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A CLASSIFICATION OF THE WADGE HIERARCHIES
ON ZERO-DIMENSIONAL POLISH SPACES

RAPHAËL CARROY, LUCA MOTTO ROS, AND SALVATORE SCAMPERTI

Abstract. We provide a complete classification, up to order-isomorphism,
of all possible Wadge hierarchies on zero-dimensional Polish spaces using (es-
sentially) countable ordinals as complete invariants. We also observe that al-
though our assignment of invariants is very simple and there are only ℵ1-many
equivalence classes, the above classification problem is quite complex from the
descriptive set-theoretic point of view: in particular, there is no Borel proce-
dure to determine whether two zero-dimensional Polish spaces have isomorphic
Wadge hierarchies. All results are based on a complete and explicit descrip-
tion of the Wadge hierarchy on an arbitrary zero-dimensional Polish space,
depending on its topological properties.

1. Introduction

Work in ZF+DC(R).1 Given topological spaces X and Y , a continuous reduction
from A ⊆ X to B ⊆ Y is a continuous function f : X → Y satisfying f−1(B) = A.
When such an f exists we say that A ⊆ X continuously reduces or Wadge reduces
to B ⊆ Y , and we write A ≤X,Y

W B, or A ≤X
W B if X = Y . Notice that A ≤X,Y

W B

if and only if X \A ≤X,Y
W X \B. We also denote by <X,Y

W the strict part of
≤X,Y

W , that is: A <X,Y
W B ⇐⇒ A ≤X,Y

W B ∧B ̸≤Y,X
W A. Similarly, we write

A ≡X,Y
W B ⇐⇒ A ≤X,Y

W B ∧B ≤Y,X
W A. To simplify the notation, we again write

<X
W and ≡X

W instead of <X,X
W and ≡X,X

W , respectively.
Continuous reducibility is a transitive and reflexive relation, that is a quasi-

order, and ≡X
W is the equivalence relation canonically induced by ≤X

W. We call
Wadge degree of A ⊆ X the ≡X

W-equivalence class of A, and we denote it by [A]XW.
The Wadge reducibility ≤X

W induces a partial order on Wadge degrees of X that
we call Wadge hierarchy on X and denote by WX . When ≤X

W is well-founded, we
can associate to each set A ⊆ X (or to its Wadge degree [A]XW) its rank according
to ≤X

W, which is called the Wadge rank of A (or of [A]XW) and is denoted by ||A||XW.
For technical and historical reasons, we use 1 as the minimal value for ||A||XW. We
also let ΘX be the length of WX , i.e. ΘX = sup{||A||XW + 1 | A ⊆ X}.
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cof = ω cof > ω

ΘN = Θ

Figure 1. The Wadge hierarchy WN on the Baire space N .

To simplify the notation, given a set A ⊆ X we sometimes write ¬A instead of
X \ A when the ambient space X is clear from the context. Wadge left his name
to continuous reducibility when he proved in [Wad83], by game theoretic methods,
that ≤N

W on Borel subsets of the Baire space N = ωω is well-founded and satisfies
the Semi-Linear Ordering principle, or SLOW

N (Bor): for all (Borel) sets A,B ⊆ N

(1.1) A ≤N
W B or ¬B ≤N

W A.

These two results generalize under the Axiom of Determinacy (AD), yielding to the
fact that the Wadge hierarchy is semi-well-ordered, namely: the full SLOW

N holds
(i.e. (1.1) is true for arbitrary subsets A,B ⊆ N ), and ≤N

W is well-founded. (The
former directly follows from Wadge’s original lemma, while the latter is due to a
highly nontrivial argument by Martin and Monk.)

Early investigations on Wadge theory [Wad83, VW77, Ste77, Sol78] have fully
described the Wadge hierarchy on N under AD (see Figure 1). Indeed, by SLOW

N
one easily gets that for each A ⊆ N , either A ≤N

W ¬A, in which case we say that
A (or its Wadge degree [A]NW) is selfdual, or else A and ¬A are ≤N

W -incomparable,
in which case A is called nonselfdual and {[A]NW , [¬A]NW} is a maximal antichain,
called a nonselfdual pair. The minimal Wadge degrees are those in the nonselfdual
pair {[N ]NW , [∅]NW}, and indeed [N ]NW = {N} and [∅]NW = {∅}. After this minimal
nonselfdual pair there is a single selfdual degree consisting of all nontrivial clopen
subsets of N . Then nonselfdual pairs and selfdual degrees alternate, at limit levels
of countable cofinality there is always a selfdual degree, while at limit levels of
uncountable cofinality there is always a nonselfdual pair. Finally, ΘN = Θ where

Θ = sup{α ∈ Ord | R surjects onto α}.
Wadge theory has received a lot of attention, as witnessed by [VW78, Lou83,

LSR88, Dup01, AM03, And07, MR09, MR10b, MR10a, KM19, CMM20], among
many other works. Several generalizations have been considered, including varia-
tions of the reducibility (usually replacing continuous functions with other natural
classes of functions) and/or replacing N with other spaces. In the second direction,
the first natural move is to consider other zero-dimensional Polish spaces.2 For
example, if one assumes AD again and considers the Cantor space C = ω2, then the
corresponding Wadge hierarchy WC looks exactly like WN except for the fact that
at limit levels one always has a nonselfdual pair, independently of the cofinality of

2Recall that a space is Polish if it is separable and completely metrizable, and zero-dimensional
if it has a basis of clopen sets.
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cof = ω cof > ω

ΘC = Θ

Figure 2. The Wadge hierarchy WC on the Cantor space C.

the level (see Figure 2). This is obtained via straightforward modifications of the
results and game-theoretic methods used in the case of N .3

If one moves to an arbitrary zero-dimensional Polish space X (equivalently: to an
arbitrary closed subspace of N ) different from N and C, instead, very little is known
about how WX looks like. The hierarchy starts again with the nonselfdual pair
{[X]XW, [∅]XW}, where [X]XW = {X} and [∅]XW = {∅}, followed by the selfdual degree
of all nontrivial clopen subsets of X. As discussed in Section 2.2, the existence of a
retraction from N onto X yields the fact that, still under AD, the Wadge hierarchy
WX is semi-well-ordered, i.e. the quasi-order ≤X

W is well-founded and SLOW
X is true,

i.e. A ≤X
W B ∨ ¬B ≤X

W A holds for all A,B ⊆ X (see also [MRSS15]). This implies
that at each level of WX we find either a nonselfdual pair {[A]XW, [¬A]XW} (when
A ̸≤X

W ¬A) or a single selfdual degree [A]XW (when A ≤X
W ¬A). Another easy

observation is that ΘX = ΘN = Θ if X is uncountable, while ΘX < ω1 if X is
countable. This follows from the retraction trick again (see Section 2.2) if X is
uncountable, because in this case X contains a closed homeomorphic copy of C; if
instead X is countable, we use the fact that every subset of X is a ∆0

2-set, and indeed
it is in Dα(Σ

0
1), where 1 ≤ α < ω1 depends on the Cantor-Bendixson rank ||X||CB

of X. However, nothing else is known, and a complete and detailed description of
WX has never been carried out in the literature: the main purpose of this article
is to fill this gap and prove the following result. (Notice that in the countable case
zero-dimensionality is automatic and could thus be removed from the hypotheses,
and moreover in such case we do not need any determinacy assumptions because
P(X) ⊆ ∆0

2(X) and thus Martin’s Borel determinacy is enough.)

Main Theorem 1. Let X be an arbitrary zero-dimensional Polish space, and
assume AD if X is uncountable. Then
(1) WX is semi-well-ordered (Proposition 2.3);
(2) selfdual degrees and nonselfdual pairs alternate, starting with the nonselfdual

pair {[X]XW, [∅]XW} at the bottom, followed by the selfdual degree of all nontrivial
clopen sets (Theorem 4.4, Theorem 4.6, and Proposition 2.2);

(3) for limit levels, we distinguish two cases:
(a) if the perfect kernel of X is not compact (hence nonempty), then at all

limit levels of uncountable cofinality there is a nonselfdual pair and at

3Although this was probably known in the field since the Eighties, to the best of our knowledge
the first complete accounts on the structure WC appeared only more recently in [And07, Section
2.7] and [AC13, Section 4].



4 R. CARROY, L. MOTTO ROS, AND S. SCAMPERTI
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any limit any limit

αX

ΘX ∈ ω1 ∪ {Θ}

Baire-like Cantor-like

Figure 3. The Wadge hierarchy WX on an arbitrary zero-
dimensional Polish space X when WX is isomorphic neither to WN
nor to WC . In this case, the ordinal αX satisfies ω < αX < ω1.

all limit levels of countable cofinality there is a selfdual degree (Proposi-
tion 4.7 and Theorem 4.9);

(b) otherwise there is αX < ω1 such that for all limit α < ΘX , there is a
selfdual degree at level α if and only if α < αX ; in particular, αX = 0 if
X is compact (Corollary 4.14 and the ensuing discussion);

(4) ΘX = Θ if X is uncountable, while if X is countable then ΘX = 2·||X||CB+εX
for some εX ∈ {−1, 0, 1} (Proposition 2.5 and Theorem 4.15).

The parameter αX depends on a new rank on X which we call compact rank and
denote by ||X||Comp (Section 3.3). As for item (4), the ordinal ||X||CB is the usual
Cantor-Bendixson rank of X, while the parameter εX depends on ||X||CB, αX , and
whether X is simple or not (see Section 2.5 for the relevant definitions).

It follows from Main Theorem 1 that if X has a non-compact perfect kernel,
then WX is isomorphic to WN (Figure 1); if X is compact and, more generally, if
||X||Comp < ω, then WX is isomorphic to WC (Figure 2); in the remaining cases, i.e.
when WX is isomorphic neither to WN nor to WC , the hierarchy WX is a mixture of
the two, with an initial segment (of countable length) which is Baire-like and the
rest of the hierarchy which is Cantor-like (see Figure 3).

Main Theorem 1 is optimal, in the sense that for all possibilities which are
coherent with the limitations contained therein, there is a zero-dimensional Polish
space X whose Wadge hierarchy WX realizes precisely that scenario (Section 4.4).
Thus what we have obtained is a complete classification (up to order-isomorphism)
of all possible Wadge hierarchies for zero-dimensional Polish spaces, where the
complete invariants are given by pairs of ordinals (αX ,ΘX) which can easily be
coded as countable ordinals (see the discussion at the beginning of Section 5).

Although our classification of the possible Wadge hierarchies over zero-dimensional
Polish spaces X is complete and quite satisfactory, we also show that it is not possi-
ble to determine WX in a Borel manner. For example, by Theorem 5.3 the collection
of all zero-dimensional Polish spaces whose Wadge hierarchy is order-isomorphic to
WN is a complete analytic subset of the Effros Borel space F (N ). More generally,
for all nontrivial zero-dimensional Polish spaces X there is no Borel procedure to
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determine which zero-dimensional Polish spaces Y give rise to a Wadge hierarchy
WY order-isomorphic to WX .

Main Theorem 2. Let X be a zero-dimensional Polish space with at least two
points, and assume AD if X is uncountable. Then the set of zero-dimensional
Polish spaces Y such that WY is order-isomorphic to WX is not Borel in the Effros
Borel space F (N ).

Indeed, it is not even possible to decide in a Borel way whether at a given
countable limit level we will find a nonselfdual pair or a selfdual degree, or to
determine the value of αX and/or ΘX (see Remark 5.4). The reason behind this
wild behaviour actually relies on the possible configurations of isolated points. If
we restrict to perfect spaces, then the situation is radically neater and we have only
two (Borel) possibilities: spaces with a Baire-like Wadge hierarchy, and spaces with
a Cantor-like Wadge hierarchy (Proposition 5.5).

Finally, let us briefly discuss the optimality of the various hypotheses in our
results. As it is well-known in the area, the determinacy assumption AD can be
relaxed to get level-by-level statements, at the cost of making such statements and
the various definitions a lot more cumbersome. For a detailed discussion on this
matter, and specifically on nice pointclasses, see [CMM22, Section 3]. In partic-
ular, if we restrict the attention to the Borel subsets of X, then Martin’s Borel
determinacy suffices and we do not need to assume AD anywhere.

Moreover, we point out that there is a reason for restricting to zero-dimensional
Polish spaces. The Wadge quasi-order has been studied in various other contexts,
even beyond the realm of Polish spaces (see for instance [Sel05, MRSS15, Peq15,
IST19, Cam19, CM21]), but in most cases it is not semi-well-ordered if the space
is not zero-dimensional (with a few exceptions: see [CM21, Theorem 33]). If one
restricts the attention to Polish spaces, this becomes even a characterization because
WX has infinite antichains whenever X is a metric (not necessarily complete or
separable) space with positive dimension (see [Sch18, Theorem 1.5]). Moreover,
[Her93] and [DV20] show among other things that WX is ill-founded when X is R
or the Scott domain, respectively. See [MRSS15] for more possible behaviours and
a rough classification of Wadge-like hierarchies on arbitrary (quasi-)Polish spaces.

