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Abstract—Widely employed for the accurate solution of the
electroencephalography forward problem, the symmetric formu-
lation gives rise to a first kind, ill-conditioned operator ill-
suited for complex modelling scenarios. This work presents a
novel preconditioning strategy based on an accurate spectral
analysis of the operators involved which, differently from other
Calderon-based approaches, does not necessitate the barycentric
refinement of the primal mesh (i.e., no dual matrix is required).
The discretization of the new formulation gives rise to a well-
conditioned, symmetric, positive-definite system matrix, which
can be efficiently solved via fast iterative techniques. Numerical
results for both canonical and realistic head models validate the
effectiveness of the proposed formulation.

I. INTRODUCTION

Electroencephalographic (EEG) data, coupled with a reli-
able source localization algorithm, provide a valuable tool for
the non-invasive mapping of the brain activity [1]]. A crucial
application of this technology is the pre-surgical character-
ization of epileptic seizures, plaguing approximately 1% of
the world population [1]]. The localization of the active neural
sources inside the brain from a measure of the potential at
the scalp—referred to as the inverse EEG problem—relies on
iterative solutions of the forward EEG problem, which, as
a consequence, directly affects the accuracy and resolution
time [[1]] of the method. This consideration sheds light on
the paramount need for solving accurately and efficiently the
forward EEG problem. Among the many integral equation
strategies available, the symmetric formulation [2]] has become
particularly popular because of the higher accuracy it yields.
Unfortunately, it suffers from severe numerical instabilities
when the spatial resolution becomes finer and when the
conductivity contrast between adjacent layers increases, thus
compromising its application to realistic scenarios.

Recently, a novel refinement-free preconditioning strategy
based on pseudo-differential operator theory has been suc-
cessfully applied to the electric field integral equation [3].
In a similar philosophy, we developed a new preconditioning
scheme for the symmetric formulation, which, differently from
standard Calderén-based approaches [4]], does not require the
evaluation of the electromagnetic operators over dual functions
defined on the barycentric refinement of the primal mesh,
thus considerably reducing the building time of the boundary
element method (BEM) matrices. Moreover, the symmetric,
positive definiteness of the formulation makes it amenable to
fast iterative solvers.

II. BACKGROUND AND NOTATION

The forward EEG problem consists of finding the potential
V at the positions of the electrodes generated by a known
configuration of current sources j. Given the head conductivity
profile o, the problem is modelled by Poisson’s equation V -
(cVV) = V- j [1]. Let Q = UY Q; be a nested domain
with boundaries I; = 51- N §,~+1 characterized by the outgoing
normal fields n;. By assuming the conductivity o; constant in
each ©Q;, the application of the representation theorem yields
a system of 2N equations [2]
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where V,' = (V)ri, pPi = O’[[l‘l[ . VV][“i, and Vi =
fi * G, with f; equal to V- j in ©; and to O else-
where and with the free-space Green’s function G(r,r’) =
1/(4x|lr — r’|). The operators involved are the single-
layer (Sy)(r) = /69 G(r,r")y(r’)dS(r’), the double layer
Do(r) = p.v.fag O G(r,r")¢(r’)dS(r’), the adjoint double
layer D*y(r) = p.V./aQ 0nG(r,r" )y (r')dS(r’) and the hy-
persingular N¢(r) = fag 0n0n G(r,r’)¢(r')dS(r’) operators;
the subscript ;; denotes the restriction of the operator to
r € I; and r’" € I;. The above system can be solved
numerically on a mesh with N cells and N, vertices, over
which we define a set of piecewise constant, {ﬂn}iv:“l, and
piecewise linear, {/l,,}f:j;l, basis functions as in [3|] in equa-
tions (2), (3). To proceed with the numerical solution of the
system, the unknowns are expanded as V; = ZVI:’:VI Vindn,
pi = ZnNZC] pi.nTn and the resulting equations are tested with A4
and & functions. For the case N = 1, the system finally reads
Z[vT p"T = [T c"|T, with Z = [N D*; D S|, in which the
blocks are [N]mn = (0-1 +O—2) (/lmlel/ln)Lz(Fl)’ [D*]mn =
-2 (/lm’DTlﬂn)L2(F1), [D]mn = _2(7rm32)11/ln)L2(1’1)3 and
[Sl,m = (0'1’1 + 0'2") (s St1mn) 12(1y)» and where [v],, =
Vi [Pl = Plms> Bl = _(ﬁm,anvl)Lz(ﬂ) and [c],, =
—o 7 (T v L2 (1) -
III. Our NEw FORMULATION

