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An Excitation-Aware and Self-Adaptive Frequency
Normalization for Low-Frequency Stabilized
Electric Field Integral Equation Formulations
Bernd Hofmann, Graduate Student Member, IEEE, Thomas F. Eibert, Senior Member, IEEE,
Francesco P. Andriulli, Senior Member, IEEE, and Simon B. Adrian, Member, IEEE

Abstract—The accurate solution of quasi-Helmholtz decom-
posed electric field integral equations (EFIEs) in the presence
of arbitrary excitations is addressed: Depending on the spe-
cific excitation, the quasi-Helmholtz components of the induced
current density do not have the same asymptotic scaling in
frequency, and thus, the current components are solved for with,
in general, different relative accuracies. In order to ensure the
same asymptotic scaling, we propose a frequency normalization
scheme of quasi-Helmholtz decomposed EFIEs which adapts itself
to the excitation and which is valid irrespective of the specific
excitation and irrespective of the underlying topology of the
structure. Specifically, neither an ad-hoc adaption nor a-priori
information about the excitation is needed as the scaling factors
are derived based on the norms of the right-hand side (RHS)
components and the frequency. Numerical results corroborate
the presented theory and show the effectiveness of our approach.

Index Terms—Broadband, EFIE, integral equations, loop-star,
loop-tree, low frequency, multiply connected, near field, quasi-
Helmholtz projectors.

I. Introduction

THE electric field integral equation (EFIE) constitutes
a flexible and accurate formulation for electromagnetic

radiation and scattering problems. Preconditioning the dis-
cretized equation based on quasi-Helmholtz decompositions
is among the most mature approaches to cure an otherwise
occurring low-frequency breakdown [1]–[4] (i.e., the condition
number increases with decreasing frequency) and enables
accurate solutions also for low frequencies down to the static
limit. For example, this has been demonstrated for the ap-
proach based on quasi-Helmholtz projectors proposed in [5],
an enhancement to the explicit decompositions based on a
loop-star or loop-tree basis [1]–[4], [6]–[8].
Yet, ensuring that the system matrix is well-conditioned is

insufficient if one desires to accurately compute the fields.
Two more aspects must be carefully addressed: First, testing
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the right-hand side (RHS) with solenoidal functions, which
is needed for the considered decompositions, can lead to
catastrophic round-off errors. Different means to overcome
this issue have been proposed [9]–[12] and in the following,
it is assumed that a corresponding stabilization is applied
since all further derivations rely on an accurately discretized
RHS reflecting the physically correct asymptotic scalings in
frequency of the quasi-Helmholtz components.
The second problem is addressed in this contribution: It

has to be ensured that all quasi-Helmholtz components of the
decomposed surface current density, that is, the solenoidal
and the non-solenoidal component, are recovered accurately
enough to obtain accurate scattered and radiated fields [5],
[13]. More precisely, the unknown vector of the linear system
of equations (LSE) to be solved has two contributions (i.e,
the solenoidal and the non-solenoidal quasi-Helmholtz com-
ponent), which can differ largely in their order of magnitude.
This is due to the, in general, different asymptotic scaling
of the quasi-Helmholtz components in the wavenumber 𝑘

as 𝑘 → 0, where the specific behavior is dependent on
the excitation source. Still both contributions need to be
determined accurately.1
As the employed preconditioners entail a rescaling of the

quasi-Helmholtz decomposed expansion and basis functions,
they enforce a different scaling of the quasi-Helmholtz compo-
nents of the preconditioned current (i.e., the unknown vector)
compared to the physical (non-rescaled) one. The same is
true for the RHS components. Different choices for the corre-
sponding scaling coefficients have been employed in the past.
Typical choices are, for example, given in [2], [5], [19]–[21].
While they are suitable for plane-wave excitations, for arbitrary
excitations it is in general not ensured that all components can
be recovered as the choices in these existing schemes do not
reflect the scaling of the quasi-Helmholtz components of the
excitation [22]. Yet, excitations such as voltage gaps are com-
monly used, and thus, the EFIE should be solved accurately
for these as well. The same is true for spherical waves, which
are able to represent the field radiated by antennas, or line
currents representing radiation from wire structures.
A remedy is using ad-hoc techniques as done in [5].

However, it constitutes an approximation which limits the

1An investigation whether similar problems occur also for other proposed
low-frequency stabilization schemes for scattering and radiation problems such
as the augmented EFIE or potential-based approaches [14]–[18] is beyond the
scope of this work.
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overall accuracy and the behaviour of the quasi-Helmholtz
components of the excitation needs to be known a-priori.
Moreover, in [5] only three types of excitations were studied
(plane wave, capacitive gap excitation, and inductive gap
excitation). For other excitations such as spherical TM or TE
waves, we find, however, that the approach is not applicable.
In this work, we propose a frequency normalization scheme

which adapts itself to the excitation requiring neither a-priori
information nor ad-hoc adaptions. To this end, the scaling
coefficients incorporate the norms of the quasi-Helmholtz
components of the discretized right-hand side in a black-
box like manner. Hence, the approach is agnostic to the
specific excitation (and the topology of the structure). More
precisely, the scaling coefficients are determined such that
all quasi-Helmholtz components of the preconditioned current
and of the RHS have the same asymptotic scaling. Thereby,
all components are recovered with a similar relative accuracy
ensuring that all radiated and scattered fields can be computed
accurately. Numerical results corroborate the effectiveness of
our approach both for canonical and complex geometries. Note
that some preliminary results were presented in [22], [23].
This article is organized as follows: Section II introduces

background material and fixes the notation. In Section III,
the implications of the frequency normalization in quasi-
Helmholtz decompositions of the EFIE are analyzed; from
the gained insights, the adaptive normalization scheme is
derived for the loop-star decomposition as well as for the
quasi-Helmholtz projectors. In Section IV, we show how to
achieve positive eigenvalues of the preconditioned system
matrix, again for both decompositions, and implementation
specific aspects are addressed. Numerical studies are presented
in Section V.

II. Quasi-Helmholtz Decomposed Electric Field
Integral Equations

Let a perfectly electrically conducting (PEC) object with
surface 𝛤 be embedded in a homogeneous background medium
with permittivity Y and permeability `. The structure is excited
by a time-harmonic field (𝒆ex, 𝒉ex) resulting in an induced
surface current density 𝒋 on 𝛤 from which the scattered or
radiated fields can be computed. The current density satisfies
the EFIE [24]

(T 𝒋)tan = 𝒆extan , (1)

where2 T 𝒋 = j𝑘TA 𝒋 + j𝑘−1TΦ 𝒋 contains the vector potential
operator

TA 𝒋 =

∬
𝛤

𝐺 (𝒓, 𝒓 ′) 𝒋 (𝒓 ′) d𝑆(𝒓 ′) (2)

and the scalar potential operator

TΦ 𝒋 = ∇
∬

𝛤

𝐺 (𝒓, 𝒓 ′) ∇𝛤 · 𝒋 (𝒓 ′) d𝑆(𝒓 ′) (3)

2Note, that the choice of defining T without a surface normal vector �̂� is
independent of the considered low-frequency stabilization and the proposed
scheme. However, it has the advantage that non-orientable surfaces (which do
not possess a canonically definable normal vector field) can be considered as
scattering objects in a natural manner [25], [26].

with the free-space Green’s function

𝐺 (𝒓, 𝒓 ′) =
e−j𝑘 |𝒓−𝒓′ |

4π |𝒓 − 𝒓 ′ | , (4)

the wavenumber 𝑘 = 𝜔
√
`Y, the angular frequency 𝜔, and the

imaginary unit j2 = −1. Moreover, an implicit normalization
of the current with respect to the wave impedance is assumed
as well as a suppressed time dependency of e j𝜔𝑡 . To solve for
𝒋 , the surface 𝛤 is triangulated and 𝒋 is expanded with Rao-
Wilton-Glisson (RWG) functions 𝒇 𝑛 as 𝒋 ≈ ∑𝑁

𝑛=1 [j ]𝑛 𝒇 𝑛 (𝒓),
where j ∈ C𝑁 contains the unknown expansion coefficients.
Employing the 𝒇 𝑛 as testing functions in a Petrov-Galerkin
scheme, results in the LSE

T j = (j𝑘TA + j𝑘−1TΦ)j = eex , (5)

where the matrix TA ∈ C𝑁×𝑁 exhibits the entries [TA]𝑚𝑛 =∬
𝛤
𝒇𝑚 · TA 𝒇 𝑛 d𝑆(𝒓), the matrix TΦ ∈ C𝑁×𝑁 exhibits the

entries [TΦ]𝑚𝑛 =
∬
𝛤
𝒇𝑚 · TΦ 𝒇 𝑛 d𝑆(𝒓) (to be evaluated in

a weak sense), and the RHS vector eex ∈ C𝑁 exhibits the
entries [eex]𝑚 =

∬
𝛤
𝒇𝑚 · 𝒆ex d𝑆(𝒓) .