2. Preliminaries and known facts

The monograph [Kec95] is our reference for all classical results and notation in
descriptive set theory. From this point onward, unless otherwise stated, we assume
AD and that X, Y , Z, . . . are nonempty zero-dimensional Polish spaces. Recall
however that the determinacy assumption is just for ease of exposition, and that
no further assumption is required if all results and definitions are restricted to the
realm of Borel sets.

2.1. Some easy and well-known facts. The principle SLOW
X can be reformu-

lated to deal with sets in possibly different zero-dimensional Polish spaces ([Kec95,
Theorem 21.14]). The proof is identical to the original one by Wadge, except that
the rules of the so-called Wadge’s game are modified so that the players stay inside
their respective closed subspaces of N .

Proposition 2.1 (AD). Let X,Y be zero-dimensional Polish spaces. Then for all
A ⊆ X and B ⊆ Y

A ≤X,Y
W B ∨ ¬B ≤Y,X

W A.
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Notice that when X = Y , Proposition 2.1 is simply the assertion that SLOW
X

holds under AD for an arbitrary zero-dimensional Polish space X. Proposition 2.1
is so crucial in the theory that we will simply refer to it as Wadge’s Lemma.

Let SetSD(X) be the collection of all selfdual sets of X, i.e.

SetSD(X) = {A ⊆ X | A ≤X
W ¬A},

and, dually, let SetNSD(X) be the collection of nonselfdual sets of X, that is

SetNSD(X) = P(X) \ SetSD(X) = {A ⊆ X | A ̸≤X
W ¬A}.

Then Wadge’s Lemma implies that at each level of WX we find either a 2-sized
maximal antichain {[A]XW, [¬A]XW} for some A ∈ SetNSD(A), called a nonselfdual
pair, or a single selfdual degree [A]XW for some A ∈ SetSD(X).

Another easy observation (see [Cam19, Lemma 1]) is that for every nonempty
topological space X the pair {[X]XW, [∅]XW} is nonselfdual and its elements are mini-
mal in WX ; if X is not connected then right after such pair there is a single selfdual
degree. (The proof of the next proposition is left to the reader.)
Proposition 2.2. Let X be an arbitrary nonempty topological space. Then [X]XW =
{X} and [∅]XW = {∅}. Moreover, the pair {[X]XW, [∅]XW} is nonselfdual and ≤X

W-
minimal in WX , that is, for every ∅, X ̸= A ⊆ X we have ∅, X <X

W A.
If moreover X is disconnected, then immediately above {[X]XW, [∅]XW} there is a

single selfdual degree consisting of all nontrivial clopen subsets of X, and all other
Wadge degrees are strictly ≤X

W-above it.
2.2. The retraction method. Part (1) of Main Theorem 1 can be proved us-
ing a trick due to Marcone (unpublished, but see [And07, Proposition 28]) and,
independently, to Selivanov [Sel05, Corollary 2.4]. If X ⊆ Y are such that there
is a retraction4 ρ from Y onto X, then the map from P(X) to P(Y ) defined by
A 7→ ρ−1(A) embeds the structure ⟨P(X),≤X

W,¬⟩ into ⟨P(Y ),≤Y
W,¬⟩ (see also

[MRSS15, Proposition 5.4] for a more general result). Notice that up to Wadge
equivalence, the choice of ρ is irrelevant: if ρ1, ρ2 : Y → X are two retractions then
ρ−1
1 (A) ≡Y

W ρ−1
2 (A), as witnessed by the maps ρ1 and ρ2 themselves. Notice also

that for any retraction ρ : Y → X and A ⊆ X, we have A ≡X,Y
W ρ−1(A) via the

inclusion map ι : X → Y and the retraction ρ : Y → X.
It is a classical result that every zero-dimensional Polish space can be construed

as a closed subspace of N , thus there is a retraction of N onto X. Therefore we
get the desired result ([MRSS15, Theorem 5.12(1)]).

Proposition 2.3 (AD). Let X be a zero-dimensional Polish space. Then SLOW
X

holds and ≤X
W is well-founded, i.e. WX is semi-well-ordered.

Proposition 2.3 allows us to split ordinals 1 ≤ α < ΘX in two groups: those
for which at level α of WX we find a single selfdual degree and those for which we
instead find a nonselfdual pair. This is condensed in the following definition and
notation.
Definition 2.4. An ordinal 1 ≤ α < ΘX is called selfdual for X if the subsets
of X with Wadge rank α are selfdual, otherwise we say that α is nonselfdual. We
denote by OrdSD(X) the set of all 1 ≤ α < ΘX which are selfdual for X, while
OrdNSD(X) stands for the set of nonselfdual 1 ≤ α < ΘX .

4A retraction from Y onto X is a (surjective) continuous function ρ : Y → X such that ρ ↾ X
is the identity on X.
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Notice that by Proposition 2.3, determining the structure of WX amounts to
determine the two sets of ordinals OrdSD(X) and OrdNSD(X), together with the
exact value of ΘX .

The same trick based on retractions can also be used to prove the first half
of part (4) of Main Theorem 1, i.e. to compute ΘX when X is uncountable.
Indeed, if a zero-dimensional Polish space X is uncountable, then C is (homeo-
morphic to) a closed subset of X: therefore there is a retraction of X onto C,
and thus ⟨P(C),≤C

W,¬⟩ embeds into ⟨P(X),≤X
W,¬⟩. Combined with the fact

that, as observed, ⟨P(X),≤X
W,¬⟩ embeds into ⟨P(N ),≤N

W ,¬⟩, this shows that
ΘC ≤ ΘX ≤ ΘN . Since under AD it holds ΘC = ΘN = Θ, we get:

Proposition 2.5 (AD). Let X be an uncountable zero-dimensional Polish space.
Then WX has length ΘX = Θ.

Finally, combining the retraction method with a well-known result in Wadge
theory due to Wadge himself [And06, Lemma 3], we obtain a technical fact that
provides a useful characterization of selfdual sets.

Proposition 2.6 (AD). Let X be a zero-dimensional Polish space. Then A ⊆ X is
selfdual if and only if there are a clopen partition (Vn)n∈ω of X and sets (An)n∈ω

such that An <X
W A and A =

⋃
n∈ω(An ∩ Vn).

Moreover, we can further assume that each An is nonselfdual, and ||A||XW =
supn∈ω(||An||XW + 1).

Proof. The backward direction is obvious, as by SLOW
X we have An ≤X

W ¬A for all
n ∈ ω: if (fn)n∈ω are continuous maps witnessing this, then f =

⋃
n∈ω(fn ↾ Vn) is

a continuous map witnessing A ≤X
W ¬A.

Conversely, let X be a closed subspace of N and ρ : N → X be a retraction. If A
is selfdual in X, then A′ = ρ−1(A) is selfdual in N . Then the set of those s ∈ ω<ω

such that A′ ≤N ,Ns

W A′∩N s is a nonempty well-founded tree T (A′) ⊆ ω<ω ([And03,
Lemma 22]). Let (Vn)n∈ω be an enumeration of the sets of the form N s⌢k ∩ X
with k ∈ ω and s a leaf in T (A′), and set An = X if Vn ⊆ A and An = A ∩ Vn

otherwise. It is easy to check that the Vn’s and An’s are as required.
The additional part on nonselfduality of the An’s follows by iterating the con-

struction on those An which happen to be selfdual in X. (This process must termi-
nate on each branch after finitely many steps because otherwise we would construct
a strictly ≤X

W-decreasing sequence of subsets of X, against Proposition 2.3.)
Finally, set α = ||A||XW and αn = ||An||XW, so that in particular αn < α. If B ⊆ X

is a set with ||B||XW = supn∈ω(αn + 1), then An <X
W B because ||An||XW = αn <

αn + 1 ≤ ||B||XW: if fn witnesses An ≤X
W B, then A ≤X

W B via
⋃

n∈ω(fn ↾ Vn), thus
supn∈ω(αn + 1) = ||B||XW ≥ ||A||XW = α. The other inequality is obvious. □

Remark 2.7. (1) The above proof shows that we can indeed assume that either
An = X (if Vn ⊆ A), or else An = A ∩ Vn (and thus An ⊆ Vn); indeed, if A
is not clopen and we drop the requirement that An be nonselfdual, then the
latter can be assumed to be true for all n ∈ ω.

(2) Proposition 2.6 can be relativized to any clopen subset of X, namely: If A ⊆ X
is selfdual and U ∈ ∆0

1(X), then there exist a clopen partition (Un)n∈ω of U
and nonselfdual sets An <X

W A such that
⋃

n∈ω(An ∩ Un) = A ∩ U . Indeed,
this is trivial if U∩A <X

W A. If instead U∩A ≡X
W A, then U∩A is selfdual and
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we can apply Proposition 2.5, setting then Un = Vn ∩U . This easily provides
alternative proofs of [CMM22, Theorem 5.4 and Corollary 5.5].

2.3. Pointclasses. Wadge pointclasses provide an alternative (but equivalent) way
to present and study the Wadge hierarchy on a space X. A boldface pointclass Γ
in X is a subset of P(X) which is closed under continuous preimages, i.e. it is
downward closed under ≤X

W. The dual Γ

∧

of Γ is defined by Γ

∧

= {¬A | A ∈ Γ}. The
dual operator is clearly idempotent, i.e. the dual of Γ

∧

is Γ itself. We say that Γ is
nonselfdual if Γ ̸= Γ

∧

, and selfdual otherwise.
A boldface pointclass Γ is a Wadge class if it is of the form A↓X = {B ⊆ X |

B ≤X
W A} for some A ⊆ X; any A ∈ Γ satisfying Γ = A↓X is called complete (for

Γ), and we say that Γ is generated by A. We denote by ClassW(X) the collection of
all Wadge classes in X. Notice that by SLOW

X , every nonselfdual boldface pointclass
Γ of X is automatically a Wadge class; in contrast, not all selfdual boldface point-
classes in X are Wadge classes. We denote by ClassNSD(X) the collection of all
nonselfdual Wadge classes in X, and by ClassSD(X) = ClassW(X) \ ClassNSD(X)
the collection of the selfdual ones.

The Wadge hierarchy WX is clearly isomorphic to the structure of all Wadge
classes ordered by inclusion, as witnessed by the map [A]XW 7→ A↓X . In partic-
ular, A ∈ SetSD(X) if and only if A↓X ∈ ClassSD(X), and a nonselfdual pair
{[A]XW, [¬A]XW} corresponds to the pair of distinct nonselfdual Wadge classes (Γ,Γ

∧

)

with Γ = A↓X . Every Γ ∈ ClassW(X) induces a coarse Wadge class Γ∗ = Γ ∪ Γ

∧

.
When SLOW

X holds and ≤X
W is well-founded, inclusion on coarse Wadge classes is

a well-order: the ordinal α corresponding to the position of Γ∗ in such a well-
order (once we start counting by 1) coincides with ||A||XW for some/any A ⊆ X
such that Γ = A↓X . Moreover, when X ⊆ Y are zero-dimensional Polish spaces
with X closed in Y , the retraction method (Section 2.2) induces an injection from
ClassW(X) into ClassW(Y ). Indeed, if ρ : Y → X is a retraction we can associate to
each Γ = A↓X ∈ ClassW(X) the Wadge class ρ−1(Γ) = (ρ−1(A))↓Y ∈ ClassW(Y ).
This is again independent on the chosen retraction, i.e. if ρ1, ρ2 : Y → X are
both retractions, then ρ−1

1 (Γ) = ρ−1
2 (Γ) because ρ−1

1 (A) ≡Y
W ρ−1

2 (A). Clearly,
Γ ∈ ClassNSD(X) ⇐⇒ ρ−1(Γ) ∈ ClassNSD(Y ).

Notice that any boldface pointclass Γ ̸= {∅} completely determines the space X
where it “lives”, as X can be canonically recovered as the ⊆-largest set in Γ. This
allows us to greatly simplify the notation: the symbol W is unnecessary5 because the
order relation for pointclasses is simply inclusion; and as observed we can (almost)
always drop the reference to the ambient space X. So for example when Γ ̸= {∅}
is a Wadge class we can simply write ||Γ|| to denote the Wadge rank of Γ, i.e. the
ordinal ||A||XW for some/any A ⊆ X such that Γ = A↓X .

The chosen notation highlights the tight connection between ordinals, sets, and
Wadge classes in a zero-dimensional Polish space X: if Γ is a Wadge class generated
by A ⊆ X, then

Γ ∈ ClassNSD(X) ⇐⇒ A ∈ SetNSD(X) ⇐⇒ ||Γ|| = ||A||XW ∈ OrdNSD(X).

