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Nonlinear energy-maximising optimal control of
wave energy systems: A moment-based approach

Nicolás Faedo, Giordano Scarciotti, Member, IEEE, Alessandro Astolfi, Fellow, IEEE and John V. Ringwood,
Senior Member, IEEE.

Abstract—Linear dynamics are virtually always assumed when
designing optimal controllers for wave energy converters (WECs),
motivated by both their simplicity and computational conve-
nience. Nevertheless, unlike traditional tracking control appli-
cations, the assumptions under which the linearisation of WEC
models is performed are challenged by the energy-maximising
controller itself, which intrinsically enhances device motion to
maximise power extraction from incoming ocean waves. In this
paper, we present a moment-based energy-maximising control
strategy for WECs subject to nonlinear dynamics. We develop a
framework under which the objective function (and system vari-
ables) can be mapped to a finite-dimensional tractable nonlinear
program, which can be efficiently solved using state-of-the-art
nonlinear programming solvers. Moreover, we show that the ob-
jective function belongs to a class of generalised convex functions
when mapped to the moment-domain, guaranteeing the existence
of a global energy-maximising solution, and giving explicit condi-
tions for when a local solution is, effectively, a global maximiser.
The performance of the strategy is demonstrated through a case
study, where we consider (state and input-constrained) energy-
maximisation for a state-of-the-art CorPower-like WEC, subject
to different hydrodynamic nonlinearities.

Index Terms—Wave energy, energy-maximisation, moment,
moment-matching, nonlinear optimal control.

I. INTRODUCTION.

ENERGY-MAXIMISING control of wave energy convert-
ers (WECs) has been shown to be one of the fundamental

contributions towards efficient energy extraction from ocean
waves [1], [2]. In particular, optimal control strategies sig-
nificantly improve maximum time-averaged power extraction
from waves, potentially reducing the levelised cost of energy,
and hence contributing to the roadmap towards successful
commercialisation of WECs.

Any energy-maximising control strategy for WECs must
take into account the inherent physical limitations of both the
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programme (IEC\R1\180018). This work has been partially supported by the
European Union’s Horizon 2020 Research and Innovation Programme under
grant agreement No. 739551 (KIOS CoE).

Nicolás Faedo is with the Centre for Ocean Energy Research, Maynooth
University, Co. Kildare, Ireland (corresponding author, e-mail: nico-
las.faedo@mu.ie).

John. V. Ringwood is with the Centre for Ocean Energy Research,
Maynooth University, Co. Kildare, Ireland (e-mail: john.ringwood@mu.ie).

Giordano Scarciotti is with the Department of Electrical and Electronic
Engineering, Imperial College London, London SW7 2AZ, U.K. (e-mail:
g.scarciotti@ic.ac.uk).

Alessandro Astolfi is with the Department of Electrical and Electronic En-
gineering, Imperial College London, London, SW7 2AZ, U.K., and also with
the Department of Civil Engineering and Computer Science Engineering, Uni-
versity of Rome Tor Vergata, 00133 Rome, Italy (e-mail: a.astolfi@ic.ac.uk).

device itself and the power take-off (PTO) actuator dynamics,
such that energy extraction is maximised, while also mimising
the risk of component damage. The above control specifica-
tions form the basis for a range of studies, which are mostly
formulated in terms of an optimal control problem (OCP)
subject to both state and input constraints. A comprehensive
review of these strategies can be found in [2], [3].

Linear dynamics are virtually always considered when
designing optimal controllers for WECs (see [3, Table 3]),
motivated by both their simplicity (in terms of formulation
and solution of the corresponding OCP), and their associated
computational convenience. In other words, these model-based
control strategies must be computed in real-time1, therefore
limiting the computational complexity of the hydrodynamic
models employed. Moreover, there is also a limit to the
complexity of mathematical models for which an optimal
control solution can be effectively found, either algebraically
or numerically. Another strongly contributing factor to the use
of linear dynamics is that linear hydrodynamic theory is a
well-established field where considerable effort and refinement
has been expended in the calculation of linear hydrodynamic
parameters. There is therefore little appetite to extend these
models to include nonlinear effects.

Nevertheless, despite the list of motives described above,
the linearity assumption has been recently an object of debate
(see, for instance, [6], [7]): WECs are, by their nature, prone
to show significant and diverse nonlinear effects, since their
principal aim, pursued by the optimal control strategy, is to en-
hance the amplitude of motion to maximise power extraction.
In other words, and in contrast to traditional set-point tracking
control systems, where the control system ensures that the
system operation is around the setpoint and actively attempts
to reduce the variance around this point, the assumptions
under which the linearisation of WEC models is performed
are challenged by the controller itself, particularly in relation
to small movements around the equilibrium position. This may,
in certain conditions, return poor results, both in terms of ac-
curacy of motion prediction that in terms of power production
assessment [6], which are the key variables involved in any
energy-maximising OCP.

This provides significant motivation for optimal control
strategies that can effectively handle nonlinear effects, both
in terms of the well-posedness of the OCP (i.e. existence of
global energy-maximising solutions), and real-time capabili-

1Though beyond the scope of this study, we note that control techniques
which optimise control parameters/laws offline have been also proposed within
the WEC literature. The reader is referred to, for instance, [4], [5].
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ties. Some attempts to address this problem have already been
offered within the WEC control literature. We provide a brief
review in the following paragraphs.

The papers [8] and [9] propose one of the first nonlinear
optimal control formulations in the WEC literature: nonlinear
energy-maximising model predictive control (MPC) applied
to (different) heaving point absorbers. The nonlinear effects
considered in [8] arise from the forces exerted by the mooring
system utilised to attach the device to the seafloor. Nev-
ertheless, nonlinear hydrodynamic effects, such as viscous
forces (which are significant in this type of device [7])
are disregarded, whilst (non-parametric) radiation forces are
completely neglected. Concerning computational efficiency,
the authors specifically claim that the study in [8] does not
focus on real-time applicability, but rather on highlighting the
advantages of using nonlinear MPC compared to its linear
counterpart. A follow up of this study can be found in [10],
where the discretisation for the MPC is modified (from a
zero-order- to a second-order- hold), and a state estimator
is incorporated. On a different note, while the authors of
[9] assume linear dynamics for the WEC, they compute the
control force using a nonlinear MPC formulation given by a
time-varying system (written in explicit form), which naturally
induces a time-varying objective function.

The papers [11], [12] and [13] apply pseudospectral optimal
control methods (see, for instance, [14] for a review) to
different WEC technologies, subject to a number of nonlin-
earities: viscous forces ( [11] and [12]), nonlinear hydrostatic
restoring force ( [13] and [12]), and a non-ideal PTO system
( [11]). Although these pseudospectral formulations are indeed
appealing from a computational perspective, the results in [11],
[12] and [13] do not guarantee existence of solutions to the
proposed OCPs. Moreover, even if a solution is found, it is not
clear under which conditions this energy-maximising control
law is effectively a globally optimal solution.

Recently, a novel energy-maximising optimal control frame-
work for WECs was presented in [15], [16]. This approach is
based on the concept of moment (discussed in Section II) and
maps the original energy-maximising optimal control problem
into a concave quadratic program (QP), systematically guar-
anteeing a unique solution for the original energy-maximising
control objective, subject to both state and input constraints.
Nevertheless, the mathematical framework in [15], [16] con-
siders WECs subject to linear dynamics, hence hindering the
application of this strategy to more realistic scenarios in which
nonlinear effects become significant, as previously discussed
in this section.

Exploiting the concept of nonlinear moment introduced
in [17], this paper presents an energy-maximising control
strategy for WECs subject to nonlinear dynamics. In particular,
we propose an approximation method which allows us to
efficiently parameterise the energy-maximising OCP subject to
both state and input constraints. To this end the paper provides
the following contributions:

• We propose a method to map the objective function
(and system variables) to a finite-dimensional tractable
nonlinear program (NP), which can be efficiently solved

using state-of-the-art nonlinear programming solvers (see,
for instance, [18]).

• By showing that the objective function arising from the
proposed moment-based strategy belongs to a family of
approximately convex/concave mappings (particularly to
the so-called outer Γ-convex/concave [19] functions), we
guarantee the existence of a global energy-maximising
solution, under mild assumptions.

• In analogy to the case of convex/concave functions, where
each local solution is also global, we give explicit condi-
tions to determine whether a local energy-maximising so-
lution is, effectively, a global maximiser for the proposed
moment-based OCP, having strong practical implications
when numerically solving the associated NP.

• Finally, we present an extensive case study based on
the energy-maximisation problem for a state-of-the-art
CorPower-like WEC subject to hydrodynamic nonlinear-
ities.

The remainder of this paper is organised as follows. Sec-
tion II recalls key theoretical concepts behind the nonlinear
moment-based framework. Section III describes and formalises
the energy-maximising problem for WECs subject to nonlinear
dynamics, while Section IV details the main contributions of
this paper, i.e. the proposed nonlinear moment-based optimal
control strategy. Finally, Section V discusses the application
of this approach to a state-of-the-art CorPower-like heaving
WEC, while Section VI encompasses the main conclusions of
this study.