To address the low-frequency breakdown of the EFIE, we
consider as first approach the loop-star decomposition. It
allows to carry out the analysis in a demonstrative way before
adapting it to the second and actual decomposition of interest:
quasi-Helmholtz projectors.

A. Loop-Star Decomposition
The well known [3], [4], [6] basic idea of the loop-

star decomposition is to express the current density 𝒋 as a
superposition of 𝑁𝛬 local loops 𝜦𝑚 and 𝑁𝐻 global loops 𝑯𝑚

(associated with the handles and holes of 𝛤) representing the
solenoidal component of 𝒋, as well as 𝑁𝛴 stars 𝜮𝑚 represent-
ing the non-solenoidal component of 𝒋 . To do so, the loop
to RWG expansion coefficient mapping matrix Λ ∈ R𝑁×𝑁𝛬 ,
the global loop to RWG expansion coefficient mapping matrix
H ∈ R𝑁×𝑁𝐻 , and the star to RWG expansion coefficient map-
ping matrix Σ ∈ R𝑁×𝑁𝛴 all as defined in [8] are introduced.
Applying the transformation matrix Q = [Λ H Σ] to (5)
as TΛHΣ j ′′ = QTTQj ′′ = QTeex, where j = Qj ′′, allows
to remove the ill-conditioning of (5) with respect to 𝑘 by
introducing suitable diagonal block normalization matrices D1
and D2 yielding the stabilized system

D1TΛHΣD2j
′ = D1Q

Teex (6)

with j = QD2j
′. Common choices in literature for these

matrices are D1 = D2 = (1, 1, 𝑘) [2], D1 = D2 =

diag(1/
√
𝑘, 1/

√
𝑘,
√
𝑘) [5], or D1 = diag(1/𝑘, 1/𝑘, 1) and

D2 = diag(1, 1, 𝑘) [19]. Here, we define it in a general form
as

D𝑖 = diag(𝛼𝑖 , 𝛾𝑖 , 𝛽𝑖) (7)

and systematically derive the coefficients 𝛼𝑖 , 𝛾𝑖 , and 𝛽𝑖 to
suit arbitrary excitations. Consequently, the preconditioned
system (6) is solved for j ′ = [jT

Λ
jT
H
jT
Σ
]T which is related to

the actual current vector as

j = 𝛼2ΛjΛ + 𝛾2HjH + 𝛽2ΣjΣ . (8)
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Table I
Notation overview.

loop-star projectors

j ′sol
..= ΛjΛ PΛj

′

j ′hsol
..= HjH PH j

′

j ′nsol
..= ΣjΣ PΣ j

′

jsol
..= 𝛼2 j

′
sol

jhsol
..= 𝛾2 j

′
hsol

jnsol
..= 𝛽2 j

′
nsol

loop-star projectors

esol
..= ΛTeex PΛe

ex

ehsol
..= HTeex PHe

ex

ensol
..= ΣTeex PΣe

ex

e ′sol
..= 𝛼1 esol

e ′hsol
..= 𝛾1 ehsol

e ′nsol
..= 𝛽1 ensol

B. Quasi-Helmholtz Projectors

As an improvement over the loop-star decomposition, the
quasi-Helmholtz projectors introduced in [5] can be em-
ployed: The orthogonal projectors PΣ ∈ R𝑁×𝑁 defined by
PΣ = Σ (ΣTΣ)+ΣT, where (·)+ denotes the Moore-Penrose
pseudoinverse, PΛ ∈ R𝑁×𝑁 defined by PΛ = Λ(ΛTΛ)

+
ΛT, and

PH ∈ R𝑁×𝑁 defined by PH = I − PΛ − PΣ are introduced
(note that the pseudoinverses can be computed efficiently via
algebraic multigrid (AMG) preconditioning as detailed in [5,
Section V]) as well as the decomposition operator

P𝑖 = 𝛼𝑖PΛ + 𝛾𝑖PH + 𝛽𝑖PΣ . (9)

Applying the latter to (5) as

P1TP2j
′ = P1e

ex (10)

yields a well-conditioned LSE, which is better conditioned
than (6), with

j = P2j
′ = 𝛼2PΛj

′ + 𝛾2PHj
′ + 𝛽2PΣ j

′ (11)

if 𝛼𝑖 , 𝛽𝑖 , and 𝛾𝑖 , 𝑖 = 1, 2 are suitably chosen; specifically,
in [5], a combined projector, PΛH = PΛ + PH is used with
𝛼1 = 𝛼2 = 𝛾1 = 𝛾2 = 1/

√
𝑘 and 𝛽1 = 𝛽2 = j

√
𝑘 . In contrast, we

chose with our definition of P𝑖 to treat PΛ and PH separately
as we need the general form for our theoretical apparatus. Our
final formulation uses again the combined projector PΛH .
For both decompositions, we define the quasi-Helmholtz

components j ′sol, j
′
hsol, and j

′
nsol, that is, the solenoidal compo-

nent, the solenoidal component associated with the handles and
holes of 𝛤, and the non-solenoidal component, respectively, as
shown in Table I. This leads to the preconditioner-agnostic
definitions of jsol, jhsol, and jnsol. Moreover, we introduce
jsol,hsol = jsol+jhsol. The RHS Helmholtz components esol, ehsol,
ensol, as well as their primed variants are defined analogously.
Moreover, note that in order to also cure the dense-

discretization breakdown of the EFIE (i.e., the ill-conditioning
with respect to the average edge length of the triangulation
of 𝛤), formulation (10) could be combined with a Calderón
preconditioner similar to what has been done using the stan-
dard choice of scaling coefficients in [5], [27]. While such
a combination should be compatible with the here proposed
frequency normalization scheme, further investigations would
be necessary which are beyond the scope of this work.

III. Analysis of the Frequency Normalization and
Self-Adaptive Scheme

Before deriving our new formulation, we start by investigat-
ing the influence of the different quasi-Helmholtz components
of j on the scattered or radiated near and far fields.