2.4. The relativization method. Building on previous work by Louveau and
Saint-Raymond, the paper [CMM22] develops a substantial part of Wadge theory

5The link to continuous reducibility is somewhat implicit in the fact that we only consider
boldface pointclasses, which by definition are ≤X

W -downward closed.
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for arbitrary zero-dimensional Polish spaces, often in terms of Wadge classes. Here
we recall the few facts that we need for the present work.

The relativization method, introduced in [LSR88], provides a way to “transfer”
boldface pointclasses in N to the space X (see [CMM22, Section 6]).

Definition 2.8. Let X be a zero-dimensional Polish space, and consider any bold-
face pointclass Γ ⊆ P(N ). The relativization of Γ to X is the boldface pointclass

Γ(X) = {A ⊆ X | g−1(A) ∈ Γ for all continuous g : N → X}.

Notice that the dual (in X) of Γ(X) is simply Γ

∧

(X), i.e. the relativization of
the dual (in N ) of Γ. Thus if Γ(X) ∈ ClassNSD(X) then Γ ∈ ClassNSD(N ). In
contrast, there are situations where Γ ∈ ClassNSD(N ) but Γ(X) ∈ ClassSD(X), see
the end of this subsection for more details.

The relativization method works particularly well with nonselfdual Wadge classes.
The following result sums up the content of [CMM22, (Proof of) Lemma 6.5 and
Theorem 7.2].

Theorem 2.9 (AD). Let X be a zero-dimensional Polish space.
(1) For all Λ ∈ ClassNSD(X) there is a unique boldface pointclass Γ ⊆ P(N )

such that Λ = Γ(X), and moreover Γ ∈ ClassNSD(N ).
(2) If moreover X is uncountable, then ClassNSD(X) = {Γ(X) | Γ ∈ ClassNSD(N )},

and indeed ⟨ClassNSD(N ),⊆⟩ and ⟨ClassNSD(X),⊆⟩ are isomorphic via the
map Γ 7→ Γ(X).

Theorem 2.9(2) relies on the fact that if Γ ∈ ClassNSD(N ) then Γ(X) is still
nonselfdual if X is uncountable. In countable spaces this ceases to be true: since
all sets in a countable Polish space X are ∆0

2, all pointclasses in ClassNSD(N )
containing ∆0

2 relativize to P(X), which is selfdual. We will provide the correct
analogue of Theorem 2.9(2) for countable Polish spaces in Corollary 3.19.

2.5. Cantor-Bendixson derivatives and rank. Recall from [Kec95, Section
6.C] the classical notion of Cantor-Bendixson derivative, defined by

DCB(Y ) = {x ∈ Y | x is not isolated in Y },
and its iterates Dα

CB(X), recursively defined by setting D0
CB(X) = X, Dα+1

CB (X) =
DCB(D

α
CB(X)), and Dλ

CB(X) =
⋂

α<λ D
α
CB(X) for λ limit. When X is Polish,

there is α < ω1 such that Dα
CB(X) = Dα+1

CB (X): the smallest such α is the
Cantor-Bendixson rank (CB-rank for short) of X and is denoted by ||X||CB, while
kerCB(X) = D

||X||CB

CB (X) is called perfect kernel of X and can equivalently be de-
fined as the largest perfect6 subspace of X. Moreover, for x ∈ X \ kerCB(X) we let
||x,X||CB be the unique ordinal α < ||X||CB satisfying x ∈ Dα

CB(X) \Dα+1
CB (X).

If X is countable, then kerCB(X) = ∅. In this case, we define the Cantor-
Bendixson degree DegCB(X) of X (CB-degree for short) as the cardinality of Dα

CB(X)
if ||X||CB = α+1 is a successor ordinal, and DegCB(X) = ω otherwise. The Cantor-
Bendixson type of X (CB-type for short) is the pair tp(X) = (||X||CB,DegCB(X)).
For compact countable Polish spaces, tp(X) is a complete invariant for homeomor-
phism.

We say that a countable Polish space X is simple if it has successor CB-rank
||X||CB = α + 1 and DegCB(X) = 1, that is, if Dα

CB(X) is a singleton. The

6A subspace of X is perfect if it is closed and has no isolated point.
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following is a special case of [Car13, Lemma 2.4], and shows in particular that if X
is a countable Polish space with limit CB-rank, then X is not compact.

Lemma 2.10. Every countable Polish space X of CB-type (α, β) ∈ ω1 × (ω + 1)
admits a partition in nonempty clopen subsets (Cn)n∈β such that each Cn is simple,
||Cn||CB = α if α is successor, and ||Cn||CB < α with supn∈ω ||Cn||CB = α if α is
limit.

The following is instead a direct application of [Car13, Corollary 2.3].

Lemma 2.11. Let X be a zero-dimensional Polish space and U ⊆ X be an open set
such that U ∩kerCB(X) = ∅. Then ||U ||CB = min{α ≤ ||X||CB | U ∩Dα

CB(X) = ∅}.

2.6. The pointed gluing operation. We adopt a standard notation for sequences:
for example, lh(s) denotes the length of s, s⌢t stands for the concatenation of s
and t, while for i ∈ ω and n ∈ ω we denote by (i)n (respectively, (i)∞) the constant
sequence of length n (respectively, the ω-sequence) with value i. If X is a topolog-
ical space, we say that a sequence (An)n∈ω of subsets of X converges to a point
x ∈ X, in symbols An → x, if any open neighborhood of x contains all but finitely
many An’s.

The following construction, taken from [Car13, Section 3], is implicitly used in
the area since Wadge’s thesis [Wad83] and has been considered, sometimes with
slight variations, by several authors (see e.g. [Sel04, Section 5]). Given a sequence
(An)n∈ω with An ⊆ N , its pointed gluing is the set

ptgl((An)n∈ω) = (0)∞ ∪
⋃
n∈ω

{(0)n⌢(1)⌢x | x ∈ An}

Intuitively, ptgl((An)n∈ω) is thus obtained by taking copies of the An’s which
converge to (0)∞, together with such limit. The functional counterpart of the
pointed gluing operation is defined by considering a sequence (fn)n∈ω of functions
fn : An → Bn, and letting

ptgl((fn)n∈ω) : ptgl((An)n∈ω) → ptgl((Bn)n∈ω)

be defined as the map sending (0)∞ to itself and points of the form (0)n⌢(1)⌢x
with x ∈ An to (0)n⌢(1)⌢fn(x). When An = A or fn = f for all n ∈ ω, to
simplify the notation we write ptgl(A) instead of ptgl((An)n∈ω) or ptgl(f) instead
of ptgl((fn)n∈ω), respectively.

It is easy to verify that if An is closed (respectively, compact), then so is
ptgl((An)n∈ω), and that ptgl((fn)n∈ω) is continuous (respectively, injective, an
embedding, or a homeomorphism) if so are the fn’s. Moreover, if the sequence
of ordinals (||An||CB)n∈ω is non-decreasing, then an easy computation shows that
||ptgl((An)n∈ω)||CB = (supn∈ω ||An||CB) + 1 (see e.g. [Car13, Proposition 3.1]).

2.7. Difference hierarchy. We recall the definition of difference hierarchy (see
e.g. [Kec95, Section 22.E]). Let X be a Polish space, α ≥ 1 be a countable ordinal,
and (Aγ)γ<α be a sequence of subsets of X. Then we define

Dα((Aγ)γ<α) =
⋃{

Aγ \
⋃

γ′<γ

Aγ′ | γ < α and γ has parity opposite to α

}
.

Moreover, when the boldface pointclass Γ ⊆ P(X) is different from {∅} we set
Dα(Γ) = {Dα((Aγ)γ<α) | Aγ ∈ Γ}. By convention, we set D0(Γ) = {∅}. Notice
also that D1(Γ) = Γ.
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We will always work with Γ = Σ0
1(X). One can easily verify that Dα(Σ

0
1(X))

is a boldface pointclass (in X), and that Dα(Σ
0
1(X)) = Dα(Σ

0
1)(X). Thus we can

unambiguously denote by D

∧

α(Σ
0
1(X)) the dual of Dα(Σ

0
1(X)).

Wadge himself proved in [Wad83] that the first ω1-many nonselfdual levels of
WN are occupied by the difference classes Dα(Σ

0
1), α < ω1, and their duals. It

follows that ||Dα(Σ
0
1)||N = 2α + 1, and that using the well-known successor and

countable sum operations from [Wad83, Chapter 3] one can define complete sets
(up to Wadge equivalence) for such classes. More precisely, we recursively define a
sequence of Wadge degrees (Dα)α<ω1

by setting

(2.1) Dα =


[∅]NW if α = 0

[{(0)n⌢(m+ 1)⌢x | n,m ∈ ω ∧ x ∈ ¬Bβ}]NW if α = β + 1

[{(0)n⌢(m+ 1)⌢x | n,m ∈ ω ∧ x ∈ ¬Bαn
}]NW if α is limit,

where Bβ is any set in Dβ , (αn)n∈ω is some/any increasing sequence cofinal in α,
and Bαn

is an arbitrary set in Dαn
. An easy induction shows that the sequence

(Dα)α<ω1 is well-defined, i.e. that up to ≡N
W it is independent of the choice of Bβ ,

(αn)n∈ω, and Bαn . Moreover, one can prove by induction again that if Bα ∈ Dα

then Dα(Σ
0
1) = (Bα)↓N .

3. Our toolbox

3.1. More on the retraction method. The retraction method immediately set-
tles our problem for zero-dimensional Polish spaces which are not σ-compact, i.e.
cannot be written as a countable union of compact spaces, and for those which
are uncountable and compact. This shows that we could in principle concentrate
on σ-compact non-compact spaces, although our analysis will be more general and
work for all zero-dimensional Polish spaces, without those limitations.

The next two results do not require any extra assumption beyond our base theory
ZF+ DC(R).

Lemma 3.1. Suppose that X,Y are zero-dimensional Polish spaces, each of which
is homeomorphic to closed subset of the other one. Then WX and WY are isomor-
phic.

Proof. Without loss of generality, X is a closed subset of Y and Y is a closed
subspace of some X ′ which is homeomorphic to X via some h : X → X ′. Let
ρ1 : Y → X and ρ2 : X

′ → Y be retractions. We already observed that A 7→
ρ−1
1 (A) provides an embedding of ⟨P(X),≤X

W,¬⟩ into ⟨P(Y ),≤Y
W,¬⟩, and hence

it canonically induces an embedding of WX into WY : we claim that the latter is
also surjective (hence an isomorphism), i.e. that for every B ⊆ Y there is A ⊆ X
such that B ≡Y

W ρ−1
1 (A). To see this, it is enough to notice that since ρ1 and ρ2

are retractions and h is a homeomorphism, then

B ≡Y,X′

W ρ−1
2 (B) ≡X′,X

W h−1(ρ−1
2 (B)) ≡X,Y

W ρ−1
1 (h−1(ρ−1

2 (B))).

Thus setting A = h−1(ρ−1
2 (B)) we are done. □

Combining the above lemma with the universality properties of N and C ([Kec95,
Theorem 7.8]), the Cantor-Bendixson theorem ([Kec95, Corollary 6.5]) and the
Hurewicz theorem ([Kec95, Theorem 7.10]) we obtain the following.

Proposition 3.2. Let X be a zero-dimensional Polish space.
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(1) If X is not σ-compact,7 then WX is isomorphic to WN .
(2) If X is compact and uncountable, then WX is isomorphic to WC.

Remark 3.3. Since σ-compactness already appeared in [MRSS15, Theorem 5.12(2)]
as a dividing line for Wadge-like hierarchies on zero-dimensional Polish space, one
may be tempted to conjecture that Proposition 3.2(1) can be turned into a char-
acterization. We will however show that this is not the case: by Main Theorem 1,
there are σ-compact spaces whose Wadge hierarchy is isomorphic to WN (take any
σ-compact space with non-compact perfect kernel, e.g. ω × C), and there are non-
compact spaces whose Wadge hierarchy is isomorphic to WC (take any non-compact
space with compact kernel and finite CB-rank, e.g. ω⊕C where ⊕ denotes the dis-
joint sum and ω is discrete).

3.2. More on the relativization method. The next lemma shows that for any
retraction ρ : N → X, the map Γ 7→ ρ−1(Γ) from ClassW(X) to ClassW(N ) is a
right inverse of (the restriction to ClassW(N ) of) the relativization map Γ 7→ Γ(X).
The proof is the same as the first part of the proof of [CMM22, Lemma 6.5] and
does not require extra assumptions beyond ZF+ DC(R).

Lemma 3.4. Let X ⊆ N be closed, and ρ : N → X be a retraction. Then for every
Λ ∈ ClassW(X)

(ρ−1(Λ))(X) = Λ.

