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ABSTRACT Simulated Quantum Annealing (SQA) is a heuristic algorithm which can solve Quadratic
Unconstrained Binary Optimization (QUBO) problems by emulating the exploration of the solution space
done by a quantum annealer. It mimics the quantum superposition and tunnelling effects through a set of
correlated replicas of the spins system representing the problem to be solved and performing Monte Carlo
steps. However, the effectiveness of SQA over a classical algorithm strictly depends on the cost/energy
profile of the target problem. In fact, quantum annealing only performs well in exploring functions with high
and narrow peaks, while classical annealing is better in overcoming flat and wide energy-profile barriers.
Unfortunately, real-world problems have a heterogeneous solution space and the probability of success of
each solver depends on the size of the energy profile region compatible with its exploration mechanism.
Therefore, significant advantages could be obtained by exploiting hybrid solvers, which combine SQA and
classical algorithms.
This work proposes four new quantum-classical algorithms: Simulated Quantum Parallel Tempering
(SQPT), Simulated Quantum Population Annealing (SQPA), Simulated Quantum Parallel Tempering -
Population Annealing v1 (SQPTPA1) and Simulated Quantum Parallel Tempering - Population Annealing
v2 (SQPTPA2). They are obtained by combining SQA, Parallel Tempering (PT), and Population Annealing
(PA). Their results are compared with those provided by SQA, considering benchmark QUBO problems,
characterized by different profiles. Even though this work is preliminary, the obtained results are encourag-
ing and prove hybrid solvers’ potential in solving a generic optimization problem.

INDEX TERMS Simulated Quantum Annealing, Parallel Tempering, Population Annealing, Hybrid
Quantum-Classical Algorithms, Optimization Problems, Quadratic Unconstrained Binary Optimization,
Ising machine, Cost Function, Energy profile.

I. INTRODUCTION

OPTIMIZATION target is finding a variableconfigura-
tion that minimizes a cost function or maximizes

a fitness one. It is relevant in many real-world applica-
tions, such as chemical simulations [1], logical and physical
VLSI circuit synthesis [2], resource allocation in industrial
environments [3], structural optimization [4] [5], antenna
design [6], and many others. It can be subdivided into two
categories, depending on the variables’ nature: discrete or
combinatorial optimization (CO), in which variables are

discrete, and continuous optimization, in which the same are
continuous.
For some applications, not all solutions are feasible and
constraints must be applied to variable (constrained op-
timization). They can be taken into account differently
depending on the solvers’ characteristics: inserting them
inside the objective function (through penalty functions) and
directly generating only feasible new configurations during
the exploration.
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The results show that the proposed approaches can significantly improve the quality of the results with
equal iterations with respect to Simulated Quantum Annealing.
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FIGURE 1: Overview of the article. Starting from the Simulated Quantum Annealing (SQA) algorithm for the emulation
of quantum annealers, different algorithms for solving Ising/QUBO problems — based on interfacing SQA with Parallel
Tempering and Population Annealing — have been defined. Comparisons between the proposed methodologies and that
are already present in the literature were done for different real-world optimization problems describable with Ising/QUBO
formulation. Reminding that these algorithms are all iterative, the obtained results prove that, with the same number of
iterations, the proposed approaches can improve the quality of the obtained results with respect to SQA.

Moreover, in a real-world context, it could be necessary to
optimize more than one objective (fitness or cost function)
at the same time. In this case, it is called multi-objective or
vector optimization (MO), and, in this case, the solution is
always a trade-off between functions involved in the problem.
The most preferred solution can be found by computing a
representative set of Pareto optimal solutions (impartial
approach), which a human decision marker can evaluate
during (interactive methods) or at the end of optimization (a
posteriori methods) expressing preferences, or by combining
objective functions into a higher scalar one (only one objec-

tive function involved) through aggregation approaches (a
priori methods), which exploit a preference criterion.
Several strategies were proposed for solving optimization,
and the best one commonly depends on the optimization
class.
A brute-force approach, i.e. the analysis of all possible input
variables combinations, always guarantees the achievement
of the optimal solution. However, the execution time in-
creases exponentially with the problem size, thus making it
unfeasible in a real-world context.
Deterministic explorations can be grouped into three cat-
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FIGURE 2: Relationship between Simulated Quantum Annealing, Parallel Tempering, Population Annealing and the proposed
algorithms.

egories: second-order methods (such as Newton’s one [7]),
which are based on both gradient and hessian computation,
first-order methods (such as quasi-Newton one [8]), which
exploit only the gradient, and zero-order methods (such as
pattern searched [9]), which use only the objective function.
They are effective only for some optimization problems, e.g.
the convex ones, which are characterized by the presence of
a single minimum (or maximum). Moreover, they can have a
significant latency for reaching convergence.
Therefore, heuristic approaches are currently the best way
to find optimal or sub-optimal solutions for large-scale
optimization problems. They are commonly inspired by
natural phenomena and based on an equilibrium between the
exploration (divergence) of the feasible solutions space and
the exploitation (convergence) of the knowledge acquired
evaluating the previously obtained solutions. Furthermore,
several famous heuristic algorithms are population-based,
i.e. there are a set of elements (individuals) which explore
the solution space in parallel with specific rules deriving from
some natural or social phenomena.
Some of them emulate the behaviours of a set of individ-
uals or animals with the same target. They are also called
cooperative algorithms. The most famous algorithms in this
context are the particle swarm [10], which is based on the
behaviour of a flock of birds (candidate solutions) looking
for food (motion of the candidate solutions in the objective
function space for finding the optimum), and the ant colony
[11], which mimics the cooperative behaviour of ants that

communicate where is food. In the first one, each element
must follow its neighbours, stay in the flock and avoid
collisions. The exploration is guaranteed by the possibility
for an individual to get out of the flock if a promising region
in the solution space is found (selfish behaviour), while
exploitation is associated with the tendency to stay in the
flock (social behaviour). At the same time, in the second
algorithm, ants randomly explore the area surrounding their
nest (exploration). When an ant finds a promising region, it
attracts others in the same area (exploitation).
In recent years, many other cooperative population-based
approaches have been proposed, for example, teaching-

learning optimization [12], [13], which mimics the learning
process of a class. In particular, there is a class of students,
whose scores are the quality of the associated solution. The
individual associated with the best solution is the teacher.
The learning process of each element depends on both the
classmates’ and teacher’s experience (exploitation).
Other population-based algorithms mimic the biological
evolution of a species, which modifies its characteristic
to better survive in the environment. They are also called
evolutionary algorithms and are based on the competition
among individuals in the population. The oldest and most
popular in this field are the evolutionary strategy [14] and
the genetic algorithms [15]. In the first, a population of
individuals (configurations) is generated. Then, their ability
is measured (quality of the solution) and a new generation
of individuals is generated by selecting in a deterministic
way the best individuals, associated with the best current
solutions, by inheriting the best characteristics of the pre-
vious one (genetic operation), i.e. combining two or more
individuals (exploitation), and also mimicking the genetic
mutation, corresponding to random events due to errors in
the copy operation (exploration). The second one is based on
the same principles as the previous, but with the following
differences: the variable representation is binary instead of a
floating-point one, which helps to implement a more complex
individuals combination mechanism and easier implemen-
tation of mutation, the selection mechanism is probabilistic
instead of deterministic and the genetic operation is fixed
instead of changing during the solution space exploration.
Also, in this context, many other evolutionary population-
based approaches have been proposed, in recent years. For
example, the follow-the-leader approach [16] is based on
the behaviour of a sheep within a flock foraging. In particular,
the sheep in the region with more green grass around (the
current best solution) is identified as the leader of the flock,
while the one with less or dry grass around (worst current
solution) is the rear one. The flock tends to follow the leader,
so this phenomenon corresponds to moving the search to the
most promising region (exploitation of the knowledge). The
main issue of the proposed original algorithm is that there is
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an unbalance between exploitation and exploration, which
can compromise the quality of the results in non-convex
(multi-modal) optimization problems. The work presented
in [17] tries to overcome this limitation, thus allowing the
algorithm to express its potential fully.
The last historical type of population-based algorithm is
the artificial immune one [18], which emulates a living
body’s defence from external biological enemies that change
with time. In these algorithms, the objective function plays
the role of antigen, i.e. a substance able to stimulate the
immune system response, while the antibodies represent the
feasible solution, defining a binary code for each one. In
the beginning, an initial antibody population is generated.
The quality of each element is evaluated in terms of affinity
among antigens and antibodies. According to this value, the
antibodies are selected for cloning (exploitation) and a muta-
tion mechanism is applied (exploration). The perspective and
recent proposal of these approaches are summarized in [19].
Furthermore, many popular heuristic algorithms are inspired
by the evolution of a physical system. The most iconic
example is simulated annealing (SA) [20]. As the name
suggests, it mimics physical annealing, which is a process
exploited in materials science for removing reticular defects
of crystals based on two steps. The first one is heating crystals
over their re-crystallization temperature, to allow the motion
of the atoms in the lattice, the second one is slow cooling
of the same, to achieve the optimal settling of atoms in the
lattice. SA implements the exploration by accepting with cer-
tain probability — depending on the temperature parameter
(Metropolis-Hastings approach, explained in Section II-B)
— new solutions that can degrade the objective function’s
current value. On the other hand, exploitation is done by
adopting a neighbour exploration policy and by the system-
atic acceptance of better new solutions. The convergence
is guaranteed by the gradual reduction of the temperature
parameter, i.e. the probability of accepting a degrading solu-
tion. The interest in this approach is grown over the years:
several approaches for improving it have been proposed, e.g.
parallel tempering and population annealing (explained
in Section II), it is currently employed in many applications
[21], [22], [23], [24], [25], and it has been exploited for

