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Abstract: Cerebral palsy, the most common childhood neuromotor disorder, is often diagnosed
through visual assessment of general movements (GM) in infancy. This skill requires extensive
training and is thus difficult to implement on a large scale. Automated analysis of GM performed
using low-cost instrumentation in the home may be used to estimate quantitative metrics predictive of
movement disorders. This study explored if infants’ GM may be successfully evaluated in a familiar
environment by processing the 3D trajectories of points of interest (PoI) obtained from recordings of
a single commercial RGB-D sensor. The RGB videos were processed using an open-source markerless
motion tracking method which allowed the estimation of the 2D trajectories of the selected PoI and
a purposely developed method which allowed the reconstruction of their 3D trajectories making
use of the data recorded with the depth sensor. Eight infants’ GM were recorded in the home at 3,
4, and 5 months of age. Eight GM metrics proposed in the literature in addition to a novel metric
were estimated from the PoI trajectories at each timepoint. A pediatric neurologist and physiatrist
provided an overall clinical evaluation from infants’ video. Subsequently, a comparison between
metrics and clinical evaluation was performed. The results demonstrated that GM metrics may be
meaningfully estimated and potentially used for early identification of movement disorders.

Keywords: markerless; RGB-D; general movements; infant movement analysis; movement disorders

1. Introduction

Cerebral palsy (CP) is the clinical description given to a constellation of neuromotor
impairments stemming from perinatal brain injuries such as periventricular leukomalacia,
intracerebral hemorrhage, infection, and infant stroke [1]. A systematic review and meta-
analysis [2] estimated the worldwide prevalence of CP at 2.11 births per 1000. Subsequent
studies of various populations in Africa [3] Asia [4], and North America [5] suggest that
the prevalence of CP is on the rise, at a rate of more than three per 1000, a phenomenon
which may be due to the increasing likelihood of survival of early, preterm infants [6].
The average age for diagnosis of CP is 12–24 months in high-income countries and as late
as five years in less well-resourced countries [7]. There are many reasons for diagnostic
delay: the lack of definitive biomarkers for CP and definitive signs on traditional clinical
examination, reluctance to communicate what might be a false positive to parents and
triggering grief, uncertainty, and stigma, as well as the absence of curative treatments [8].
Arguably, the greatest boon to early identification of infants with CP has been the valida-
tion and dissemination of the general movement assessment, GMA. This instrument came
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into being as the understanding of the significance of infants’ spontaneous movements
increased during the latter decades of the 20th century [9,10]. Two patterns in particular,
predominantly cramped-synchronized movements and the absence of fidgety movements
at three to five months of age reliably predict a later finding of CP [11]. Despite the power
of the GMA in early identification, its key mechanism of gestalt pattern recognition (from
video) requires a significant investment in assessor training and validation [12], making
the GMA challenging to implement broadly across clinical practices. Early intervention
depends on early identification, which suggests the need for a widely disseminated screen-
ing process, which is not found in the current approach to delivering CP care [8]. Families
have been identified as the cornerstone of early intervention [13] and exploration of a
more integral role for families in neurodevelopmental monitoring and therapy may result
in earlier detection of developmental delays as well as earlier application of appropriate
therapies. Engagement of families of infants with CP whose early signs of impairment are
subtle may be particularly helpful given that these infants have been shown to be at greater
risk for not receiving early diagnosis and intervention than are more profoundly affected
infants [14]. Computationally assisted screening procedures likewise suggest a way to
manage the increased clinical workflow that would result from broader application of
neuromotor assessment among infants. Marker-based, multi-camera, 3D analysis of infant
movement has been used to detect both upper [15] and lower extremity movements [16]
correlated with GMA assessment of CP. Given that marker-based systems typically require
multiple cameras and a laboratory setting; an accurate and reliable markerless computer
vision approach that can be operationalized in either the home or clinic setting may make
screening more widely accessible. Markerless computer vision technology further preserves
the non-intrusive character of the GMA, leveraging, as does the GMA itself, video to assess
an infant’s movements unhampered by markers or other sensing devices [12].

Computer vision techniques to automate the analysis of infant movements captured
on 2D video have been under exploration for over a decade [17,18]. 3D recordings, however,
may provide added value through higher spatial resolution, depth information, and higher
accuracy and reliability; however, exploration has been limited by high technology cost
and computational overhead [19]. Markerless computer vision systems have the ability to
implement a kinematic model [20,21] and have been presented as a promising alternative
to marker-based systems [22].

Avoiding markers may be particularly appropriate in the case of infants where they
may be poorly tolerated and, as a result, introduce movement patterns that are not part of
the infant’s typical GM repertoire [12].

