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Artificial Neural Network Symbol Estimator with
Enhanced Robustness to Nonlinear Phase Noise

João M. Santos, Andrea Carena , Paulo P. Monteiro and Fernando P. Guiomar

Abstract—This letter reports a novel approach for nonlinear
phase noise mitigation, based on artificial neural networks
(ANNs) tailored to classification applications and a pre-processing
stage of feature engineering. Starting with a set of proof-of-
concept simulations, we verify that the proposed system can
achieve optimal performance for the additive white Gaussian
noise (AWGN) channel. Then, considering a dispersion-less
channel with strong nonlinear phase noise (NLPN) distortion,
we demonstrate an increase in nonlinear tolerance by up to
2 dB, comparing with standard carrier-phase estimation (CPE)
followed by minimum distance detection. Finally, simulating
the propagation of 64 Gbaud PM-16QAM over standard
single mode fiber (SSMF), we verify that the ANN-based
solution is effective on wavelength-division multiplexing (WDM)
transmission conditions, enabling to increase the maximum signal
reach by approximately 1 fiber span over the legacy CPE-enabled
NLPN compensation.

Index Terms—Artificial neural network, coherent detection,
nonlinear mitigation, optical communications.

I. INTRODUCTION

THE impact of nonlinear interference noise (NLIN) on
optical fiber links has been intensively studied during the

last decade [1], [2]. It has been generally acknowledged that, in
dispersion-unmanaged fiber links, NLIN is mostly generated in
the form a Gaussian-like noise [2], whose mitigation requires
complex channel inversion techniques [3]. Nevertheless, it
has also been found that an important nonlinear phase noise
(NLPN) component can likewise be generated, mainly when
operating at high spectral-efficiency [1]. At the same time,
it has been shown that this NLPN-induced distortion can
be partially removed by a common carrier-phase estimation
(CPE) algorithm [4]. However, the effectiveness of CPE-based
NLPN mitigation is known to strongly depend on the extent
of its temporal correlation, as well as on the signal-to-noise
ratio (SNR) operating conditions [5].

Like many other fields, the optical communications
community was not indifferent to the rise of machine learning
(ML) and started to search for ways of exploiting its
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distinctive features [6]. One key advantage of ML techniques
is their ability to extract knowledge from the data itself
without requiring the derivation of analytical models. This
characteristic makes ML algorithms excellent at identifying
and compensating for nonlinear relationships.

Motivated by the challenges posed by NLIN, nonlinear
equalization quickly became one of the most common
applications of artificial neural networks (ANNs) in optical
systems. In [7] it was shown that simple regenerative ANNs
with just two inputs could increase both the laser linewidth
tolerance and the resilience to IQ imbalances when compared
to k-Means. In order to enable a joint treatment of the in-phase
and quadrature signal components, complex-valued ANNs
have also been addressed in the literature [8], [9]. In [10],
an ANN-based compensation method has enabled a spectral
efficiency-distance product record in a field-trial experiment.

In this letter, we devise a strategy for extracting more
information from the complex signal representation, and then
feed it to a modest-size ANN that replaces the symbol
estimation subsystem, adjusting the decision boundaries for
non-white noise introduced by the channel. This ANN-based
nonlinear estimator proved to be effective in the presence
of NLPN for both QPSK and 16QAM modulation schemes,
surpassing the performance of legacy CPE algorithms both in
dispersion-less and dispersion-unmanaged optical systems.

II. ANN-BASED NONLINEAR SYMBOL ESTIMATION

ANNs are a very powerful machine learning algorithm,
being able to adapt to a wide range of scenarios that can
usually be divided into regression or classification problems.
While the concept of artificial neural networks covers a large
set of variations such as convolution or recurrent neural
networks, in this work we will restrict our approach to the
use of feedforward neural networks, often known as multilayer
perceptrons [11], as illustrated in Fig. 1. Topologically, these
networks consist of a stack of layers composed by several
parallel computing units, the neurons, only allowing the data
to flow from the input to the output layer. These structural
parameters are usually called hyper-parameters. ANNs owe
their versatility to the hidden computing units, which when
chained together can abstract the input data to a high-
dimensional space thus enabling a theoretical approximation
of any function. In its purest form, the learning process is
an optimization problem where the algorithm learns to map a
function ŷ = f(x; Θ) by inferring the data itself and adjusting
its internal parameters, θ[l]

ij , based on the inference outcome.
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Fig. 1: Topology illustration of a standard feedforward ANN.