improving the balance between exploration and exploitation
of more complex optimization mechanisms [26], [27], [28].
Another algorithm exploiting thermodynamic laws is that
presented in [29]. This emulates the behaviour of a system
for reaching thermal equilibrium. It is also a population-
based approach, where each molecule of the system is an
element of the population. In particular, the simulated physi-
cal phenomena are conduction, convection and radiation.
In the same context, another recent algorithm is plasma
generation optimization [4]. As the name suggests, it is
inspired by the plasma generation process, in which the
electrons play the role of elements of a population, and the
exploration of the solution space is performed by emulating
excitation modes, de-excitation and ionization processes.
The presence of so many approaches in the state-of-art

proves that non-convex optimization is a crucial task in many
fields of application. Moreover, the available methods are
sometimes not entirely satisfactory in terms of the quality
of the results or the time required. This is also due to the
fact that the effectiveness of an exploration mechanism
strongly depends on the characteristics of the optimiza-
tion problem of interest. For example, SA cannot effectively
explore an objective function with high and narrow peaks,
while is particularly efficient in exploring flat and wide
regions. For this reason, it is possible to conclude that, if
the characteristics of a non-convex optimization problem are
unknown or unpredictable, combining multiple algorithms
effective on complementary types of problems could improve
the mean quality of the obtained solutions.

A. RESEARCH GAP AND MOTIVATIONS OF THE STUDY
Interest in exploiting quantum computing for optimization
problems has grown in the last two decades to try to over-
come the limitations of the currently available classical algo-
rithms. In particular, the exploitation of quantum mechanics
principles like superposition, entanglement and tunneling
can help to define algorithms for data-intensive applications
with lower computational complexity; in the optimization
context, quantum procedures can achieve a good compromise
between solution quality, execution time and computational
complexity.
The most feasible formulations, introduced in Section II,
for solving CO with quantum-compliant approaches are
Ising and Quadratic Unconstrained Binary Optimization
(QUBO). There are two possibilities for exploiting the quan-
tum computing paradigm in the optimization context: ex-
ploiting a quantum annealer — which is a special-purpose
quantum computer theorized in 1998 [30], [31], [32] and
exploiting the natural properties of a quantum system to
minimize a cost function (detailed in Section II-B) — and
proposing algorithms to be entirely or partially executed
on a general-purpose quantum computer compliant with
the quantum circuit model [33]. In the second context,
quantum computers are usually employed as sub-routines for
the acceleration of specific tasks of more complex algorithms
also involving classical computers. The Grover Adaptive
Search [34], [35] algorithm well describes this mechanism.
It is a successive approximation algorithm exploiting the
well-known quantum Grover’s search algorithm to find the
negative values of a cost function that is iteratively classically
moved up of the value of the last negative sample obtained.
Other quantum-classical algorithms for solving optimization
problems are those based on variational routines like the ones
in [36] [37] or the quantum-genetic presented in [38].
Nevertheless, quantum devices are currently in the so-
called Noisy Intermediate-Scale Quantum (NISQ) era
[39]. These are characterized by a very limited amount of
qubits, with limited connectivity and are subjected to non-
ideality phenomena. These conditions could make unfea-
sible their current employment in real-world applications.
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Consequently, the interest in quantum-inspired and quantum
emulation algorithms grows in the last years for exploiting
the quantum principles with classical devices and several
approaches have been proposed, e.g. Simulated Quantum
Annealing (explained in Section II), simulated adiabatic
bifurcation [40] and digital annealing [41]. In particular,
Simulated Quantum Annealing (SQA) mimics the solution
space exploration of a quantum annealer on digital hardware
by using quantum Monte Carlo simulation. It was proven
that SQA provides, for some types of problems, an exponen-
tial speed-up with respect to classical simulated annealing
[42]. In particular, it provides a significant advantage for
problems with high and narrow peaks in the objective
function (spike problems).
However, real-world problems are heterogeneous, i.e. com-
posed of flat and wide regions and high and narrow barriers.
Consequently, new methods for exploring effectively this
kind of objective functions are required. As deeply explained
in Section III and in [43], a significant advantage could be
obtained with hybrid solvers, which can efficiently alternate
classical annealing (local search) and the simulated quantum
one (global search). In this way, the best of both exploration
mechanisms is taken.
As a result, this work is going to propose four new algo-
rithms: Simulated Quantum Parallel Tempering (SQPT),
Simulated Quantum Population Annealing (SQPA), Sim-
ulated Quantum Parallel Tempering - Population Anneal-
ing v1 (SQPTPA1) and Simulated Quantum Parallel Tem-
pering - Population Annealing v2 (SQPTPA2). They com-
bine Parallel Tempering, Population Annealing and SQA, as
shown in Figure 2, for exploring effectively heterogeneous
energy profile. These algorithms are compared with SQA to
prove their effectiveness and efficiency in solving different
CO problems. The identification of the best strategy for each
problem represents a milestone for developing an automatic
toolchain for improving QUBO solving.
Therefore, this work contributes to the research as follows:

• adapts the effective temperature equation proposed in
[43] for the quantum annealer to the SQA;

• determines the meaning of a system copy for SQA;
• proposes Simulated Quantum Parallel Tempering algo-

rithm, which combines Parallel Tempering and SQA,
exploiting the obtained effective temperature equation
and the identified system copy concept;

• proposes Simulated Quantum Population Annealing al-
gorithm, which combines Population Annealing and
SQA, exploiting the obtained effective temperature
equation and the identified system copy concept;

• proposes Simulated Quantum Parallel Tempering - Pop-
ulation Annealing v1, which is the union of Simulated
Quantum Parallel Tempering and Simulated Quantum
Population Annealing;

• proposes Simulated Quantum Parallel Tempering - Pop-
ulation Annealing v1, which is the itersection of Simu-
lated Quantum Parallel Tempering and Simulated Quan-

tum Population Annealing, defining a strategy to man-
age a shared system copy among the two algorithms;

• tests the proposed algorithms with nine different fami-
lies of optimization problems and compares the results
with ones of SQA;

• proves that the best strategy is problem-dependent and
that the proposed approaches can significantly improve
the quality of the results with respect to SQA.

The manuscript content is summarized in the graphical
abstract reported in Figure 1.

The article is organized as follows. Section II reports
theoretical foundations, particularly the QUBO and Ising for-
mulation, the considered benchmark problems and an expla-
nation of Simulated Quantum Annealing, Parallel Tempering
and Population Annealing. Section III reports the proposed
algorithms, motivating the necessity of hybrid solvers. In
Section IV, the results are reported and discussed. Finally,
in Section V, conclusions are drawn, and future perspectives
are illustrated.

II. THEORETICAL FOUNDATION
A. OPTIMIZATION PROBLEMS FORMALISM
As mentioned, the most feasible formulations for solving
optimization problems with quantum approaches are the
Quadratic Unconstrained Binary Optimization (QUBO)
and the Ising ones, which are introduced in the following
paragraphs. The two models are strongly correlated, and it
is always possible to move from one to the other, exploiting
the relations reported in Paragraph II-A3.

1) QUBO formalism
Quadratic Unconstrained Binary Optimization (QUBO)
is a mathematical formulation capable of describing many
real-world problems [44], such as placement [45], [46],
routing [47] and scheduling [48]. It involves unipolar binary
variables, i.e. which can assume only 0 and 1 values, as the
terms Binary in the acronym suggest. Therefore, it can only
describe CO problems. The Quadratic term refers instead to
the highest power applied to them, Unconstrained indicates
that the variable constraints cannot be explicitly taken into
account, and Optimization puts in evidence that this model
is exploited for minimizing or maximizing the obtained ob-
jective function, which can be written as:

Obj(c, ai, bij , xi) = c+
∑
i

xi · ai +
∑
i<j

bij · xixj , (1)

where xi ∈ [0, 1] is a binary variable, xixj is a coupler that
allows two variables to influence each other, ai is a weight or
bias associated with a single variable, bij is a strength which
controls the influence of variables i, and j and c is an offset,
which can be neglected during the optimization.
It can also be expressed as:

minimize/maximize y = xt ·Q · x , (2)
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ones which do not satisfy the constraint are not correctly penalized with respect to the other. While a too-high value makes all
solutions that satisfy the constraints equal from an energy point of view, thus implying that it is impossible to distinguish the
optimal one for the f(x) function.

where x is a vector of binary variables (e.g. [0,1,1,0,1]) and
Q is a square matrix of constants, depending on the problem.
The matrix Q can be symmetric or in upper triangular
form.
Despite what the name would suggest, the variable con-
straints can be taken into account by introducing quadratic
penalties to the objective function:

minimize/maximize y = f(x) + λg(x) , (3)

where λ is a positive penalty parameter to be multiplied by
the constraint function or penalty function g(x). In this way,
the constraints are evaluated during the optimizer execution.
Nevertheless, sizing the variable λ is crucial. Indeed, with a
too-low value, the constraint could be neglected, thus imply-
ing the unreliability of the obtained solutions. While a too-
high value makes the objective function too flat, complicating
the evaluation of the effective quality of the solution, as
shown in Figure 3. Tutorials [44] suggest taking λ as a certain
percentage of the original objective function (usually in the
range 75%-150%).
Multi-objective optimization can be also performed consid-
ering QUBO formulation by exploiting an aggregation ap-
proach (Objective Weighting), which combines objectives
into a single one as explained in [49].