Some markerless systems have employed a multi-camera approach [23] but a more
accessible and practical solution is to use a single camera, which enhances portability and
makes it possible to carry out assessment in more confined spaces [24] such as the home or
clinic. Use of a commercial RGB-D sensor system that integrates an RGB camera with a
depth sensor in the same hardware is a promising approach.

Such an integrated system promises to help fill the current gap in infant movement
assessment by providing a low-cost, compact platform that can be implemented repeatedly
and longitudinally in the infant’s naturalistic environment, where movement repertoires
are most likely to characterize the actual behaviors of the infant [19].

RGB-D sensors have been used in upper limb rehabilitation for adult patients post-
stroke, as well as for analyzing balance recovery [25]. They have also been used in adult
Parkinson’s disease patients to evaluate upper limb tasks [26], gait, and postural stability [27,28].

The current study aimed at recording infants’ upper body movements with a single,
commercial RGB-D sensor; at tracking the 2D trajectories of selected points of interest (PoI)
leveraging DeepLabCut [29], a well-established, open-source deep learning algorithm for
pose estimation, i.e., generating 2D coordinates for tracked PoI; at obtaining the 3D PoI
trajectories by applying a newly developed method; and finally at extracting GM metrics
from the PoI 3D trajectories. This study proposes a novel method for assessing infants’ GM
that features a simplified instrumental setup, suitable for home (or clinic) use.
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This article presents in detail first the characteristics of the subjects involved and the
experimental setup utilized, then how data were processed distinguishing what was already
available from what was newly developed, and finally how GM metrics were obtained
from 3D PoI trajectories. In presenting the results obtained, the clinical evaluation of two
pediatric physicians with expertise in neurology and physiatry were taken into account.

2. Materials and Methods

The parents of eight infants recruited from the community volunteered to perform
video recordings of their babies at their home. Infants, sitting in a baby seat covered with
a green cloth to facilitate background exclusion during identification of infant PoI, were
positioned on the floor in front of an RGB camera with an integrated depth sensor. The
children’s natural movements were recorded for a target duration of three minutes at
three different timepoints (3, 4, and 5 months from birth).

Infants used the same, washable seat throughout testing across different timepoints for
consistency. Light conditions and interactions with humans were controlled to the degree
possible in a home environment replicating the most natural conditions and guaranteeing
the simplicity of the protocol.

Two expert physicians analyzed the recorded videos at each timepoint and were asked
to report if they observed any cause for concern in the development of the infants.

The camera used for the recordings was a commercial RGB-D sensor (Intel RealSense D435,
Intel, Santa Clara, CA, USA, combining a pre-calibrated RGB camera with 1280 × 720 native
resolution and frame rate of ∼30 fps with a depth sensor generating depth-coded images
with 640 × 480 native resolution and frame rate of ∼30 fps). Each pixel of the depth image
had an intensity proportional to the distance of the surfaces in the image from the camera.
Depth images were generated by the stereo vision of two infrared sensors mounted on the
device with the left sensor used as point of view. If a region is seen only by the left sensor,
the resulting depth image in that region remains black (“black area”). RGB and depth
images were pre-calibrated; however, a residual misalignment between the two remained.

The markerless motion tracking software used in this study was DeepLabCut (Swiss
Federal Institute of Technology, Lausanne, Switzerland) [29], an open-source toolkit for
pose estimation in which a training set of images is manually labeled and returns the
x, y coordinates of the tracked points along with a confidence level, varying from 0 (lowest
confidence) to 1 (maximum confidence). DeepLabCut provides a framework for supervised,
deep learning to tune an existing, high-performance convolutional neural network (ResNet,
Microsoft Research, Redmond, WA, USA) to the features of a specialized dataset to produce
a high level of recognition accuracy.

A sequence of steps was implemented to reconstruct the time series of the 3D coordi-
nates of the selected points from the recorded RGB-D videos and to extract the associated
GM metrics (Figure 1).

All blocks are explained in detail in the following sections.
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After the network was trained and validated, DeepLabCut provided the PoI posi-
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Figure 1. Block diagram of the proposed markerless-based method.

2.1. RGB and Depth Images Acquisition and Time Alignment Refinement

The images acquired with the RGB camera and the depth sensor required refinement
of the time alignment with respect to that obtained using the manufacturer’s proprietary
software, since neither frame rate is exactly constant. The timestamps provided by the
acquisition software were used for this purpose. Three alignment scenarios were, each of
them requiring a different countermeasure:

1. The timestamp of an RGB image was closer to one or more RGB image timestamps
than the closest depth image timestamp. Countermeasure: a gap of the proper number
of frames was inserted in the sequence of depth frames;

2. The timestamp of a depth image was closer to one or more depth image timestamps
than the closest RGB image timestamp. Countermeasure: a gap of the proper number
of frames is inserted in the sequence of RGB frames;

3. The difference between the RGB and depth image timestamp was less than half the
duration of the nominal sampling interval (<17 ms). The two frames were considered
time aligned.