Proof. Let A ⊆ X be complete for Λ. If B ∈ (ρ−1(Λ))(X) then ρ−1(B) ∈ ρ−1(Λ)
because ρ is continuous, thus ρ−1(B) ≤N

W ρ−1(A) by definition of ρ−1(Λ), hence
B ≤X

W A, and finally B ∈ Λ by choice of A.
Conversely, pick any B ∈ Λ, let f : X → X witness B ≤X

W A, and let g : N → X

be any continuous function. Then f ◦ g witnesses g−1(B) ≤N ,X
W A, and since

A ≡X,N
W ρ−1(A) we get g−1(B) ≤N

W ρ−1(A), i.e. g−1(B) ∈ ρ−1(Λ). Since g was
arbitrary, this shows that B ∈ (ρ−1(Λ))(X), as desired. □

Corollary 3.5 (AD). Let X ⊆ Y be zero-dimensional Polish spaces with X closed
in Y , and let Γ ⊆ P(N ) be a boldface pointclass. If Γ(X) ∈ ClassNSD(X), then
Γ(Y ) ∈ ClassNSD(Y ). Moreover, if A ⊆ X is complete for Γ(X) and ρ : Y → X is
any retraction, then ρ−1(A) is complete for Γ(Y ).

Proof. Without loss of generality, we may assume that Y (and hence also X) is
a closed subset of N . Let A and ρ be as in the statement, and fix a retraction
ρ′ : N → Y , so that ρ ◦ ρ′ is a retraction of N onto X. Then (ρ ◦ ρ′)−1(Γ(X)) = Γ
by Lemma 3.4 applied to Λ = Γ(X) and Theorem 2.9(1). Using this and applying
once again Lemma 3.4 with Λ = ρ−1(Γ(X)) ∈ ClassW(Y ), it follows that

ρ−1(Γ(X)) = ((ρ′)−1(ρ−1(Γ(X))))(Y ) = ((ρ ◦ ρ′)−1(Γ(X)))(Y ) = Γ(Y ),

which proves at once that Γ(Y ) is nonselfdual (because so is ρ−1(Γ(X))) and that
ρ−1(A) is complete for Γ(Y ). □

The relativization method and, in particular, Corollary 3.5, gives a general ver-
sion of the classical computation in N of the supremum of at most countably many
nonselfdual classes, that we use several times in this paper.

7Notice that this hypothesis implies in particular that X is uncountable.
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Lemma 3.6 (AD). Let X be a zero-dimensional Polish space, (Xi)i∈I be a clopen
partition of X for some I ⊆ ω, and (Γi)i∈I be boldface pointclasses in N . Suppose
that Γi(Xi) ∈ ClassNSD(Xi) for all i ∈ I, and let Ai ⊆ Xi be complete for Γi(Xi).
Then the pointclass Γ = A↓X ∈ ClassW(X) generated by A =

⋃
i∈I Ai is the

smallest Wadge class such that Γ ⊇ Γi(X) for all i ∈ I.
Moreover, if for every i ∈ I there is j ∈ I such that Γ

∧

i ⊆ Γj, then Γ ∈
ClassSD(X).

The class Γ = A↓X from the lemma is called the supremum of the Γi’s in X.

Proof. For each i ∈ I pick a retraction ρi : X → Xi, so that Γi(X) = ρ−1
i (Ai)↓X by

Corollary 3.5. Since the identity function witnesses Ai ≤Xi,X
W A and ρ−1

i (Ai) ≡X,Xi

W

Ai, we get Γi(X) ⊆ A↓X = Γ. Moreover, if B ⊆ X is such that B↓X ⊇ Γi(X),
then ρ−1

i (Ai) ≤X
W B, and hence Ai ≤Xi,X

W B via some fi : Xi → X. It follows that⋃
i∈I fi witnesses A ≤X

W B, and thus Γ ⊆ B↓X .
For the second part, notice that we can assume without loss of generality that

X is closed in N , so that the Xi’s are closed in N as well. Let ri : N → Xi be
retractions. If i, j ∈ I are as in the statement, then using Corollary 3.5 again we
get

Xi \Ai ≡Xi,N
W N \ r−1

i (Ai) ≤N
W r−1

j (Aj) ≡
N ,Xj

W Aj ,

where the middle reduction exists because N \ r−1
i (Ai) ∈ Γ

∧

i ⊆ Γj . If fi : Xi → Xj

witnesses Xi \Ai ≤
Xi,Xj

W Aj , then
⋃

i∈I fi witnesses ¬A ≤X
W A, as desired. □

The typical situations in which we will apply the “moreover” part of Lemma 3.6
are when I = 2 and Γ0 = Γ

∧

1, or I = ω and Γi ⊊ Γi+1 (in the second case use
Wadge’s Lemma to obtain Γ

∧

i ⊆ Γi+1). Notice also that if X is uncountable, then
by Theorem 2.9(2) the hypothesis Γi(X) ∈ ClassNSD(Xi) follows from the more
manageable Γi ∈ ClassNSD(N ).

3.3. Compact rank. An important dividing line in our analysis is whether the
given Polish space X has a compact perfect kernel or not. If X has a compact perfect
kernel, then its iterated Cantor-Bendixson derivatives are eventually compact. We
use this idea to define a new ordinal invariant, called compact rank.

Definition 3.7. Let X be a Polish space such that kerCB(X) is compact. Then
the compact rank of X is

||X||Comp = min{α ≤ ||X||CB | Dα
CB(X) is compact}.

The assumption on kerCB(X) ensures that ||X||Comp is well-defined. Moreover,
||X||Comp = 0 if and only if the whole X is compact.

There is a natural characterization of when a space with compact perfect kernel
is not compact itself which will be useful later on. It is based on the following
well-known exercise.8

Fact 3.8. A zero-dimensional second-countable space is not compact if and only if
it admits an infinite (countable) clopen partition.

8The nontrivial direction follows from the fact that if {Un | n ∈ ω} is a countable clopen cover
of the space which does not have a finite subcover, then setting Vn = Un \

⋃
j<n Uj we get that

{Vn | n ∈ ω ∧ Vn ̸= ∅} is an infinite clopen partition of the space.
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Lemma 3.9. Suppose that X is a zero-dimensional Polish space with kerCB(X)
compact. Then X is not compact if and only if there exists an infinite discrete
clopen set U ⊆ X.

Proof. If U is infinite discrete then it is not compact, and if it is closed in X then
X cannot be compact either.

Conversely, suppose that X is not compact. By Fact 3.8, there exists an infinite
clopen partition (Cn)n∈ω of X. Since kerCB(Z) is compact, there exists m ∈ ω such
that kerCB(Z) ⊆

⋃
n≤m Cn. For each n > m there is at least one isolated point

xn ∈ Cn because Cn ∩ kerCB(X) = ∅: then U = {xn | n > m} is as required. □

It might be interesting to notice that the compact rank can be obtained through
a corresponding derivative DComp(F ) defined by

DComp(F ) = F \
⋃

{U | U is infinite discrete clopen in F}.

(With this terminology, Lemma 3.9 can be reformulated as: If kerCB(X) is compact,
then X is compact if and only if DComp(X) = X.) One can then prove that if
X is a non-compact zero-dimensional Polish space with kerCB(X) compact, then
DCB(X) = DComp(X), and thus ||X||Comp is the rank associated to the derivative
DComp, i.e. ||X||Comp = min{α < ω1 | Dα

Comp(X) = Dα+1
Comp(X)}.

We will also need the following technical lemma.

Lemma 3.10. Suppose that X is a non-compact zero-dimensional Polish space
with kerCB(X) compact. Then for all α < ||X||Comp, there exists an infinite clopen
partition (Cn)n∈ω of X such that C0 ⊇ Dα+1

CB (X) and ||Cn+1||CB = α + 1 for all
n ∈ ω.

Proof. Since α < ||X||Comp ≤ ||X||CB we have Dα+1
CB (X) ⊊ Dα

CB(X) and the latter
is not compact. By Lemma 3.9 there is an infinite discrete clopen (relatively to
Dα

CB(X)) set U = {xi | i ∈ ω} ⊆ Dα
CB(X), so that U ∩Dα+1

CB (X) = ∅. Let (Un)n∈ω

be open sets of X such that U0∩Dα
CB(X) = Dα

CB(X)\U and Ui+1∩Dα
CB(X) = {xi}.

Without loss of generality, we may assume that
⋃

n∈ω Un = X (otherwise we replace
U0 with U0 ∪ (X \ Dα

CB(X)). Using the generalized reduction property ([Kec95,
Theorem 22.16]) we obtain a clopen partition (Cn)n∈ω of X such that Cn ⊆ Un, so
that in particular Cn ∩Dα

CB(X) = Un ∩Dα
CB(X) because (Un ∩Dα

CB(X))n∈ω is a
clopen partition of Dα

CB(X). Since U ∩Dα+1
CB (X) = ∅, by Lemma 2.11 the clopen

partition (Cn)n∈ω of X is as desired. □

3.4. Minimal countable spaces. We define (up to homeomorphism) a canonical
sequence (Kα+1)α<ω1

of countable compact metrizable spaces such that each Kα+1

has CB-type (α + 1, 1) (thus it is simple) and embeds into every Polish space of
CB-rank at least α+ 1.

Definition 3.11. Set K0 = ∅ and inductively define the space Kα+1 for all α < ω1

as follows:
• Kα+1 = ptgl(Kα), when α = 0 or α is a successor ordinal;
• Kα+1 = ptgl((Kαn+1)n∈ω) for some (αn)n∈ω cofinal in α, when α is limit.

Note that K1 = {(0)∞}. By induction on α < ω1, one easily sees that Kα+1

is compact and tp(Kα+1) = (α + 1, 1). As a consequence, since the CB-type is
a complete invariant for compact countable Polish spaces the definition of Kα+1
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when α is limit does not depend on the choice of the cofinal sequence (αn)n∈ω, so
the sequence is well-defined up to homeomorphism.9

Proposition 3.12. For every ordinal α < ω1 and every Polish space X with
||X||CB ≥ α + 1 there exists an embedding i : Kα+1 → X \ kerCB(X) with com-
pact (hence closed) range.

Proof. Since Kα+1 is compact, it is enough to prove by induction on α that there
is a continuous injection i : Kα+1 → X \ kerCB(X).

If α = 0 then K1 = {(0)∞} and X has at least one isolated point x: setting
i((0)∞) = x we are done.

Assume now that α > 0. Since ||X||CB ≥ α + 1, then Dα
CB(X) \Dα+1

CB (X) ̸= ∅.
Pick any x ∈ Dα

CB(X) \ Dα+1
CB (X) and fix any ⊆-decreasing clopen basis (Vn)n∈ω

of neighborhoods of x with V0 ∩ Dα
CB(X) = {x} (hence also V0 ∩ Dα+1

CB (X) =
∅). Set Un = Vn \ Vn+1, so that each Un is a countable clopen set, Un → x,
||Un||CB ≤ α because Un ∩ Dα

CB(X) = ∅, and lim supn∈ω ||Un||CB = α10 because
every clopen x ∈ V ⊆ V0 is such that ||V ||CB = α + 1. (Here we repeatedly use
Lemma 2.11.) Let (αn)n∈ω be the constant sequence with value α if the latter is a
successor ordinal, and a sequence of successor ordinals cofinal in α otherwise. By
lim supn∈ω ||Un||CB = α, there is an injective f : ω → ω such that ||Uf(n)||CB ≥
αn for all n ∈ ω, so that by inductive hypothesis there is a continuous injection
in : Kαn

→ Uf(n). Then the map i : Kα+1 → V0 ⊆ X \ kerCB(X) defined by

i(y) =

{
x if y = (0)∞

in(z) if y = (0)n⌢(1)⌢z with z ∈ Kαn

is the desired continuous injection. □

3.5. More on the difference hierarchy. Section 2.7 and Theorem 2.9 yields
a description of the first ω1-many nonselfdual Wadge classes in WX when X is
uncountable. (Here we are not requiring AD because Borel determinacy suffices.)

Lemma 3.13. Let X be an uncountable zero-dimensional Polish space and α < ω1.
Then the α-th nonselfdual ordinal in X is precisely the Wadge rank of Dα(Σ

0
1(X)).

Moving to countable Polish spaces X, we instead observe that the difference
hierarchy trivializes at least from ||X||CB on. Recall that we only consider nonempty
spaces X.

Proposition 3.14. Let X be a countable Polish space. If ||X||CB ≤ α then
P(X) = Dα(Σ

0
1(X)), and thus P(X) = Dα(Σ

0
1(X)) ∩ D

∧

α(Σ
0
1(X)). Moreover,

if X is simple and ||X||CB = β + 1, then P(X) = Dβ(Σ
0
1(X)) ∪D

∧

β(Σ
0
1(X)).