A. Notation and Preliminaries.

Standard notation is considered throughout this study. R+

(R−) denotes the set of non-negative (non-positive) real num-
bers. C0 denotes the set of pure-imaginary complex numbers.
The symbol 0 stands for any zero element, dimensioned
according to the context. The notation Nq indicates the set of
all positive natural numbers up to q, i.e. Nq = {1, 2, . . . , q}.
The symbol In denotes the identity matrix of order n, while
the notation 1n×m is used to denote a n × m Hadamard
identity matrix (i.e. a n ×m matrix with all its entries equal
to 1). The spectrum of a matrix A ∈ Rn×n, i.e. the set of its
eigenvalues, is denoted by λ(A). The superscript ᵀ denotes
the transposition operator. The symbol

⊕
denotes the direct

sum of n matrices, i.e.
⊕n

i=1Ai = diag(A1, A2, . . . , An).
The notation <{z} and ={z}, with z ∈ C, stands for
the real-part and the imaginary-part operators, respectively.
The symmetric-part of a matrix A ∈ Rn×n is defined (and
denoted) as H {A} = (A + Aᵀ)/2. The Frobenius norm
of a matrix X ∈ Rn×m is denoted as ‖X‖F , while the
Euclidean norm of a row vector V ∈ Rn is denoted as ‖V ‖2.
The generalised Dirac-δ function, shifted by tj ∈ R+ , is
denoted as δtj = δ(t − tj). The Kronecker product between
two matrices M1 ∈ Rn×m and M2 ∈ Rp×q is denoted by
M1⊗M2 ∈ Rnp×mq . The convolution between two functions
f and g over the set Ω ⊂ R, i.e.

∫
Ω
f(τ)g(t−τ)dτ is denoted

as f ∗ g. Let f and g be two functions belonging to the
Hilbert space L2(Ξ) = {f : Ξ → R |

∫
Ξ
|f(τ)|2dτ < +∞},

where Ξ ⊂ R is closed. Then the inner-product between f
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and g is given by 〈f, g〉 =
∫

Ξ
f(τ)g(τ)dτ . The span of the

set X = {xi}ki=1 ⊂ Z , where Z is a vector space over the
field R, is denoted as span{X }. The closed ball contained
in Rn, with center z ∈ Rn and radius r ∈ R+, is defined
as B(z, r) = {y ∈ Rn | ‖y − z‖2 ≤ r}. Finally, the symbol
εn ∈ Rn denotes a vector with odd entries equal to 1 and even
entries equal to 0.

In the remainder of this section, the formal definitions of
two important operators are presented, since their definition in
the literature can often be ambiguous.

Definition 1 (Kronecker sum). [20] The Kronecker sum of
two matrices P1 and P2, with P1 ∈ Rn×n and P2 ∈ Rk×k, is
defined (and denoted) as

P1⊕̂P2 , P1 ⊗ Ik + In ⊗ P2. (1)

Definition 2 (Vec operator). [20] Given a matrix P =
[p1, p2, . . . , pm] ∈ Rn×m, where pj ∈ Rn, j ∈ Nm, the vector
valued operator vec is defined as

vec{P} ,


p1

p2

...
pm

 ∈ Rnm. (2)

Finally, we recall a useful property of the vec operator.

Property 1. [20] Let P3 ∈ Rn×m and P4 ∈ Rm×q . Then

vec{P3P4} = (Iq ⊗ P3)vec{P4} = (P ᵀ
4 ⊗ In)vec{P3}. (3)

II. MOMENT-BASED THEORY

To keep this paper reasonably self-contained, this section
briefly recalls some of the key concepts behind the moment-
based framework, as developed in [17], [21]. In particular
(after recalling a set of standing assumptions) this section is
mainly concerned with the definition of moment for nonlinear
systems.

We consider a nonlinear, single-input single-output,
continuous-time, system described, for t ∈ R+, by the set
of equations2

ẋ = f(x, u),

y = h(x),
(4)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, and f : Rn×R → Rn
and h : Rn → R sufficiently smooth mappings defined in the
neighbourhood of the origin of Rn. Assume that the origin is
an equilibrium point of (4), i.e. f(0, 0) = 0 and h(0) = 0.

Consider now a signal generator (often also referred to as
exogenous system [22]) described by the equations

ξ̇ = Sξ,

u = Lξ,
(5)

2From now on, we drop the dependence on t when clear from the context.

with ξ(t) ∈ Rν , S ∈ Rν×ν and Lᵀ ∈ Rν , and the so-called
composite (or interconnected) system

ξ̇ = Sξ,

ẋ = f(x, Lξ),

y = h(x).

(6)

Following [17], [21], we now introduce a set of standing
assumptions to formalise the definition of moment. Recall that
a system is minimal if it is observable, accessible and descibed
by analytic mappings (see [21, Chapter 2]).

Assumption 1. There exists a mapping π, locally3 defined in
a neighborhood of ξ = 0 and with π(0) = 0, which solves the
partial differential equation

∂π(ξ)

∂ξ
Sξ = f(π(ξ), Lξ). (7)

Assumption 2. System (4) is minimal and the pair (S,L) is
observable.

Definition 3. [17], [21] Consider system (4) and the signal
generator (5). Suppose Assumptions 1 and 2 hold. The map-
ping h ◦ π is the moment of system (4) at (S,L).

Finally, we recall a result which connects the definition of
moment (as in Definition 3) with the steady-state response of
the output of the interconnected system (6) (as in Figure 1),
introducing an additional assumption concerning the dynamics
of (5).

Assumption 3. The signal generator (5) is such that all
eigenvalues of S are simple and with zero real part. Moreover,
the pair (S, ξ(0)) is excitable4.

Remark 1. For linear systems excitability is equivalent to
reachability, i.e. with ξ(0) playing the role of the input matrix,
see [23].

Theorem 1. [17], [21]. Consider system (4) and the signal
generator (5). Suppose Assumptions 2 and 3 hold and that the
zero equilibrium of the system (4) is locally exponentially sta-
ble. Then Assumption 1 holds, and the moment of system (4),
computed along a trajectory ξ(t), coincides with the steady-
state response of the output of the interconnected system (6),
i.e. yss(t) = h(π(ξ(t))).

Fig. 1. Block diagram of the composite system (6), showing the relationship
between the steady-state output and the moment.

3Statements are local, though global versions can be directly derived.
4We refer the reader to [23] for the definition of excitability.
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III. PROBLEM FORMULATION: OPTIMAL CONTROL FOR
WECS.

WEC optimal control design entails an energy-maximisation
criterion, where the objective is to maximise the absorbed en-
ergy from ocean waves over a finite time interval Ξ = [0, T ] ⊂
R+. To be precise, the useful energy absorbed from incoming
waves is converted in the PTO system, and can be directly
computed as the time integral of converted (instantaneous)
power, i.e. this energy-maximising control procedure can be
cast as an optimal control problem, with objective function J
defined as

J (u) =
1

T

∫
Ξ

u(τ)ẋ(τ)dτ, (8)

where ẋ : Ξ → R and u : Ξ → R denote the velocity of the
device and control (PTO) force, respectively.

We now briefly recall the basics behind control-oriented
WEC modelling in Section III-A, to later pose the optimal
control problem for wave energy systems subject to the motion
(state and input) constraints in Section III-B.

A. WEC dynamics.
We begin this section by recalling (see e.g. [24]) well-known

facts behind control-oriented WEC modelling. For simplicity
we assume a 1-degree-of-freedom (DoF) device and we recall
that a similar analysis can be carried out for multi-DoF devices
following the moment-based multiple-input, multiple-output
approach presented in [16].
Remark 2. In what follows, to simplify notation, the termi-
nology associated to a 1-DoF translational device is employed
with some minor abuse. This is without loss of generality, and
the same analysis can be carried out for a rotational 1-DoF
device.

The equation of motion for such a WEC can be expressed
in the time-domain, in terms of Newton’s second law, as

mẍ = Fr + F lh + Fe + Fnl − u, (9)

where m is the mass of the buoy, x the device excursion
(displacement), Fe the wave excitation force (external input),
F lh the linear component of the hydrostatic restoring force,
Fr the radiation force, and u the exerted control (PTO) force.
The mapping Fnl represent potential sources of nonlinearity
depending on x and ẋ, such as viscous drag force and
nonlinear hydrostatic effects (see Section V-A). Note that, in
line with the assumptions in Section II, it is assumed that the
mapping Fnl is sufficiently smooth5. The linear component
of the hydrostatic force can be written as F lh(t) = −shx(t),
where sh = ρgrD denotes the hydrostatic stiffness, with ρ the
water density, D the characteristic area of the device, and gr
the gravitational constant. The radiation force Fr is modelled
based on linear potential theory and, using the well-known
Cummins’ equation [26], can be written as

Fr(t) = −µ∞ẍ(t)−
∫
R+

k(τ)ẋ(t− τ)dτ, (10)

5If the mapping Fnl is non-smooth, smooth approximations can be used to
apply the framework proposed in our study. Note that smooth approximations
have been previously exploited, within the WEC control literature, for example
in [25].

where µ∞ = limω→+∞ Ã(ω)> 0 is the added-mass at
infinite frequency, Ã(ω) is the radiation added mass6 and
k : R+ → R+ is the (causal) radiation impulse response
function containing the memory effect of the fluid response.
Finally, the equation of motion of the WEC is given by

Mẍ+ k∗ ẋ+ shx−Fnl = Fe − u, (11)

withM = m+µ∞. We note that equation (11) is of a Volterra
integro-differential form, specifically of the convolution class7.