2) Ising formalism

The Ising model [50], [51] is a physical-mathematical model
of ferromagnetism used in statistical mechanics. It consists
of a system of atomic spins described as dipoles, each of
which can be in one among two discrete states +1 (spin-
up) or -1 (spin-down), depending on its orientation. Spins
are arranged in a lattice allowing each spin to interact with
its neighbours. The following Hamiltonian can describe this

model:

H(s) =
1

2

N−1∑
i=0

N−1∑
j=0,j ̸=i

Jijsisj +

N−1∑
i=0

hisi , (4)

where N is the number of spins, si is the ith spin, Jij is
the interaction coefficient among the ith and the jth spins,
which is equal to the coefficient Jji (a symmetric format
is considered for the interaction coefficients matrix J), and
hi is the external magnetic field coefficient of the ith spin.
Therefore, the Hamiltonian includes two types of interaction:

• External field h, whose sign determines if the spin
prefers up or down orientation. The size of h represents
the weight of the energy contribution of a single spin
with respect to the others.

• Interaction terms J between neighbor spin pairs. J
gives the weight of the coupling and the sign indicates
if neighbours prefer aligned or anti-aligned (more prop-
erly ferromagnetic and anti-ferromagnetic) orientation.
Each pair contribution has to be summed to obtain the
overall interaction energy.

This model can be exploited to describe many types of sys-
tems, where each spin is associated with an involved element,
which can be paired with the others.
Ising model can be 1D, 2D, 3D, or fully-connected depend-
ing on the number of interacting neighbours for each spin
(Figure 4). In a 1D structure, each spin has two neighbours;
in 2D, it has four neighbours; in 3D, it has six ones; in a fully-
connected structure, each spin interacts with all the others.
The last one is not feasible in a physical system, but it is
a useful theoretical extension which permits expressing any
problem with very high flexibility.
CO problems can be mapped onto the Ising model so that the
ground state corresponds to their optimal solution. Ground-
state search is then executed by updating spins stochastically.
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FIGURE 4: 1D, 2D, 3D and fully-connected Ising structures. In a 1D structure, each spin has two neighbours; in 2D, it has four
neighbours; in 3D, it has six ones; in a fully-connected structure, each spin interacts with all the others. It is a virtual expansion
of the physical model for describing any optimization problems with very high flexibility.

This update is performed by some algorithms like simulated
or quantum annealing.

3) QUBO-Ising relation
Ising and QUBO models are perfectly equivalent [51], and it
is always possible to move a problem from one formulation
to another, by exploiting the following relation:

qi =
1 + si

2
, (5)

and its counterpart:

si = 2qi − 1. (6)

The only difference between the two models is related to the
involved coefficients.
The formulation and this conversion can be assisted by
Python libraries, such as qubovert [52], PyQUBO [53], [54]
and dimod [55], characterized by routines for automatic
insertion of some relevant constraints in the problem function
and by the possibility of interfacing the defined QUBO or
Ising problems with different solvers, e.g. based on simulated
annealing [20].

4) Benchmark problems considered
This paragraph presents the problems considered for bench-
marking the proposed solvers, which are graphically de-
scribed in Figure 5. They were chosen because they differ sig-
nificantly, especially regarding the energy profile, as shown
in Figure 6. It was chosen to report the objective function
because it is proven [43] that the effectiveness of quantum-
annealing-based exploration strictly depends on the presence
of high and narrow peaks, which profits from the tunnelling

effect, as explained in Section III.
Each benchmark problem was implemented in QUBO for-
mulation and converted in Ising one through the qubovert
library.

a: Maxcut
Maxcut [56] [57] (Figure 5a) is one of the most relevant
CO problems, whose target is to partition a graph into
two complementary subsets, S and S, maximizing the
sum of weights over all the edges across the two vertices
subsets. This can be exploited to describe several real-
world problems in network design, statistical physics, VLSI
design and circuit layout design [58]. Its QUBO formulation
requires a binary variable for each node, whose value is
1 or 0, depending on the subset to which the node belongs.
A cut can be seen as severing edges joining two sets, and
consequently, the quantity ϵ(i,j) = xi+xj−2xixj recognizes
whether the edge (i, j) is in the cut. In particular, the edge
(i, j) is in the cut if ϵ(i,j) = 1, a condition taking place only
if xi ̸= xj . When xi and xj are both equal to one or equal to
zero, ϵ(i,j) = 0 Considering the contributions of each edge,
the following objective function is obtained:

Maximize y =
∑

(i,j)∈E

wi,jϵ(i,j)

=
∑

(i,j)∈E

wi,j · (xi + xj − 2xixj) ,
(7)

where wi,j is the weight of the edge that connects the ith and
the jth node.
A peculiarity of maxcut problem regards its energy profile is
symmetric (as shown in Figure 6a). In fact, a solution and its
complement (e.g. [0,1,1,0,1] and [1,0,0,1,0]) have the same
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FIGURE 5: Optimization problems considered for benchmarking.

energy because the obtained two subsets are interchangeable.

b: Data Clustering

Clustering is an essential task of unsupervised learning,
and its goal is to divide a group of N data into K
subgroups (cluster) of similar elements. Similarity criteria
can be associated with objective functions of optimization
problems. Figure 5b shows a four-subgroup clustering of
thirteen data, where closer data belong to the same cluster.
The data distance is employed as a similarity metric to be

minimized.
In this article, we considered the simplest data clustering
QUBO formulation, which involves N ·K binary variables,
one for each data-cluster pair. The xnk variable assumes
value one if the nth data is in the kth cluster. Some require-
ments, which partially depend on the application, have to be
satisfied for obtaining valid results. First of all, each data can
be assigned to exactly one cluster:

∀n :

K∑
k=1

xnk = 1 . (8)

8 VOLUME 4, 2016



Deborah Volpe et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Four-node max-cut energy profile
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FIGURE 6: Considered optimization problems energy profiles.

In the considered case, data must be equally distributed
among the clusters:

∀k :

N∑
n=1

xnk =
N

K
. (9)

Finally, the optimization figure of merit is the minimization
of the total distance D among data in all clusters:

D =

N∑
i=1

N∑
j=1

K∑
k=1

dijxikxjk , (10)

where the distance between the ith and the jth data is com-
puted as:

dij =
√
(c1i − c1j)2 + (c2i − c2j)2... , (11)

where c1, c2... are the coordinates (or features) associated
with each data.
Summing all the contributions, the final objective function
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can be written as:

fcluser(x) =

N∑
i=1

N∑
j=1

K∑
k=1

dijxikxjk+λ1

N∑
n=1

( K∑
k=1

xnk−1

)2

+

+ λ2

K∑
k=1

( N∑
n=1

xnk − N

K

)2

. (12)

In Figure 6b an example of a problem energy profile is
reported. It is possible to notice that several high peaks are
present, implying that quantum exploration is effective for
this application.

c: Knapsack
The knapsack problem [59] (Figure 5c) target consists in
defining for a set of objects X , each of which is labelled
as xi and is characterized by a weight wi, the best subset to
be put into a bag, guaranteeing that the total weight does not
exceed a threshold W :

0 <

dim(X)∑
i=1

wixi ≤W , (13)

while maximizing the total preference score:

P =
∑

i∈subset

pi , (14)

where pi is exploited for expressing the preference of the ith

object, which is higher for an object more preferred to be
put in the bag. When the terms pi are all equal, the problem
requires maximizing the total number of objects inserted in
the bag, considering the weight limitation.
Since a strict inequality has to be expressed, QUBO formu-
lation exploits auxiliary variables [44], [60] whose number
depends onW value and can be partially limited by involving
integer weights instead of real ones. Indeed, representing real
numbers requires a more complex, e.g. the floating-point one.
The final objective function can be written as follows:

fknapsack(x) = finequality(x)−
∑
i

pixi . (15)

The formulation is sufficiently generic to be arranged for
optimization problems concerning resource selection, e.g. in
industrial environments.
An example of a knapsack problem energy profile is reported
in Figure 6c.

d: Garden optimization
An important category of optimization problems is opti-
mal placement. In this context, an interesting real-world
application is garden optimization [61], whose target is to
optimally place n plants in n pots (as shown in Figure
5d). This problem can be written in QUBO formulation with
n2 binary variables, one for each plant-pot pair. The xij
variable assumes value one if the plant j is in pot i.