9Recall that in models of AD, it is not possible to define an ω1-sequence of distinct compact
sets because, by the Perfect Set Property (see e.g. [Jec03, Theorem 33.3]), no uncountable subset
of a standard Borel space can be well-orderable: this is why we insist here that the definition is
given only up to homeomorphism. What we will use is just the existence, for any fixed α < ω1,
of a countable compact space Kα+1 with CB-type (α + 1, 1) and the way it can be constructed
from analogous spaces of lower CB-rank, but its actual presentation as a subspace of N will be
totally irrelevant.

10That is, ∀β < α∀n ∈ ω∃m ≥ n (||Un||CB > β).



16 R. CARROY, L. MOTTO ROS, AND S. SCAMPERTI

Proof. Since Dγ(Σ
0
1(X)) ⊆ Dγ′(Σ0

1(X)) if γ ≤ γ′, it is enough to consider the
case ||X||CB = α and prove by induction that P(X) = Dα(Σ

0
1(X)). Note that

1 ≤ α < ω1 and Dα
CB(X) = ∅ because X ̸= ∅ is countable.

If α = 1 then X is discrete, so P(X) = Σ0
1(X) = D1(Σ

0
1(X)). If moreover X is

simple, then X is a singleton and P(X) = {∅, X} = D0(Σ
0
1(X)) ∪D

∧

0(Σ
0
1(X)).

Suppose now that α = β + 1 for some 1 ≤ β < ω1, and consider an arbitrary
A ⊆ X. Let Y = X \Dβ

CB(X) and A′ = Y \A. Since ||Y ||CB = β by Lemma 2.11,
we get A′ ∈ Dβ(Σ

0
1(Y )) ⊆ Dβ(Σ

0
1(X)) by inductive hypothesis and the fact that

Y is open in X, so we can write A′ = Dβ((Uγ)γ<β) with Uγ ∈ Σ0
1(X). Moreover,

Dβ
CB(X) is discrete because ||X||CB = β + 1, therefore A ∩ Dβ

CB(X) is open in
Dβ

CB(X): let U ∈ Σ0
1(X) be such that U ∩ Dβ

CB(X) = A ∩ Dβ
CB(X), so that the

open subset Uβ = U ∪ Y of X satisfies A = Uβ \ A′: then A = Dβ+1((Uγ)γ<β+1),
witnessing A ∈ Dα(Σ

0
1(X)). If moreover X is simple, then Dβ

CB(X) = {x} is a
singleton. If x /∈ A, then A ⊆ Y and using the induction hypothesis we again
obtain A ∈ Dβ(Σ

0
1(Y )) ⊆ Dβ(Σ

0
1(X)). If instead x ∈ A, then A = X \ A′, hence

A ∈ D

∧

β(Σ
0
1(X)). In both cases, A ∈ Dβ(Σ

0
1(X)) ∪D

∧

β(Σ
0
1(X)).

Finally, suppose that α is limit, and take a strictly increasing sequence (αn)n∈ω

of nonzero ordinals cofinal in α. For n ∈ ω, consider the open sets V ∗
n = X \

Dαn

CB(X). Apply the generalized reduction property to the sequence (V ∗
n )n∈ω to

obtain a clopen partition (Vn)n∈ω of X such that Vn ⊆ V ∗
n . Given any A ⊆ X,

set An = A ∩ Vn. Then An ⊆ Vn and ||Vn||CB ≤ αn by Lemma 2.11, so by
induction hypothesis An ∈ Dαn

(Σ0
1(Vn)) ⊆ Dαn

(Σ0
1(X)) ⊆ Dα(Σ

0
1(X)). Write

each An as An = Dα((U
n
β )β<α) with Un

β ∈ Σ0
1(X). Then A =

⋃
n∈ω(An ∩ Vn) =

Dα((
⋃

n∈ω(U
n
β ∩ Vn))β<α), hence A ∈ Dα(Σ

0
1(X)). □

Notice that if Γ ∈ ClassNSD(X) and Γ ⊆ ∆0
2(X) for a given zero-dimensional

Polish space X, then Γ = Dβ(Σ
0
1(X)) or Γ = D

∧

β(Σ
0
1(X)) for some β < ω1. (Recall

that by convention D0(Σ
0
1(X)) = {∅}.) Indeed, if ρ : N → X is any retraction

then ρ−1(Γ) ⊆ ∆0
2(N ) is nonselfdual, and thus ρ−1(Γ) = Dβ(Σ

0
1(N )) or ρ−1(Γ) =

D

∧

β(Σ
0
1(N )) for some β < ω1 by Wadge’s analysis of the first ω1-many nonselfdual

pairs in WN : since Γ = (ρ−1(Γ))(X) by Lemma 3.4, we are done. This reproves
[CMM22, Theorem 11.2], and since P(X) is selfdual then Proposition 3.14 sharpens
it by providing an upper bound on the possible β’s when X is countable.

Corollary 3.15. Let X be a countable Polish space and Γ ∈ ClassNSD(X). Then
Γ = Dβ(Σ

0
1(X)) or Γ = D

∧

β(Σ
0
1(X)) for some β < ||X||CB.

We are now going to show that such bound is optimal.

Definition 3.16. Given α < ω1, set

Aα = {x ∈ Kα+1 | ||x,Kα+1||CB has parity opposite to α}.

Proposition 3.17. For all α < ω1, Aα ∈ Dα(Σ
0
1(Kα+1)) \D

∧

α(Σ
0
1(Kα+1)).

Proof. By definition, A0 = ∅ and Kα+1 \ Aα = ptgl(Aβ) if α = β + 1. Moreover,
since when α is limit the choice of the sequence (αn)n∈ω in the definition of Kα+1 =
ptgl((Kαn+1)n∈ω) is irrelevant (up to homeomorphism), we can assume that the
ordinals αn are all odd, so that also in the limit case Kα+1 \Aα = ptgl((Aαn)n∈ω).

Recall the Wadge degrees Dα ∈ WN from (2.1). Since Dα(Σ
0
1) ∈ ClassNSD(N ),

it is enough to prove by induction that Aα ≡Kα+1,N
W Bα for some/any Bα ∈ Dα.
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If α = 0 the result is obvious because A0 = ∅ = B0. Suppose now that α = β + 1

and fix Bβ ∈ Dβ . Let f : Kβ+1 → N and g : N → Kβ+1 witness Aβ ≤Kβ+1,N
W Bβ

and Bβ ≤N ,Kβ+1

W Aβ , respectively. Let Bα ∈ Dα be defined as in (2.1), that is
Bα = {(0)n⌢(m+ 1)⌢x | n,m ∈ ω ∧ x ∈ ¬Bβ}. Using Kα+1 \ Aα = ptgl(Aβ) it is
straightforward to see that ptgl(f) : Kα+1 → ptgl(N ) ⊆ N witnesses Aα ≤Kα+1,N

W

Bα, and that the map ptgl(g)◦ρ : N → Kα+1, where ρ : N → ptgl(N ) is the retrac-
tion defined by ρ((0)∞) = (0)∞ and ρ((0)n⌢(m + 1)⌢x) = (0)n⌢(1)⌢x, witnesses
Bα ≤N ,Kα+1

W Aα. The limit case is similar. □

As a by-product, we obtain a computation of ||X||CB for countable spaces X in
terms of difference classes.

Proposition 3.18. Let X be a countable Polish space. Then

||X||CB = min{α < ω1 | Dα(Σ
0
1(X)) = D

∧

α(Σ
0
1(X))}.

Proof. By Proposition 3.14 we know that Dα(Σ
0
1(X)) = P(X) = D

∧

α(Σ
0
1(X)) for

α = ||X||CB, so it is enough to show that Dα(Σ
0
1(X)) ̸= D

∧

α(Σ
0
1(X)) for every

α < ||X||CB.
Since α + 1 ≤ ||X||CB, by Proposition 3.12 we can suppose that Kα+1 is, up

to homeomorphism, a closed subset of X. By Proposition 3.17 we get Aα ∈
Dα(Σ

0
1(Kα+1)) \ D

∧

α(Σ
0
1(Kα+1)). Fix a retraction ρ : X → Kα+1 and set A′

α =

ρ−1(Aα): since Aα ≡Kα+1,X
W A′

α, we get A′
α ∈ Dα(Σ

0
1(X)) \ D

∧

α(Σ
0
1(X)), as de-

sired. □

Combining Corollary 3.15 and Proposition 3.18 we get a full description of non-
selfdual Wadge classes in countable Polish spaces which nicely complements The-
orem 2.9(2) and Lemma 3.13. Given any α < Θ, we set ClassNSD(N ) ↾ α = {Γ ∈
ClassNSD(N ) | ||Γ||N < α}.

Corollary 3.19. Let X be a countable Polish space. Then the nonselfdual Wadge
pointclasses in X are precisely Dβ(Σ

0
1(X)) and their duals, for β < ||X||CB.

In particular, ClassNSD(X) = {Γ(X) | Γ ∈ ClassNSD(N ) ↾ 2 · ||X||CB}, and
indeed ⟨ClassNSD(N ) ↾ 2 · ||X||CB,⊆⟩ and ⟨ClassNSD(X),⊆⟩ are isomorphic via the
map Γ 7→ Γ(X).

4. Proof of Main Theorem 1

In view of the known facts from Propositions 2.2, 2.3, and 2.5, to completely
describe WX (up to isomorphism) for a given zero-dimensional Polish space X we
need to
(1) determine which 3 ≤ α < ΘX (if ΘX > 3) are selfdual and which are not,

namely, determine the sets OrdSD(X) and OrdNSD(X) from Definition 2.4;
(2) determine the value of ΘX when X is countable.
The first of these two goals splits into cases, depending on whether α is successor

or not. For successor ordinals (Section 4.1), we will show that, as in the case of N
and C, nonselfdual pairs and selfdual degrees alternate. This is relatively easy for
uncountable spaces, although the proof necessarily differs from the one used in the
case of N and C because we can no longer rely on the combinatorics of the space
at hand, while in the countable case we need to perform a deeper analysis of the
whole WX and in particular of the maximal class(es).
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For α limit (Section 4.2), we will immediately observe that for all X, if α has
uncountable cofinality then it is nonselfdual. The situation for limit ordinals of
countable cofinality is more delicate: they can be selfdual, as it happens in N ,
or not, as in C. It turns out that for a general zero-dimensional Polish space
X the two behaviours (Baire-like and Cantor-like) can coexist, but in an orderly
manner: if we denote by Cofω the set of limit ordinals of countable cofinality, then
OrdSD(X)∩Cofω is always an initial segment of ΘX ∩Cofω, which might be empty,
have length ΘX (i.e. OrdNSD(X) ∩ Cofω = ∅), or might be of the form αX ∩ Cofω
for some countable ordinal αX > ω.

Finally, the deeper analysis of the (non)selfdual levels when X is countable will
also allow us to compute the value of ΘX (Section 4.3), thus completing the proof
of Main Theorem 1.

4.1. The alternating property. We say that a zero-dimensional Polish space X
satisfies the alternating property if for all α ≥ 1 such that α+ 1 < ΘX we have

α ∈ OrdSD(X) ⇐⇒ α+ 1 ∈ OrdNSD(X).

The goal of this subsection is to prove that all zero-dimensional Polish spaces sat-
isfy the alternating property. The following proposition shows that there cannot
be two consecutive selfdual Wadge classes. In the case of N and C this is done
constructively: there are explicit procedures to construct, starting from a given
selfdual set, a nonselfdual pair immediately after it in the Wadge quasi-order. In
the general case, instead, we cannot rely on any specific combinatorial property of
the space at hand, thus we have to use a different and non-constructive proof.

Proposition 4.1 (AD). Let X be a zero-dimensional Polish space, and A,A′ ∈
SetSD(X) be such that A <X

W A′. Then there is A′′ ∈ SetNSD(X) satisfying A <X
W

A′′ <X
W A′.

Proof. Apply Proposition 2.6 to A′ to get a clopen partition (Vn)n∈ω of X and
nonselfdual sets (An)n∈ω such that An <X

W A′ and A′ =
⋃

n∈ω(An∩Vn). If An ≤X
W A

for all n ∈ ω via some continuous map fn : X → X, then f =
⋃

n∈ω(fn ↾ Vn) would
witness A′ ≤X

W A, a contradiction. Since A is selfdual, this means that by Wadge’s
Lemma there is n̄ ∈ ω such that A <X

W An̄. Setting A′′ = An̄ we are done. □

In particular, Proposition 4.1 already yields one implication of the alternating
property.

Corollary 4.2 (AD). Let X be a zero-dimensional Polish space and α ≥ 1 be such
that α+ 1 < ΘX . If α ∈ OrdSD(X), then α+ 1 ∈ OrdNSD(X).

The following corollary will be used in Proposition 4.5. To simplify the notation
let D∗

β(Σ
0
1(X)) = (Dβ(Σ

0
1(X)))∗ = Dβ(Σ

0
1(X))∪D

∧

β(Σ
0
1(X)) be the coarse Wadge

class associated to Dβ(Σ
0
1(X)).

