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Introduction

In this Doctoral thesis we address the analytical and computational problem of learn-
ing with neural networks by making use of static approaches and bias techniques
on sampling arising from the toolbox of statistical physics. The main topic, which
is to clarify what prevents algorithms from finding solutions to certain non-convex
optimization problems, will be devoted to a perspective all about the geometric char-
acterization of solutions in the optimization landscape. The following work is divided
into three parts.

• Part I: Preliminaries. The first part aims to introduce the reader to the midst
of literature and debates about neural networks (NNs) emerging behaviours,
clarifying that many of the variables chosen when training NNs can be studied
in isolation to quantify their impact on the learning dynamics.

⋄ After formalizing the differences between supervised and unsupervised
tasks (1.1), Sec. 1.2 provides an overview on some of the regimes for
which supervised learning in a non-convex, high-dimensional optimiza-
tion landscape can be facilitated: the role of initialization for the learning
speed (1.2.1), the impact of overparameterization in locally convexifying
the landscape (1.2.1), and a rigorous definition of algorithmic hardness
from a geometrical perspective (1.2.3).

⋄ Chapter 2 stands with the literature supporting high local entropy solu-
tions as the ones attractive for the non-equilibrium dynamics of local search
algorithms, from which all the protocols derived in the following parts, and
the conclusions drawn, take their inspiration. Section 2.1 reports the case
study of a minimal neural network model for which the optimization is
high-dimensional and non-convex: the Perceptron with binary weights.
The goal is to explain, using approaches borrowed from statistical physics
of disordered systems, how it is possible in the typical case to characterize
learning properties of simple models and how, depending on the proba-
bility measure from which solutions are sampled, one does or does not
derive meaningful theoretical predictions compared to algorithmic results.
Section 2.1.2 proposes an adequate measure to sample from the landscape
attractive solutions for the algorithm dynamics; starting from that, section
2.2 illustrates how it is possible to optimize solvers to target high local en-
tropy (i.e. dense clusters) configurations due to the correlation between
flatness and performance of the corresponding minimizer.
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• Part II: the benefits of robustness. Once it has been clarified that the non-
trivial landscape where the learning process occurs is characterized by minima
associated with different performance, and specifically that flat solutions are not
only dynamically attractive but also robust to perturbations and performant
for generalization, the second part of the manuscript focuses on introducing
protocols to observe the structural change of these relevant configurations as
the complexity of the learning task increases.

⋄ In Chapter 3 and for two models of networks with binary weights, the Per-
ceptron and the Tree Committee machine, minima on randomly generated
supervised tasks are characterized as configurations with a certain level of
robustness (i.e., margin) and the first results on hierarchical organization
of clusters as solutions arising from the coalescence of robust configura-
tions is derived (sec.s 3.1 and 3.2). Then, the analysis specializes on an
analytical method, entirely based on local geometry of minimizers and in-
dependent from the specific algorithmic strategy, to identify the constraint
density threshold (i.e. proportional to the complexity of the tasks and
the density of patterns in the dataset) that causes clusters to break and
prevents algorithms from converging (3.1.2).

⋄ Chapter 4 adapts all the techniques in 3 to a mismatched teacher-student
problem where the correlation among patterns visible to the student comes
from a low-dimensional manifold of data. In Sec. 4.1, which defines the
models, all the assumptions, which allows for the use of the Gaussian
Equivalence Principle (4.1.1), are introduced in order to study the typical
case student performance. In following sections, the geometry of minima
of the learning tasks are studied by inspecting the fallout of overparame-
terization, keeping track of possible phase transitions when changing the
expressivity of the student compared to the teacher model. As expected,
prediction performances of the student get better when increasing the over-
parameterization, and a clear relationship between the robustness of a
minimizer and the associated generalization is reported (4.2.2). As in 3, it
is possible to derive a threshold for algorithmic performance degradation
with the disappearance of robust solutions from the landscape, showing
how efficient solvers cannot overcome the conjectured hard phase (4.2.3).
The chapter ends with a digression on deeper models, supporting evidences
for which, despite the overparameterization of bigger architectures, the op-
timization landscape still remains rough and non-convex, being the scope
that of finding minima with an average non-trivial overlap among them
(4.3).

⋄ Chapter 5 reports the first analytical study on the energetic barriers along
the geodesic path connecting minimizers sampled independently from the
equilibrium measure with different degrees of robustness. The model is a
non-convex one-layer NN with continuous weights, i.e. the spherical neg-
ative Perceptron (5.1), and the goal of studying the training error on the
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convex envelope spanned by y different solutions is that of deriving algo-
rithmic implications of simple connectivity properties (5.5) and to char-
acterize the geometry of the space of minima (5.3) more in detail with
respect to 3 and 4. The existence in theory of a large geodesically convex
component for sufficiently high degree of overparameterization and among
solutions with high margin (5.3) reveals how it is possible that convex opti-
mization strategies find in practice linearly-mode-connected solutions, and
give rise to a star-shaped organization of the zero-energy manifold, where
for sufficiently low density of constraints, even dominant configurations of
a flat probability measure are linearly connected to a convex cluster of
minima.

⋄ Chapter 6 refers to a work in preparation that uses hierarchical space
organization of solutions with different margins to think of a practical
application of averaging methods in non-convex optimization landscapes.
The sections, each of them devoted to report evidences of how it is possible
to play with the landscape structure to take advantage of negative margin
solutions, explain how sometimes, given an optimization problem with
some level of noise in the dataset, it is worthy to relax some constraints
in the learning process, since averaging over under-performing model has
the effect of targeting a regularized robust and well-performing barycenter
in the end. Section 6.3 extends the analysis to a simple analytical proof
that the generalization error along the geodesic between negative margin
solutions shows a minimum in the middle of the path, which one has reason
to think corresponds to an atypical robust solution.

• Part III: neuroscience comes into play. The present part of the manuscript talks
about two simple examples of biological models to address questions in neuro-
science through the use of optimization-like strategies. What is the memory
capacity of a single neuron of a pyramidal cell (7)? And what if one can con-
struct an associative memory model that, instead of simply storing prototypes
i.i.d. patterns, plays with correlated inputs (8)?

⋄ Chapter 7 is a work in preparation that proposes use of a Tree Commit-
tee Machine with positive weights to model the activation scheme of an
excitatory pyramidal cell that includes dendritic non-linearities. For the
model, both theoretical critical capacity (7.2.1) and maximal algorithmic
storage load (7.2.2) are derived, discussing how the simple addition of a
non-linear activity layer makes the model faster to learn, more robust to
noise, and with better prediction performances (7.4) with respect to its
linear counterpart.

⋄ Chapter 8 is an extension of the Hopfield model with correlated patterns,
i.e. the Random Feature Hopfield. Compared to the standard version,
when trying to use the Hebb rule for the coupling synaptic matrix to store
as prototypes not i.i.d. but correlated inputs, different phases appears in
the usual phase diagram: a learning phase where the features generating
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the inputs become attractive for the zero-temperature asynchronous dy-
namics (8.1), and a generalization phase (8.2) where mixtures of features
let the model have new fixed point attractors related to patterns that it
has never seen before.

• Part IV: conclusions. In this final Chapter we will discuss the results obtained
and we will highlight several possible directions for future works.
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