Some requests have to be satisfied to obtain a valid place-
ment. First of all, every available plant must be placed in the
garden:

∀j :
n∑

i=1

xij = 1 . (16)

Then, each pot has to be filled with exactly one plant:

∀i :
n∑

j=1

xij = 1 . (17)

Finally, tall plants shall not shadow smaller ones:

∀i, j : (i mod 2− sj)
2xi,j = 0, (18)

where sj ∈ [0, 1] is a binary flag assuming value 0 (1) if the
jth plant is tall (small), forcing it into even (odd) rows.
The affinity among the plant species is the figure of merit
for optimizing the placement. Indeed, some species can be
placed close to each other, while others cannot.
The final objective function can be written as follows:

fgarden(x) = −
n∑

i,i′=1

Jii′

(
1 +

n∑
j,j′=1

xijCjj′xi′j′

)
+

+ λ1

n∑
i=1

(
1−

n∑
j=1

xij

)2

+ λ2

n∑
j=1

(
1−

n∑
i=1

xij

)2

+

+ λ3

n∑
i=1

n∑
j=1

(i mod 2− sj)
2xij , (19)

where Cjj′ and Jii′ are the terms of the companions C and
adjacency J matrices, respectively. Cjj′ can assume values
+1, 0 or -1, depending on the antagonist, a neutral or positive
relationship among plants j and j′, while Jii′ is equal to 1 if
pots i and i′ are adjacent.
In Figure 6d, an example of a problem energy profile is
reported.

e: Nurse scheduling
Another important category of optimization problems is
scheduling. A symbolic application example is nurse
scheduling optimization [48], which aims to find the op-
timal assignment for nurses working in a hospital over a
fixed timetable of shifts (Figure 5e).
Considering N nurses and D working days, the QUBO
formulation involves N · D binary variables, one for each
nurse-day pair, which assumes value 1 if the nth nurse
works on the dth day. A valid schedule must satisfy three
conditions. The first one is called hard nurse constraint and
ensures that no nurse works for two consecutive days. This
is expressed by exploiting a positive correlation constant a,
which penalizes the schedule for two consecutive days of the
same nurse:

fnurse(x) =

N∑
n=1

D−1∑
d=1

a · xn,d · xn,d+1 . (20)
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The second one is called hard shift constraint and assures
that in each day d the nurse effort

∑N
n=1E(n)xn,d is

sufficient to satisfy the associated workload W (d):

∀d :

N∑
n=1

E(n)xn,d =W (d) . (21)

Finally, the soft nurse constraint assures that all nurses
should work approximately the same number of days
F = D/N :

∀n :

D∑
d=1

xn,d = F . (22)

The final objective function can be written as follows:

fnurse(x) =

N∑
n=1

D−1∑
d=1

axn,dxn,d+1+λ1

N∑
n=1

( D∑
d=1

xn,d−F
)2

+

+ λ2

D∑
d=1

( N∑
n=1

E(n)xn,d −W (d)

)2

. (23)

In Figure 6e an example of a problem energy profile is
reported.

f: Graph colouring
Graph colouring [44] is an optimization problem aiming
to assign different colour labels to adjacent nodes, as
shown in Figure 5f. This can be exploited in a wide range
of applications in both industrial and scientific fields, e.g.
printed circuit design [62]. GivenK colours andN nodes, the
associated QUBO formulation involves N · K binary vari-
ables, i.e. one for each node-colour pair, which assumes
value one if the kth colour is assigned to the nth node. Some
requirements have to be satisfied to obtain a valid solution.
First of all, adjacent nodes have to be assigned different
colours:

∀k : ∀(i, j) adjacent node : xik + xjk ≤ 1 , (24)

which can be expressed as:

∀k :
∑
i,j∈E

xikxjk = 0 , (25)

where E is the set of edges of the graph.
Moreover, each node has to be assigned exactly one colour:

∀n :

K∑
k=1

xnk = 1 . (26)

Finally, the objective function can be written as follows:

fcolouring(x) = λ1

N∑
n=1

( K∑
k=1

xnk−1

)2

+λ2

K∑
k=1

∑
i,j∈E

xikxjk .

(27)
In Figure 6f an example of a problem energy profile is
reported.

g: Minimum vertex cover
Minimum vertex cover [44] is an optimization problem
involving an undirect graph with a set of vertices V and edges
E. A vertex cover is the subset of vertices such that each
edge is incident to at least one vertex of the subset itself.
Consequently, the problem goal is to find the cover with the
minimum number of vertices in the subset. For example, in
Figure 5g, light blue nodes form a vertex cover because each
edge of the considered graph is connected to at least one of
these. It is also the one with the lower number of involved
nodes, i.e. the optimal solution. Considering N vertices, the
QUBO formulation involves N binary variables, one for
each vertex xi, whose value is one if the node is in the cover,
i.e. in the subset. The final objective function is composed of
two parts. The first one minimizes the number of nodes in the
subset:

Minimize y1 =
∑
i∈V

xi . (28)

The second one assures that each edge is incident to at least
one vertex in the subset, forcing that xi + xj ≥ 1 for each
couple of nodes i and j:

y2 =
∑
i,j∈E

(
1− xi − xj + xixj

)
. (29)

Therefore, the final objective function can be written as
follows:

fvertex(x) =
∑
i∈V

xi + λ
∑
i,j∈E

(
1− xi − xj + xixj

)
. (30)

An example of a minimum vertex cover problem energy
profile is reported in Figure 6g.

h: Number partitioning
The goal of number partitioning [44] optimization is
to separate m positive integers belonging to a set S =
{s1, s2, ..., sm}, into two subsets S1 and S2, having an equal
sum of their constituting numbers. An example is shown in
Figure 5h. A binary variable xi for each number in the
initial set S is required for obtaining the QUBO formulation,
which assumes a value of 0 if the ith number is assigned to
the subset S2 and 1 otherwise.
Therefore, the sum of the numbers in the first subset is equal
to:

sum1 =

m∑
i=1

sixi , (31)

while the sum of the numbers in the second one is equal to:

sum2 =

m∑
i=1

si −
m∑
i=1

sixi . (32)

Consequently, the difference between the two sums is equal
to:

diff = sum2 − sum1 =

m∑
i=1

si − 2

m∑
i=1

sixi , (33)
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(a) Spins evolution during annealing. When a strong trans-
verse field is applied, spins are in an equiprobability state.
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spin-up state in order to reach the lowest energy configura-
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FIGURE 8: The classical description of the transverse field Ising model through the addition of one dimension. For simplicity
all prime neighbor connections are represented.

which must be minimized to achive the target of the problem,
so that the final objective function can be written as:

fnumber(x) =

( m∑
i=1

si − 2

m∑
i=1

sixi

)2

. (34)

Similarly to the maxcut problem, Number partitioning is
characterized by symmetric energy profiles (as shown in
Figure 6h); in fact, a solution and its complement (e.g.
[0,1,1,0,1] and [1,0,0,1,0]) have the same energy because the
obtained two subsets are interchangeable.

i: Linear regression

Linear regression is another relevant problem whose appli-
cations range from scientific research [63] to business [64].
It consists in finding a linear relationship between an inde-
pendent variable x, and a dependent one y. Linear regression
is also employed in supervised learning for modelling a
target prediction value based on independent variable.
A QUBO formulation of this problem can be obtained fol-
lowing the steps reported in [65], [66] in a supervised-
learning-compliant notation. Given X , which is the real
N ·(d+1)×N ·(d+1) matrix associated with the augmented
regression training data, Y ∈ RN , which is the vector of
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training labels, and w ∈ Rd+1, which is a weights vector,
linear regression corresponds to:

minw∈Rd+1 E(w) = ∥Xw − Y ∥2 , (35)

where E(w) is the Euclidean error function.
In order to obtain the QUBO formulation, regression must be
rewritten as:

minw∈Rd+1 E(w) = wTXTXw−2wTXTY +Y TY . (36)

Moreover, two vectors must be defined to obtain a binary
representation of weights wi of vector w. The first one is
a K-dimensional precision vector P = [p1, p2, ..., pk]

T of
sorted powers of 2, the other is a K-dimensional vector ŵT

i

with binary coefficients such that ŵT
i P = wi. At this point,

defining the binary vector ŵ ∈ BK(d+1) as:

ŵ = [ŵ11...ŵ1Kŵ21...ŵ2K ...ŵ(d+1)1...ŵ(d+1)K ]T , (37)

with all the binary variables required for representing the d+
1 weights on K bits, and a precision matrix P as:

P = Id+1 ⊗ P T , (38)

where Id+1 is a (d + 1)-dimensional identity matrix and ⊗
is the Kronecker product, the original weight vector can be
binary-number approximated as:

w = Pŵ . (39)

Substituting Equation 39 in 36, the problem is written in an
equivalent QUBO form:

minw∈B(d+1)K E(ŵ) =ŵTP TXTXPŵ − 2ŵTP TXTY

+ Y TY ,
(40)

where Y TY can be neglected because it introduces a scalar
constant.
An example of a linear regression energy profile is reported
in Figure 6i.