B. Physical limitations: state and input constraints.

As it is well-known in the wave energy literature, the
unconstrained energy-maximising optimal control law, i.e. the
maximiser of J in (8), often requires unrealistic device motion
and excessively high PTO (control) forces, which consign this
optimal unconstrained solution to the academic realm, far from
being practically viable. Aiming to derive an implementable
solution, we consider constraints on both the displacement and
the velocity of the WEC, x and ẋ, and on the exerted control
force u. This guarantees that the physical limits associated
with device and actuator dynamics are consistently respected,
while effectively maximising, at the same time, absorbed
energy from incoming waves. This set of constraints can be
compactly written as

|x(t)| ≤ Xmax,

|ẋ(t)| ≤ Vmax,

|u(t)| ≤ Umax,

(12)

with t ∈ R+, and where {Xmax, Vmax, Umax} ⊂ R+. Having
knowledge of the control objective function defined in (8) (i.e.
the mapping J ), the nonlinear dynamics of the WEC in (11),
and the set of state and input constraints defined in (12), the
constrained energy-maximising OCP can be posed as follows.

Problem 1 (Energy-maximising OCP). Find an optimal con-
trol input uopt : Ξ→ R such that

uopt = arg max
u
J ,

subject to:{
nonlinear WEC dynamics (11),
state and input constraints (12).

(13)

Remark 3. We assume that the set of state and input constraints
in (13) are feasible, i.e. (12) is given in terms of a feasible
set (region). We refer the reader to, for instance, [28], for an
explicit analysis and discussion of the feasibility problem for
WEC energy-maximising control systems, as a function of the
wave excitation input.

IV. NONLINEAR MOMENT-BASED WEC CONTROL.

In this section we present the main contributions of the
paper. First, we develop a method to find approximate solu-
tions to the problem of determining the moment of nonlinear

6See [24] for the definition of Ã(ω).
7The interested reader is referred to [27] for further detail on this class of

integro-differential operators.
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systems describing WECs. Second, we formulate and solve the
unconstrained optimal control problem in the moment-domain.
Third, we extend the solution to the state and input constrained
problem.

A. Approximation of moments for nonlinear systems

We begin by rewriting the equation of motion (11) in state
space as

ϕ̇ = f(ϕ,U ) = Aϕ−B(k∗Cϕ) +BU + fnl(ϕ),

y = h(ϕ) = Cϕ,
(14)

where ϕ(t) = [ϕ1(t), ϕ2(t)]ᵀ = [x(t), ẋ(t)]ᵀ ∈ R2, is the
state-vector of the continuous-time model and y = ẋ is the
output of the system (assuming the velocity as the measurable
output of the device). The function U : R+ → R, defined as
the input of system (14), is given by the expression8

U = Fe − u. (15)

Under this representation, the triple of matrices (A,B,C) and
the nonlinear mapping fnl : R2 → R2 forming the equation
of motion (14) are given by

A =

[
0 1

−shM−1 0

]
, B =

[
0

M−1

]
, Cᵀ =

[
0
1

]
,

fnl(ϕ) =

[
0

Fnl(ϕ)

]
.

(16)

We recall, from [30], that the standard assumption for the
mathematical representation of wave excitation forces in ocean
engineering applications is that Fe can be written as a finite
sum of harmonics of a so-called fundamental frequency ω0.
Following the moment-based theory presented in Section II,
the wave excitation force input can be written as a signal
generator described, for t ∈ R+, by the set of equations

ξ̇ = Sξ,

Fe = Leξ,
(17)

where ξ(t) ∈ Rν , Lᵀ
e ∈ Rν and the dynamic matrix S ∈ Rν×ν

can be written in block-diagonal form as

S =

f̃⊕
p=1

[
0 pω0

−pω0 0

]
, (18)

with ν = 2f̃ , f̃ > 0 integer.
Remark 4. To simplify the notation used throughout the
upcoming results, and to explicitly focus this manuscript on
the formulation of a nonlinear moment-based controller, it is
assumed that the moment-domain equivalent Le, characteris-
ing the wave excitation Fe as in equation (17), is known, i.e.
full (instantaneous and future) knowledge of Fe is available
over the time interval Ξ ⊂ R+. This is without loss of
generality, since estimation and forecasting algorithms for Fe
(which are often required due to the inherent difficulty behind
measuring wave excitation forces in a moving body [31]) can

8Similar arguments can be adopted for multi-DoF systems. The reader is
referred to [16], [29] for further detail.

be incorporated straightforwardly, by following the adaptation
of the moment-based representation of Fe for receding-horizon
control presented in [32, Section IV-A], without further mod-
ifications.

Even though the wave excitation force is composed of f̃
harmonics multiple of the (angular) fundamental frequency
ω0, it is convenient (for the subsequent theoretical results) to
assume that the control input u can be composed of a higher
number f̃ + d of harmonics, with d > 0 integer. For this
purpose, we define the auxiliary ‘extended’ signal generator
as follows. Let S̄ ∈ R(ν+ι)×(ν+ι) be such that

S̄ = S ⊕

(
d⊕
p=1

[
0 (p+ f̃)ω0

−(p+ f̃)ω0 0

])
, (19)

with ι = 2d. We can now express the wave excitation force
and the control input u as a function of this extended signal
generator as

˙̄ξ = S̄ξ̄,

Fe = [Le 0]ξ̄ = L̄eξ̄,

u = L̄uξ̄,

(20)

where ξ̄(t) ∈ Rν+ι, and ξ̄(0) = [ξ(0)ᵀ, ξ?(0)ᵀ]ᵀ, ξ?(0) ∈ Rι.
Note that the input defined in (15) can be expressed accord-
ingly as U = (L̄e − L̄u)ξ̄.
Remark 5. The signal generator (20) is an extension of the
one defined in (17) in the sense that it inherently incorporates
the matrix S, while adding d harmonics multiple of the
fundamental frequency ω0. With the selected initial condition
ξ̄(0), the wave excitation force Fe can be written as a function
of ξ̄ by simply using an appropriate inclusion mapping, i.e.
completing Le with zeros accordingly.

In preparation for the upcoming results we introduce, with-
out loss of generality, three further assumptions. The first one
is on the signal generator defined in equation (20).

Assumption 4. The triple of matrices (L̄e − L̄u, S̄, ξ̄(0)) is
minimal, i.e. observable and excitable.

Note that the previous assumption is without loss of gen-
erality as the signal generator is user-defined and so it can
always be constructed such that the assumption holds.
Remark 6. Let ξ̄i be the i-th entry of ξ̄, with i ∈ Nν+ι, and
define the set X̄ = {ξ̄i}ν+ι

i=1 . Note that, if Assumption 4 holds,
then the pair (S̄, ξ̄(0)) is excitable and it is straightforward to
check that span{X̄ } = span{{cos(pω0t),− sin(pω0t)}f̃+d

p=1}.
As a consequence, the input U is always T -periodic, where
T = 2π/ω0 ∈ R+ is the fundamental period of U .

We now state the following standard assumption on the non-
linear mapping fnl, to later prove existence and uniqueness of
the moment of system (14) at the signal generator (S̄, L̄e−L̄u).

Assumption 5. The mapping fnl : R2 → R2 is such that

fnl(0) = 0,
∂fnl(ϕ)

∂ϕ

∣∣∣∣
ϕ=0

= 0. (21)

Note that the assumption is without loss of generality
because the matrices in (14) and the mapping fnl can always
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be redefined to satisfy it. Finally, we introduce an assumption
on the stability in the first approximation of system (14).

Assumption 6. The zero equilibrium of system

ϕ̇ = Aϕ−B(k∗Cϕ), (22)

is asymptotically stable.

As discussed in several studies, such as [24], [33], the
linear equation of motion (22) is asymptotically stable for any
meaningful values of the involved parameters (and impulse
response function k). Thus, this assumption is, in practice,
also without loss of generality.