All gaps generated were then filled by applying a cubic spline interpolation.

2.2. 2D Tracking Algorithm

RGB images were converted into video files using ImageJ (National Institute of Health,
Bethesda, MD, USA) [30] and fed to the DeepLabCut (Swiss Federal Institute of Technology,
Lausanne, Switzerland) image processing tool. The tracking software was trained to
identify six PoIs on the infant’s upper body: left and right shoulders (LS and RS), elbows
(LE and RE), and wrists (LW and RW). All PoIs were manually labeled on 10% of the video
frames (identified by DeepLabCut using a k-means algorithm that selected frames based
on pixel characteristic variability) to create a training set.

After the network was trained and validated, DeepLabCut provided the PoI positions
in all RGB frames, together with their confidence levels. When a PoI was occluded, its
position was provided with a low confidence level. A recognition network was trained
individually for each infant video to achieve the greatest possible accuracy prior to the
association of RGB and depth coordinates of PoI.
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2.3. Depth Reconstruction and 3D Coordinates Estimation

The 3D position of PoIs tracked in the RGB images was obtained by developing a
method which exploits the depth sensor recordings. The location in the depth image
corresponding to that of a tracked PoI in the concurrent RGB image was determined after
addressing the three possible causes of incorrect or undefined PoI 3D positions:

1. the RGB location of a tracked PoI falling over the “black area” in the corresponding
depth image, therefore lacking depth information (Figure 2a);

2. PoI occlusions corrupting the estimation of PoI 3D positions. Since the tracking
algorithm determines PoI locations exclusively from RGB information, the estimated
location of a PoI could fall over a body segment covering the PoI in the RGB image
(as when the head covers a shoulder). In such cases the estimate of the relevant
depth coordinate would be affected by an error equal to the distance, along the depth
direction, between the surfaces of the two body parts. To compensate for this error,
the prediction confidence level values provided by the tracking software were used.
The depth values obtained for frames with a confidence level lower than 0.6 were not
considered (Figure 2b);

3. a residual spatial misalignment between RGB and depth images causing errors in the
estimation of the tracked PoI depth coordinate. Such a misalignment is responsible
for errors in estimating depth coordinates when a tracked PoI is near a substantial
depth discontinuity (Figure 2c). To compensate for the consequences of this error, the
following procedure was implemented: the first derivative of the PoI depth coordinate
was calculated; when its value was higher than a threshold value set based on the
physical limits of the subject motion speed, the relevant depth value was removed.

All resulting depth coordinate gaps were then filled by applying a cubic spline interpolation.
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Figure 2. Issues causing undefined 3D PoI positions: (a) RS falling on the “black area”, (b) occlusion
of the LS from the head, and (c) residual spatial misalignment between RGB and depth images.
Subjects are made unidentifiable by using white patches. The coloured circles represent PoIs.

Finally, the identification of PoIs in the RGB images is conditioned by the way the PoI
area is seen by the camera. Depending on the RGB frame, a single PoI may be identified in
different areas of the infant’s body surface (Figure 3).
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Figure 3. (a) RE is identified in the middle between epicondyles and (b) RE is positioned on the
medial epicondyle. Subjects are made unidentifiable by using white patches. The coloured circles
represent PoIs.

The performance of the markerless method described above was evaluated both on a
physical model [31] as well as on real infants [32].

2.4. Kinematic Parameters and Metrics Estimation

From PoI 3D trajectories, the following metrics for quantifying GMs were estimated [16]:

• area in which the trajectories of the wrists differed from the moving average for the
same trajectories, normalized with respect to the length of the moving average window
(two seconds);

• area in which the trajectories of the wrists were outside of the standard deviation of the
moving average for the same trajectories, normalized with respect to the samples in
which the trajectories were outside the standard deviation (no information regarding
the normalization was provided in the reference work);

• periodicity in the wrist trajectories;
• area in which the speed profiles of the wrists differed from the moving average for the

velocity profiles, normalized with respect to the length of the moving average window
(2 s);

• area in which the speed profiles of the wrists were outside of the standard deviation
of the moving average for the velocity profiles, normalized with respect to the length
of the moving average window (2 s);

• periodicity in the wrist velocities;
• the skewness of the velocities of the wrists;
• the cross-correlation of accelerations between left and right wrists.