A. Relevant Current Components
To assess the influence of a current component on the far

field (FF), we utilize the stabilized evaluation [28]

𝒆FF (𝒓) =
𝑁∑︁
𝑛=1

[
jsol,hsol

]
𝑛

∬
𝛤

𝒇 𝑛 (𝒓 ′) T
(
e−j𝒌 ·𝒓

′ − 1
)
d𝑆(𝒓 ′)

+
𝑁∑︁
𝑛=1

[jnsol]𝑛
∬

𝛤

𝒇 𝑛 (𝒓 ′) e−j𝒌 ·𝒓
′
d𝑆(𝒓 ′) , (12)

where T(·) denotes a Taylor series expansion around 𝒌 · 𝒓 = 0,
and we divided by a normalization factor −j𝑘e−j𝑘𝑟/(4π𝑟).
Since T(e−j𝒌 ·𝒓 − 1) = O(𝑘), the combined current component
jsol,hsol is scaled with an additional factor 𝑘 . Adopting the
notation O(𝑘𝑎) < O(𝑘𝑏) ⇔ 𝑎 < 𝑏, we consider jsol,hsol
relevant for the far-field computation if O(𝑘jsol,hsol) ≤ O(jnsol).
Likewise, jnsol is relevant for the far-field computation if
O(jnsol) ≤ O(𝑘jsol,hsol).
Analogously, we can determine if a current component is

relevant for the computation of the electric or the magnetic
near field (NF). In the case of the electric NF, we use its
stabilized evaluation

𝒆NF (𝒓) = −j
𝑁∑︁
𝑛=1

[jnsol]𝑛

(
𝑘

∬
𝛤

𝐺 𝒇 𝑛 (𝒓 ′) d𝑆(𝒓 ′)

+ 𝑘−1
∬

𝛤

∇′ · 𝒇 𝑛 (𝒓 ′)∇𝐺 d𝑆(𝒓 ′)
)

− j𝑘
𝑁∑︁
𝑛=1

[
jsol,hsol

]
𝑛

∬
𝛤

𝐺 𝒇 𝑛 (𝒓 ′) d𝑆(𝒓 ′) , (13)

which introduces a scaling of jsol,hsol with 𝑘 and of jnsol with
1/𝑘 . In the case of the magnetic NF evaluation, both current
components are weighed identically.
As an example, consider a plane-wave excitation, where we

have ∥jsol,hsol∥ = O(1) and ∥jnsol∥ = O(𝑘): here, only jnsol
is relevant for the electric NF, only jsol,hsol is relevant for
the magnetic NF, but both current components are relevant
for the FF. Analogously, the relevant current components that
are required to recover the NFs and the FF can be derived
for the excitations shown in Table II, where we used the
physical current scalings given in [5], [29]. In addition, we
have included the cases of the spherical TE𝑚𝑛 and TM𝑚𝑛

modes (corresponding to the definitions in [30, pp. 325ff]
with 𝑛 ∈ {1, 2, . . . } and |𝑚 | ≤ 𝑛) based on the physically
correct scalings of the current components ∥jTE,sol,hsol∥ =

O(𝑘−(𝑛+1) ) and ∥jTE,nsol∥ = O(𝑘−(𝑛−1) ) for TE modes as well
as ∥jTM,sol,hsol∥ = O(𝑘−𝑛) and ∥jTM,nsol∥ = O(𝑘−𝑛) for TM
modes. The asymptotic scalings can be derived from the RHS
component scalings given in [10] and a Schur complement
analysis of j ′′ = T −1

ΛHΣ
QTeex (see also the following sections).
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Table II
Relevant current components required to recover NFs and FF for 𝑘 → 0.

plane wave Hertzian dipole el. ring current mag. dipole mag. ring current ind. gap cap. gap TE𝑚𝑛 TM𝑚𝑛

𝑒-NF jnsol jnsol jsol,hsol, jnsol jsol,hsol, jnsol jnsol jsol,hsol, jnsol jnsol jsol,hsol, jnsol jnsol
ℎ-NF jsol,hsol jsol,hsol, jnsol jsol,hsol jsol,hsol jsol,hsol, jnsol jsol,hsol jsol,hsol, jnsol jsol,hsol jsol,hsol, jnsol
FF jsol,hsol, jnsol jnsol jsol,hsol jsol,hsol jnsol jsol,hsol jnsol jsol,hsol jnsol

Clearly, for all of the excitations in Table II, both jnsol
and jsol,hsol must be recovered accurately if one desires to
compute both FF and NFs accurately. Even more, both current
components have to be recovered with a similar relative
accuracy as one component can solely determine the accuracy
of a field even though its magnitude might be small compared
to the other current component. To ensure accurate recovery,
we study, in a first step, the frequency scalings of the loop-star
decomposed system (6).

B. Self-Adaptive Normalization for Loop-Star Basis

As will be shown in the following, while for a plane-
wave excitation the normalization matrices in (6) can be
chosen as D1 = D2 = (1, 1, 𝑘) [2], D1 = D2 =

diag(1/
√
𝑘, 1/

√
𝑘,
√
𝑘) [5], or D1 = diag(1/𝑘, 1/𝑘, 1) and

D2 = diag(1, 1, 𝑘) [19], for arbitrary excitations this yields, in
general, wrong solutions; instead, a more flexible approach is
required. For the analysis, we useD𝑖 from (7), which allows for
an asymmetric normalization. Performing a Schur-complement
analysis for the inverse of D1TΛHΣD2 for 𝑘 → 0, we obtain


O

(
∥j ′sol∥

)
O

(
∥j ′hsol∥

)
O

(
∥j ′nsol∥

)

= (D1TΛHΣD2)−1


O

(
𝛼1 ∥esol∥

)
O

(
𝛾1 ∥ehsol∥

)
O

(
𝛽1 ∥ensol∥

)
 , (14)

where we note that O(∥j ′sol∥) = O(∥jΛ∥), O(∥j ′hsol∥) =

O(∥jH ∥), as well as O(∥j ′nsol∥) = O(∥jΣ ∥) since the multipli-
cation with the mapping matrices Λ, H, andΣ does not change
the scaling in 𝑘 . The blocks of the matrix (D1TΛHΣD2)−1
exhibit the scaling


O

(
1/(𝛼1𝛼2𝑘)

)
O

(
1/(𝛾1𝛼2𝑘)

)
O

(
𝑘/(𝛽1𝛼2)

)
O

(
1/(𝛼1𝛾2𝑘)

)
O

(
1/(𝛾1𝛾2𝑘)

)
O

(
𝑘/(𝛽1𝛾2)

)
O

(
𝑘/(𝛼1𝛽2)

)
O

(
𝑘/(𝛾1𝛽2)

)
O

(
𝑘/(𝛽1 𝛽2)

)
 , (15)

which is a direct generalization of the findings in [29]. In order
to obtain a well-conditioned matrix for 𝑘 → 0, we enforce
that the blocks on the main diagonal scale as O(1); thus, the
coefficients must obey

𝛼1𝛼2 = O(1/𝑘) , 𝛾1𝛾2 = O(1/𝑘) , (16)

and

𝛽1𝛽2 = O(𝑘) . (17)

Inserting (16) and (17) into (15) and forming the matrix-vector
product in (14) results in

O
(
∥j ′sol∥

)
O

(
∥j ′hsol∥

)
O

(
∥j ′nsol∥

)

=


O

(
𝛼1 ∥esol∥ + 𝛼1 ∥ehsol∥ + 𝛼1𝑘

2 ∥ensol∥
)

O
(
𝛾1 ∥esol∥ + 𝛾1 ∥ehsol∥ + 𝛾1𝑘

2 ∥ensol∥
)

O
(
𝛽1 ∥ensol∥ + 𝛽1 ∥esol∥ + 𝛽1 ∥ehsol∥

)

,

(18)
which shows that, dependant on the scalings of the incident
field, the Helmholtz components of j ′ will differ in their
asymptotic behavior in 𝑘 .
While the standard choices 𝛼1 = 𝛼2 = 𝛾1 = 𝛾2 = 1/

√
𝑘 and

𝛽1 = 𝛽2 =
√
𝑘 [5] or alternatively 𝛼1 = 𝛾1 = 1/𝑘 , 𝛽1 = 𝛼2 =

𝛾2 = 1, and 𝛽2 = 𝑘 [19] satisfy (16) and (17), the resulting
quasi-Helmholtz components of j ′ will, in general, not have the
same asymptotic scaling. Consequently, a large relative error
in one of the Helmholtz components remains undetected if, for
example, the relative residual error of D1QTeex−D1TΛHΣD2j ′
is studied (as done by typical iterative solvers for the LSE). As
noted, however, in Section III-A, all current components must
be recovered with a similar relative accuracy when solving (6)
in order to accurately compute all fields. These considerations
lead us to impose a second requirement on 𝛼𝑖 , 𝛾𝑖 , and 𝛽𝑖: all
current components should scale identically, where we, due to
the constraints of finite-precision arithmetic, opt for an O(1)-
type of scaling.
With the aim of satisfying this additional requirement, we

first note that the scalings derived in (18) show that the
solenoidal components associated with the local and the ones
associated with the global loops can be treated identically.
Consequently, in all of the following, we set