B. SIMULATED QUANTUM ANNEALING
Simulated Quantum Annealing (SQA) algorithm is a
heuristic method which permits to solve combinatorial op-
timization problems on digital computers by emulating the
exploration principles of a quantum annealer [67]–[77].
In particular, the SQA tries to mimic the quantum tun-
nelling effect (Figure 7c) and the superposition principle on
classical computers by exploiting a path integral quantum
Monte Carlo simulation (PI). In this way, this optimizer has
the potential to find the global minima of an objective func-
tion faster than simulated annealing (SA) [42] and allows
solving larger-problem than current quantum annealers,
which are limited in terms of number of available qubits,
have significant connectivity limitations and are affected by
phenomena affecting the reliability of the obtained results.
The SQA algorithm emulates the behaviour of a quantum

annealer by computing the adiabatic evolution of the Hamil-
tonian of transverse-field Ising model, expressed as:

H(t) =
∑
ij

Jijσ
z
i σ

z
j + h

∑
i

σz
i + Γ(t)

∑
i

σx
i =

= H0 + Γ(t)
∑
i

σx
i ,

(41)

where H0 is the standard Ising model on which the problem
is mapped, Γ(t) is a time-dependent transverse field which
causes quantum tunneling between system eigenstates and
has a similar role of temperature in simulated annealing, σx

i

and σz
i are the Pauli matrices associated, respectively, with

x and z components of the ith Ising Hamiltonian spin:

σx =

(
0 1
1 0

)
, (42)

σz =

(
1 0
0 −1

)
. (43)

A qualitative idea of the quantum annealer (QA) system
evolution can be given by comparing the evolution of the spin
in Figure 7a and the hydraulic model in Figure 7b.
The transverse field initially creates the superposition of all
possible states with equal weight (spins aligned on the x-
axis). This condition corresponds to making the bottom of the
tank flat; therefore, the water is uniformly distributed among
the solutions. Then the decrease of the transverse field’s
strength allows the system’s energy to gradually reproduce
the problem’s energy profile; this can be interpreted as a
gradual deformation of the tank’s bottom for describing the
objective function, and the water begins to flow towards
the lowest points. Suppose the evolution is sufficiently slow
(adiabatic). In that case, the system can follow the ground
state for the entire evolution time. The final configuration
is the optimal solution, described in the hydraulic model as
the water concentrated in the lowest point.
The advantage of QA exploration is that the probability of
overcoming an energy barrier with height ∆ is proportional
to e−

√
∆w
Γ (where w is the width of the energy barrier and Γ

the strength of the transverse field). At the same time, in the
SA case, it is equal to e−

∆
kBT (where T is the temperature

parameter and kB is the Boltzmann constant). Consequently,
quantum exploration is significantly more effective than clas-
sical one in case of problems with the energy landscape
with a high amount of perturbation with many high and thin
barriers (w ≪ ∆) [76].
In order to obtain an equivalent classical Ising model of
the transverse field one, an additional dimension has to
be added to the system. Indeed, an m-dimensional quantum
space can be emulated by an (m + 1) classical one [78].
The original m-dimensional space is called real space, and
the additional dimension is composed of a set of interacting
replicas called Trotter slices (as shown in Figure 8b).
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The Hamiltonian of the classical equivalent Ising model can
be expressed by:

H =

M∑
k=1

(∑
ij

Jij
M
σi,kσj,k+

∑
i

hi
M
σi,k+J

+
∑
i

σi,kσi,k+1

)
,

(44)
where J+ = T

2 log (cot ( Γ
M ·T )) is the correlation fac-

tor (corresponding to the strength of couplings between
replicas), depending on the temperature parameter T , the
transverse field Γ and M , which is the number of replicas
considered. T and Γ gradually decrease with the following
schedules: T = MC_step

(1− 1
8 )·(t+1)

and Γ = Γ0 · (1 − t
MC_step+1 ),

where t is the number of the current iteration, Γ0 the initial
transverse field [68] and MC_step is the total number of
Monte Carlo steps, corresponding to the update of all spins
of all replicas.
The correlation factor is weak at the beginning to guarantee
a search radius as larger as possible (exploration). Af-
terwards, it increases for reaching a high probability of the
convergence of each replica to the same final configuration,
which should be the optimal one (exploitation).
The Trotters or replicas employment allows the emulation
of quantum system states superposition and, together with
the correlation factor, mimics the tunneling effect through
energy barriers, thus ensuring a faster algorithm convergence.
A higher number of TrotterM implies a higher fidelity of the
SQA in emulating the QA evolution.
From a certain point of view, Trotters can be seen as in-
dividuals of a population-based algorithm. In particular, a
theoretical comparison with cooperative population-based
algorithms, like ones in [13], [10], can be done. Indeed, the
Trotters can be seen as individuals of a population that, in
the beginning, tends to explore the solution space without
considering other elements (selfish behaviour), but gradually
the tendency to stick together grows (social behaviour).
The main steps of the algorithm are:

1) For each Trotter, an arbitrary solution is considered.
2) For each spin of each replica, an update is considered

and accepted according to the Metropolis-Hastings
algorithm.

3) Evaluate which replica gives the current best solution
and if this solution is better than the ones obtained in
the previous step.

4) Repeat from 2) decreasing Γ and T and updating J+

according to the explained formula until Γ = 0.

It is important to notice that steps from 2) to 4) constitute a
single Monte Carlo step of the algorithm.
The evaluation and storage for each Trotter of the best current
solution in each iteration (point 3) were inserted in the
algorithm to improve the probability of obtaining the optimal
solution.
The Metropolis-Hastings algorithm (MH) [79] is a popular
Markov chain Monte Carlo mechanism for obtaining a
sequence of random samples associated with a complex non-
evaluable probability distribution. This allows the simulation

of random walks in the solution space, i.e. a random
exploration depending on the acceptance rate and generation
of new samples from the previous one.
Its pseudocode is reported in Algorithm 1.

Algorithm 1 Metropolis-Hasting

Start from an arbitrary sample x0

for i = 1 To i < UPDATE do
generate x∗

i from xi−1

U = rand(0, 1)
//A(xi−1, xi) is the Acceptance Rate
//It depends on application
if u < A(xi−1, xi) then

//Accept the new sample
xi = x∗

i

else
//Maintain the old sample
xi = xi−1

end if
end for

In the SQA case, the MH acceptance rate of the nth spin of
the mth Trotter is:

A = min

(
1, e

−∆E·M
T

)
, (45)

where:
∆E =

∆Epot

M
+∆Ekin . (46)

Considering thatM and T are always both positive, if ∆E ≤
0, the exponential e

−∆E·M
T is at least equal to 1, so the spin-

flip is accepted (A = 1), otherwise a positive ∆E implies
a spin-flip probability equal to A = e

−∆E·M
T . In SQA, the

single-spin state is changed if ∆Epot is lower than 0, thus
implying that any energy improvement of the single replica is
maintained. Indeed, ∆Epot depends only on the configuration
of the other Trotter’s spins:

∆Epot =

(N−1∑
k=0

(
2 · Jn,k · s_mm,n

)
hn

)
· (−2 · s_mm,n) ,

(47)
where J and h are the interaction matrix and external field
vector, respectively, of the problem, s_m is the spins matrix,
where each row is associated with the spins configuration
of a given Trotter, N the number of spins for each Trotter,
i.e. the number of involved binary variable and m and n
are, respectively, the Trotter and spin index for identifying
the spin to update, while k is an index for iterating among
the other spins of the same Trotter. This ∆E contribution
considers each replica alone.
On the contrary, ∆Ekin takes into account the correlation
among neighbor Trotters:

∆Ekin = J+ ·(s_mm_dx,n+s_mm_sx,n)·(−2·s_mm,n) , (48)

where J+ is the correlation factor and m_dx and m_sx are
the index of the two neighbor Trotters of mth one obtained as
m+1 andm−1, respectively. This ∆E component increases
the spin-flip acceptance if the new spin configuration is the
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same as its neighbours to guarantee the convergence of all
replicas at the same solution. The strength of this component
increases during the algorithm execution as the correlation
factor for giving more freedom during the exploration begin-
ning and for gradually forcing the convergence.
Therefore, the Metropolis-Hastings method guarantees a
good balance between exploration and exploitation during
the algorithm evolution because the probability of accepting
a degrading solution better separates a Trotter’s configuration
from its neighbours (getting out of the flock) decreases during
the algorithm evolution.
A detailed and complete pseudo-code is reported in Algo-
rithm 2.

Algorithm 2 Simulated Quantum Annealing

Input: J matrix and h vector
Output: Solution vector s and Energy value

Initialize:
//Fill randomly spin configurations
//matrix with -1 or 1
Randomly initialize s_m ∈ {−1, 1}
//Variables initialization
Energies← 0
∆E_local← 0
Γ← Γ0

T ← MC_step
1− 1

8

J+ = T
2
log (cot ( Γ

M·T ))
//∆E_local precomputation
//Current energy evaluation
for m = 0 To M − 1 do

for n = 0 To N − 1 do
for k = 0 To N − 1 do

//Symmetric J matrix considered
∆E_localn,m += 2 · Jn,k · s_mm,n

end for
∆E_localn,m += hn

end for
Energiesm = s_mm × (J× s_mT

m)T + s_mm × hT

//Save current optimal solution
if m,n = 0 or Energy ≥ Energiesm then

Energy← Energiesm
s← s_mm

end if
end for

Monte Carlo steps:
for t = 0 To MC_step− 1 do

for m = 0 To M − 1 do
//Identify Trotter neighbors
Identify n_dx and n_sx //m− 1 and m+ 1
for n = 0 To N − 1 do

//Evaluation of ∆E
//for flipping the spin
∆E_pot = −∆E_localn,m · (2 · s_mm,n)
∆E_kin = J+ · (s_mn_dx,n + s_mn_sx,n)·

(−2 · s_mm,n)
∆E = ∆E_pot

M
+∆E_kin

r = rand(0, 1)
//Metropolis-Hasting condition

if ∆E_pot < 0 or r < e
−∆E·M

T then
//Spin-flip
s_mm,n = −s_mm,n

Energiesm = Energiesm +∆E_pot
//Update optimal solution
if Energy ≥ Energiesm then

Energy← Energiesm
s← s_mm

end if
//Update ∆E_local
for k = 0 To N − 1 do

//Symmetric J matrix
∆E_localK,m += 4 · Jn,k · s_mm,n

end for
end if

end for
end for
//Update the evolution parameters
Γ = Γ0 · (1− t

MC_step+1
)

T = MC_step
(1− 1

8
)·(t+1)

J+ = T
2
log (cot ( Γ

M·T ))
end for

Return: Energy, s

Disadvantages of the SQA approach with respect to the SA
one are:

• high memory requirement due to the employment of
replicas;

• time requirement for each Monte Carlo step, even
though, according to data dependencies, it is possible
to parallelize each iteration partially.