In addition, we estimated the range of motion (ROM) of the elbow angle (EA), defined
as the angle between the forearm segment and the upper arm segment.

To limit the influence of extended intervals of lack of upper limb movements to
the estimated parameters described above, bouts of activity were introduced. The time
intervals during which the infants’ wrists were moving were extracted from the rest of the
acquisition. Bouts were defined as intervals of time characterized by wrist speed higher
than a fixed threshold (5% of the wrist maximum velocity).

The blocks A, C, and D of Figure 1 were implemented in MATLAB R2021b (The
MathWorks Inc., Natick, MA, USA).

3. Results

The two expert physicians involved in the study evaluated the RGB videos of the
infants at 3, 4, and 5 months from birth to identify any features raising concern that an
infant might not be typically developing (TD). Not all videos were commented on, but
an overall evaluation of each infant was provided. The two physicians agreed that four
infants (S1, S5, S7, and S8) appeared to be TD, and that one infant (S2) did show signs
of possible atypical development. The physicians did not agree on the evaluation of the
remaining three infants (S3, S4, and S6). Table 1 provides a complete description of the
evaluations. The values of the nine GM metrics estimated from the upper body 3D PoI
kinematics obtained by applying the proposed markerless method are reported in Figure 4
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for each infant at each timepoint for left and right sides, both separately and together. To
link the clinical evaluation to the metrics extracted, the range defined by the values found
for those infants not suggesting atypical development was grayed in each plot.

Table 1. Report of the evaluation of the RGB videos performed by two expert physicians (A and B);
subjects not suggesting atypical development are grayed.

Sub# Clinician 3 Months 4 Months 5 Months

Overall Evaluation
No: Nothing Here Suggests the

Infant Is Not Developing Typically
Yes: I Did Observe Some Features

that Raise Concern

A - - - No
S1

B lots of midline gaze midline/R gaze but
toddler on R No

S2
A - -

Slow upper
limb movements;

no hands to mouth
and midline;
opens hands;

thumbs frequently
adducted

Yes

B Yes

S3
A - - - No

B Yes

S4

A - - - No

B

decreased fidgety
movements;

subtle R hand preference?
more fidgety movements

on R

decreased fidgety
movements;

subtle R hand preference?
more fidgety movements

on R

-
Yes

Lots of midline hand clasping and
midline gaze preference at all ages

A - - - No

S5
B - - -

No
Hands at midline;

great gen and fidgety movements

S6

A - - - No

B non social smile;
midline grasp

social smile; L fingers in
mouth 65% of video;

L fingers in mouth entire
video; no clear

fidgety movements
Yes

A - - - No

S7
B

Great visual attention;
great gen and

fidgety movements
- -

No
Grabbing toes; sucking on

fingers; social

A - - - No

S8
B - - -

No
Appears sleepy;

improved visual attention and
social engagement;

good general movements;
fingers or thumb in mouth
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Figure 4. Metrics obtained from wrist trajectories and velocities for each infant at each timepoint
(3, 4, and 5 months). Infants not suggesting atypical development to both physicians are identified
with circles, infants raising the concern of both physicians are identified with triangles, and infants
differently evaluated by the physicians are identified by squares. Infants not suggesting atypical
development define the gray interval at each time point.
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Figures 5 and 6 show the cross-correlation between left and right wrists accelerations
and the range of motion of the elbow angle for each subject at each timepoint (3, 4, and
5 months), respectively.
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Figure 7 shows the mean and standard deviation of the bout durations for each subject
at each timepoint (3, 4, and 5 months) together with the number of bouts and movement
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duration, calculated as percentage of the acquisition time. Infants not suggesting atypical
development (grayed) appeared to move their arms more than the other infants especially
at the 4 and 5 month time points.
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4. Discussion

The recording and the analysis of an infant’s upper body movements in a familiar
environment has been a difficult and challenging task due to both technological and envi-
ronmental factors. The technology used in previous studies has shown some limitations,
since it is normally developed for and applied to the analysis of adults’ or children’s move-
ments [33]. Markerless methods for the analysis of human motion have opened new possi-
bilities for movement analysis, although initially it was mainly in two dimensions [20,21,34].
The analysis of infants’ movements may benefit substantially from markerless methods
given the problems normally encountered in securely and safely positioning markers on
their small body segments.