Two different sources of ill-conditioning plague the sym-
metric formulation. On the one hand, we observe numerical



instabilities related to the high conductivity contrast between
adjacent regions, necessarily present in realistic head models;
these are cured by applying a proper rescaling with respect
to the conductivity [4]. On the other hand, the symmetric
formulation suffers from a severe dense-discretization break-
down caused by the opposed asymptotic behaviours of the
spectra of the singular and of the hypersingular operators.
The remedy we propose here is a preconditioning based on
the regularization of an operator of pseudo-differential order
n via the multiplication by other operators of orders summing
up to —n. In Calderén approaches, this product chain is limited
to only two elements, for example N is regularized by the
left multiplication by S and vice versa. Instead, significant
advantages follow from a three-operator multiplication, where
the first and the last elements are the same. Consider for
example the block NXN, where X is the discretization of
the unknown operator X: provided that the hypersingular op-
erator has pseudo-differential order 1, the above will be well-
conditioned for any X of order —2. Moreover, the symmetric
positive semi-definiteness (SPsD) of X would also guarantee
the same property for NXN. Following this philosophy, we
designed our new formulation that reads, for the sake of brevity
limited here to the one-compartment case only,

MZPZMy=MZP [bT c]". 3)

Once the system in (@) is properly deflated, the solution of
the original problem is retrieved as [v! p'|T = My. The
matrices M and P are defined as M = diag(G/;/ll/z,G;:,/z),
P = diag(A~',A,), where Gi; and G, are the pyramid
and patch Gram matrices and 4, = G;! AG7!, with Gy, the
Gram matrix linking the dual pyramid and the patch functional
spaces. The blocks A and A discretize the Laplace-Beltrami
operator A with primal and dual piecewise linear functions
respectively. It can be proven that the result arising from

NA'N+D*A,D NA'D*+D*A,S

ZPZ = DA'N+SA,D DA'D"+SA,S

“)
is symmetric positive semi-definite and spectrally equivalent
to a four identity-block matrix, plus a compact perturbation.
This is compatible with the fact that, by assigning an order
to each matrix corresponding to the pseudo-differential order
of the underlying operator and by summing the orders of
the concatenated blocks—recalling that N, S, D, D*, A
have orders 1, —1, —1, —1 and 2 respectively—all dominant
blocks’ orders sum to zero. A careful analysis then obtained by
evaluating analytically the eigenvalues of the blocks, ensures
that the principal part of the operator is not deleted and an
asymptotic bound on the condition number can be obtained,
ensuring the well-posedness of the formulation.

IV. NuMERICcAL REsSULTS

The stability of the new formulation has been tested on three
concentric spheres with radii (0.8, 0.9, 1) in normalized units,
modelling the brain, the skull, and the skin, for which the
analytic solution for the potential on the outermost layer is
available [I]. As is often the case in the literature [I]], the
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Fig. 1: Condition number and number of iterations as a function of the inverse
average edge length 1/h.
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Fig. 2: (a) Scalp potential distribution and error at the electrodes with respect
to the symmetric formulation solution. (b) Reconstructed epileptogenic source.

conductivities of the three regions have been set to 1:1/80:1
and the system has been excited through a current dipole
source at 0.6 from the center and radially directed. Clearly, the
results in Fig. [T show that both the condition number and the
number of iterations remain constant for the new formulation,
differently from the standard symmetric formulation case.
We have also applied our formulation on a realistic head
model extracted from magnetic resonance imaging data, to
obtain the scalp potential distribution in Fig. [2a] Given the
good agreement with the reference solution, our formulation
can be effectively used to solve an inverse EEG problem, such
as the localization of epileptogenic zones, as shown in Fig. 2b]
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