Proposition 1. Suppose Assumptions 4, 5 and 6 hold. Then
there exists a mapping π which solves the partial differential
equation

∂π(ξ̄)

∂ξ̄
S̄ξ̄ = f(π(ξ̄), (L̄e − L̄u)ξ̄). (23)

Moreover, the moment of system (14) at the signal generator
(S̄, L̄e−L̄u) computed along a particular trajectory ξ̄(t) coin-
cides with the well-defined steady-state output response of the
interconnected system (14)-(16)-(20), i.e. yss(t) = h(π(ξ̄(t))).

Proof. Note that, under Assumption 4, the triple of matrices
(L̄e − L̄u, S̄, ξ̄(0)) is minimal. Moreover, the extended signal
generator defined in (20) is such that λ(S) ⊂ C0 with simple
eigenvalues, in line with Assumption 3. Therefore, Proposition
1 automatically holds as long as the zero equilibrium of
the system ϕ̇ = f(ϕ, 0) is locally exponentially stable (see
Theorem 1). Since this is the case by Assumption 6, the proof
is concluded.

In slightly different words, Proposition 1 guarantees that
the steady-state response of system (14), driven by (20), can
be effectively computed using the corresponding moment at
(S̄, L̄e−L̄u). Nevertheless, even if the existence of π (solution
of (23)) is guaranteed, it is virtually impossible to compute its
analytic expression when the mapping f in (14) is nonlinear.

The very nature of the mapping π intrinsically depends on
both the characteristics of the signal generator (20) and the
system dynamics defined by f . Aiming to formally charac-
terise π, we introduce the following key remarks, which drive
the next main result.

Remark 7. Let Ξ be defined as Ξ = [0, T ] ⊂ R+. Note that
the set X̄ , defined in Remark 6, belongs to the Hilbert space
L2(Ξ) and is orthogonal under the standard inner-product
operator. Moreover, if Assumption 4 holds, we can always
complete X̄ to an orthogonal basis X of L2(Ξ), i.e. we define
(see [34, Chapter 8])

X = X̄ ∪ X̆ ,

X̆ = {cos(pω0t),− sin(pω0t)}∞p=f̃+d+1
= {X̆i}∞i=ν+ι+1.

Remark 8. If Assumption 4 holds, one can always find a set
of mappings Ii : Rν+ι → R such that X̆i = Ii(ξ̄), for
every i > ν + ι integer. This (standard) result states that we
can always generate the elements of the set X̆ (i.e. higher
order harmonics of the fundamental frequency ω0) by solely

operating on the ν + ι trigonometric polynomials defined by
the entries of ξ̄ (see, for example, [35]).

Proposition 2. Suppose Assumptions 4, 5 and 6 hold. Then
each element of the mapping π, as the solution to (23), i.e. πk,
k ∈ N2, belongs to the Hilbert space L2(Ξ) with Ξ = [0, T ] ⊂
R+, where T = 2π/ω0, i.e. it can be uniquely expressed as

πk(ξ̄) =

ν+ι∑
i=1

αki ξ̄i + εk = Π̄k ξ̄ + εk, (24)

where εk =
∑∞
i=ν+ι+1 αkiIi(ξ̄), αki ∈ R ∀i, with Ii as

defined in Remark 8, and the matrix Π̄ᵀ
k ∈ Rν+ι is given

by Π̄k = [αk1 , . . . , αkν+ι ].

Proof. Given the nature of the signal generator defined in
equation (20), the function U is T -periodic, with T = 2π/ω0

(see Remark 6). Moreover, under the above assumptions, the
zero equilibrium of ϕ̇ = f(ϕ, 0) is locally exponentially
stable and its (well-defined) steady-state solution is also T -
periodic [36, Section VI], i.e. ϕss(t) = ϕss(t−T ). Since under
Assumptions 4, 5 and 6, ϕss(t) = π(ξ̄(t)) (see Proposition
1), it is straightforward to conclude that each element of the
mapping π belongs to L2(Ξ), i.e. it can be expressed as
a unique linear combination of the orthogonal basis X (as
defined in Remark 7), which concludes the proof.

Remark 9. The result of Proposition 2 allows π to be com-
pactly expressed as

π(ξ̄) =

[
Π̄1

Π̄2

]
ξ̄ +

[
ε1
ε2

]
= Π̄ξ̄ + E, (25)

where the term E : Rν+ι → R2 is called the truncation error.
Note that, if we ‘ignore’ the truncation error E, the mapping

π can be effectively approximated as π̄(ξ̄) = Π̄ξ̄, i.e. by its
expansion on the (ν + ι)-dimensional set X̄ . This motivates
the following key definition.

Definition 4. We call the function Cπ̄, where π̄(ξ̄) = Π̄ξ̄, the
approximated moment9 of system (14) at the signal generator
(S̄, L̄e − L̄u). In addition, we refer to the matrix Ȳ = CΠ̄ as
the approximated moment-domain equivalent10 of y.

Remark 10. Under the same set of assumptions as Proposi-
tion 2, the approximated moment-domain equivalent of y can
be effectively used to approximate the steady-state output of
system (14) driven by (S̄, L̄e − L̄u), i.e. yss(t) ≈ CΠ̄ξ̄(t) =
Ȳ ξ̄(t).

Aiming to propose a method to compute Ȳ , and inspired
by the family of mean weighted residual methods [38], [39],
we define the residual mapping R : R2 → R2 as

R(Π̄ξ̄) := Π̄S̄ξ̄ − f(Π̄ξ̄, (L̄e − L̄u)ξ̄), (26)

which directly arises from ‘replacing’ π with π̄ in equation
(23). Using this residual equation we consider a colloca-
tion approach [39, Chapter 4] to compute the approximated
moment-domain equivalent Ȳ = CΠ̄. In other words, we force

9This notion is analogous to the one given in [37].
10This definition is analogous to that used in the linear moment-based WEC

control studies [15] and [16].
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equation (26) to be exactly zero at a finite set of collocation
points. We make this approximation method explicit in the
following proposition.

Proposition 3. Consider the nonlinear system (14) and the
signal generator defined by equation (20). Suppose Assump-
tions 4, 5 and 6 hold. Then, the approximated moment-domain
equivalent of y can be computed as CΠ̄, where Π̄ is the
solution of the algebraic system of equations

(Π̄S̄−AΠ̄+BCΠ̄R−B(L̄e−L̄u))〈ξ̄, δtj 〉−〈fnl(Π̄ξ̄), δtj 〉 = 0,
(27)

with Tδ = {ti}ν+ι
i=1 ⊂ Ξ a set of uniformly-distributed time

instants, and where the matrix R ∈ R(ν+ι)×(ν+ι) is defined
as

R =

f̃+d⊕
p=1

[
<{K(pω0)} ={K(pω0)}
−={K(pω0)} <{K(pω0)}

]
, (28)

with K : R → C, ω 7→ K(ω), the Fourier transform of the
impulse response function associated with radiation effects,
i.e. k in equation (14).

Proof. Note that, using (14), the residual equation (26) can be
equivalently written as

(Π̄S̄−AΠ̄−B(L̄e− L̄u))ξ̄+B(k∗CΠ̄ξ̄)− fnl(Π̄ξ̄), (29)

where the convolution operation involved, associated with the
effect of radiation forces acting on the device, can be shown
to be such that [15], [16]

k∗CΠ̄ξ̄ = CΠ̄Rξ̄, (30)

with R as in equation (28). Then, following the well-known
collocation method [39, Chapter 4], the residual function is
forced to be orthogonal (under the standard inner-product of
L2(Ξ)) to the set of translated Dirac-δ functions {δti}ν+ι

i=1 .
Equation (27) follows after considering the superposition
property of the inner-product operator.

Corollary 1. The system of algebraic equations (27) can be
equivalently written in matrix form as

(Π̄S̄−AΠ̄+BCΠ̄R−B(L̄e−L̄u))−Fnl(Π̄)Ω−1 = 0, (31)

where the matrices Fnl(Π̄) ∈ R2×(ν+ι) and Ω ∈ R(ν+ι)×(ν+ι)

are defined as

Ω =
[
ξ̄(t1) . . . ξ̄(tν+ι)

]
,

Fnl(Π̄) =
[
fnl(Π̄ξ̄(t1)) . . . fnl(Π̄ξ̄(tν+ι))

]
.

(32)

Proof. Note that if the set {tj} ⊂ Ξ, then 〈f, δtj 〉 = f(tj), for
any continuous function f : Ξ→ R. Then, the result follows as
a consequence of the excitability of the pair (S̄, ¯ξ(0)), which
implies that the matrix Ω is always full rank [23].

Remark 11. If the set of uniformly-distributed time instants
Tδ is chosen such that tk = −T/2 + Tk/(ν + ι), tk ∈ Tδ
for all k ∈ Nν+ι, then the collocation approach utilised in
Proposition 3 is identical to the Galerkin method [39, Chapter
4]. The main advantage of Proposition 3 (collocation) lies in
its simplicity of implementation, i.e. we simply use function
evaluation (see Corollary 1).