The low cost RGB-D cameras currently available in the consumer electronics market
allow extending markerless techniques to 3D movement analysis without increasing the
complexity of the experimental setup, a factor that allows leverage of the technique in
environments outside the lab and promotes repeated measurement over time. The latter
observation is of primary importance when infants’ movements are studied. Sensorimotor
integration occurs rapidly in the first months of life through a process of activity-dependent
neuronal modeling [35]. More frequent, routinized monitoring of infants’ movement in the
convenient and familiar environment of the home increases the likelihood that infants who
display abnormal movement repertoires will be identified promptly and interventions to
prevent loss of neural connections and their specific functions instituted [7].

In this work we applied a markerless method to the RGB images recorded from a
commercial RGB-D camera and used selected upper body PoIs extracted from the RGB
video frames together with the recorded depth information to reconstruct 3D PoI kine-
matics [31] from which both some novel and already published metrics were calculated.
The metrics used in this study were originally proposed to quantify GM [16,36], given the
demonstrated power of GM assessment to predict the development of movement disorders
very early in infancy [11]. Notably, since the key requirement of our approach to infant
screening for neuromotor delay was that measurement be easily carried out in an informal
environment such as the home, we did not attempt to replicate the General Movements
Assessment in our protocol. For example, our infants were videoed in whatever attire their
parents had chosen for the temperature in their homes, they were seated in a standard
infant seat, versus lying supine, and videoed from the front using a commercial camera
tripod versus from overhead requiring a special, suspended camera apparatus. The shift
in infant posture likely caused the trends we calculated for GM parameters to vary from
those reported by [36] for infants from three to five months of age.

Due to the small size of our sample, it was not possible to conduct meaningful statis-
tical analyses. Rather, we describe visualized trends across three-, four-, and five-month
measurement timepoints. Refer to Figure 4 for plots of parameters 1–7, to Figure 5 for a
plot of parameter 8, and to Figure 6 for a plot of range of motion of the elbow angle. Table 2
summarizes the relationship between observed GM patterns and parameters, as well as
the expected fluctuation in parameter values from three to five months of age in both
TD and those later identified with CP. However, it should be noted that large differences
between TD and non-TD infants would not be expected in our sample, as there was no
documented injury that would have classified any of our non-TD infants as at-risk. In most
of the metrics, variability in the data made it difficult to compare to predictions. However,
in two metrics, trends were consistent with literature (described below).
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Table 2. Mapping of observed patterns of general movements at 3–5 months of age to kinematic
parameters. Adapted from ref. [16].

Metrics Movements

# Class Description Aspect
Observed

TD
Characteristics

Measured
TD

Characteristics

Observed
Non-TD

Characteristics

Measured
Non-TD

Characteristics

1 Trajectories

Area where wrist
trajectories differ
from the moving

average of the
same trajectories

Diversity and
Variability

Fluid and
congruent

No significant
change in area Chaotic

Area smaller than
TD, continues to

diminish

2 Trajectories

Area where wrist
trajectories of are
outside the SD of

the moving
average of the

same trajectories

Diversity and
Variability Multi-facetted

Smaller area, less
diversity at
3 months

(Increases after
5 months)

Poor-repertoire,
spastic

Area smaller than
TD, continues to

diminish

3 Trajectories Periodicity in the
wrist trajectories

Unpredictability
and

Complexity
Fidgety Periodicity

decreases with age Poor-repertoire Periodicity greater
than in TD

4 Velocities

Area where the
wrist speed profiles

differs from their
moving average

Diversity and
Variability

Fluid and
congruent

Area does not
change Chaotic Area decreases

5 Velocities

Area where the
wrist speed profiles
are outside the SD

of the moving
average the speed

profiles

Diversity and
Variability Fidgety Variation in

velocity is constant Cramped

Variation in
velocity

continuously
decreases

6 Velocities Periodicity in the
wrist velocities

Equability of
Velocity Fidgety Periodicity does

not change
Cramped or

chaotic
Periodicity does

not change

7 Velocities
Skewness of the

velocities of
the wrists

Velocity
Distribution of
the Movement

Slow, small in
amplitude

Skewness increases
with age Cramped, spastic

Skewness already
increased by

3 months relative
to TD

8 NA

The cross-
correlation of
accelerations

between left and
right wrists

Similarity and
Coordination
of Movement

Similar,
coordinated,
synchronous

Cross-correlation
increases

Dissimilar,
uncoordinated,
asynchronous

Cross-correlation
does not increase

The area where the wrist trajectory differs from the moving average of that same
trajectory is suggested to quantify the diversity and variability of GM with respect to
fluidity and congruence (metric #1). No significant change in the metric is expected from
three to five months of age in TD infants, while those who are not TD are expected to
exhibit smaller areas. Consistent with expectations, at four months, all infants about whom
at least one of the clinicians evaluating videos expressed concern (S2, S3, S4, and S6) had
smaller metric values relative to typical development (S1, S5, S7, and S8). The metric is
expected to continually decrease in non-TD infants during the three-to-five month window.
We did not, however, observe this trend as some infants have large swings in values across
the timepoints.