The parallelization of this algorithm is crucial for avoid-
ing significant growth with the number of Trotters and the
involved variables of the time required for executing each
iteration. For this reason, FPGA-based [69]–[73], [76] and
GPU-based [67], [68], [77] algorithm implementations, to
accelerate the SQA computation, have been proposed in the
state-of-art. However, the data dependencies do not simplify
parallelization. Indeed, considering a generic fully-connected
problem, the update of spins belonging to the same replica
has to be performed serially to respect the data dependencies.
Moreover, the update of the ith spin in the various replicas has
to be performed serially. The only way to parallelize updates
is to update replicas in parallel, but each one is delayed
by one relative position with respect to its neighbour, as
shown in Figure 9. In this way, the time required for the
algorithm execution is:

texe_parallel = tinit+((M−1)·tspin+N ·tspin+tparam)·MC_step ,
(49)

where tinit is the initialization time, tspin is the time required
for the update of a single spin (inner loop), and tparam is the
one required for updating the evolution parameters. On the
other hand, the fully-sequential execution time would be:

texe_serial = tinit + ((M ·N) · tspin + tparam) · MC_step . (50)

The savings is equal to (N ·(M−1)+1−M)·tspin ·MC_step,
which is less than (N ·(M−1)) ·tspin ·MC_step that could be
obtained completely parallelizing the Trotters evolution, but
it remains a very good result.
A possibility to increase the parallelization degree is to
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FIGURE 9: Scheduling of Monte Carlo step t, computing Trotter updates in parallel according to data dependencies.

consider a minor embedding [80] technique to decrease the
connectivity of each spin and to identify groups of spins that
are entirely independent of the other groups. In this way,
these spin updates can be executed in parallel to the others
if there are sufficient hardware resources. However, it has
to be taken into account that these techniques increase the
total number of spins involved and that their application
involves an initial time overhead. Therefore it is good to use
this technique only if the available hardware is sufficient.

C. PARALLEL TEMPERING
Parallel Tempering (PT) [81]–[83] or replicas exchange
technique is based on the simulation of multiple copies of
the original system of interest. Each of them works at a
different temperature. The spins update is done accord-
ing to the Metropolis-Hastings algorithm, depending on the
acceptance rate of classical SA. Substantially each copy
executes the Monte Carlo step in a different instant of time
of the SA algorithm, as shown in Figure 11.
The systems with a higher temperature have a more ex-
tensive search radius in the solution space, while the lower
ones perform local exploration. PT performs better than SA
because temperature swapping between the copies can be
performed in each iteration of the algorithm. The probability
of swapping the temperatures is computed to allow copies
having poor results (higher energy) until that moment to
have a high probability of accepting a higher temperature
parameter, thus growing the search radius. In particular, the
swap probability between ith and jth copies is equal to:

Pswap(i, j) = min
[
1, e

( 1
Ti

− 1
Tj

)(Ei−Ej)
]
, (51)

where is Ti and Tj are the temperatures of the ith and jth copy,
respectively, and Ei and Ej are the copies energy.
This mechanism can allow copies stuck in local optima to
be bumped out of them, thus encouraging a broader explo-
ration of the problem space for poor-performance copies

and forcing a restricted search for those providing good
performance (low energy).
For summarizing, the main steps of the algorithm are:

1) For each copy, an arbitrary solution is considered and
a temperature parameter is assigned.

2) Spin update for each copy is considered and accepted
according to the Metropolis-Hastings algorithm.

3) Evaluate the current energy of each copy.
4) Temperature swapping according to the energy of the

copies.
5) Repeat from 2).

Steps from 2) to 5) constitute a PT iteration.
The main difference with standard SA evolutions computed
in parallel is that, instead of linearly decreasing the tem-
perature parameter, this is set in each iteration for each
copy according to the quality of solutions reached until that
moment.
From a certain point of view, it can be seen as a population-
based version of SA, which increases the exploration of the
worst population elements and increases the exploitation of
the best ones.
An advantage of PT is that the Monte Carlo step of each copy
can be done perfectly in parallel, so the overhead related to
the employment of many system copies can be compensated
in a hardware implementation.

D. POPULATION ANNEALING
Population Annealing (PA) [84]–[86] is a sequential Monte
Carlo method whose target is attenuating the Metropolis-
Hastings algorithm’s vulnerability to rough energy land-
scapes (i.e. a multimodal objective function with multiple
minima) by simulating a population of Metropolis walk-
ers. It is closely related to SA, but also, in this case, it
involves a population of copies, which is resampled at each
temperature step. Similarly to SA, PA monotonically lowers
the system temperature through a sequence of tempera-
tures from high to low. However, differently from SA, a re-
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sampling step is performed at each temperature. Therefore,
the solution quality of each copy is evaluated and, according
to its quality with respect to the others and exploiting a Pois-
son’s probability density function, its spins configuration is
eliminated, kept or duplicated a certain number of times, in
place of the spin configurations of the eliminated copies, as
shown in Figure 12. The average number of copies to be kept
for the ith original one can be estimated as follows:

N(Ei) =
1

Q
exp

((
1

T (t′)
− 1

T (t′ + 1)

)
Ei

)
, (52)

where Ei is the energy of the ith copy, T (t′) and T (t′ + 1)
are, respectively, the temperature in the current t′ and in the
next steps of the algorithm and Q is a normalization factor
equal to:

Q =
1

M

M−1∑
i=0

exp

((
1

T (t′)
− 1

T (t′ + 1)

)
Ei

)
, (53)

where M is the number of copies in the population.
The re-sampling mechanism consolidates the search efforts
around the most promising regions. Indeed, each copy is
free to explore its search region, but whenever a copy finds a
favourable one, the rest of the population is moved toward it.
As it is possible to understand from the reported formula,
the re-sampling mechanism is enforced during the algorithm
evolution. Initially, it is weak for favouring a broad explo-
ration of the solution space. At the same time, with low-
temperature values, the combination of Metropolis criteria
and a strong re-sampling, a local search focused on the region
of the competitive state is performed, and the search in the
poor regions is aborted.
In this sense, the PA algorithm shares the basic principles
of evolutionary population-based approaches [87] [17]
[88]. Indeed, the algorithm evolution starts with a generation

of copies (individuals) and a sort of selection of the best
elements (configurations) associated with the lowest values
for creating a new generation (exploitation). The balance
with exploration is guaranteed by the employment of Pois-
son’s probability density function, which permits, with a low
probability, the selection of the temporary worst solutions.
For summarizing, the main steps of the algorithm are:

1) For each copy, an arbitrary solution is considered.
2) Spin update for each copy is considered and accepted

according to the Metropolis-Hastings algorithm.
3) Evaluate the current energy of each copy.
4) re-sampling copies according to their energy.
5) Repeat from 2) decreasing the temperature parameter

T.

Steps from 2) to 5) constitute a PA iteration.
Similar to PT, a further advantage of this approach is that
the Monte Carlo step of each copy can be done entirely
in parallel, so the overhead related to the employment of
many system copies can be compensated in a hardware
implementation. The resource requirement for parallelizing

the computation makes this approach more suitable for chal-
lenging moderately-sized problems. However, it could have
some difficulties in exploring regions with high peaks [89].

III. HYBRID QUANTUM-CLASSICAL ALGORITHMS

It is possible to prove that the effectiveness of an optimization
algorithm on a specific problem is strongly related to the
characteristic of its energy profile [43].
For example, SA and other local-search-based approaches
can easily overcome wide and smooth barriers, but they
cannot effectively overcome high and narrow barriers.
On the contrary, QA performs well with problems whose
energy profiles are characterized by high and narrow peaks,
thanks to the exploitation of quantum tunnelling. However,
it is expected to be ineffective in vast and flat regions [90]
[91]. For these reasons, the exploration performed by QA can
be defined as global.
Unfortunately, the energy profiles associated with real-world
problems are usually heterogeneous, as reported in Figure
10. Therefore, the probability of success of each solver de-
pends on the size of the energy profile region compatible with
its exploration mechanism. In the case of a heterogeneous
energy profile, a significant advantage can be obtained by
employing a solver which can explore the wide and smooth
region with a local approach and the rough one with QA.
From these observations, the interest in hybrid solvers,
which can effectively alternate local and global searches,
arose and some proposals were developed [92]–[94].
N. Chancellor proposed in [43] techniques to perform a local
search rather than a global one in a QA to obtain a hybrid
solver, which maintains both the advantages of the QA and
SA. In particular, he proposed the application to QA of some
techniques born to improve classical SA to achieve better QA
performance for heterogeneous energy profiles. For example,
Parallel Tempering (PT) and Population Annealing (PA),
presented in Paragraphs II-C and II-D, respectively, were
considered.
He demonstrates how sequential calls to QA can be exploited
to obtain analogues of PT and PA, employing quantum
search as a subroutine. Unfortunately, the QA is essentially
different from SA because, due to the no-cloning theorem
of quantum mechanics, it is impossible to determine the
system’s intermediate state; consequently, they cannot be
arbitrarily manipulated to build a better algorithm. Therefore,
obtaining the quantum version requires a subroutine similar
to QA, performing a local search in a controllable-size
region around the initial state. Furthermore, since the input
and output of the subroutine are entirely classical, the no-
cloning theorem can be considered non-critical, and this local
quantum subroutine can be combined with a quantum or
classical search. Moreover, N. Chancellor identifies an effec-
tive temperature parameter to describe parallel-tempering-
like and population-annealing-like mechanisms, which can
be derived from the following Hamiltonian, describing the
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QUANTUM ANNEALING SIMULATED ANNEALING