Remark 12. In the light of Remark 11, standard results of
Galerkin methods (see [40]) apply to this WEC case. In
particular, the existence of solutions to system (27) (equiv-
alently equation (31)), under the hypothesis of Proposition 3,
is always guaranteed for all sufficiently large ι. Moreover,
the approximated moment π̄(ξ̄) = Π̄ξ̄ converges uniformly
towards the exact solution (25) as ι→∞ (see also [40]).

We now present a corollary, which illustrates the result of
Proposition 3 (through Corollary 1) in a more convenient form
for the upcoming nonlinear moment-based energy-maximising
control formulation. In particular, we show that equation (31)
can be fully expressed in terms of the approximated moment-
domain equivalent Ȳ = CΠ̄, effectively reducing the number
of variables involved in such an equation.

Corollary 2. The system of algebraic equations (31) can be
fully written as a function of the approximated moment-domain
equivalent Ȳ = CΠ̄ as

Ȳ − (L̄e − L̄u)Φ̄ᵀ + vec{Fnl(g(Ȳ ))}ᵀΦᵀ
Ω = 0, (33)

where Φ̄ ∈ R(ν+ι)×(ν+ι) and ΦΩ ∈ R(ν+ι)×2(ν+ι) are given
by the expressions

Φ̄ = (Iν+ι ⊗ C)Φ−1(Iν+ι ⊗−B),

ΦΩ = (Iν+ι ⊗ C)Φ−1(Ω−1ᵀ

⊗ I2),

Φ = S̄⊕̂A+ Rᵀ ⊗−BC,
(34)

and the mapping g : R1×(ν+ι) → R2×(ν+ι) is defined as

g(Ȳ ) = (I2 ⊗ Ȳ )

[
S̄−1

Iν+ι

]
. (35)

Proof. A direct application of the vec operator (and Property
1) to equation (32), yields

vec{Π̄}+Φ−1(Iν+ι ⊗B)vec{L̄e − L̄u}+
Φ−1(Ω−1ᵀ

⊗ I2)vec{Fnl(Π̄)} = 0,
(36)

in which we make explicit use of the skew-symmetricity of S̄
i.e. −S̄ᵀ = S̄ to obtain Φ as in (34). The invertibility of the
matrix Φ has been shown in [15], [16]. Equation (33) follows
after multiplying both sides of (36) by (Iν+ι ⊗C), where we
note that vec{CΠ̄} = vec{Ȳ } = Ȳ ᵀ and vec{L̄e − L̄u} =
(L̄e − L̄u)ᵀ. Finally, the mapping g arises as a result of [41,
Proposition 1]: given that ϕ̇1 = ϕ2 = y in (14), Π̄ can be
written in terms of Ȳ simply as

Π̄ =

[
Ȳ S̄−1

Ȳ

]
= (I2 ⊗ Ȳ )

[
S̄−1

Iν+ι

]
= g(Ȳ ), (37)

which concludes our proof.

Remark 13. If Fnl(g(Ȳ )) = 0, i.e. system (14) is linear,
the approach of Proposition 3 (through Corollary 2) recovers
(without approximation) the linear moment-domain equivalent
Ȳ = (L̄e − L̄u)Φ̄ᵀ, presented in [15], [16]. In other words,
equation (33) can be regarded as the linear moment-domain
equivalent of y plus a nonlinear ‘perturbation’ term.
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B. Motion unconstrained nonlinear moment-based OCP
The results presented in Section IV-A can be effectively

used to approximate the energy-maximising optimal control
problem presented in Definition 1, making explicit use of the
connection between moments and the steady-state behaviour
of system (14). In the following, we provide a definition
of the so-called approximated energy-maximising OCP, using
the approximated moment-domain equivalent Ȳ , presented in
Definition 4. Note that we do not yet include the set of state
and input constraints defined in (12). These are explicitly
incorporated in Section IV-C.

Problem 2 (Approximated energy-maximising OCP). Sup-
pose Assumptions 4, 5 and 6 hold. Find the optimal control
input ūopt = L̄opt

u ξ̄ such that

L̄opt
u = arg max

L̄ᵀ
u∈Rν+ι

1

T

∫
Ξ

L̄uξ̄(τ)Ȳ ξ̄(τ)dτ,

subject to:
Ȳ − (L̄e − L̄u)Φ̄ᵀ + vec{Fnl(g(Ȳ ))}ᵀΦᵀ

Ω = 0,

(38)

where Ȳ is the approximated moment-domain equivalent of
the output of system (14) (see Definition 4), and ξ̄ is the
solution of (20).

Remark 14. The main idea behind Problem 2 relies on
substituting the integro-differential (equality) constraint, cor-
responding with the nonlinear WEC dynamics (14), by the
algebraic equation (33). Note that the latter characterises the
approximated moment-domain equivalent of the velocity of the
device ẋ = y (which is the key state variable involved in the
energy-maximising objective function (8)). In other words, the
approximated OCP posed in Problem 2 explicitly utilises an
approximation of the steady-state (output) behaviour of system
(14), parameterised in terms of Ȳ , i.e. ẋss = yss(t) ≈ Ȳ ξ̄(t)
(see Remark 10), to solve for the corresponding optimal
control input ūopt, in terms of the signal generator (20).
Remark 15. Following Remark 12, if ι → ∞, then the
steady-state output response of system (14) is exactly given
by yss(t) = Ȳ ξ̄(t), and the algebraic equality constraint in
the OCP of Problem 2 corresponds to the exact steady-state
motion of the device, without approximations.

Based on Problem 2, we are now ready to propose a solu-
tion to the motion unconstrained energy-maximising optimal
control problem, i.e. (13) without considering input and state
constraints (see Problem 2), in terms of a specific tractable
finite-dimensional nonlinear program (NP). This claim is for-
malised in the following proposition.

Proposition 4 (Nonlinear moment-based unconstrained NP).
Suppose Assumptions 4, 5 and 6 hold, and let ξ̄(0) = εν+ι.
Then, for ι sufficiently large, the solution of the (motion
unconstrained) approximated energy-maximising OCP, posed
in Problem 2, can be computed as ūopt = L̄opt

u ξ, where

L̄opt
u = −

(
Ȳ opt + vec{Fnl(g(Ȳ opt))}ᵀΦᵀ

Ω − L̄e
)

Φ̄−1ᵀ

, (39)

and the matrix Ȳ opt is the solution of the finite-dimensional
nonlinear program

Ȳ opt = arg max
Ȳ ᵀ∈Rν+ι

J̄QP(Ȳ ) + J̄nl(Ȳ ), (40)

with J̄QP : Rν+ι → R, J̄nl : Rν+ι → R defined as

J̄QP(Ȳ ) = −1

2
Ȳ Φ̄−1Ȳ ᵀ +

1

2
Ȳ L̄ᵀ

e ,

J̄nl(Ȳ ) = −1

2
Ȳ Φ̄−1ΦΩ vec{Fnl(g(Ȳ ))}.

(41)

Proof. The fundamental step towards this proof lies in [15,
Proposition 3]. In particular, due to the (harmonic) nature of
the signal generator defined in equation (20), the objective
function corresponding with the approximated OCP, i.e. equa-
tion (38), can be equivalently written [15] as

J̄ =
1

T

∫
Ξ

Ȳ ξ̄(τ)L̄uξ̄(τ)dτ =
1

2
Ȳ L̄ᵀ

u, (42)

for ξ̄(0) = εν+ι. Substituting L̄u in (42), using the result of
Corollary 2, we can write J̄ , as a function of Ȳ , as

J̄ = −1

2
Ȳ Φ̄−1Ȳ ᵀ +

1

2
Ȳ L̄ᵀ

e −
1

2
Ȳ Φ̄−1ΦΩ vec{Fnl(g(Ȳ ))},

J̄ = J̄QP(Ȳ ) + J̄nl(Ȳ ),
(43)

where the optimal control input ūopt = L̄opt
u ξ̄ can be straight-

forwardly recovered using the equality (33), yielding equation
(39), which concludes our proof.

Proposition 4 explicitly uses the approximated moment-
domain equivalent Ȳ to propose a finite-dimensional tractable
optimisation problem, allowing for the computation of an
energy-maximising control solution for the approximated OCP
posed in Problem 2, when the WEC is subject to nonlinear
dynamics. Note that there is (almost) no restriction on the
nature of the mapping fnl, so that a general class of nonlinear
effects can be considered, including complex hydrodynamic
nonlinearities, such as those discussed in Section V.

Remark 16. The moment-based NP stated in Proposition 4
has to be carried out over the approximated moment-domain
equivalent Ȳ ᵀ ∈ Rν+ι only, i.e. in terms of the moment-
domain representation of the velocity of the device, and can be
solved using efficient state-of-the-art numerical routines, such
as interior-point methods (IPMs) [42].

Remark 17. There is an intrinsic trade-off between the degree
of accuracy behind the approximated OCP, controlled by the
parameter ι (see Remark 15), and the underlying computa-
tional complexity of equation (40). In other words, a higher
ι results in improved energy absorption, but also intrinsically
increases the computational requirements of the strategy.