𝛾𝑖 = 𝛼𝑖 , (19)

and define

∥esol,hsol∥ =
√︁
∥esol∥2 + ∥ehsol∥2 . (20)

Moreover, we introduce the ratio of the norms of the solenoidal
components over the non-solenoidal component

𝑤 = ∥esol,hsol∥/∥ensol∥ . (21)

Excluding the trivial case ∥esol,hsol∥ = ∥ensol∥ = 0, the scalings
in (18) then dictate

𝛼1 =


1/∥esol,hsol∥ for 𝑤 ≤ O(𝑘2)
1/(𝑘2 ∥ensol∥) for 𝑤 > O(𝑘2)

(22)

and

𝛽1 =


1/∥ensol∥ for 𝑤 ≥ O(1)
1/∥esol,hsol∥ for 𝑤 < O(1)

. (23)
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Note that the case 𝑤 > O(𝑘2) includes ∥esol,hsol∥ = 0 when
interpreting it as the result of 𝑤 → 0 and the case 𝑤 < O(1)
includes the case ∥ensol∥ = 0 when interpreting it as the result
of 𝑤 → ∞. Moreover, definition (20) covers also the cases
where O(∥esol∥) ≠ O(∥ehsol∥) including the cases where not
both but either esol or ehsol vanishes (e.g., as encountered for
gap excitations).
Together with (16) and (17) for the remaining coefficients,

we find
𝛼2 = 1/(𝑘𝛼1) and 𝛽2 = 𝑘/𝛽1 , (24)

arriving at a scheme that adapts itself to the incident field
based on the norms of the RHS components. Hence, there is
no need to have a-priori information about the nature of the
incident field.

C. Quasi-Helmholtz Projector Normalization Factors
When employing the quasi-Helmholtz projector stabilized

system (10) instead of the loop-star decomposition, the very
same normalization factors (22)-(24) can be employed3 with
the corresponding definitions for esol,hsol and ensol. This fol-
lows from the intrinsic relation to the loop-star decompo-
sition, that is, P1TP2 = QND1TΛHΣD2NQ

T with N =

diag((ΛTΛ)+, (HTH)+, (ΣTΣ)+). However, it should be veri-
fied that 𝛼𝑖 and 𝛽𝑖 in (9) properly take care of another aspect
only relevant for the projectors: since solenoidal and non-
solenoidal components are stored in the same vector, that is,
j ′ = j ′sol,hsol + j

′
nsol and P1e

ex = e ′sol,hsol + e
′
nsol, significant digits

can be lost if the asymptotic scaling in 𝑘 of j ′sol,hsol and j
′
nsol

(or e ′sol,hsol and e
′
nsol) is different. This is precisely the reason

why an imaginary constant was included in the definition of
the projectors in [5], where P1 = P2 = PΛH/

√
𝑘 + j

√
𝑘PΣ was

employed. Due to the imaginary constant, for example, for the
inductive gap excitation the dominant contribution of j ′sol,hsol
was stored in the imaginary part and the dominant contribution
of j ′nsol in the real part of j

′, where we consider a component as
dominant if its asymptotic behavior O(𝑘𝑎) < O(𝑘𝑏) with 𝑘𝑏

as the scaling for the other component.4 This approach relies
on the circumstance that real and imaginary part of each quasi-
Helmholtz component often exhibit a different asymptotic
scaling, so that, in fact, only one of the parts is relevant
for an accurate field computation in low-frequency scenarios.
However, using the factors 𝛼𝑖 and 𝛽𝑖 as defined in (22)-(24)
for P𝑖 , the inclusion of an imaginary constant is in the first
place no longer necessary.
In order to illustrate this problem of the significant digits

in more detail, we consider the physical frequency scalings of
the RHS for seven different types of excitations. Those can be
derived as shown in Appendix A, where the findings of [29]
are generalized, resulting in the first three rows of Table III.
Note that in contrast to the analysis so far, we study now real
and imaginary part separately to show that indeed no dominant
contribution is lost. The scalings show that directly storing the
components in one vector would lead to a loss of significant

3Note that due to (19) there is no need to split PΛH into PΛ and PH .
4For the actual recovery of the relevant current components, the normal-

ization of [5] of course requires an ad-hoc technique, which is avoided by the
here proposed approach.

𝑧

𝑥

𝑦

Fig. 1. Double torus with 𝑁𝐻 = 4 global loops: each torus with outer radius
1m and inner radius 0.5m. Second torus at 𝑥 = 1.55m. Discretized by 848
triangles and 1272 RWGs.

digits for a Hertzian dipole or a magnetic ring current exci-
tation, since the solenoidal components scale differently than
the non-solenoidal components. The next three rows show the
scalings using the standard normalization from [5]. Here the
real and the imaginary part of the non-solenoidal components
are interchanged, which allows to store the components in
one vector for all the considered excitations. However, for the
excitation by spherical TE and TM modes, this approach fails
as shown by Table IV. Both, real and imaginary part have
the same asymptotic scaling such that none can be neglected.
At the same time, the here proposed normalization shown in
the last rows (of Table III and Table IV) works independently
of the specific scalings of the RHS and without introducing
an imaginary constant, since it does not rely on storing one
dominant component in the real and the other in the imaginary
part: each dominant component is normalized to scale as O(1),
and thus, they can be added without the danger of losing
significant digits.
To complete the picture, we study also the scalings of the

solution current components in Table V: the first three rows
show the physical scalings as obtained by separately handling
real and imaginary part in (14). Evidently, storing the physical
current components in one vector fails for the electric ring
current, the magnetic (Fitzgerald) dipole, and the inductive gap
excitation. From j = jsol,hsol + jnsol = P2j ′ = 𝛼2j

′
sol,hsol + 𝛽2j

′
nsol,

it can be seen that the solution current of the preconditioned
LSE scales as

j ′sol,hsol = jsol,hsol/𝛼2 and j ′nsol = jnsol/𝛽2 . (25)

Using the normalization from [5], rows two to six in Table V
show that, at least for the considered excitations, all current
components can be stored in one vector. However, again
for the TE𝑚𝑛 and TM𝑚𝑛 modes this fails as, for example,
∥jTE,sol,hsol∥★ = O(𝑘−(𝑛+1) ) + jO(𝑘−(𝑛+1) ) and ∥jTE,nsol∥★ =

O(𝑘−(𝑛−1) ) + jO(𝑘−(𝑛−1) ). Even more, for all the excitations
(except for the plane wave) the dominant components of
the current still scale differently, hinting that they cannot be
recovered with a similar relative accuracy in a straightforward
manner but an ad-hoc technique is required. This can be
avoided when the proposed normalization scheme is employed
as shown in the last three rows.
As an example of which current components can be re-

covered, we consider the double torus in Fig. 1 excited by a
magnetic diople. Real and imaginary part of the determined
current components are depicted in Fig. 2 (a) for the standard
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Table III
Scaling of real and imaginary part of the RHS components for 𝑘 → 0 with ∥a ∥★ = ∥Re {a} ∥ + j∥Im {a} ∥.

plane wave Hertzian dipole el. ring current mag. dipole mag. ring current ind. gap cap. gap