The cross-correlation of acceleration between left and right wrists (metric #8) also
showed trends consistent with previous work. This metric is associated with the observed
characteristics of similarity and coordination of movement. TD infants may be expected
to display movements that are similar, coordinated, and synchronous in the three-to-five-
month window. Non-TD infants are expected to demonstrate the opposite movement
pattern: dissimilar, uncoordinated, and asynchronous. This metric is expected to increase in
TD infants between three and five months of age and to not increase during that time period
in non-TD children. The metric values were higher at 5 months than 3 months in all infants
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for whom there was no concern (S1, S5, S7, and S8). However in S8, the cross-correlation
at 4 months peaked sharply then regressed at five months but to a point still greater than
the three-month cross-correlation. The cross-correlation measured for S6 (split concern)
decreased monotonically between three and five months. Infants S2 (agreed concern) and
S3 (split concern) virtually flatlined across all time points and logged cross-correlation
metrics near the bottom of the cohort, well below the TD range at 5 months. Infant S4
(split concern) did not follow this pattern of decreasing or flatlined change over time. In
summary, seven of the eight infants followed a pattern consistent with expectations.

We introduced elbow range of motion (Figure 6), a novel exploratory metric. Most
infants’ ROM on the left arm fell within a narrow band changing little from three to
five months. S1 (no concern) displayed very limited range at three months but increased
to resemble the ROM of the cohort generally at four months. S2 (concern) demonstrated
a ROM for the left arm among the highest in the cohort at three and five months but
presented as the lowest at four months. The range of ROM angles was more diverse on
the right side. S1 (no concern) was markedly low at three months and increased at four
and five months, though not as much as had been noted on the left side. S2 (concern) lost
range markedly at five months. A larger sample will be needed to determine how useful
this metric will be for screening of non-TD infants.

Visualization of infants’ movement data suggest that the metrics are not independent.
Environment influences that impact one impact others as well. Based on inspection of
videos, several recommendations can be made for further work in this area. Better control
of environmental factors might decrease variability in the data. While the protocol speci-
fications were to have no one in the infant’s visual field during testing, it was difficult to
enforce this in infants’ homes for all of the videos. In one case, a sibling approached the
infant from the right causing him to lateralize in that direction. In another case, the infant
had one hand in his mouth for a large portion of the video. For infants with this tendency,
multiple capture sessions within the same day might be needed. For younger infants, the
use of a baby seat was not optimal, as sitting posture was not fully developed. In the
protocol, it was decided infants should use the same, washable seat throughout testing
across different time points for consistency, sanitation, and to prevent infants from crawling
away at older ages. Both the seat and infants’ upright position in the seat constrained their
movements to an extent not experienced in the standard GM assessment protocol for which
the quantification metrics we used were developed. Future studies should consider use of
a standardized postural support method for younger seated infants.

In clinical practice, to determine whether an infant is typically developing or not,
clinicians base their judgment on a full range of motor characteristics such as hand opening
and closing and whether the infant brings his/her hands to the mouth. Characteristics
such as these have assessment validity, but lie outside Prechtl et al.’s criteria for which the
eight kinematic parameters proposed by [16,36] and colleagues (and applied in this study)
were developed. Midline gaze, bringing hands to the midline, visual field preference,
visual attention, social smile, and social engagement figure prominently among the criteria
applied by our clinicians in applying their clinical discernment to our infant cohort. It
would increase the power of 3D markerless movement assessment in infants to quantify
observed clinical criteria such as those just enumerated to apply side-by-side with explicitly
GM kinematics.

While evaluating videos, clinicians were also sensitive to the infants’ state. Character-
istics of seeming to be sleepy, distraction from persons inevitably close to the home-based
testing area, and, for infants who had not yet developed trunk control, being slumped
to the side introduced ambiguity into the association of movement criteria with typical
or pathological development. For example, infant S2, whom both clinicians flagged as
exhibiting characteristics that caused concern, was documented as being slumped to the
right at both the 3- and 4-month testing session. Being slumped to the side and concurrent
lack of trunk control reasonably would predispose this infant to move asymmetrically.
Notably, the cross-correlation between the left and right wrist accelerations of infant S2
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were quite low, falling toward the bottom of the typical range at three months as defined
by the range of values calculated for the cohort of infants whom clinicians evaluated as
not of concern. Similarly, infant S6, for whom the highest left/right wrist acceleration
cross-correlation was logged at three months, came in at the bottom of the not-of-concern
cohort at four months but went on to log the lowest cross-correlation at five months of
age. Clinician notes reveal that the infant had his finger in his mouth about 65% of the
time at four months and for almost the entire duration of the video at five months. Clearly,
when the infant’s spontaneous movements are restricted, as in the case of infant S2 who
may not have been positioned so that both arms could move freely and as in the case of
infant S6 whose side was (self-)constrained, the synchroneity, similarity, and coordination
of movement on the left and right sides, summarized by the cross-correlation metric, is not
representative of the infant’s actual movement characteristics. The constraint should be
remediated and, ideally, the test repeated.