Corollary 4.3. Let X be a countable11 Polish space. Then all sets A ⊆ X such
that A /∈

⋃
β<||X||CB

D∗
β(Σ

0
1(X)), if there exist any, are selfdual, Wadge equivalent

to each other, and P(X) = A↓X .

11Since we are dealing with a countable space, Borel determinacy suffices to apply our previous
results without appealing to the full AD.
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Proof. By Corollary 3.19, all sets A as in the statement are selfdual. Assume
towards a contradiction that there is A′ /∈

⋃
β<||X||CB

D∗
β(Σ

0
1(X)) such that A′ ̸≤X

W

A, so that A′ ∈ SetSD(X) and A <X
W A′. If A′ is ≤X

W-minimal with such properties,
then we get a contradiction with (the restriction to Borel sets of) Proposition 4.1.
Thus A ≡X

W A′ for all A,A′ /∈
⋃

β<||X||CB
D∗

β(Σ
0
1(X)).

Finally, fix A as in the statement and consider an arbitrary B ⊆ X. If B ∈
D∗

β(Σ
0
1(X)) for some β < ||X||CB, then B <X

W A by Wadge’s Lemma; otherwise,
B ≡X

W A by the previous paragraph. In all cases B ≤X
W A, thus P(X) = A↓X . □

Theorem 4.4 (AD). All uncountable zero-dimensional Polish spaces satisfy the
alternating property.

Proof. Let X be an uncountable Polish zero-dimensional space, and consider any
1 ≤ α < ΘX = Θ. By Corollary 4.2 we only need to show that if α ∈ OrdNSD(X),
then α + 1 ∈ OrdSD(X). By Theorem 2.9(1) there is Γ ∈ ClassNSD(N ) such that
Γ(X) ∈ ClassNSD(X) and ||Γ(X)|| = α. Since X is uncountable then kerCB(X)
is uncountable as well, thus we can partition X into two uncountable clopen
sets X0, X1. By Theorem 2.9(2) we have Γ(X0) ∈ ClassNSD(X0) and Γ

∧

(X1) ∈
ClassNSD(X1). By Lemma 3.6 the smallest Wadge class containing Γ(X)∪Γ

∧

(X) is
selfdual, i.e. α+ 1 ∈ OrdSD(X). □

Combined with Theorem 2.9 and Lemma 3.4, the alternating property implies
that the embedding from WX into WN induced by any retraction ρ : N → X (Sec-
tion 2.2) is almost surjective and might miss only limit levels of WX . In particular,
except for the countable cofinality case the rank of Γ ∈ ClassW(N ) and the rank
(in X) of Γ(X) are at distance at most 1.

We now move to countable spaces.

Proposition 4.5. Let X be a countable Polish space. Then P(X) is a Wadge
class if and only if X is not simple.

Proof. Suppose first that X is simple, so that in particular ||X||CB = α + 1 for
some α < ω1. By Corollary 3.19 we know that Dα(Σ

0
1(X)) ̸= D

∧

α(Σ
0
1(X)), while

the “moreover” part of Proposition 3.14 gives P(X) = Dα(Σ
0
1(X)) ∪D

∧

α(Σ
0
1(X)).

It follows that we cannot have P(X) = A↓X for A ⊆ X, because if B ⊆ X is
complete for Dα(Σ

0
1(X)) then B,¬B ≤X

W A would imply B <X
W A by B ̸≤X

W ¬B, a
contradiction.

Suppose now that X is not simple. By Corollary 4.3 it is enough to show that
there is some A ⊆ X such that A /∈

⋃
β<||X||CB

D∗
β(Σ

0
1(X)). We distinguish two

cases.
If ||X||CB = λ is limit, fix a strictly increasing sequence (αi)i∈ω cofinal in λ. By

Lemma 2.10 we can find a clopen partition (Cn)n∈ω of X such that ||Cn||CB < λ
and supn∈ω ||Cn||CB = λ. Fix an injection i 7→ ni such that ||Cni

||CB > αi,
so that Dαi

(Σ0
1(Cni

)) ∈ ClassNSD(Cni
) for all i ∈ ω by Corollary 3.19. By

Lemma 3.6 there is a selfdual Wadge class A↓X which contains
⋃

i∈ω Dαi
(Σ0

1(X)),
hence A /∈

⋃
β<λ D

∗
β(Σ

0
1(X)) because all the pointclasses Dβ(Σ

0
1(X)) are distinct

and nonselfdual by Corollary 3.19.
Suppose now that tp(X) = (β + 1, N) with 1 < N ≤ ω. By Lemma 2.10 again

we can find a clopen partition (Cn)n<N of X such that ||Cn||CB = β + 1, so that
Γ0(C0) = Dβ(Σ

0
1(C0)) ∈ ClassNSD(C0) and Γ1(C1) = D

∧

β(Σ
0
1(C1)) ∈ ClassNSD(C1)
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by Corollary 3.19. (For the remaining 1 < n < N the choice of the nonselfdual
pointclasses Γn(Cn) is irrelevant.) Then Lemma 3.6 allows us to conclude that
there is a selfdual A ⊆ X with A↓X ⊇ Dβ(Σ

0
1(X))∪D

∧

β(Σ
0
1(X)), which is again as

required by Corollary 3.19. □

Theorem 4.6. All countable zero-dimensional Polish spaces satisfy the alternating
property.

Proof. Let X be a countable Polish space. By Corollary 4.2, we only need to prove
that if α ∈ OrdNSD(X) and α+1 < ΘX then α+1 ∈ OrdSD(X). By Corollary 3.19
there exists a β < ||X||CB such that ||Dβ(Σ

0
1(X))|| = α. We distinguish two cases.

Assume first that β + 1 < ||X||CB. Then Dβ+1
CB (X) ̸= ∅ and Dβ

CB(X) is infinite,
which implies that we can split X in two clopen sets X0 and X1 with ||Xi||CB ≥ β+1

for i = 0, 1. (For example, pick x ∈ Dβ
CB(X) \Dβ+1

CB (X) and X0 clopen such that
X0 ∩Dβ

CB(X) = {x}: then X0 and X1 = X \X0 are as desired.) By Corollary 3.19
we have that Γ0(X0) = Dβ(Σ

0
1(X0)) ∈ ClassNSD(X0) and Γ1(X1) = D

∧

β(Σ
0
1(X1)) ∈

ClassNSD(X1), so by Lemma 3.6 their supremum is selfdual and α+1 ∈ OrdSD(X).
Assume now ||X||CB = β+1. If X were simple, then ΘX = ||Dβ(Σ

0
1(X))||+1 =

α+1 by Proposition 3.14, contradicting the choice of α. Thus X is not simple and
Proposition 4.5 together with Corollary 4.3 show that at level α + 1 we have the
selfdual Wadge class P(X), so α+ 1 ∈ OrdSD(X) again and we are done. □

4.2. Limit levels. We now move to the analysis of limit levels of WX . We first
settle the uncountable cofinality case.

Proposition 4.7 (AD). Let X be a zero-dimensional Polish space. If 1 ≤ α < ΘX

is a limit ordinal and α ∈ OrdSD(X), then cof(α) = ω. Thus at limit levels of
uncountable cofinality there is always a nonselfdual pair.

Proof. Let A ∈ SetSD(X) be such that ||A||XW = α. By Proposition 2.6, there are
sets (An)n∈ω such that α = supn∈ω(||An||XW + 1): this already shows that α has
countable cofinality. □

To deal with the countable cofinality case, we need to distinguish whether kerCB(X)
is compact or not. We begin with a technical lemma, which might be of indepen-
dent interest because it shows that ω×C is minimal for closed embeddability among
zero-dimensional Polish spaces with non-compact perfect kernel.

Lemma 4.8. Let X be a zero-dimensional Polish space. The following are equiva-
lent:

(i) kerCB(X) is not compact;
(ii) there exists an infinite (countable) clopen partition (Cn)n∈ω of X such that

each Cn is uncountable;
(iii) X contains a closed set F homeomorphic to ω × C.

Proof. If X is countable, then all of (i)–(iii) are false, so without loss of generality
we may assume that X is uncountable.

We start with (i) ⇒ (ii). Since kerCB(X) is not compact, by Fact 3.8 there is an
infinite clopen partition (C ′

n)n∈ω of kerCB(Z), and since kerCB(X) is perfect each
C ′

n is uncountable. Thus it is enough to set Cn = ρ−1(C ′
n) where ρ : X → kerCB(X)

is any retraction.
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Assume now that (ii) holds. Since the Cn’s are uncountable Polish spaces, they
contain a closed set Fn ⊆ Cn homeomorphic to C: then F =

⋃
n∈ω Fn is still closed

and homeomorphic to ω × C, hence (iii) holds.
Finally, we prove (iii) ⇒ (i). Since F is perfect, then F ⊆ kerCB(X). But then

kerCB(X) cannot be compact, otherwise so would be F and ω×C, which is false. □

Theorem 4.9 (AD). Let X be an uncountable zero-dimensional Polish space, so
that ΘX = Θ. Then the following are equivalent:

(i) kerCB(X) is not compact;
(ii) α ∈ OrdSD(X) for every limit α < ω1;
(iii) if α ∈ ΘX ∩ Cofω, then α ∈ OrdSD(X).
Proof. It is enough to prove (i) ⇒ (iii) and (the contrapositive of) (ii) ⇒ (i).

Assume first that kerCB(X) is not compact, so that by Lemma 4.8 there is
an infinite clopen partition (Cn)n∈ω of X into uncountable pieces. Given any
α ∈ ΘX ∈ Cofω, pick a strictly increasing sequence of ordinals (αn)n∈ω cofinal in α
such that αn ∈ OrdNSD(X) for all n ∈ ω (which exists by the alternating property),
and using Theorem 2.9(1) let Γn ∈ ClassNSD(N ) be such that ||Γn(X)||X = αn.
By Theorem 2.9(2) and uncountability of Cn, we have Γn(Cn) ∈ ClassNSD(Cn) as
well, hence by Lemma 3.6 the supremum Γ ∈ ClassW(X) of the pointlcasses Γn(X)
is selfdual, i.e. α ∈ OrdSD(X).

Assume now that kerCB(X) is compact and let β = ||X||CB. Consider any
β + ω < α < ω1: we want to show that if α ∈ OrdSD(X) then α is a successor
ordinal, so that any limit ordinal between β + ω and ω1 witnesses the failure of
(ii). Let A ⊆ X be a selfdual set such that ||A||XW = α. By Proposition 2.6
there exists a clopen partition (Vn)n∈ω of X and sets (An)n∈ω such that An <X

W

A =
⋃

n∈ω(An ∩ Vn) and α = supn∈ω(αn + 1) for αn = ||An||XW. Recall also from
Remark 2.7(1) that we can assume that for each n ∈ ω either An = X, or else
An ⊆ Vn. Since kerCB(X) is compact, there is N ∈ ω such that Vn ∩ kerCB(X) = ∅
for all n ≥ N . Fix any n ≥ N . Then ||Vn||CB ≤ β by Lemma 2.11, hence
if An ⊆ Vn then An ∈ Dβ(Σ

0
1(Vn)) ⊆ Dβ(Σ

0
1(X)) by Proposition 3.14, which

means that αn < β + ω because by Theorem 2.9 and the alternating property
||Dβ(Σ

0
1(X))||X ≤ ||Dβ(Σ

0
1(N ))||N = 2β + 1. If instead An = X, then αn = 1.

Hence αn + 1 < β + ω for all n ≥ N . Since α > β + ω, this means that necessarily
α = supn∈ω(αn+1) = supn<N (αn+1) = maxn<N (αn+1), and thus α is a successor
ordinal. □

If X is countable, so that kerCB(X) = ∅ is trivially compact, then ΘX < ω1 <
Θ = ΘN (see Section 4.3 for the exact computation of ΘX), and thus WX cannot
be isomorphic to WN . Combining this with Theorem 4.9 and our previous results
(and recalling that, up to homeomorphism, any zero-dimensional Polish space can
be construed as a closed subspace of N ) we get:
Corollary 4.10 (AD). If X is a zero-dimensional Polish space, then WX is order-
isomorphic to WN if and only if kerCB(X) is not compact, where (when it exists)
the isomorphism is canonically12 induced by A 7→ ρ−1(A) for some/any retraction
ρ : N → X.

12Since we are working in models of AD, where the Axiom of Choice AC fails, showing that
two partial orders have the same description is not enough to conclude that they are actually
isomorphic, so it is very important to observe that in our case the isomorphism can be realized in
a very canonical and definable way.
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We now move to spaces X with a compact perfect kernel (this includes the case
of countable spaces). It turns out that the compact rank from Section 3.3 provides
a crucial dividing line.