∥esol ∥★ O(𝑘2) + jO(𝑘) O (𝑘4) + jO(𝑘) O (𝑘4) + jO(𝑘) O (1) + jO(𝑘3) O (𝑘2) + jO(𝑘5) 0 + j0 0 + j0
∥ehsol ∥★ O(𝑘2) + jO(𝑘) O (𝑘4) + jO(𝑘) O (𝑘4) + jO(𝑘) O (1) + jO(𝑘3) O (𝑘2) + jO(𝑘5) O (1) + j0 0 + j0
∥ensol ∥★ O(1) + jO(𝑘) O (𝑘2) + jO(1/𝑘) O (𝑘4) + jO(𝑘) O (1) + jO(𝑘3) O (1) + jO(𝑘3) O (1) + j0 O(1) + j0

1/
√
𝑘 ∥esol ∥★ O(𝑘3/2) + jO(𝑘1/2) O (𝑘7/2) + jO(𝑘1/2) O (𝑘7/2) + jO(𝑘1/2) O (𝑘−1/2) + jO(𝑘5/2) O (𝑘3/2) + jO(𝑘9/2) 0 + j0 0 + j0

1/
√
𝑘 ∥ehsol ∥★ O(𝑘3/2) + jO(𝑘1/2) O (𝑘7/2) + jO(𝑘1/2) O (𝑘7/2) + jO(𝑘1/2) O (𝑘−1/2) + jO(𝑘5/2) O (𝑘3/2) + jO(𝑘9/2) O (𝑘−1/2) + j0 0 + j0

j
√
𝑘 ∥ensol ∥★ O(𝑘3/2) + jO(𝑘1/2) O (𝑘−1/2) + jO(𝑘5/2) O (𝑘3/2) + jO(𝑘9/2) O (𝑘7/2) + jO(𝑘1/2) O (𝑘7/2) + jO(𝑘1/2) 0 + jO(𝑘1/2) 0 + jO(𝑘1/2)

𝛼1 ∥esol ∥★ O(𝑘) + jO(1) O (𝑘3) + jO(1) O (𝑘3) + jO(1) O (1) + jO(𝑘3) O (1) + jO(𝑘3) 0 + j0 0 + j0
𝛼1 ∥ehsol ∥★ O(𝑘) + jO(1) O (𝑘3) + jO(1) O (𝑘3) + jO(1) O (1) + jO(𝑘3) O (1) + jO(𝑘3) O (1) + j0 0 + j0
𝛽1 ∥ensol ∥★ O(1) + jO(𝑘) O (𝑘3) + jO(1) O (𝑘3) + jO(1) O (1) + jO(𝑘3) O (1) + jO(𝑘3) O (1) + j0 O(1) + j0

Table IV
Scaling of real and imaginary part of the RHS components for 𝑘 → 0

with ∥a ∥★ = ∥Re {a} ∥ + j∥Im {a} ∥.

TE𝑚𝑛 TM𝑚𝑛

∥esol,hsol ∥★ O(𝑘−𝑛) + jO(𝑘−𝑛) O (𝑘−(𝑛−1) ) + jO(𝑘−(𝑛−1) )
∥ensol ∥★ O(𝑘−𝑛) + jO(𝑘−𝑛) O (𝑘−(𝑛+1) ) + jO(𝑘−(𝑛+1) )

1/
√
𝑘 ∥esol,hsol ∥★ O(𝑘−𝑛−1/2) + jO(𝑘−𝑛−1/2) O (𝑘−(𝑛−1/2) ) + jO(𝑘−(𝑛−1/2) )
j
√
𝑘 ∥ensol ∥★ O(𝑘−𝑛+1/2) + jO(𝑘−𝑛+1/2) O (𝑘−(𝑛+1/2) ) + jO(𝑘−(𝑛+1/2) )

𝛼1 ∥esol,hsol ∥★ O(1) + jO(1) O (1) + jO(1)
𝛽1 ∥ensol ∥★ O(1) + jO(1) O (1) + jO(1)

normalization and in Fig. 2 (b) for the proposed normalization.
In order to ensure a high accuracy, a direct solver is employed.
While the standard normalization, at first glance, seems to ap-
proximate the theoretical scalings (indicated by dashed lines)
better, only the adaptive normalization maintains the correct
scalings of the dominant components for all frequencies. This
is, however, the decisive property. The worse agreement of
the non-dominant components is not relevant for the resulting
fields as the non-dominant components are (in this case 13)
orders of magnitude smaller than the dominant components.
A similar behavior can be observed for an excitation by an
electric ring current as shown in Fig. 2 (c) and (d), which
confirms, again, the preceding analysis.

IV. Eigenvalue Distribution and Implementation Details
The definition of the normalization constants 𝛼𝑖 and 𝛽𝑖

in (22)-(24) allows for two more improvements leading typi-
cally to faster convergence of iterative solvers. By reintroduc-
ing an imaginary constant j and a constant 𝐶 (to be defined for
the loop-star basis and the quasi-Helmholtz projectors, respec-
tively, in the following subsections), we ultimately propose to
choose the normalization factors

𝛼1 =


√︁
−j𝐶/∥esol,hsol∥ for ∥esol,hsol∥ ≠ 0 ,√︁
−j𝐶/(𝑘2 ∥ensol∥) for ∥esol,hsol∥ = 0 ,

(26)

and

𝛽1 =


1/(

√︁
−j𝐶∥ensol∥) for ∥ensol∥ ≠ 0 ,

1/(
√︁
−j𝐶 ∥esol,hsol∥) for ∥ensol∥ = 0 ,

(27)

where the simplified conditions for the case distinctions (not
involving 𝑤) are sufficient for practical purposes as will be

Re {jsol} Re {jnsol}
Im {jsol} Im {jnsol}

magnetic dipole

10−20 10−10 100 108
10−60

10−17

1026

5 in Hz

‖ j
‖

:

:2
:4

(a) standard normalization

10−20 10−10 100 108

5 in Hz

:

:2
:4

(b) adaptive normalization

magnetic ring current

10−20 10−10 100 108
10−90

10−45

100

5 in

‖ j
‖

:2
:3

:5

(c) standard normalization

10−20 10−10 100 108

5 in

:2

:3
:5

(d) adaptive normalization

Fig. 2. Scaling of real and imaginary part of the recovered current components
for a double torus excited by a magnetic dipole and ring current.

detailed in the following section. Together with (16) and (17),
we then find for the remaining coefficients

𝛼2 = 𝐶/(j𝑘𝛼1) and 𝛽2 = j𝑘/(𝐶𝛽1) , (28)

where still (19) is employed for the 𝛾𝑖 in the context of the
loop-star decomposition. The motivation for these modifica-
tions will again be discussed first for the loop-star decompo-
sition and then for the quasi-Helmholtz projectors.

A. On the Simplification of the Conditions to be Checked
The suggested simplified conditions for the case distinctions

in (26) and (27) are based on the observation, that except for
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Table V
Scaling of real and imaginary part of the current components for 𝑘 → 0 with ∥a ∥★ = ∥Re {a} ∥ + j∥Im {a} ∥.

plane wave Hertzian dipole el. ring current mag. dipole mag. ring current ind. gap cap. gap

∥jsol ∥★ O(1) + jO(𝑘) O (1) + jO(𝑘3) O (1) + jO(𝑘3) O (𝑘2) + jO(1/𝑘) O (𝑘4) + jO(𝑘) O (𝑘2) + jO(1/𝑘) O (𝑘4) + jO(𝑘)
∥jhsol ∥★ O(1) + jO(𝑘) O (1) + jO(𝑘3) O (1) + jO(𝑘3) O (𝑘2) + jO(1/𝑘) O (𝑘4) + jO(𝑘) O (𝑘2) + jO(1/𝑘) O (𝑘4) + jO(𝑘)
∥jnsol ∥★ O(𝑘2) + jO(𝑘) O (1) + jO(𝑘3) O (𝑘2) + jO(𝑘5) O (𝑘4) + jO(𝑘) O (𝑘4) + jO(𝑘) O (𝑘4) + jO(𝑘) O (𝑘4) + jO(𝑘)

