0) 

This result also generalizes readily to the case in which 
f(v) = vq(v)R(v), where R is a rational function of the form given in the 
previous section [see Eq. (3.8)]. We find for w > 0  

B(s) wq(slw) YI( - -S Iw)[N~ = X ] I ) ( w ) s N  M - - l + l  
A+(slw) A (slw) t 

~' Xl(b,I w) ] 
bt_s Pl 

/ = 1  
bl~ C \  [0 ,  o~ ) 

(3.30) 
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while for w = 0 the term in brackets is unchanged and the factor multiply- 
ing it is replaced by 

.(s) x , ( - s )  
m 

2sA + (s) A - (s) 

For the coefficient ao, we get 

M 
Y(N--  M +  1)(W) - E 

aO = ~ 1  
l=1  

b/E C\ [O,~)  

Xl(bzl w) Pt 

A P P E N D I X  

For the half-range gas dynamics problems discussed in Section 3, 
boundary values X~ of the solution to the Riemann Hilbert problem, 
Eq. (3.23) or (2.10), enter the solution. These are difficult to evaluate 
directly because they involve numerical principal value integrations. 
However, the fact that the dispersion function A(z) has a Wiener-Hopf 
factorization can be utilized to simplify the calculation. It should be 
stressed that the Wiener-Hopf technique cannot be applied to all singular 
integral equations. If we refer to refs. 1, 2, 4, and 16, we observe that the 
combinations 2_+iTcq :=A + enter the solution. In general, an analytic 
function A(z) with arbitrary boundary values A + does not exist. That it 
does in transport theory is a serendipitous happenstance. 

In many cases, the dispersion function A(z) is an even function: 
A(z) = A ( - z ) .  This is true in the case of the gas dynamics considered here 
only if w = 0. So we consider the cases w = 0 and w # 0 separately. 

(a) w = 0. Equation (6) from ref. 17 [with X(z) = Y(z)] expresses the 
Wiener-Hopf  factorization of A(z) = A(zp0) as 

2 
A(z) = - - j  Xi(z) X l ( - z )  (A.1) 

Then, since X l ( - z )  is continuous on [0, oo), 

X-~ ( s )  _ S 2 

A+(s) 2 X l ( - s )  
(A.2) 

Xl(s), and the moments X~ k) which enter Eqs. (3.26) and (3.27), can be 
calculated in the following way. Since Xl(z)-* 1 at infinity, Cauchy's 
theorem implies [with q(s) = ~/(st 0)] 
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XI(Z)  = 1 q-2~ifo [X~(s) -XI(s )] - -  
, ,  X+(s )  ds 

= l + f o  s ~ l t s ) - ~ ) s S z  

or, using Eq. (A.2), 

1 fs s3~/(s) ds 
XI(Z  ) = 1 - ~  XI(-s )  s - z  

From this we see immediately that 

X] ~ 1 

1 r ~ sZ+tr/(s) 
x]l)=2 Jo X l ( - S )  

ds 

ds 
(A.3a) S--Z 

(A.3b) 

(A.4) 

(A.5) 

Equation (A.5) has already been given, without proof, in Section 3. Equa- 
tion (A.4) is itself a nonlinear, nonsingular integral equation for X I ( -  t) for 
tE [-0, ~) :  

(A.6) 
1 I~ s3r/(s) ds 

S l ( - t ) =  1 + ~  Xl( - s )  s+t  

It is a modified version of the so-called Chandrasekar H-equation which 
has been derived previously in a number of places. 

(b) w r 0. The analysis of ref. 17 now implies that two functions Xx 
and Y1 are required for the Wiener-Hopf factorization of A(zLw ), which is 
no longer symmetric: 

W 
A(z [w) = - -  Xl(zlw) YI( - z  [w) (A.7) 

Z 

As is shown in ref. 17, Y1 is a solution of the associated Riemann-Hilbert 
problem 

rF(vlw) A+(-v[w) 
r f ( v l w ) - A - ( - v l w ) '  ve [0, ~ )  (A.8) 

Xl(Z] w) still obeys Eq. (A.3b); if we now use Eq. (A.7) in that equation, we 
find, instead of (A.4), 

1 r ~ s2rt(slw) ds 
X l (Z lw)=l -wJo  Yl(-slw)s---z  (A.9a) 



Solutions of Singular Integral Equations 

Using Cauchy's theorem for Yl(zlw) gives 

Y~(zlw)= l + 2~if ~ [Y~(vlw)-  Y i - ( v l w ) ] - -  

Now, it is easily checked, using (A.8), that 

Y+(vlw)- Y-(vlw) Y+(vlw) 
2hi A - ( - v lw)  

while, from (A.7), 
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Thus Eq. (A.9b) becomes 

dv 
(A.9b) 

V - - Z  

vq(-vlw) (A.10a) 

Y§ v 
X~(- v l w) (A.IOb) 

A-(vlw) w 

(A.11) 
1 f?  v2q(-vlw) dv 

Yl(ZlW)= 1 +w --~(Tv(~ vTz  

Then Xl(-v  I w) and Y~(-vl w) can be obtained by numerically solving 
Eqs. (A.9a) and (A.11) for z=  -v. 

The expression for the moments also changes from (A.9a) to 

ds 

X~ ~ 1 

s' +t (slw) X] l) 
Jo Y,(-slw) 
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