Theorem 4.11 (AD). Let X be a zero-dimensional Polish space such that kerCB(X)
is compact, and let α ∈ ΘX ∩ Cofω.
(1) If α > ||X||Comp, then α ∈ OrdNSD(X).
(2) If α < ||X||Comp, then α ∈ OrdSD(X).
(3) If α = ||X||Comp, then α ∈ OrdSD(X) if and only if there is a clopen partition

(Vn)n∈ω of X and N ∈ ω such that α = supn≥N (||Vn||CB + 1).

Proof. (1) Suppose towards a contradiction that α > ||X||Comp but α ∈ OrdSD(X):
we adapt the proof of Theorem 4.9 to show that α needs to be a successor ordinal,
contradicting α ∈ Cofω. Given any A ∈ SetSD(X) such that ||A||XW = α, use
Proposition 2.6 to get a clopen partition (Vn)n∈ω of X and sets (An)n∈ω such
that An <X

W A =
⋃

n∈ω(An ∩ Vn) and α = supn∈ω(αn + 1) for αn = ||An||XW.
Since by definition D

||X||Comp

CB (X) is compact, there exists N ∈ ω such that Vn ⊆
X \ D

||X||Comp

CB (X) for all n ≥ N . Using that either An = X or An ⊆ Vn, this
implies that An ∈ D||X||Comp

(Σ0
1(X)) for all n ≥ N . Arguing as in Theorem 4.9

(and using that α > ||X||Comp is limit), we get that ||D||X||Comp
(Σ0

1(X))||X ≤
||D||X||Comp

(Σ0
1(N ))||N = 2 · ||X||Comp + 1 < α, hence supn≥N (αn + 1) < α. Thus

α = supn∈ω(αn + 1) = maxn<N (αn + 1) is a successor ordinal, a contradiction.
(2) Suppose now that α < ||X||Comp, so that in particular X is not compact.

Then by Lemma 3.10 there is a clopen partition (Cn)n of X such that Dα+1
CB (X) ⊆

C0 and ||Cn+1||CB = α+1 for all n ∈ ω. For every n ≥ 1 and β < α, Corollary 3.19
implies that Dβ(Σ

0
1(Cn)) ∈ ClassNSD(Cn). Moreover, β ≤ ||Dβ(Σ

0
1(X))|| ≤ 2β+1:

if X is countable this follows from the alternating property and Corollary 3.19
together with ||X||CB ≥ ||X||Comp > α > β, while if X is uncountable we can use
the alternating property and Lemma 3.13. Since α is limit, then 2β + 1 < α and
hence β ≤ ||Dβ(Σ

0
1(X))|| < α. Therefore taking any strictly increasing sequence

(αn)n≥1 cofinal in α we have Dαn
(Σ0

1(Cn)) ∈ ClassNSD(Cn), ||Dαn
(Σ0

1(X))||X < α,
and supn≥1 ||Dαn

(Σ0
1(X))|| = α. Setting Γ0 = {N} and Γn = Dαn

(Σ0
1) for n ≥ 1,

and applying Lemma 3.6, we then get α ∈ OrdSD(X), as desired.
(3) The proof of the desired equivalence is a variation of the arguments for

parts (1) and (2). Assume first that α ∈ OrdSD(X). Given any A ∈ SetSD(X) such
that ||A||XW = α, let (Vn)n∈ω and (An)n∈ω be as in Proposition 2.6. Since Dα

CB(X)
is compact, there is N ∈ ω such that Vn ∩Dα

CB(X) = ∅ for all n ≥ N , which also
means ||Vn||CB ≤ α by Lemma 2.11. If ||Vn||CB = α for some n ≥ N , then we apply
Lemma 2.10 to all such countable spaces Vn and get the desired partition. (Recall
that α is limit.) So we can assume that ||Vn||CB +1 ≤ α for all n ≥ N and we only
need to show that for every β < α there is n ≥ N with ||Vn||CB ≥ β. Assume not:
since we can assume that either An = X or An ⊆ Vn, by Proposition 3.14 we would
have An ∈ D||Vn||CB

(Σ0
1(Vn)) ⊆ Dβ(Σ

0
1(Vn)) ⊆ Dβ(Σ

0
1(X)) for all n ≥ N , and since

the usual computation gives ||Dβ(Σ
0
1(X))||X ≤ 2β + 1 and 2β + 1 < α because α

is limit, then α = supn∈ω(||An||XW + 1) = maxn<N (||An||XW + 1), contradicting the
fact that α is limit.

Conversely, let (Vn)n∈ω and N ∈ ω be as in part (3), and fix a sequence (αk)k∈ω

cofinal in α. Since α is limit, the assumption on (Vn)n∈ω implies that for each
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k ∈ ω we can find nk ≥ N such that αk < ||Vnk
||CB and further ensure that the

map k 7→ nk is injective. By Corollary 3.19 the class Γnk
(Vnk

) = Dαk
(Σ0

1(Vnk
))

is nonselfdual in Vnk
, and as in the proof of part (2) one can show that αk ≤

||Dαk
(Σ0

1(X))|| ≤ 2αk + 1 < α. Setting Γn = {N} for all n ∈ ω which are not of
the form nk and applying Lemma 3.6 we get α ∈ OrdSD(X), as desired. □

Remark 4.12. Together with Lemma 2.10, Theorem 4.11(3) shows that if X is a
countable zero-dimensional Polish space and ||X||CB = ||X||Comp = α < ΘX is
limit, then necessarily α ∈ OrdSD(X).

Concerning the characterization in Theorem 4.11(3), it is easy to provide exam-
ples of both sorts.

Example 4.13. Let α be a countable limit ordinal and fix a strictly increasing
sequence (αn)n∈ω cofinal in α. Denote by

⊕
n∈ω Xn the (disjoint) sum of the

topological spaces Xn. (If Xn ⊆ N , then up to homeomorphism the sum can be
construed as

⊕
n∈ω Xn =

⋃
n∈ω{n⌢x | n ∈ ω ∧ x ∈ Xn}.) Then the spaces

Yα =
⊕
n∈ω

Kαn+1 and Zα = ptgl((ω ×Kαn+1)n∈ω)

are both countable zero-dimensional Polish spaces with compact rank α, and by
Theorem 4.11(3) we have α ∈ OrdSD(Yα) but α ∈ OrdNSD(Zα). Moreover, ||Yα||CB =
α and ||Zα||CB = α+1 (indeed, tp(Zα) = (α+1, 1), i.e. Zα is also simple), and the
values for such CB-ranks are as small as possible by Remark 4.12.

The following result, together with Proposition 4.7 and Theorem 4.9, completes
the proof of part (3) of Main Theorem 1. Let αX be the smallest αX ≤ ΘX such
that α ∈ OrdSD(X) for all limit α < αX with cof(α) = ω. By Theorems 4.9
and 4.11 we get:

Corollary 4.14 (AD). Let X be an arbitrary zero-dimensional Polish space. Then
either αX = ΘX = Θ (if kerCB(X) is not compact), or else αX < ω1 and α ∈
OrdNSD(X) for all limit αX ≤ α < ΘX .

Indeed, by Theorems 4.9 and 4.11 the ordinal αX can be computed as follows:
• If kerCB(X) is not compact, then X is uncountable and αX = ΘX = Θ.
• If kerCB(X) is compact and ||X||Comp is a successor ordinal, then ||X||Comp =

λ+ n for some limit or null λ < ω1 and n ∈ ω \ {0}: set αX = λ+ 1 if λ > 0
and αX = 0 otherwise.

• If kerCB(X) is compact and ||X||Comp = λ is limit, then we have to distinguish
cases depending on whether ||X||Comp ∈ OrdSD(X) or not. In the former case,
we again set αX = λ+ 1. Otherwise we set αX = 0 if λ = ω, αX = λ′ + 1 if
λ is of the form λ′ + ω for some limit λ′ < ω1, and αX = λ otherwise (i.e. if
λ is a limit of limit ordinals).

In particular, αX is either 0, or the successor of a countable limit ordinal, or a limit
of countable limit ordinals, or the ordinal Θ. Moreover, when αX < ω1 we have
αX ≤ ||X||CB unless ||X||CB is limit, in which case we might have αX ≤ ||X||CB or
αX = ||X||CB + 1.

4.3. Length of the Wadge hierarchy for countable spaces. By Proposi-
tion 2.5 we know that if a zero-dimensional Polish space X is uncountable, then
ΘX = Θ. Thus to complete the proof of part (4) of Main Theorem 1 we just need
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to compute the value of ΘX when X is countable. Notice that since we consider
only nonempty spaces X, the minimal possible length for WX is 2.

Theorem 4.15. Let X be a countable Polish space. Then ΘX = 2 · ||X||CB + εX ,
for some εX ∈ {−1, 0, 1}.

Proof. Let ||X||CB = λ + n for some λ limit or null and n ∈ ω. We distinguish
various cases.

If λ = 0 (i.e. ||X||CB is finite), then n > 0 because X ̸= ∅. Then by Corollary 3.19
the largest nonselfdual Wadge classes in WX are Dn−1(Σ

0
1(X)) and its dual, and

by the alternating property (and the fact that the Wadge rank starts by 1) we have
||Dn−1(Σ

0
1(X))|| = 2n − 1. By Proposition 3.14 and Proposition 4.5, it follows

that ΘX = 2n = 2 · ||X||CB if X is simple, in which case we set εX = 0, and
ΘX = 2n+ 1 = 2 · ||X||CB + 1 otherwise, in which case εX = 1.

Assume now that λ > 0. By the alternating property and Corollary 3.19 we
know that ΘX ≥ λ and that the ranks of difference classes of the form Dβ(Σ

0
1(X))

with β < λ are cofinal in λ. So we have two subcases. If n = 0, then X is not simple
and Proposition 4.5 gives that P(X) is a selfdual Wadge class of rank exactly λ:
thus ΘX = λ + 1 = 2 · ||X||CB + 1 and we set εX = 1. If instead n > 0, then by
the alternating property and Corollary 3.19 again we know that there are precisely
n-many nonselfdual Wadge classes with rank ≥ λ, i.e. the classes Dλ+i(Σ

0
1(X)) for

i < n, which by the alternating property means that we have at least 2n−1 Wadge
classes with rank ≥ λ. Then we have to consider two issues. First, if αX > λ
then λ ∈ OrdSD(X) and ||Dλ(Σ

0
1(X))|| = λ + 1, i.e. we have one more (selfdual)

class before Dλ(Σ
0
1(X)); if instead αX ≤ λ then ||Dλ(Σ

0
1(X))|| = λ and there

is no additional class to be taken into account. Second, by Proposition 3.14 and
Proposition 4.5 we know that if X is simple then Dλ+n−1(Σ

0
1(X)) is the last Wadge

class in WX , while if X is not simple then P(X) forms yet one more Wadge class
immediately after Dλ+n−1(Σ

0
1(X)) and its dual. Summing up the discussion above

we have that ΘX = 2 · ||X||CB + εX where εX = βX + δX − 1 and βX = 0 if X is
simple and βX = 1 otherwise, while δX = 0 if αX ≤ λ and δX = 1 otherwise. □

4.4. Optimality. The previous results are sharp, meaning that all possible shapes
for a Wadge hierarchy WX which are coherent with our description are actually
realized by some zero-dimensional Polish space X. We actually prove a finer result,
showing that all possible configurations of the parameters ||X||CB, ||X||Comp, and,
if X is countable, tp(X) can be realized in suitable spaces, together with some
additional features relevant to our analysis of WX . The limitations in the statement
follow from the possible values of the CB-rank and the CB-type (and the fact that
we consider only nonempty spaces), the definition of the compact rank, Lemma 2.10,
and Remark 4.12. Notice also that the additional conditions on β and γ are relevant
only in part (1): in particular, in part (2) the ordinal γ can unconditionally assume
any value ≤ α.

Proposition 4.16. Let (α, β) ∈ ω1 × (ω + 1) and γ ≤ α. Further assume that
β ≥ 1, β = ω if α is limit, γ = α if β = ω, and γ ≤ α′ if α = α′ + 1 and β < ω.
(1) If α ≥ 1 there is a countable (zero-dimensional) Polish space X with tp(X) =

(α, β) and ||X||Comp = γ. Moreover, when γ is limit we can require to have
γ ∈ OrdSD(X), or else to have γ ∈ OrdNSD(X) (provided that α > γ, in which
case α needs to be a successor ordinal).
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(2) There is an uncountable zero-dimensional Polish space X with kerCB(X) com-
pact, ||X||CB = α, and ||X||Comp = γ. Moreover, when γ is limit we can freely
decide to have γ ∈ OrdSD(X) or γ ∈ OrdNSD(X).

(3) There is a(n uncountable) zero-dimensional Polish space X with kerCB(X)
non-compact and ||X||CB = α.