∥jsol ∥★
√
𝑘 O(𝑘1/2) + jO(𝑘3/2) O (𝑘1/2) + jO(𝑘7/2) O (𝑘1/2) + jO(𝑘7/2) O (𝑘5/2) + jO(𝑘−1/2) O (𝑘9/2) + jO(𝑘3/2) O (𝑘5/2) + jO(𝑘−1/2) O (𝑘9/2) + jO(𝑘3/2)

∥jhsol ∥★
√
𝑘 O(𝑘1/2) + jO(𝑘3/2) O (𝑘1/2) + jO(𝑘7/2) O (𝑘1/2) + jO(𝑘7/2) O (𝑘5/2) + jO(𝑘−1/2) O (𝑘9/2) + jO(𝑘3/2) O (𝑘5/2) + jO(𝑘−1/2) O (𝑘9/2) + jO(𝑘3/2)

∥jnsol ∥★j/
√
𝑘 O(𝑘1/2) + jO(𝑘3/2) O (𝑘5/2) + jO(𝑘−1/2) O (𝑘9/2) + jO(𝑘3/2) O (𝑘1/2) + jO(𝑘7/2) O (𝑘1/2) + jO(𝑘7/2) O (𝑘1/2) + jO(𝑘7/2) O (𝑘1/2) + jO(𝑘7/2)

∥jsol ∥★/𝛼2 O(1) + jO(𝑘) O (1) + jO(𝑘3) O (1) + jO(𝑘3) O (𝑘3) + jO(1) O (𝑘3) + jO(1) O (𝑘3) + jO(1) O (𝑘3) + jO(1)
∥jhsol ∥★/𝛼2 O(1) + jO(𝑘) O (1) + jO(𝑘3) O (1) + jO(𝑘3) O (𝑘3) + jO(1) O (𝑘3) + jO(1) O (𝑘3) + jO(1) O (𝑘3) + jO(1)
∥jnsol ∥★/𝛽2 O(𝑘) + jO(1) O (1) + jO(𝑘3) O (1) + jO(𝑘3) O (𝑘3) + jO(1) O (𝑘3) + jO(1) O (𝑘3) + jO(1) O (𝑘3) + jO(1)

the capacitive gap excitation for all standard excitations listed
in Table III, the ratio in (21) satisfies

O(1) ≤ 𝑤 ≤ O(𝑘2) (29)

as can be seen from the first three rows. The capacitive gap
excitation, on the other hand, is accounted for by the case
∥esol,hsol∥ = 0. Even when combining arbitrary TE𝑚𝑛 and
TM𝑚𝑛 modes with arbitrary orders 𝑛, the relation (29) is
satisfied with the sole exception when 𝛤 is a sphere placed
in the origin, all shown in Appendix B. In this particular
case, ∥eTM,sol∥ = 0. Consequently, if no other excitations
than the ones listed are present, the case distinctions only
require to check whether one of the norms is zero. For cases
not covered by (29), the more general conditions on 𝑤 given
in (22) and (23) can be checked by evaluating the norms at
least at two frequencies.

B. Loop-Star Decomposition
The idea of introducing the constant 𝐶 in (26) and (27) is

to improve the overall condition number of the system matrix.
Choosing it similar to the one suggested in [28] as

𝐶 =

√︄
𝑘 ∥ΣTTΣ∥

∥ [Λ H]TTA [Λ H] ∥
(30)

enforces an equal contribution of the scalar and the vector
potential. The matrix norms in this expression can be deter-
mined efficiently as ∥Υ ∥ =

√︁
_max (ΥHΥ ) for a square matrix

Υ with _max (ΥHΥ ) denoting the largest eigenvalue of ΥHΥ .
This eigenvalue can be estimated, for example, via a few
Arnoldi iterations or the power iteration method (which are
both compatible with matrix-free methods) [31], [32].
The factor j, on the other hand, causes D1TΛHΣD2 to have

only positive eigenvalues in the static limit: For O(1) ≤ 𝑤 ≤
O(𝑘2), the matrix D1TΛHΣD2 exhibits the block structure[

A𝑁𝛬𝐻×𝑁𝛬𝐻
B𝑁𝛬𝐻×𝑁𝛴

C𝑁𝛴×𝑁𝛬𝐻
D𝑁𝛴×𝑁𝛴

]
=

[
O(1) O(𝑘2/𝑤)
O(𝑤) O(1)

]
, (31)

with 𝑁𝛬𝐻 = 𝑁𝛬 + 𝑁𝐻 and where

𝑤 = O(𝑘a) . (32)

In order for C not to vanish in the static limit, a ≤ 0 has to
hold. For B not to vanish, on the other hand, a ≥ 2 has to hold.

Since both conditions cannot be satisfied at the same time, ei-
ther C or B or both vanish for 𝑘 → 0 independent of the RHS.
For the case 𝑤 > O(𝑘2), we find B = O(1) and C = O(𝑘2),
and for the case 𝑤 < O(1), we find B = O(𝑘2) and C = O(1).
Thus, for all possible excitation scalings,D1TΛHΣD2 is at least
block triangular (if not block diagonal). In consequence, for the
determinant det(D1TΛHΣD2) = det(A) det(D) holds, which
shows that the eigenvalues are solely determined by A and D.
As A and D are known to have positive eigenvalues [33], so
does D1TΛHΣD2 (for 𝑘 → 0). This property is, in general,
beneficial as it leads to faster convergence for typical Krylov
subspace methods [34, pp. 205ff].

C. Quasi-Helmholtz Projectors
Similarly, for the quasi-Helmholtz projectors, we intro-

duce [28]

𝐶 =

√︄
∥TΦ∥

∥PΛHTAPΛH ∥
(33)

to improve the overall condition number. Since the imaginary
constants were demonstrated to be irrelevant for the significant
digits in Section III-C (due to the new normalization scheme),
imaginary constants can again be placed to improve the eigen-
value distribution. That this leads to a positive eigenvalues
in the static limit also for the quasi-Helmholtz projected
EFIE, can be shown by using the block triangular nature
of D1TΛHΣD2 for 𝑘 → 0 as starting point. Defining the
matrix G = [Λ(ΛTΛ)−1/2 HT (HTH)−1/2 Σ (ΣTΣ)−1/2] and
the matrix G𝑖 = GD𝑖 , the matrix GT1 TG2 is also block
triangular with positive eigenvalues. Furthermore, we have
P1TP2 = GGT1 TG2G

T, which allows to deduce properties
about the eigenvalues _𝑖 of P1TP2. Due to the proper-
ties of similarity transforms, we have for the eigenvalues
_𝑖 (GGT1 TG2G

T) = _𝑖 (GTGGT1 TG2G
TG−T) for 𝑖 = 1, . . . , 𝑁 .

Using GTG = I and GTG−T = I, we find

_𝑖 (P1TP2) = _𝑖 (GT1 TG2) ∀𝑖 = 1, . . . , 𝑁, (34)

from which the positive eigenvalues of P1TP2 follow
for 𝑘 → 0.
In order to illustrate the impact, the eigenvalues _𝑖 of the

projected matrix P1TP2 for the example of the double torus in
Fig. 1 are shown in Fig. 3. Only if the imaginary constant is in-
cluded, we have Re {_𝑖} > 0 and Im {_𝑖} is close to being zero.
If the frequency is decreased further down to the kHz region as
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Fig. 3. Eigenvalues _ of the projected matrix of a double torus at 10MHz
(a) without and (b) with imaginary constants.
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Fig. 4. Eigenvalues _ of the projected matrix of a double torus at 1 kHz (a)
without and (b) with imaginary constants.

depicted in Fig. 4, we see that the clustering on the real axis
increases further. The influence on the number of iterations
for the generalized minimum residual (GMRES) [35], the
induced dimension reduction (IDR) [36], and the stabilized bi-
conjugate gradient (BiCGstab) [37] algorithm are summarized
in Table VI for the case that the double torus is excited by
a Hertzian dipole and a relative residual of 𝜖res = 1 × 10−6
as stopping criterion. Clearly, the iteration count (reflected by
the number of matrix-vector products) is reduced if either the
imaginary constant or the constant 𝐶 is included. The best
result is obtained if both constants are used simultaneously as
is done in the proposed formulation.