5. Conclusions

This work has shown the feasibility of estimating GM metrics with a single low-cost
RGB-D sensor. The simplicity and portability of the proposed markerless protocol allows its
use as a screening tool at home or any familiar environment and further makes it possible
to avoid clinical environments which are artificial from a child’s perspective, and hence
challenging for the assessment of true neurodevelopmental performance.

Compared with previous research, this article aimed to characterize GM without
markers attached to the infants’ skin, which might interfere with infants’ spontaneous
movements and consequentially affect their behavioral state. In addition, this markerless
system provides 3D coordinates of each PoI, and is significantly advantageous over 2D
motion capture when dealing with out of plane rotations and allowing more reliable
characterization of GMs. Thanks to depth information provided by the RGB-D sensor, this
protocol is able to deal with PoI occlusions that occur when using single-camera motion
analysis. Our markerless system was designed especially for a home environment. This
focus could be very beneficial for enhancing screening of neurodevelopmental disorders
particularly for infants and families in rural and remote areas, a population with reduced
health services. Due to the small size of our sample, it was not possible to conduct
meaningful statistical analyses. For this reason, future studies will be devoted to validating
the proposed protocol on a larger number of infants for testing its use in clinical practice.
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Appendix A

Table A1. Relevant values of parameters of “Left side” and “Right side” described in Figure 4
obtained from wrist trajectories and velocities for each infant at each timepoint (3, 4 and 5 months).
“M” is month, “Area 1” is “Area differing from moving average”, “Area 2” is “Area out of standard
deviation of moving average”, “PI” is “Periodicity Index” and “Sk.” is “Skewness”. “Area 1” was
normalized by the length of the moving average window (2 s) while “Area 2” was normalized by
the samples in which the signal was outside the standard deviation. Subjects not suggesting a non-
normal development are grayed.

Left Side Right Side

Trajectory Velocity Trajectory Velocity

Sub M Area 1
[mm·s]

Area 2
[mm·s] PI Area 1

[mm]
Area 2
[mm] PI Sk. Area 1

[mm·s]
Area 2
[mm·s] PI Area 1

[mm]
Area 2
[mm] PI Sk.

3 19 2.5 0.024 203 5.6 0.724 15.61 14 2.4 0.048 203 5.6 0.829 4.91

4 137 7.9 0.060 1043 28.8 0.521 5.31 94 5.5 0.049 787 19.7 0.572 5.75S1
5 47 5.0 0.036 500 12.2 0.769 4.77 43 4.7 0.041 439 10.8 0.780 5.41

S2

3 82 10.8 0.021 532 14.6 0.498 11.47 53 5.5 0.033 463 10.1 0.717 5.63

4 59 7.3 0.025 387 11.0 0.584 6.52 38 5.2 0.024 316 8.3 0.709 10.78

5 48 7.6 0.015 355 11.6 0.569 6.63 121 17.3 0.026 736 30.7 0.486 6.89

S3

3 67 8.2 0.021 455 13.4 0.548 5.47 49 7.3 0.012 398 10.8 0.675 3.74

4 43 6.1 0.038 406 10.8 0.749 7.62 25 5.4 0.046 340 8.2 0.922 6.23

5 72 10.8 0.016 577 16.4 0.666 8.50 110 16.9 0.019 808 28.5 0.604 16.87

S4

3 125 12.2 0.039 1401 42.1 0.677 5.94 72 11.5 0.027 742 20.9 0.726 3.19

4 76 8.9 0.016 643 17.8 0.524 4.39 72 9.2 0.013 554 15.5 0.527 3.88

5 81 8.0 0.029 578 17.7 0.526 4.58 92 8.8 0.032 641 20.5 0.508 5.38

3 92 7.5 0.035 641 19.6 0.503 4.69 60 5.4 0.030 365 11.2 0.555 5.57

4 87 9.7 0.018 653 18.9 0.490 4.79 72 9.2 0.022 546 16.5 0.551 3.95S5
5 49 6.5 0.021 377 10.7 0.552 4.86 66 7.5 0.023 475 13.4 0.501 6.07