A. System Architecture

Our proposal consists of a classification-tailored ANN that
will replace the typical minimum-distance symbol estimation
block, providing optimized nonlinear decision boundaries. To
achieve this purpose, we idealized a three-layered ANN where
the activation function of the hidden layer is an hyperbolic-
tangent and the output is governed by the softmax function.
The choice of input signals is crucial, as it defines how the
ANN will only interact with the system. We mapped the
input symbol, xk, onto a set of mathematical characteristics,
also denoted as features, that take advantage of the complex
representation of the signal and project the estimation process
to an hyper-dimensional space, enabling a decision to be made
with more criteria than just the distance to the reference points.
After some preliminary tests, a total of 11 +M features have
been chosen, according to the following criteria:

• I = Re{xk}; Q = Im{xk};
• ||v||,v = (I,Q), absolute value of the QAM symbol;
• ∠v, phase of the QAM symbol;
• I ×Q, product of real and imaginary components;
• ||si − xk||, distance to each constellation symbol;
• I2; Q2, square value of each component;
• sin I; sinQ;
• cos I; cosQ;

B. Development Pipeline

Having specified the number of layers and the respective
activation functions, we shall now define the number of nodes
in each layer. For the output layer, the use of the softmax
function requires one node per object, thereby resulting in
a number of outputs equals to the number of symbols in
the QAM constellation. However, there is no clear rule for
what should be the node count in the hidden layer. While,
on the one hand, a larger hidden layer might potentially
lead to an improved model extraction capability, on the other
hand, its increased complexity might also hinder the learning
process. To tackle this intricate challenge, we implement a
grid-search strategy, which consists of training a network for
each possible set of hyper-parameters, within a pre-determined
interval, e.g. up to 212 units, and select the best outcomes. For
the supervised learning of the ANN, we use the resilient back-
propagation algorithm, paired with early-stop regularization to
prevent model overfitting, and the cross-entropy loss function
to optimize the classification model. The dataset has been
divided into training, validating and testing subsets with ratios
of 70%, 15% and 15%, respectively. Note that the testing

Fig. 2: Simulation setup utilized for coherent optical transmission.

set allows to verify if the trained network is actually able to
generalize from the training data.

III. NUMERICAL PERFORMANCE ASSESSMENT

Since the focus of this work is on the compensation
of non-Gaussian nonlinear fiber impairments, we devised a
simulation setup that allows assessing different scenarios and
development conditions. The setup, depicted in Fig. 2, consists
of a 64 GBaud M -QAM transmitter that employs root-raised
cosine pulse shaping. In the preliminary validation stages, we
start by considering simplified channel models, where single-
polarization transmission is employed. After that, we consider
a more realistic dual-polarization propagation over an actual
optical fiber channel. At the receiver, a minimal stack of
digital signal processing (DSP) subsystems is applied, as all
hardware is deemed to be ideal. The benchmark for NLPN
compensation was set by the well-known Viterbi & Viterbi
CPE (VV-CPE) with an optimized memory length [4]. Finally,
the system performance is evaluated through bit error ratio
(BER) counting.

A. Preliminary Validation over an AWGN Channel

We start our numerical analysis by performing a series of
tests over an additive white Gaussian noise (AWGN) channel.
Apart from the methodology validation, these tests are also
helpful to establish a performance baseline for the ANN
estimator. Under this assumption, the channel model only
accounts for the inline amplification noise,

Ã(t, z + Lspan) = Ã(t, z) + nASE(t), (1)

where t and z represent the temporal and spatial coordinates,
respectively, and Ã(t, z) is the complex envelope of the
optical signal. Lspan = 80 km is the fiber span length and
nASE(t) = h(G − 1)Ff0B is the amplified spontaneous
emission (ASE) noise of the Erbium-dopped fiber amplifier
(EDFA) with a noise figure of F = 5 dB and a gain, G,
that exactly inverts the span loss. A typical fiber attenuation
coefficient, α = 0.2 dB/km, is assumed, yielding G = 16 dB.
Finally, h is the Planck’s constant, f0 = 193.4 THz is the
central frequency and B = 64 GHz is the noise reference
bandwidth.

Using the simulation setup of Fig. 2, both QPSK and 16-
QAM signals were generated, with a total of 91750 symbols.
The BER evaluated on the test subset for a purely AWGN
channel is depicted in Fig. 3. The ANN-based solution was
able to acquire the Gaussian characteristic of the signal
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Fig. 3: BER performance of the ANN symbol estimator in a purely AWGN
scenario.
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Fig. 4: Grid-search optimization of the number of neurons on the hidden layer
of the ANN estimator when applied to an NLPN-only channel and considering
QPSK modulation.

as it converged to the theoretical performance curve. The
overlap with the minimum-distance symbol detection curve
in an AWGN channel validates the ANN-based solution as
a reliable symbol estimator and sets the baseline for more
advanced scenarios. In addition, this initial AWGN validation
also ensures that the ANN-based estimator can safely be
employed in optical systems that are temporarily operating at
low launched powers when the SNR budget is high enough
(e.g. for higher energy efficiency), without incurring into
performance penalties.