FIGURE 10: Exploration capabilities and limits of SA and QA with an heterogeneous energy profile. The wide energy barrier
can be overcome by SA, exploiting thermal fluctuations but cannot be tunnelled by QA. On the other hand, QA can efficiently
explore the rough part of the energy landscape, while SA cannot overcome this region’s high and narrow peaks.

adiabatic evolution of a single qubit of a quantum annealer:

H1(t) = −A(t)σx +B(t)σz . (54)

A(t) is the transverse field, B(t) is a longitudinal field,
which permits to gradual apply the problem weight (thus
implementing the adiabaticity of the QA evolution), t is the
time-instant in the annealing schedule, and σx and σz are
the Pauli matrices. The two fields have a complementary
behaviour with time to ensure the superposition of the initial
states (A(t)) and the final convergence to the optimal solution
of the analyzed problem (B(t)).
Eigenstates and eigenvalues of the Hamiltonian can be an-
alytically evaluated by exploiting diagonalization and the
ratio among the eigenvalues of the two basis states can be
produced:

ψ(1)

ψ(2)
=

√
A(t)2 +B(t)2

A(t)
+
B(t)

A(t)
. (55)

Finally, the effective temperature can be derived by com-
paring the quantum probability distribution to a Boltzmann
distribution on only the longitudinal part of the reported
Hamiltonian

Teff(t) ≜ 2

[
ln

(∣∣∣∣
√
A(t)2 +B(t)2

A(t)
+
B(t)

A(t)

∣∣∣∣2)]−1

. (56)

This work proposes new hybrid algorithms obtained by com-
bining the SQA, PT and PA starting from Chancellor’s intu-
ition and observations. In particular, Equation 56 was adapted
to the system considered in SQA, described in Paragraph
II-B, recognizing thatA(t) plays essentially the role of −Γ(t)
and B(t) is fixed at one:

Teff(t) = 2

[
ln

(∣∣∣∣
√
Γ(t)2 + 1

Γ(t)
+

1

Γ(t)

∣∣∣∣2)]−1

, (57)

in which the minus signs in the formula are omitted due to the
presence of the square module. Moreover, the system copies
of PT and PA are interpreted as copies of the correlated
Trotters system described in Figure 8b.
Finally, this article proposes four new algorithms obtained
by exploiting the presented principles: Simulated Quantum
Parallel Tempering (SQPT), Simulated Quantum Popu-
lation Annealing (SQPA), Simulated Quantum Parallel
Tempering - Population Annealing version 1 (SQPTPA1)

and Simulated Quantum Parallel Tempering - Population
Annealing version 2 (SQPTPA2). They are analyzed and
described deeply in the following Paragraphs.

A. SIMULATED QUANTUM PARALLEL TEMPERING
Simulated Quantum Parallel Tempering (SQPT) was pro-
posed to join the advantages of SQA and PT algorithms. As
mentioned, it was substantially implemented by considering
each system copy of the standard PT composed of SQA
Trotters and its spin-update was performed according to
SQA conditions. Moreover, the time instants, i.e. of the
transverse field Γ(t) and correlation factor J+(t), assigned
to each system copy are different and they are swapped
among the system copy after each iteration according to the
system energy and the effective temperature of Equation 57.
In particular, the swap probability is equal to:

Pswap(i, j) = min
[
1, e

( 1
Teffi

− 1
Teffj

)(Ei−Ej)
]
, (58)

where Ei and Ej are the energies of the best configuration of
the ith and jth systems, respectively.
A graphical idea of the algorithm behavior is provided in
Figure 11, which shows the evolution of the system. This is
composed of a set of copies, composed in turn of Trotters
slices reported in Figure 8b.
The main evolution steps are the following:

1) For each Trotter of each system, an arbitrary solution
is considered.

2) At a given time instant t, a transverse field Γ(t), a cor-
relation factor J+(t) and a temperature parameter T (t)
are assigned to each system copy from a uniformly
distributed list in range 0 to MCstep − 1.

3) For each spin of each replica of each system copy,
an update is considered and accepted according to the
Metropolis-Hastings algorithm.

4) Evaluate which replica gives the current best solution
and if this solution is better than the ones obtained in
the previous step.

5) Save the best current solution of each system copy.
6) Evaluate, for each couple of copies of the system, the

time instants swap according to the MH algorithm with
an acceptance rate equal to Equation 58.

7) Repeat from 2) for MCstep number of times.
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FIGURE 11: Parallel Tempering and Simulated Quantum Parallel Tempering evolution.

In this case, steps 2) to 7) constitute a single Monte Carlo
step of the algorithm.
Analogously to SQA, the flip of the ith spin of themth Trotter
of the sth system copy is accepted if ∆E is non-positive
or if ∆Epot is lower than 0 or with a probability equal to
e

−∆E·M
T (s) . The only difference is that the correlation factor J+

considered in the ∆Ekin computation and the temperature T
are not functions of the current iteration but of the considered
system copy. Indeed, the algorithm parameters Γ, T and J+

do not have a monotonic evolution with time, but their values
change with time depending on the system copies energies
according to the swap mechanism.
A detailed and complete pseudo-code is reported in Algo-
rithm 3.

Algorithm 3 Simulated Quantum Parallel Tempering

Input: J matrix and h vector
Output: Solution vector sol and Energy value

Initialize:
//Fill randomly spin configurations
//tensor N ×M × SY S with -1 or 1
//where SY S is the number of system
//copies
Randomly initialize s_m ∈ {−1, 1}
//Variables initialization
Energies← 0
∆E_local← 0
//Vector of systems optimal energy
Esys_opt ← 0
//Precomputation of the involved Γ, T
//and J+ parameters

Γlist ← linspace
(
Γ0,Γ0

(
1− MCstep

MCstep

))
, SY S

)

Tlist ← linspace
(

MC_step
1− 1

8

, MC_step
(1− 1

8
)·(MC_step)

, SY S

)
J+

list ←
Tlist
2

log (cot ( Γlist
M·Tlist

))
//Systems time instant initialization
s← linspace(0, SY S − 1, SY S)
//∆E_local precomputation
//Current energy evaluation
for sys = 0 To SY S − 1 do

for m = 0 To M − 1 do
for n = 0 To N − 1 do

for k = 0 To N − 1 do
//Symmetric J matrix
∆E_localn,m,sys += 2 · Jn,k · s_mm,n,sys

end for
∆E_localn,m,sys += hn

end for
Energiesm,sys = s_mm,sys × (J× s_mT

m,sys)
T

+s_mm,sys × hT

//Save current optimal solution
if m,n = 0 or Energy ≥ Energiesm,sys then

Energy← Energiesm,sys

sol← s_mm

end if
//Save current optimal solution
//system energy
if m = 0 or Esys_optsys

≥ Energiesm,sys then
Esys_optsys

← Energiesm,sys

end if
end for

end for

Monte Carlo steps:
for t = 0 To MC_step− 1 do

for sys = 0 To SY S − 1 do
for m = 0 To M − 1 do

//Identify Trotter neighbors
Identify n_dx and n_sx //m− 1 and m+ 1
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for n = 0 To N − 1 do
//Evaluation of ∆E
//for flipping the spin
∆E_pot = −∆E_localn,m,sys

·(2 · s_mm,n,sys)
∆E_kin = J+

list(ssys) · (s_mn_dx,n,sys+
+s_mn_sx,n,sys) · (−2 · s_mm,n,sys)

∆E = ∆E_pot
M

+∆E_kin
r = rand(0, 1)
//Metropolis-Hasting condition

if ∆E_pot < 0 or r < e
−∆E·M

Tlist(ssys) then
//Spin-flip
s_mm,n,sys = −s_mm,n,sys

Energiesm,sys = Energiesm,sys +∆E_pot
//Update optimal solution
if Energy ≥ Energiesm,sys then

Energy← Energiesm,sys

sol← s_mm,sys

end if
//Update ∆E_local
if m = 0 or Esys_optsys

≥ Energiesm,sys then
Esys_optsys

← Energiesm,sys

end if
for k = 0 To N − 1 do

//Symmetric J matrix
∆E_localk,m,sys += 4 · Jn,k·

s_mm,n,sys

end for
end if

end for
end for

end for
//Update the evolution parameters
for sys1 = 0 To SY S − 1 do

for sys2 = 0 To SY S − 1 do
Compute Teffsys1

Compute Teffsys2

//Metropolis-Hasting condition

if r < e
( 1
Teffsys1

− 1
Teffsys2

)(Esys_optsys1
−Esys_optsys2

)

then
//Time instants swap
ssys1 ↔ ssys1

end if
end for

end for
end for

Return: Energy, sol

A further advantage of the presented approach is that the
spins update of each system copy can be done completely
in parallel to the others without delays. In this way, the time
required for the algorithm execution is:

texe_parallel = tinit+((M−1)·tspin+N ·tspin+tswap)·MC_step ,
(59)

where tinit is the initialization time, tspin is the time required
for the update of a single spin (inner loop) and tswap is the one
required for swapping the system copies time instant, instead
of:

texe_serial = tinit + ((M ·N · SY S) · tspin + tswap) · MC_step .
(60)

The savings is equal to (M ·N · SY S −M +1−N) · tspin ·
MC_step. The comparison of texe_parallel with one of SQA in
the same condition, i.e. with the same total number of Ising
copies (MSQA = MSQPT · SY SSQPT), for spins update, the
saving is equal to (MSQPT · (SY SSQPT − 1) · tspin) ·MC_step.
In a hardware implementation, this time could compensate
for the overhead related to the swapping time, which will
be higher than the parameter update time of SQA, especially
if fast solutions like look-up tables are considered for com-
puting the swap probabilities and the effective temperature.
Therefore, in this work, the iterations of the two algorithms
are considered comparable.