Remark 18. If J̄nl(Ȳ ) = 0, Proposition 4 recovers the
optimal moment-based control input proposed in [15] for the
linear WEC case. To be precise, if there are no nonlinearities
involved in (14), equation (40) is of a concave quadratic type,
i.e. a quadratic program (QP) written as

Ȳ opt
l = arg max

Ȳ ᵀ∈Rν+ι
−1

2
Ȳ Φ̄−1Ȳ ᵀ +

1

2
Ȳ L̄ᵀ

e , (44)

where the function J̄QP is strictly concave for any physically
meaningful parameters involved in the WEC equation of
motion (14) (see [15, Proposition 4]).
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Following Remark 18, it is straightforward to note that the
NP stated in Proposition 4 can be seen as a QP problem
characterised by the objective function J̄QP, and ‘perturbed’ by
the action of the nonlinear mapping J̄nl. Nevertheless, unlike
the linear moment-based energy-maximising OCP of [15], [16]
(recalled herein in Remark 18), there is no guarantee that the
nonlinear OCP of Proposition 4 admits a global maximiser.
Aiming to secure the existence of a global solution to problem
(40), we introduce the following standing assumption, to
later formalise an appropriate proposition guaranteeing the
existence of a global energy-maximising solution to (40).

Assumption 7. The mapping J̄nl : R1×(ν+ι) → R is bounded
by a parameter αnl ∈ R+, i.e.

sup
Ȳ ᵀ∈Rν+ι

|J̄nl(Ȳ )| ≤ αnl < +∞. (45)

As demonstrated in Section V, Assumption 7 is without loss of
generality, since the mapping ϕ 7→ Fnl(ϕ), which effectively
defines the nonlinear nature of J̄nl (see equation (41)), is
sufficiently smooth (see Section III-A), and hence bounded
on any compact set.

Proposition 5. Suppose Assumption 7 holds. Then, the NP
with objective function J̄ defined in Proposition 4 always
admits a global maximum Ȳ opt.

Proof. The key concept behind this proposition lies in the
decomposition of J̄ as in equation (41), i.e. as the sum of
a concave problem J̄QP and, under Assumption 7, a bounded
perturbation J̄nl. To be precise, if J̄nl is bounded, then the
function −J̄ is strictly outer Γ-convex (see Definition 5 and
Theorem 2 in Appendix A), for Γ ⊂ R1×(ν+ι), where the set
Γ is given by

Γ = B (0, r) , r =

√
2αnl

minλ(H {Φ̄−1})
. (46)

Finally, given that the mapping J̄QP has a unique global
maximiser Ȳ opt

l (see Remark 18), and the set Γ ∩ R1×(ν+ι)

is closed, the NP defined by the objective function J̄ always
admits a global optimal solution Ȳ opt (see [43, Lemma 4.3]
and Property 3 in Appendix A).

Proposition 5 makes explicit use of the strictly outer Γ-
convexity of the function −J̄ to ensure existence of a global
solution to the moment-based energy-maximising OCP pro-
posed in this study. In other words, in contrast to state-
of-the-art nonlinear WEC control techniques [9]–[13], we
explicitly guarantee existence of globally optimal solutions to
the associated energy-maximising OCP.

Remark 19. Informally, the concept of outer Γ-convexity, in-
troduced in [19], is a formalisation of the concept of convexity
for a class of functions which are ‘roughly’ convex, i.e. they
possess properties similar to those of convex functions [43].
The reader is referred to Definition 5 in Appendix A for a
formal treatment of this concept.

Moreover, recalling key theoretical results from [43], we can
use the following property of strictly outer convex functions
(see Property 4 in Appendix A), which establishes a direct

relationship between local and global maximisers for J̄ ,
having strong practical implications.

Property 2. [43] Let Ȳ opt be a Γ-local maximiser of J̄ , i.e.

J̄ (Ȳ opt) = max
Ȳ ∈B(Ȳ opt,r)

J̄ (Ȳ ), (47)

with r as in (46). Then, Ȳ opt is a global maximiser of J̄ .

Property 2 (or, analogously, Property 4 in Appendix A) acts
as the analogue of the global optimality property of concave
functions (i.e. every local solution is a global solution). In
other words, if Ȳ opt is a maximiser for B(Ȳ opt, r), a subset
of R1×(ν+ι), then it is automatically a global maximiser of
J̄ . This not only gives explicit conditions for global energy-
maximisation within our nonlinear moment-based approach
(in contrast to available nonlinear WEC optimal control tech-
niques), but also considerably reduces the ‘search’ space when
numerically solving (40), enhancing the efficiency behind the
proposed moment-based strategy.

C. On the inclusion of state and input constraints.

As discussed in Section III-B, any energy-maximising op-
timal control strategy must take into account physical limita-
tions, arising from both the device itself, and the actuator (PTO
system) dynamics. Following the moment-based NP defined in
Proposition 4, we propose a framework to incorporate the set
of state and input constraints (12) to the energy-maximising
unconstrained solution of Proposition 4.

To be precise, and in line with [15], [16], we map the set
of constraints defined in (12) onto their respective moment-
domain equivalents as

|x(t)| ≤ Xmax,

|ẋ(t)| ≤ Vmax,

|u(t)| ≤ Umax,

7→


|Ȳ S−1ξ̄(t)| ≤ Xmax,

|Ȳ ξ̄(t)| ≤ Vmax,

|L̄uξ̄(t)| ≤ Umax,

(48)

and we enforce them only at a finite set of Nρ uniformly-
spaced time instants Tρ = {ti}

Nρ
t=1 ⊂ Ξ, i.e. using a collocation

approach. To that end, we define the matrices Λ̄ ∈ R(ν+ι)×Nρ

and ∆̄ ∈ R(ν+ι)×2Nρ as

Λ̄ =
[
ξ̄(t1) . . . ξ̄(tNρ)

]
, ∆̄ =

[
Λ̄ −Λ̄

]
. (49)

Finally, we can formulate a moment-based energy-maximising
constrained optimal control solution for WECs, subject to
nonlinear dynamics, as follows.

Corollary 3 (Nonlinear moment-based constrained NP). Sup-
pose Assumptions 4, 5 and 6 hold, and let ξ̄(0) = εν+ι. Then,
for ι sufficiently large, the solution of the approximated energy-
maximising OCP, posed in Problem 2, subject to the set of state
and input constraints (48), can be computed as ūopt = L̄opt

u ξ,
where

L̄opt
u = −

(
Ȳ opt + vec{Fnl(g(Ȳ opt))}ᵀΦᵀ

Ω − L̄e
)

Φ̄−1ᵀ

, (50)

and the matrix Ȳ opt is the solution of the inequality-
constrained finite-dimensional nonlinear program

Ȳ opt = arg max
Ȳ ᵀ∈Rν+ι

J̄QP(Ȳ ) + J̄nl(Ȳ ), (51)
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subject to:
ȲAx ≤ Bx,
ȲAẋ ≤ Bẋ,
ȲAu +Nu(Ȳ ) ≤ Bu,

(52)

where

Ax = S̄−1∆̄, Bx = Xmax11×2Nρ ,

Aẋ = ∆̄, Bẋ = Vmax11×2Nρ ,

Au = −Φ̄−1ᵀ

∆̄, Bu = Umax11×2Nρ + L̄eAu,
Nu(Ȳ ) = −vec{Fnl(g(Ȳ ))}ᵀΦᵀ

ΩAu.

(53)

Proof. Note that under the set of assumptions considered in
this corollary, equations (50) and (51) follow directly from
Proposition 4. With respect to the incorporation of the set of
state and input constraints defined in (48), let us first consider
the constraint associated with the control input, and note that

|L̄uS−1ξ̄(t)| ≤ Umax ⇒ −Umax ≤ L̄uξ̄(t) ≤ Umax. (54)

Equation (54), enforced at the set of collocation instants Tρ,
can be straightforwardly written in terms of the matrix ∆̄
defined in (49), i.e.

L̄u∆̄ ≤ Umax11×2Nρ . (55)

The left hand side of equation (55) can be expanded using the
result of Corollary 2 as

L̄u∆̄ = ȲAu − L̄eAu + vec{Fnl(g(Ȳ ))}ᵀΦᵀ
ΩAu, (56)

from where both the matrix Bu and the nonlinear mapping
Nu follow directly. Finally, the claim of this corollary follows
by writing the set of constraints associated with displacement
and velocity, defined in (48), as in equation (55), i.e. in terms
of the matrix ∆̄.

Remark 20. The set of inequality constraints associated with
the displacement and the velocity are linear in Ȳ . This is not
the case for the control input-related constraint, which can be
decomposed as the sum of a linear and a nonlinear mapping
Nu : R1×(ν+ι) → R1×2Nρ .