B. Validation over a Static Nonlinear Fiber Channel

After successfully validating over an AWGN channel, we
now proceed to assess the potential of the ANN estimator
over a non-linearly impaired signal. We start by considering a
simplified multi-span dispersion-less fiber channel,

Ã(t, z+Lspan) = Ã(t, z) exp (−jΦNL(t, z)) +nASE(t), (2)

where ΦNL(t, z) = γP (t, z)Leff is the nonlinear phase-shift,
with γ = 1.3 W-1km-1 as the nonlinear coefficient, P (t, z) =
|A(t, z)|2 the signal power and Leff = (1−exp(−αLspan))/α
the effective span length.

In order to optimize the ANN architecture, we have
performed a grid-search to obtain the optimal number of
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Fig. 5: BER versus launched optical power after propagation over 15 spans
of a dispersion-less fiber.

hidden units. An example of the application of this procedure
is depicted in Fig. 4, for the QPSK transmitted signal. From
the observation of this figure, we can clearly identify a 2D
valley of optimized BERs, both in terms of launched power
and number of hidden units. It can be seen that the best
performance around the optimal launched power tends to
be achieved with 512–1024 hidden units. Nevertheless, it
is also clear that the probability of divergence during the
ANN training also increases substantially when using a larger
number of hidden units, which is a natural consequence of
the increased ANN complexity. This behavior clearly outlines
the engineering tradeoff between complexity and tractability,
which should be carefully taken into account during the design
of the ANN architecture. After determining the optimum
number of hidden units for each launch power, the obtained
BER results are presented in Fig. 5. Even though the ANN-
based solution cannot fully compensate the nonlinear rotation,
it was able to outperform the benchmark VV-CPE with an
optimized number of taps, achieving a BER reduction up to
68% for the QPSK signal and 22% for the 16QAM signal,
together with an increase of 2 dB on the nonlinear tolerance.

The ANN-optimized symbol decision boundaries for the
16QAM signal at a launch power of -3 dBm are depicted in
Fig. 6. It can be observed that the ANN is effectively able to
follow the rotation of the signal, which verifies the concept
of this system as a nonlinear symbol estimator. Moreover, we
also see that the training algorithm is capable of identifying
the specific broadening of each cluster instead of capturing the
average rotation, such as done by m-th power CPE algorithms.

C. Performance Assessment over WDM Transmission

Building on the promising results delivered by the ANN
estimator over a static NLPN-only nonlinear channel, in
this section we evolve to a more realistic wavelength-
division multiplexing (WDM) transmission system in which
the NLPN component is known to be dominated by the
nonlinear interference from the co-propagating channels. We
generate 11 independent channels with identical bandwidth
and modulation (64 Gbaud 16QAM) and 75 GHz channel
spacing. Dual-polarization transmission is now considered and
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Fig. 6: Decision zones used by the ANN-based estimator with 512 hidden
units for a 16QAM signal with −3 dBm launched power after propagation
over 15 dispersion-less spans.

the fiber propagation is simulated with the split-step Fourier
implementation of the Manakov equation. Standard single
mode fiber (SSMF) parameters are assumed, i.e. an attenuation
coefficient α = 0.2 dB/km, a group velocity dispersion
coefficient β2 = −20.4 ps2/km and γ = 1.3 W-1km-1. Due to
the increased computational complexity, the simulation length
has been reduced to 60314 symbols per channel. The central
channel is the designated channel under test, over which the
ANN estimator is applied. The same grid-search procedure
was performed, and the corresponding optimized number of
neurons on the hidden layer has been chosen for each input
power, denoting a tendency for requiring a higher number of
neurons with the increase of nonlinear interference. The ANN
symbol estimator was then trained, validated and tested over
a wide range of launch optical powers and number of fiber
spans. From the BER results obtained for each launch power
and propagation distance, and considering a threshold pre-FEC
BER of 2.4 × 10−2, we evaluate the maximum reach of the
transmitted signal as depicted in Fig. 7. As a performance
benchmark for the ANN estimator, Fig. 7 also includes the
maximum reach results obtained with and without VV-CPE.
It can be observed that, while the optimized VV-CPE allows
to partially compensate the NLIN distortion and thus increase
the transmission reach by ∼30 km, the ANN-based symbol
estimator is able to roughly double this maximum reach gain,
achieving an extended reach of approximately 75 km.

IV. CONCLUSION

We have developed and numerically assessed an ANN
classifier that is able to optimize the decision boundaries
of an M -QAM symbol demapper to minimize the number
of erroneous decisions in scenarios with additive nonlinear
noise. The ANN-based demapper was shown to be particularly
effective in scenarios with strong NLPN distortion, enabling
a 2 dB increase in nonlinear tolerance, when compared
to the standalone use of CPE-enabled NLPN mitigation.
Relevant gains in terms of maximum signal reach were also
identified for WDM transmission over dispersion-unmanaged
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Fig. 7: Maximum system reach of a 64 Gbaud 16-QAM signal after
transmission over an 11-channel WDM link.

fiber links, thereby demonstrating the potential applicability of
the ANN-based symbol estimator in practical coherent optical
communication systems.
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