V. Numerical Results
To demonstrate the impact of the frequency normalization

on the accuracy of the computed scattered and radiated fields,
several scenarios are investigated. To this end, we employ the
quasi-Helmholtz projectors and compare the standard choice
of scaling coefficients, 𝛼1 = 𝛼2 =

√︁
𝐶/𝑘 and 𝛽1 = 𝛽2 = j

√︁
𝑘/𝐶,

where we have included the constant 𝐶 for a fairer comparison
with the adaptive ones in (26) and (27). Again, if not stated
otherwise, a GMRES solver is used without restarts and a
relative residual of 𝜖res = 1 × 10−6 as stopping criterion. For
the RHS stabilization the approach of [10] is employed and in
order to accelerate the computation, an adaptive cross approx-
imation (ACA) algorithm is used [38], [39] with compression
rate 1 × 10−4. The relative worst-case errors

ℵ = max
𝜗,𝜑

20 log
��𝑎(𝜗, 𝜑) −𝑎(𝜗, 𝜑)��
max
𝜗,𝜑

��𝑎(𝜗, 𝜑)��
 , (35)

Table VI
Number of matrix-vector products for a double torus excited by a
Hertzian dipole with and without the inclusion of

√︁
j𝐶 in (22) and (23).

solver 𝑓
loop-star projector

none
√︁
j

√
𝐶

√︁
j𝐶 none

√︁
j

√
𝐶

√︁
j𝐶

10MHz 945 761 1140 421 206 171 169 43
GMRES 1 kHz 945 761 1140 420 206 170 168 43

1Hz 945 761 1140 420 206 170 168 43

10MHz 7843 1186 2984 498 263 207 213 49
IDR(8) 1 kHz 8895 1119 2829 499 299 198 213 48

1Hz 9220 1142 3294 481 301 203 228 50

10MHz - 1272 - 792 488 312 384 52
BiCGstab(2) 1 kHz - 1272 - 784 476 264 372 48

1Hz - 1272 - 808 508 296 384 52

G

H

Arc

j rc,mrc

I

jHD,mFD

(a) (b)

Fig. 5. Scattering from a sphere with radius 𝑟s = 1m (a) excitation with
dipoles and ring currents at position 𝑧 = 2m and radius 𝑟rc = 0.5m; (b)
discretized with 3214 triangles and 4821 RWGs.

with 𝑎 ∈
{
𝑒, ℎ, 𝑒FF

}
are computed based on a spherical 5° grid

and NF distances of 𝑟 = 8m.

A. Scattering from a Sphere
We start with scattering from the sphere shown in Fig. 5,

where series expansions are used as reference (see [40,
pp. 368 ff.] and [41] for implementation details). The results
for different excitations are depicted in Fig. 6. For a plane-wave
excitation, the standard normalization is sufficient to determine
all fields for the whole frequency range correctly. Figure 6 (b)
shows that the adaptive normalization maintains this property.
This is as expected: for the plane wave both schemes recover
all current components with a similar accuracy.
Considering next the excitation by a Hertzian dipole,

Fig. 6 (c) evidences that the adaptive frequency normalization
removes an otherwise occurring breakdown in accuracy of the
magnetic NF below 1MHz. That specifically the magnetic NF
is affected corresponds well with the preceding analysis (see
especially Section III-A): as an incorrect solenoidal current
component is recovered, only the magnetic NF is affected in
accordance with Table II. Also depicted is the accuracy of an
ad-hoc adaption technique using the projectors P = P1 = P2
from [5] with 𝛼1 = 𝛼2 =

√︁
𝐶/𝑘 and 𝛽1 = 𝛽2 = j

√︁
𝑘/𝐶. The

ad-hoc technique requires that two LSEs are solved. More pre-
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(c) Hertzian dipole
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(d) electric ring current
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(e) magnetic dipole
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(f) spherical mode TE11
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(g) spherical mode TM11
Fig. 6. Scattering from a sphere: worst case errors of the FF, the electric, and the magnetic NF, as well as the scaling of the current components.

cisely, as ∥Re {PTP }∥ ≪ ∥Im {PTP }∥ for low frequencies,
the two real valued systems −Im {PTP } Im {j ′} = Re {Peex}
and Im {PTP }Re {j ′} = Im {Peex} are solved. Depending
on the specific dominant components of the excitation (see
Table V) only Re {j ′} or Im {j ′} is used to determine jsol,hsol
and in an analogue fashion to determine jnsol. While this ap-
proach also removes the breakdown below 1MHz it introduces
a breakdown when going above that frequency.
A similar behavior is observed for the electric ring current

as depicted in Fig. 6 (d) and the magnetic dipole in Fig. 6 (e).
The errors in the current components correspond to the fields
as predicted in Table II, and only the adaptive normalization
(in addition to a stabilized RHS) fully removes the issues for
all fields and for arbitrarily low frequencies.
The same is true for the spherical mode excitations TE11

and TM11 as shown in Fig. 6 (f) and (g), respectively. Note
that the ad-hoc approach is not possible in this case but only
the adaptive normalization can overcome the problem.
As the analysis so far showed that the problem lies in

an insufficient accuracy of the solution components, another
investigation is conducted for the sphere excited by a magnetic
dipole: we vary the relative residual 𝜖res of the GMRES solver.
In this numerical experiment, the ACA is not used and we em-
ploy 𝐶 = 1 (to emphasize the effect of the residual). The results
for the standard normalization in Fig. 7 (a) reveal that indeed
by lowering the residual, the breakdown can be shifted to lower
frequencies. However, even when employing a direct solver
(LU-decomposition), the breakdown cannot be fully avoided.
For large problems, iterative solvers become the only option;
a typical choice for 𝜖res is around 1 × 10−3 to 1 × 10−4. This
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Fig. 7. Scattering from a sphere excited by a magnetic dipole using the standard and the adaptive frequency normalization employing different solvers: an
LU-decomposition and GMRES with different relative residuals 𝜖res. Only the electric NF error is shown, no ACA is employed and 𝐶 = 1.
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(a) plane wave
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Fig. 8. Scattering from a double torus: worst case errors of the FF, the electric, and the magnetic NF, as well as the scaling of the current components for
different excitations. The HD is placed at 𝑥 = 0.8m and no ACA is used.

underlines the importance for using an adaptive normalization
as shown in Fig. 7 (b), where we see that the error in the
solution is dominated by the geometric approximation and
discretization and not by the stopping criterion. Furthermore,
the number of iterations remains constant when decreasing
the frequency, whereas the iteration count for the standard
normalization decreases with decreasing frequency: with the
standard normalization only the solenoidal component is re-
covered, however, not the non-solenoidal component. Hence,
the iterative solver only determines a part of the unknowns
sufficiently accurately, but stops too early for the remaining
unknowns resulting in the erroneous electric NF. Also note
that separate residuals for solenoidal and non-solenoidal com-
ponents are not possible (as the non-solenoidal component of
the RHS depends on all current components) and if so, would
lead to longer convergence times. Similarly, real and imaginary
part of the RHS depend each on the real and the imaginary
part of the current, thus, preventing a separate residual for real
and imaginary part of the current without an approximation.

Fig. 9. Model of a Fokker Dr.I with an approximate wingspan of 7m. The
model is discretized with 196 280 triangles and 294 420 RWGs.