Proof. (1) Further developing Example 4.13, for any δ < ω1 we set

Yδ =
⊕
n∈ω

Kδn+1 and Zδ = ptgl((ω ×Kδn+1)n∈ω),

where (δn)n∈ω is a sequence cofinal in δ if the latter is limit, or the constant sequence
with value δ′ if δ = δ′+1. Then tp(Yδ) = (δ, ω), tp(Zδ) = (δ+1, 1), and ||Yδ||Comp =
||Zδ||Comp = δ. Moreover, if δ is limit then δ ∈ OrdSD(Yδ) while δ ∈ OrdNSD(Zδ).

The space X = Yα already settles the case when α is limit or when α is a
successor but β = ω. So assume that α = α′ + 1 and 1 ≤ β < ω, in which case
γ ≤ α′. If γ = α′ then X = (β × Kα) ⊕ Yα′ has CB-type (α, β) and compact
rank γ, as required. For the additional part, notice that if α′ = γ is limit, this
construction gives γ ∈ OrdSD(X); if instead we want γ ∈ OrdNSD(X), then we use
X = β × Zα′ , which has still CB-type (α, β) and compact rank γ but is such that
γ ∈ OrdNSD(X), as desired. The remaining cases γ < α′ are treated similarly: we
set X = (β×Kα)⊕ Yγ if γ is successor or if γ is limit and we want γ ∈ OrdSD(X),
while we set X = (β ×Kα)⊕ Zγ if γ is limit and we want γ ∈ OrdNSD(X).

(2) Consider the space Ĉ = ω{0, 2} ⊆ N , which is trivially homeomorphic to
C, and recall the spaces Yδ and Zδ from part (1). If γ < α, then we first build13

Ĉα = Ĉ ∪Kα+1, so that ||Ĉα||CB = α and kerCB(Ĉα) = Ĉ is compact, and then set
X = Ĉα⊕Yγ or X = Ĉα⊕Zγ depending on whether we want γ ∈ OrdSD(X) or not
in case γ is limit. If instead γ = α, then we set X = Ĉ ⊕ Yγ or X = Ĉ ∪ Zγ , again
depending on the given requirement on selfduality of γ when it is limit. (Notice
that ||Ĉ ∪ Zγ ||CB = γ because (0)∞ is no longer isolated in Dγ

CB(Ĉ ∪ Zγ) = Ĉ.)
(3) Set X = N ⊕ Ĉα, where Ĉα is as in part (2). □

5. Proof of Main Theorem 2

The Wadge hierarchy WX over a (zero-dimensional) Polish space provides the
finest possible measurement of the topological complexity of its subsets. Slightly
changing our perspective, it is natural to ask whether it is possible to classify zero-
dimensional Polish spaces up to the measurement scale WX they give rise to. More
formally, consider the standard Effros-Borel space F (N ) of all closed subsets of N ,
which up to homeomorphism contains all zero-dimensional Polish spaces, and for
X,Y ∈ F (N ) set

X ≈W Y ⇐⇒ WX
∼= WY .

Remark 5.1. The current formulation of the problem is within our axiomatic setup
ZF + DC(R) + AD. If one wants to dispense with any determinacy assumption,
the problem could be formulated by requiring that WX and WY be isomorphic
when restricted to Borel sets, or even just to sets in ∆0

2: all results we are going
to present would be unaffected by such a change, thus providing determinacy-free
anti-classification results.

13Here we really mean the union of the two spaces, which overlap on the point (0)∞.



26 R. CARROY, L. MOTTO ROS, AND S. SCAMPERTI

The relation ≈W is strictly coarser than closed biembeddability: by Lemma 3.1,
if X and Y are such that there are closed embeddings from each space into the
other one, then X ≈W Y ; but on the other hand N ≈W ω × C even though N is
not homeomorphic to a closed subset of ω × C.

Our analysis provides a quite satisfactory solution to the classification problem
associated with ≈W by providing a natural assignment of complete invariants. More
precisely, call a pair of ordinals (α, β) a Wadge invariant if it satisfies the following
conditions:

• α, β ∈ ω1 ∪ {Θ} and α ≤ β;
• if β ̸= Θ, then β is at least 2 and is a successor ordinal;
• if α ̸= Θ, then either α = 0, or α = λ+ 1 for some countable limit ordinal λ,

or else α = λ for some countable ordinal λ which is a limit of limit ordinals.
Notice that each Wadge invariant can easily be coded into a single countable ordinal.
For each zero-dimensional Polish space X, the pair (αX ,ΘX) is a Wadge invariant
which completely determines the structure of WX up to order-isomorphism (by the
alternating property, Proposition 4.7, and Corollary 4.14). This means that the
map X 7→ (αX ,ΘX) is an assignment of complete invariants for the classification
of zero-dimensional Polish spaces up to ≈W.

Remark 5.2. As briefly discussed in Footnote 12 on page 21, in the AD-world
we must make sure that when (αX ,ΘX) = (αY ,ΘY ) then we can actually find
an isomorphism between WX and WY without appealing to the Axiom of Choice
AC. But this is granted by the fact that by Theorem 2.9(2), Corollary 3.19, and
Lemma 3.4, if X ⊆ N is closed and ρ : N → X is a retraction then the map ιX
defined by Γ 7→ ρ−1(Γ) is an embedding of ⟨ClassW(X),⊆⟩ into ⟨ClassW(N ),⊆⟩
sending ClassNSD(X) into a suitable initial segment of ClassNSD(N ). By our anal-
ysis, it then turns out that ι−1

Y ◦ ιX is the required canonical isomorphism between
⟨ClassW(X),⊆⟩ and ⟨ClassW(Y ),⊆⟩.

Conversely, by Proposition 4.16 together with the computation of αX provided
after Corollary 4.14 and the computation of the length of WX from (the proof of)
Theorem 4.15, we get a zero-dimensional Polish space X with (αX ,ΘX) = (α, β)
for every Wadge invariant (α, β). In particular, the ≈W-equivalence classes can be
well-ordered in order type ω1.

In contrast to these “positive” classification results, we are now going to show
that, except for the case when X is a singleton, it is difficult to determine whether
X belongs to a given ≈W-equivalence class: given a Wadge invariant (α, β) ̸= (0, 2),
the set of zero-dimensional Polish spaces X with (αX ,ΘX) = (α, β) is never Borel.
This proves Main Theorem 2.

Theorem 5.3 (AD). (1) The class [N ]≈W
corresponding to the Wadge invariant

(Θ,Θ) is a Borel complete Σ1
1 set.

(2) For any X ∈ F (N ) with |X| > 1 and X ̸≈W N , the set [X]≈W
is Borel

Π1
1-hard.

(3) For every countable14 limit ordinal α, the set {X ∈ F (N ) | α ∈ OrdSD(X)}
is Borel Σ1

1-hard.

14For completeness, one might ask how complex is the set {X ∈ F (N ) | α ∈ OrdSD(X)} for a
given α ≥ ω1 of countable cofinality. But this is precisely the set [N ]≈W from Theorem 5.3(1).
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As the proof will show, the same is true if we restrict the ambient space to
the analytic space F>ℵ0(N ) of uncountable zero-dimensional Polish spaces, i.e. to
spaces with Wadge invariant of the form (α,Θ). (Just replace the Borel map F
with FC everywhere.)

Proof. We use the following variation of a construction from [CMMR18]. Fix a
bijection ⟨·, ·⟩ : ω2 → ω \ {0}. For s ∈ <ω(ω \ {0}) let π(s) = t if and only if
lh(t) = lh(s) and for all i < lh(s) there is ni ∈ ω such that s(i) = ⟨t(i), ni⟩. Define
the Borel map F : Tr → F (N ) from the Polish space Tr of trees on ω into the space
of (codes for) zero-dimensional Polish spaces by letting F (T ) be the body of the
pruned tree

{s⌢(0)k | s ∈ <ω(ω \ {0}) ∧ π(s) ∈ T ∧ k ∈ ω}.
If x ∈ N is an infinite branch through T , then F (T ) contains a closed set home-
omorphic to N , namely, the set of all y ∈ N such that y ↾ n ∈ <ω(ω \ {0}) and
π(y ↾ n) = x ↾ n for all n ∈ ω. Hence F (T ) is not σ-compact and kerCB(F (T )) is
not compact. Conversely, if T is well-founded then all elements of F (T ) are of the
form s⌢(0)∞ for some s ∈ <ω(ω \ {0}) and they are isolated in F (T ), i.e. F (T ) is
discrete.

To prove (1), first recall that by Corollary 4.10 we have X ≈W N if and only
if kerCB(X) is not compact. But kerCB(X) is not compact if and only if there is
H ∈ F (N ) such that H ⊆ X, H is perfect, and H /∈ K(N ), where K(N ) is the
collection of all compact subspaces of N . Since K(N ) is Borel in F (N ) and “H is
perfect” is a Borel statement (see the proof of [Kec95, Theorem 27.5]), this is a Σ1

1

definition of [N ]≈W
. For the hardness part, it is enough to use the map F from the

previous paragraph, recalling that the set of ill-founded trees is a complete Σ1
1 set.

Consider now a space X as in (2), and let FX : Tr → F (N ) be the Borel map
defined by FX(T ) = F (T ) ⊕ X, where F is as in the first paragraph. If T is ill-
founded then FX(T ) ≈W N because kerCB(FX(T )) ⊇ kerCB(F (T )) is not compact.
If instead T is well-founded, then F (T ) is a discrete clopen subset of FX(T ). Then
||FX(T )||CB = ||X||CB, and (when this makes sense) FX(T ) is simple if and only if
so is X because we assumed |X| > 1. Finally, ||FX(T )||Comp = max{1, ||X||Comp},
hence αFX(T ) = αX . It follows that FX(T ) ≈W X. This shows that FX reduces
the set of well-founded trees to [X]≈W

, hence the latter is Borel Π1
1-hard.

Part (3) follows from part (2); for example, one can use the map FC . □

Remark 5.4. Theorem 5.3 admits several variations. For example, for all relevant α
the set {X ∈ F (N ) | αX = α} is either Borel Σ1

1-hard (if α = Θ) or Borel Π1
1-hard

(if α is countable). Similarly, for all relevant β the set {X ∈ F (N ) | ΘX = β} is
either Borel Σ1

1-hard (if β = Θ) or Borel Π1
1-hard (if β < ω1).

Theorem 5.3 implies that the equivalence relation ≈W is neither analytic nor
co-analytic. Therefore, although we obtained a quite simple and satisfactory clas-
sification in terms of Wadge invariants (which are, essentially, countable ordinals),
there is no reasonable classification for ≈W in terms of, say, Borel reducibility. In
a sense, this hints at the fact that there are natural situations in which the latter
is not an accurate tool to determine the complexity of the classification problem at
hand.

The situation radically changes if we instead consider only perfect zero-dimensional
Polish spaces.
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Proposition 5.5 (AD). Let Fp(N ) be the standard Borel space of perfect zero-
dimensional Polish spaces, and let X ∈ Fp(N ). Then either X ≈W N or X ≈W C,
and those two ≈W-equivalence classes are Borel.

Proof. All spaces X ∈ Fp(N ) are uncountable, and thus ΘX = Θ by Proposi-
tion 2.5. Moreover, we have kerCB(X) = X, thus X ≈W N if X is not compact
(Corollary 4.10), while X ≈W C if X is compact (Proposition 3.2(2)). Finally, the
distinction between the two cases is Borel because K(N ) is Borel in F (N ). □

For the record, we also notice that the proof of Theorem 5.3(1) actually gives a
seemingly unrelated complexity result that might be of independent interest.

Proposition 5.6. The set {X ∈ F (N ) | kerCB(X) is compact} is a Borel complete
Π1

1 set.

6. Some questions

Our analysis raises a number of natural questions: we just mention a few of them
which follow closely our approach.

With the exception of [N ]≈W
, Theorem 5.3 only gives lower bounds for the

complexity of the other ≈W-equivalence classes, but they might not be sharp.

Question 6.1. Let X be a zero-dimensional Polish space with at least two points
and kerCB(X) not compact. What is the exact complexity of [X]≈W

? What for
X = C? What is the complexity of the equivalence relation ≈W as a subset of the
square F (N )× F (N )?

Similar questions can be raised for Polish spaces of positive dimension, or for the
natural adaptation of ≈W to the hyperspace F (ωR) of all Polish spaces.

Our results are limited to zero-dimensional Polish spaces, and it is natural to
wonder what happens for other kinds of Polish spaces. As recalled in the introduc-
tion, this line of research has been pursued in many papers and by various authors,
although we are still lacking a complete description of the various possibilities. But
from a different perspective, the restriction to zero-dimensional Polish spaces is
equivalent to considering only closed (or even just Gδ) subspaces of N . One can
then wonder what happens for arbitrary subspaces of N , starting with the Borel
ones. This is a quite different problem, as we retain zero-dimensionality (together
with separability and metrizability) but drop the completeness of the space. We
leave this research direction open for future investigations.
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