Remark 21. Other types of constraints different from those
considered in equation (48), e.g. limits on maximum rated
power [44], unidirectional power flow [11], or specific non-
linear constraints on the control force arising from selecting
a specific PTO system [45], can be incorporated into the
presented moment-based approach by following an analogous
procedure to that described in this section. In other words,
these constraints can be included by a suitable mapping onto
their respective moment-domain equivalents, followed by a
(time) collocation approach.

V. CASE STUDY: A CORPOWER-LIKE DEVICE.

To demonstrate the performance of the nonlinear moment-
based controller proposed in Section IV-B, we consider a full-
scale state-of-the-art CorPower-like wave energy device oscil-
lating in heave (translational motion). The actual CorPower
device is a wave energy system currently under development

by the Swedish company CorPower Ocean11, with the aim of
making a mass and volume-efficient solution using bottom-
referenced heaving buoys. The development of such a WEC
builds heavily on research results and earlier experience, and
the interested reader is referred to, for instance, [47], [48].
Note that this type of device is often considered as a case
study, due to its intrinsic geometrical complexity (see, for
example, [49]). Figure 2 presents a schematic illustration of
the CorPower-like WEC, along with its corresponding hydro-
dynamic characterisation, i.e. the frequency-response K(jω)
associated with the impulse response mapping k. Note that
K(jω) has been computed using the boundary element method
solver NEMOH [50]. The dimensions of this device are based
on the experimental study performed in [48].

0 1 2 3
0

1

2

3

4

5 104

0 1 2 3
-4

-2

0

2

4 104

Fig. 2. Schematic of the CorPower-like device, along with the frequency-
response of the radiation impulse response mapping k. The still water level
is indicated using a blue-coloured (shaded) plane.

In the remainder of this section, we consider waves gen-
erated stochastically from a JONSWAP spectrum [51], with
fixed significant wave height Hs of 2 [m], varying peak period
Tp ∈ [5, 12] [s], peak shape parameter γ = 3.3, and a
total time-length (fundamental period) of T = 120 [s]. The
corresponding spectral density functions are illustrated, for
reference, in Figure 3. Since the waves are generated from sets
of random amplitudes [30], it is found that a mean of ≈ 40
simulations (per sea state) is necessary to obtain statistically
consistent performance results for the nonlinear moment-based
controller presented in this study, particularly those discussed
in Figure 5.

A. Characterisation of nonlinear hydrodynamic effects.
In this section we characterise the nonlinear effects asso-

ciated with the CorPower-like device, i.e. the mapping Fnl
in (11), considered for this case study. In particular, we take
into account two main hydrodynamic forces: viscous effects
Fv , and the presence of a nonlinear restoring force Fnlr , so
that Fnl = Fv + Fnlr . We give explicit motivation behind
the consideration of these nonlinear effects in the upcoming
paragraphs.

11See [46] for up-to-date information on the CorPower device.
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Fig. 3. Spectral density functions (SDF) for different JONSWAP spectra
with fixed wave height of Hs = 2 [m] and varying peak period Tp ∈ [5, 12]
(the direction of increasing Tp is indicated by the arrow). The peak shape
parameter is fixed to γ = 3.3.

Viscous effects, arising from vortex shedding and turbu-
lence, are particularly present in heaving point absorber de-
vices [52], such as the CorPower-like WEC considered. One
common way of including viscous drag effects in the equation
of motion is by means of a Morison-like term [53], i.e. we
define

Fv(ẋ) = −βv|ẋ|ẋ, (57)

where βv = 1
2ργdD, γd ∈ R+ is the so-called drag coefficient,

and D is the characteristic area of the device (as defined in
Section III-A). The drag coefficient is set to γd = 0.35, based
on the analysis performed in [7] for the device of Figure 2.
Figure 4 (right axis, dashed line) illustrates the output of the
mapping Fv .

The mapping Fnlr , characterising nonlinear restoring effects,
is computed based on the experimental results presented in
[48] for this full-scale CorPower device. In particular, inspired
by [48], we define

Fnlr (x) = βr1x
2 + βr2x

3, (58)

where the coefficients {βr1 , βr2} ⊂ R are determined based
on a least-squares fit, using the experimental results of [48] as
target set, giving a final result of βr1 = −1.55×104 [kg/ms2]
and βr2 = 0.82× 104 [kg/m2s2]. The output of the nonlinear
restoring force mapping Fnlr is presented in Figure 4 (left axis,
solid line).
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106

Fig. 4. Nonlinear hydrodynamic effects considered in this study: hydro-
static force (displacement-dependent, left axis), and viscous force (velocity-
dependent, right axis).

Note that both nonlinear effects, as described in equations
(57) and (58), fulfill Assumption 5. To show that Assumption 7

holds, recall that the energy-maximising optimal control law
is such that the state-variables ϕ1 = x and ϕ2 = ẋ have
maximum allowed values Xmax and Vmax, respectively (see
equation (48)). Then, the following inequality, involving the
nonlinear mapping Fnl = Fv + Fnlr ,

|Fnl(ϕ)| = βv|ϕ2|2 + β1|ϕ1|2 + β2|ϕ2|3

≤ βvVmax + (β1 + β2Xmax)X2
max = α̃nl,

(59)

holds for all t ∈ Ξ. Using equation (59), and considering
well-known (Euclidean) norm properties, it is straightforward
to show that

‖vec{Fnl(g(Ȳ ))}‖2 ≤ (ν + ι)α̃2
nl. (60)

Recalling, from the set of moment-domain constraints (48),
that |Ȳ ξ̄(t)| ≤ Vmax for all t ∈ Ξ, and, if ξ̄(0) = εν+ι, then
‖ξ̄‖22 =

∑ν+ι
i=1〈ξ̄i, ξ̄i〉 = T (ν + ι)/2, we can directly obtain

the following estimate for αnl in equation (45):

|J̄nl(Ȳ )| ≤ 1

2T

(
Vmax

∥∥Φ̄−1ΦΩ

∥∥
F
α̃nl
)2

= αnl < +∞,
(61)

and, hence, the moment-based energy-maximising OCP al-
ways admits a global maximiser under the effect of the
nonlinear dynamics defined in Fnl (see Proposition 5).

B. Results and discussion

Based on the CorPower-like device of Figure 11, subject to
the nonlinear effects described in Section V-A, we now present
and discuss the results of applying the nonlinear moment-
based energy-maximising control strategy developed through-
out Section IV, under the effect of irregular (polychromatic)
wave excitation forces.

We begin by setting the maximum allowed displacement and
velocity values as Xmax = 2 [m] and Vmax = 2 [m/s]. The wave
excitation force Fe is computed using ν = 60 components
in (18), whilst the order of the extended signal generator
(20) is set to ν + ι = 100. Note that the latter effectively
defines the ‘size’ of the optimisation variable, i.e. Ȳ ᵀ ∈ Rν+ι.
With respect to the collocation instants used to enforce the
constraints, as in Section IV-C, we have selected ten uniformly
distributed collocation points per second of simulation, i.e.
Nρ = 1200. The constrained moment-based optimal control
problem stated in Corollary 3 can be solved using a variety of
state-of-the-art numerical routines, belonging to the families
of both local and global optimisation methods.

In this study, we opt for a local IPM, where we take explicit
advantage of the strict outer convexity of the energy-related
objective function when mapped to the moment-domain: we
use Property 2 to numerically ensure that the (potentially local)
solution computed with interior-point methods is, effectively,
a global energy-maximiser. In particular, we propose the
following simple algorithm, written in pseudo-code.

1: init algorithm
2: Set initial guess Ȳ opt

0 = Ȳ opt
l ;

3: global = 0;
4: while global 6= 1 do
5: Ȳ opt ← Solve the OCP (51) using IPM with Ȳ opt

0 ;
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6: Generate a random set P = {Ȳi}Pi=1 with P > 0
(integer) elements, such that P ⊂ B(Ȳ opt, r) and where
Ȳi is such that (52) holds for all i ∈ NP ;

7: if J̄ (Ȳ opt) ≤ J̄ (Ȳi) for all Ȳi ∈ P then
8: global = 1;
9: else if ∃Ȳ i ∈ P such that J̄ (Ȳi) ≤ J̄ (Ȳ opt) then

10: Ȳ opt
0 = Ȳi;

11: end if
12: end while
13: L̄opt

u = −
(
Ȳ opt + vec{Fnl(g(Ȳ opt))}ᵀΦᵀ

Ω − L̄e
)

Φ̄−1ᵀ
;

14: ūopt = L̄opt
u ξ̄;

15: end algorithm.

Starting from the linear solution Ȳ opt
l of the concave QP

problem of Corollary 3, i.e. with Fnl(g(Ȳ )) = 0, this heuristic
attempts to compute a local solution using IPMs, and simply
uses function evaluation at a finite set of P random points
contained in the set B(Ȳ opt, r), to (approximately) determine
whether the solution corresponds to a global maximiser using
the result expressed by Property 2. If we can find an element
Ȳi, contained in the set P , such that J̄ (Ȳi) ≤ J̄ (Ȳ opt), then
the algorithm is re-started, but now updating the initial guess
for the IPM to Ȳi.