S6

3 110 9.1 0.024 878 22.1 0.532 5.34 120 12.7 0.028 907 23.5 0.525 4.05

4 58 8.6 0.019 328 10.8 0.463 6.59 40 12.4 0.005 355 11.0 0.565 8.24

5 37 5.2 0.018 329 10.4 0.694 8.26 35 6.1 0.024 360 10.0 0.817 6.81

3 119 12.2 0.023 626 28.4 0.334 6.55 58 5.6 0.021 409 11.8 0.543 3.91

4 135 7.9 0.044 898 23.6 0.444 3.70 125 7.8 0.041 831 22.6 0.489 3.76S7
5 106 8.8 0.038 691 22.8 0.411 7.85 146 13.7 0.028 958 33.5 0.414 4.88

3 72 6.5 0.036 600 16.0 0.597 8.76 83 7.2 0.039 658 18.3 0.615 9.01

4 83 10.2 0.026 631 24.3 0.449 4.95 96 7.7 0.032 735 22.0 0.513 7.09S8
5 59 5.7 0.032 456 14.2 0.538 5.97 75 6.6 0.039 572 17.5 0.554 5.07
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Table A2. Relevant values of parameters of “Left + Right sides” described in Figure 4 obtained from
wrist trajectories and velocities for each infant at each timepoint (3, 4 and 5 months). “M” is month,
“Area 1” is “Area differing from moving average”, “Area 2” is “Area out of standard deviation of
moving average”, “PI” is “Periodicity Index” and “Sk.” is “Skewness”. “Area 1” was normalized
by the length of the moving average window (2 s) while “Area 2” was normalized by the samples
in which the signal was outside the standard deviation. Subjects not suggesting a non- normal
development are grayed.

Left + Right

Trajectory Velocity

Sub M Area 1
[mm·s]

Area 2
[mm·s] PI Area 1

[mm]
Area 2
[mm] PI Sk.

3 33 4.9 0.072 407 11.3 1.553 20.52

4 230 13.4 0.110 1830 48.5 1.093 11.07S1

5 91 9.6 0.077 938 23.0 1.549 10.19

S2

3 135 16.3 0.053 995 24.7 1.215 17.10

4 97 12.5 0.049 703 19.3 1.293 17.30

5 169 24.9 0.041 1091 42.3 1.055 13.53

S3

3 116 15.5 0.033 853 24.2 1.224 9.21

4 68 11.5 0.084 745 19.0 1.670 13.85

5 182 27.7 0.035 1385 44.9 1.269 25.37

S4

3 197 23.7 0.066 2143 63.0 1.403 9.13

4 148 18.1 0.029 1197 33.3 1.051 8.27

5 173 16.9 0.061 1219 38.1 1.034 9.97

3 152 12.9 0.065 1007 30.8 1.058 10.27

4 160 18.9 0.040 1199 35.4 1.041 8.74S5

5 115 14.0 0.044 852 24.1 1.053 10.94

S6

3 231 21.8 0.052 1784 45.6 1.057 9.39

4 98 21.0 0.024 683 21.8 1.028 14.83

5 72 11.3 0.042 689 20.4 1.511 15.08

3 176 17.8 0.043 1035 40.1 0.878 10.47

4 260 15.6 0.085 1729 46.3 0.933 7.46S7

5 253 22.5 0.066 1649 56.3 0.825 12.73

3 156 13.7 0.075 1259 34.4 1.212 17.77

4 179 17.9 0.058 1365 46.3 0.962 12.04S8

5 134 12.3 0.071 1028 31.7 1.092 11.05
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Table A3. Relevant values of parameters described in Figures 5 and 6 for each infant at each timepoint
(3, 4, and 5 months). Subjects not suggesting.

Sub M
Elbow’s Range of Motion [◦] Cross-Correlation between Left and Right

Wrists AccelerationsLeft Right

3 79 71 0.146

4 176 127 0.114S1

5 156 119 0.211

S2

3 175 179 0.063

4 148 177 0.064

5 179 124 0.077

S3

3 164 174 0.085

4 165 152 0.101

5 158 174 0.078

S4

3 176 166 0.179

4 174 159 0.274

5 163 163 0.223

3 178 140 0.026

4 178 170 0.123S5

5 178 176 0.147

S6

3 177 145 0.210

4 179 178 0.086

5 163 138 0.040

3 179 176 0.084

4 176 179 0.084S7

5 170 174 0.244

3 162 139 0.116

4 160 171 0.412S8

5 167 146 0.206
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