B. Scattering from Multiply-Connected Geometries
To validate our formulation also for multiply-connected

geometries, we consider the double torus in Fig. 1 for a plane-
wave and a Hertzian dipole excitation. The results in Fig. 8
demonstrate the effectiveness of our approach.
The results for the (PEC) model of a Fokker Dr.I shown in

Fig. 9 excited by a Hertzian dipole in Fig. 10 highlight again
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Fig. 10. Scattering from the model of a Fokker Dr.I excited by a Hertzian
dipole.
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Fig. 11. Inductive and capacitive structure excited by voltage gaps (location
highlighted in blue) (a) along positive 𝑦-axis and (b) in 𝑥𝑦-plane.

that the breakdown in accuracy can occur at relatively high
frequencies but is fully overcome by the proposed scheme.

C. Inductive and Capacitive Gap Excitation
As a last example, we consider the voltage gap excitation of

the capacitive and the inductive structure depicted in Fig. 11.
The capacitive structure consist of two plates of size 1m ×
1m separated by 0.01m, where the non-uniformity of the
mesh originates from the small size of the strip connecting the
two plates. The inductive structure is a 1m × 1m ring with
0.25m width. A comparison to the radiated fields when using
the standard normalization is shown in Fig. 12. Clearly, for
both structures only the adaptive scheme yields the physically
correct scalings of the current components as given in Table V.
For the inductive structure, the non-solenoidal current is incor-
rect resulting in a difference in the electric NF. Dually, for the
capacitive structure, the solenoidal current is incorrect result-
ing in a difference in the magnetic NF, all in accordance with
Table II. The determined inductivity of 964.3 nH agrees well
with the 962.5 nH from a quasistatic simulation in Computer
Simulation Technology Microwave Studio (CST MWS) [42].
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Fig. 12. Radiation from an inductive and a capacitive structure excited by
a voltage gap excitation: comparison between the standard and the adaptive
normalization scheme.

Analogously, the determined capacitance of 918.05 pF agrees
well with the 917.65 pF from an electrostatic simulation in
CST MWS.

VI. Conclusion
We have shown that scaling coefficients in the quasi-

Helmholtz preconditioners, which lead to a well-conditioned
impedance matrix, do not necessarily lead to current solutions
that allow an accurate determination of all fields. In fact,
despite a well-conditioned matrix, the current components are
in general solved for with different relative accuracies, which
is for general excitations not sufficient. The numerical results
demonstrated that the proposed adaptive frequency normaliza-
tion method effectively resolves this effect for all excitations
considered and, thus, allows for the accurate computation of
near and far fields. In fact, depending on the structure and the
specific excitation, standard approaches lead to inaccurately
computed fields already in the MHz region, whereas with the
proposed method, the scattered and radiated fields can be de-
termined correctly with an overall reduced number of iterations
down to the static limit. Given our theoretical considerations
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and the wide range of studied excitations, we conclude that
our method can stabilize the EFIE in the presence of arbitrary
excitations.

Appendix A
Right-Hand Side Scalings

In order to derive real and imaginary part of the solenoidal
and non-solenoidal components of the RHS for the excitations
in Table III (i.e., for 𝑘 → 0), the corresponding excitation
fields 𝒆ex are expressed via their currents 𝒋ex and 𝒎ex and the
Green’s function representation∬

𝛤

𝒕 · 𝒆ex d𝑆(𝒓) = −j𝜔`

∬
𝛤

𝒕 ·
∭

𝐺 𝒋ex d𝑉 (𝒓 ′) d𝑆(𝒓)

− j
𝑐`

𝜔

∬
𝛤

𝒕 ·
∭

∇′ · 𝒋ex∇𝐺 d𝑉 (𝒓 ′) d𝑆(𝒓)

+
∬

𝛤

𝒕 ·
∭

∇𝐺 × 𝒎ex d𝑉 (𝒓 ′) d𝑆(𝒓) (36)

using a Taylor series expansion of the Green’s function

𝐺 =
e−j𝑘𝑅

4π𝑅
=
1
4π𝑅

∞∑︁
𝑞=0

(−j𝑘𝑅)𝑞

𝑞!
(37)

with the distance 𝑅 = |𝒓 − 𝒓 ′ | between source point 𝒓 ′ and
observation point 𝒓 and a Taylor series expansion of the
gradient of the Green’s function

∇𝐺 =
𝑹

4π𝑅3
∞∑︁
𝑞=0

𝑞 − 1
𝑞!

(−j𝑘𝑅)𝑞 (38)

with 𝑹 = 𝒓− 𝒓 ′. We obtain the tabulated values by considering
that the scalar potential contribution vanishes when tested by
a solenoidal function, that is,∬

𝛤

𝒕·
∭

∇′· 𝒋ex∇𝐺 d𝑉 (𝒓 ′) d𝑆(𝒓) = 0 if ∇𝛤 ·𝒕 = 0 (39)

that a constant vector tested by a solenoidal function vanishes,
that is,∬

𝛤

𝒕 · 𝒄 d𝑆(𝒓 ′) = 0 if ∇𝛤 · 𝒕 = 0 and 𝒄 = const (40)

that a solenoidal excitation current tested by a solenoidal
function vanishes, that is,∬

𝛤

𝒕 ·
∭

𝒋ex d𝑉 (𝒓 ′) d𝑆(𝒓) = 0

if ∇𝛤 · 𝒕 = 0 and ∇ · 𝒋ex = 0 (41)

that [43]∬
𝛤

𝒕 ·
∭

𝑹

𝑅3
× 𝒎ex d𝑉 (𝒓 ′) d𝑆(𝒓) = 0

if ∇𝛤 · 𝒕 = 0 and ∇ · 𝒎ex = 0 (42)

and∬
𝛤

𝒕 ·
∭

𝑹 × 𝒎ex d𝑉 (𝒓 ′) d𝑆(𝒓) = 0

if ∇𝛤 · 𝒕 = 0 and ∇ · 𝒎ex = 0 . (43)

Appendix B
Scaling of TE and TM Modes

For a combination of TE𝑚𝑛 modes with largest appearing
order 𝑛 = 𝑁TE and TM𝑚𝑛 modes with largest appearing order
𝑛 = 𝑁TM, the ratio 𝑤 of solenoidal and non-solenoidal tested
field vectors scales as

𝑤 =
∥esol,hsol∥
∥ensol∥

=

O
(
𝑘−(𝑁TM−1) + 𝑘−𝑁TE

)
O

(
𝑘−(𝑁TM+1) + 𝑘−𝑁TE

) for 𝑘 → 0 . (44)

For 𝑁TE ≥ 𝑁TM + 1, we clearly have

𝑤 = O(1) . (45)

For 𝑁TE < 𝑁TM + 1 we have

𝑤 =

O
(
𝑘−(𝑁TM−1) + 𝑘−𝑁TE

)
O

(
𝑘−(𝑁TM+1)

) . (46)

In the case 𝑁TE = 𝑁TM, this leads to 𝑤 = O(𝑘) and for
all 𝑁TE = 𝑁TM − 𝑔 with 𝑔 ≥ 1, it leads to 𝑤 = O(𝑘2). In
consequence, we have

O(1) ≤ 𝑤 ≤ O(𝑘2) (47)

for all possible combinations of 𝑁TE and 𝑁TM.
For the special case of scattering from a sphere placed in

the origin, we have

𝑤 =
∥esol,hsol∥
∥ensol∥

=

(
𝑘−𝑁TE

)
O

(
𝑘−(𝑁TM+1) + 𝑘−𝑁TE

) . (48)

Again, for 𝑁TE ≥ 𝑁TM + 1, this leads to 𝑤 = O(1). On the
other hand, for 𝑁TE < 𝑁TM + 1, we have the case 𝑁TE = 𝑁TM
leading to 𝑤 = O(𝑘) and the cases where 𝑁TE = 𝑁TM−𝑔 with
𝑔 ≥ 1 resulting in

𝑤 = O
(
𝑘 (𝑔+1)

)
, (49)

which is a case not satisfying (47).
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