Remark 22. For the nonlinear mapping associated with the
CorPower-like device defined in Section V-A, the heuristic
discussed above provides a global solution virtually always
after a single iteration (with the cardinality of the set P chosen
as P = 50). In particular, comparisons have been carried
out against global optimisation routines based on genetic
algorithms (GA), to determine whether the solution obtained
with the proposed heuristic effectively coincides with that
computed by GA. The interior-point method utilised to solve
(51) is based on [54]. Note that a range of other numerical
optimisation methods can be equally applied to solve (51).

Remark 23. The moment-based controller normalised run-
time, i.e. the ratio between the time required to compute the
energy-maximising optimal control input for the duration of
the simulation, and the length of the simulation itself, is always
less than a second for the totality of the preceding simulations,
which is consistent with the typical sampling time of a full-
scale WEC [15], hence achieving real-time performance. We
note that the real-time application of the proposed technique
can be performed in a receding-horizon fashion, by directly
following the moment-based methodology described in [32,
Section IV] (see also Remark 4).

We now present performance results for the proposed non-
linear moment-based controller, in terms of energy absorption,
under both displacement and velocity constraints. Figure 5
explicitly shows the value of J̄ (black circles), for sea states
with Hs = 2 [m] and Tp ∈ [5, 12], where the displacement
and velocity of the CorPower-like device are constrained to
Xmax = 2 [m] and Xmax = 2 [m/s], respectively. In addition,
Figure 5 demonstrates the performance of the linear moment-
based controller (grey diamonds), i.e. solving the OCP in
Corollary 3 assuming that J̄nl is zero, applied to the nonlinear
system described by (14). It can be readily appreciated that the
performance of the proposed nonlinear approach outperforms

its linear counterpart, for the totality of the sea-states analysed
in this study, with differences of up to ≈ 45% in total power
absorption. We note that, though not penalised in the results of
Figure 5 (to offer a best-case scenario for the linear controller),
the solution based on linear assumptions can often violate the
physical limitations imposed as state constraints, as a direct
consequence of ignoring nonlinear effects in the computation
of such an energy-maximising control law. This is illustrated
and discussed in the following paragraph, where we fully
expose the capabilities of the nonlinear moment-based control
strategy presented in this study.

Fig. 5. Constrained (displacement and velocity) power absorption for the
nonlinear moment-based energy maximising controller proposed in this paper
(black circles), and its linear counterpart (grey diamonds).

Figure 6 presents time histories of displacement (a), velocity
(b) and control input (c), for a specific example of sea-state
realisation with Tp = 10 [s], and where we have also included
a maximum control (PTO) force constraint Umax = 1 × 106

[N]. Some key features associated with the presented moment-
based strategy can be directly appreciated from Figure 6,
as discussed in the following. To begin with, the state and
input limits, under the action of the nonlinear moment-based
control strategy (solid black), are being consistently respected
throughout the complete simulation, hence illustrating the
capability of the approach to maximise energy absorption
for WECs subject to nonlinear hydrodynamic effects, whilst
respecting the physical limitations of both device and actuator
(PTO). This is clearly not the case for the solution based on
linear assumptions (dotted black), where a consistent violation
can be appreciated, for both displacement and velocity (state
constraints). Though not significant (in magnitude) for this
particular sea state, this violation happens consistently in time
and can potentially damage device components.

Finally, we note that, as can be appreciated in Figure 6 (b),
the velocity of the device under optimal control conditions, for
both linear and nonlinear moment-based controllers, remains
‘in-phase’12 with the (scaled) wave excitation force (dash-
dotted blue), agreeing with well-known theoretical results for
unconstrained energy-maximisation of WECs [24].

12We use the term ’in-phase’ to indicate that the peaks (local maxima and
minima) of both signals are aligned in time.
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Fig. 6. Motion and control results for polychromatic wave excitation with
Hs = 2 [m] and Tp = 10 [s], for both linear (dotted black) and nonlinear
(solid black) moment-based controllers. (a) shows displacement, (b) velocity
and (scaled) wave excitation force input (dash-dotted blue), whilst (c) presents
the corresponding control inputs, used to elicit the motion results. The dash-
dotted horizontal lines represent constraint values.

VI. CONCLUSIONS

This study introduces a nonlinear moment-based energy-
maximising control framework for wave energy converters,
subject to both state and input constraints. The use of nonlinear
moments, in conjunction with an appropriate approximation
method (based on the family of weighted residual methods),
allows the objective function, associated with the energy-
maximising OCP, to be mapped to a finite-dimensional nonlin-
ear program, which can be solved efficiently by state-of-the-
art numerical solvers. We guarantee the existence of a globally
optimal solution within the presented framework, under mild
assumptions. In addition, we give explicit conditions that relate
local and global optima, which are effectively exploited in the
numerical implementation. The performance of this method
is illustrated through a case study, where a CorPower-like
device is considered, subject to nonlinear hydrostatic restoring
force and viscous forces. We show that physical limitations
are consistently respected within this nonlinear moment-based
framework, maximising absorbed energy while effectively
minimising the risk of component damage. Comparisons are
presented with its linear counterpart, i.e. a moment-based
controller without explicitly considering hydrodynamic nonlin-
earities when computing the control law, consistently showing

improved performance for the totality of the sea states anal-
ysed, with up to ≈ 45% of increase in energy absorption.
Finally, future work will compare the presented nonlinear
moment-based approach with established techniques in the
WEC control field, both in terms of computational speed, and
energy-maximising performance.

APPENDIX A
OUTER Γ-CONVEXITY

To keep the paper self-contained, we recall some facts from
[43]. These are particularly useful for the results derived in
Section IV-B. In particular, we begin by recalling the definition
of outer Γ-convexity, originally proposed in [19], [43].

Definition 5 (Outer Γ-convexity [19], [43]). Let Γ ⊂ Rn and
g : Rn → R. The function g is said to be outer Γ-convex on a
given nonempty convex set D ⊂ Rn if, for all {x0, x1} ⊂ D
satisfying x0 − x1 /∈ Γ, there is a closed subset Z ⊂ [0, 1]
containing {0, 1} such that

[x0, x1] ⊂ {(1− ζ)x0 + ζx1 | ζ ∈ Z}+
1

2
Γ, (62)

and

g((1− ζ)x0 + ζx1) ≤ (1− ζ)g(x0) + ζg(x1), (63)

∀ζ ∈ Z\{0, 1}. If the inequality (63) holds strictly, then g is
said to be strictly outer Γ-convex.

Definition 5 has shown to be useful in deriving specific
properties of boundedly perturbed strictly convex quadratic
functions [43]. In particular, let A ∈ Rn×n be a symmetric
positive definite matrix, b ∈ Rn, and

f(x) := xᵀAx+ bᵀx, (64)

with x ∈ Rn. For a given set D ⊂ Rn, equation (64) gives
origin to the convex quadratic program, termed problem (P ):

min
x∈D

f(x). (65)

Consider now the modified problem (P̃ ):

min
x∈D

f̃(x) := f(x) + p(x), (66)

where p : Rn → R is lower semi-continuous. For convenience,
we call p the perturbation, f̃ the perturbed function and
(P̃ ) the perturbed problem. We now recall the following
fundamental result from [43].

Theorem 2. [43, Theorem 2.2]. Suppose the perturbation p
is bounded by a parameter s, i.e. supx∈D |p(x)| ≤ s < +∞.
Then the perturbed function f̃ = f + p is strictly outer Γ-
convex on D for Γ = B(0, r), with r =

√
2s/minλ(A).

The result of Theorem 2 shows that a bounded perturbation
p does not completely destroy the strict convexity of the
quadratic function f(x) = xᵀAx + bᵀx, but the perturbed
function f̃ = f + p is still strictly outer Γ-convex for some
suitable set Γ ⊂ Rn. This has two fundamental implications
for the perturbed problem (P̃ ), which we recall below as
properties. Note that we explicitly state the source of each
of these properties, by pointing to specific results of [43]. In
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what follows, we shall assume the perturbation p is bounded
by a parameter, so that Theorem 2 can be used.

Property 3. [43, Lemma 4.3]. Let x∗QP be the global min-
imiser of problem (P ) and suppose the set B(x∗QP, r) ∩D is
closed. Then problem (P̃ ) always admits a global minimiser.

Property 4. [43, Theorem 3.1]. Let x∗ be a local Γ-minimiser
of f̃ , i.e.

f̃(x∗) = min
x∈B(x∗,r)∩D

f̃(x). (67)

Then x∗ is a global minimiser of f̃ , i.e.

f̃(x∗) = min
x∈D

f̃(x). (68)
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[48] J. Hals-Todalshaug, G. S. Ásgeirsson, E. Hjálmarsson, J. Maillet,
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