B. SIMULATED QUANTUM POPULATION ANNEALING
Simulated Quantum Population Annealing (SQPA) was
proposed to join the advantages of SQA and PA algorithms.
As mentioned, it was implemented substantially by consid-
ering each system copy of the standard PA composed of
SQA Trotters and its spin-update was performed according
to SQA conditions. Moreover, the evolution of the parameters
is the same as SQA. However, after each Monte Carlo step,
the involved system copies are resampled, i.e. the best solu-
tion of each system is evaluated and, according to its quality
with respect to the others and Poisson’s probability density
function, is eliminated, kept or duplicated a certain number
of times in place of the eliminated ones, as shown in Figure
12. The average number of system copies to be kept for the
ith original one can be estimated as follows:

N(Ei) =
1

Q
exp

((
1

Teff(t)
− 1

Teff(t+ 1)

)
Ei

)
, (61)

where Ei is the best energy of the ith system copy, Teff(t)
and Teff(t + 1) are, respectively, the effective temperatures,
evaluated by exploiting Equation 57, in the current and the
next steps of the algorithm and Q is a normalization factor
equal to:

Q =
1

SY S

SY S−1∑
i=0

exp

((
1

Teff(t′)
− 1

Teff(t′ + 1)

)
Ei

)
,

(62)
where SY S is the number of system copies in the population.
In order to be precise, the probability of obtaining a number
of system copies to be kept is equal to Ncopies is equal to:

Ppoisson(Ncopies = k) =
λke−λ

k!
, (63)

where λ = N(Ei) is the expected value of the Poisson
distribution.
The main algorithm evolution steps are the following:

1) For each Trotter of each system, an arbitrary solution
is considered.

2) For each spin of each replica of each system copy,
an update is considered and accepted according to the
Metropolis-Hastings algorithm.

3) Evaluate which replica gives the current best solution
and if this solution is better than the ones obtained in
the previous step.
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FIGURE 12: Population Annealing and Simulated Quantum Population Annealing evolution.

4) Save the best current solution of each system copy.
5) re-sampling system copies according to their energies.
6) Repeat from 2), updating Γ(t), J+(t) and T (t) param-

eters
In this case, steps 2) to 6) constitute a single Monte Carlo
step of the algorithm.
The ith spin of the mth Trotter of the sth system copy flip,
analogously to SQA, is accepted if ∆E is non-positive or
if ∆Epot is lower than 0 or with a probability equal to
e

−∆E·M
T (s) . The parameters evolution is monotonic with time

as in SQA. The copies re-sampling is done by computing Q
as a function of the energy of the best configuration of each
copy, computingN(Ei) for the ith system copy and sampling
the number of copy to be kept from a Poisson distribution
centered in N(Ei). A detailed and complete pseudo-code is
reported in Algorithm 4.

Algorithm 4 Simulated Quantum Population Annealing

Input: J matrix and h vector
Output: Solution vector sol and Energy value

Initialize:
//Fill randomly spin configurations
//tensor N ×M × SY S with -1 or 1
//where SY S is the number of system
//copies
Randomly initialize s_m ∈ {−1, 1}
//Variables initialization
Energies← 0
∆E_local← 0
//Vector of systems optimal energy
Esys_opt ← 0
//Precomputation of the involved Γ, T
//and J+ parameters
Γ← Γ0

T ← MC_step
1− 1

8

J+ = T
2
log (cot ( Γ

M·T ))
//Systems time instant initialization
//∆E_local precomputation
//Current energy evaluation
for sys = 0 To SY S − 1 do

for m = 0 To M − 1 do
for n = 0 To N − 1 do

for k = 0 To N − 1 do
//Symmetric J matrix
∆E_localn,m,sys += 2 · Jn,k · s_mm,n,sys

end for
∆E_localn,m,sys += hn

end for
Energiesm,sys = s_mm,sys × (J× s_mT

m,sys)
T

+s_mm,sys × hT

//Save current optimal solution
if m,n = 0 or Energy ≥ Energiesm,sys then

Energy← Energiesm,sys

sol← s_mm

end if
//Save current optimal solution
//system energy
if m = 0 or Esys_optsys

≥ Energiesm,sys then
Esys_optsys

← Energiesm,sys

end if
end for

end for

Monte Carlo steps:
for t = 0 To MC_step− 1 do

for sys = 0 To SY S − 1 do
for m = 0 To M − 1 do

//Identify Trotter neighbors
Identify n_dx and n_sx //m− 1 and m+ 1
for n = 0 To N − 1 do

//Evaluation of ∆E
//for flipping the spin
∆E_pot = −∆E_localn,m,sys
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·(2 · s_mm,n,sys)
∆E_kin = J+

list(ssys) · (s_mn_dx,n,sys+
+s_mn_sx,n,sys) · (−2 · s_mm,n,sys)

∆E = ∆E_pot
M

+∆E_kin
r = rand(0, 1)
//Metropolis-Hasting condition

if ∆E_pot < 0 or r < e
−∆E·M

Tlist(ssys) then
//Spin-flip
s_mm,n,sys = −s_mm,n,sys

Energiesm,sys = Energiesm,sys +∆E_pot
//Update optimal solution
if Energy ≥ Energiesm,sys then

Energy← Energiesm,sys

sol← s_mm,sys

end if
//Update ∆E_local
if m = 0 or Esys_optsys

≥ Energiesm,sys then
Esys_optsys

← Energiesm,sys

end if
for k = 0 To N − 1 do

//Symmetric J matrix
∆E_localk,m,sys += 4 · Jn,k·

s_mm,n,sys

end for
end if

end for
end for

end for
//re-sampling
Q← 0
Γnext = Γ0 · (1− t+1

MC_step+1
)

for sys0 To SY S − 1 do

Teff1 = 2

[
ln

(∣∣∣∣√Γ2+1

Γ
+ 1

Γ

∣∣∣∣2)]−1

Teff1 = 2

[
ln

(∣∣∣∣√Γ2
next+1

Γnext
+ 1

Γnext

∣∣∣∣2)]−1

Q+ = exp

((
1

Teff1
− 1

Teff2

)
Esys_optsys

)
end for
Q = Q

SY S
//declare temporary tensor N ×M × SY S
s_mtemp
Esys_opttemp

∆E_localtemp
//Variable for counting copies
c← 0
for sys0 To SY S − 1 do

Teff1 = 2
[
ln
(∣∣√Γ2+1

Γ
+ 1

Γ

∣∣2)]−1

Teff1 = 2
[
ln
(∣∣√Γ2

next+1

Γnext
+ 1

Γnext

∣∣2)]−1

Nmean = 1
Q
exp

((
1

Teff1
− 1

Teff1

)
Esys_optsys

)
R = Poisson(N)
for r = 0 To R− 1 do

//For maintaining constant the
//number of system
if c < SY S then

s_mtempc = s_msys

Esys_opttempc
= Esys_optsys

∆E_localtempc = ∆E_localsys
c+ = 1

end if
end for

end for
//For maintaining constant the number
//of system
while c < SY S do

s_mtempc = s_mSY S−1

Esys_opttempc
= Esys_optSY S−1

∆E_localtempc = ∆E_localtemp

c+ = 1
end while
s_m = s_mtemp
Esys_opt = Esys_opttemp

∆E_local = ∆E_localtemp
//Update the evolution parameters
Γ = Γ0 · (1− t

MC_step+1
)

T = MC_step
(1− 1

8
)·(t+1)

J+ = T
2
log (cot ( Γ

M·T ))
end for

Return: Energy, sol

A further advantage of the presented approach is that the
spins update of each system copy can be done completely
in parallel to the other without delays. In this way, the time
required for the algorithm execution is:

texe_parallel = tinit+((M−1)·tspin+N ·tspin+tre-sampling)·MC_step ,
(64)

where tinit is the initialization time, tspin is the time required
for the update of a single spin (inner loop) and tre-sampling is
the one required for re-sampling system copies, instead of:

texe_serial = tinit+((M ·N ·SY S)·tspin+tre-sampling)·MC_step .
(65)

The savings is equal to (M ·N · SY S −M +1−N) · tspin ·
MC_step. By comparing texe_parallel with one of SQA in the
same condition, i.e. with the same total number of Ising copy
(MSQA = MSQPA · SY SSQPT), for spins update, the saving is
equal to (MSQPA · (SY SSQPT − 1) · tspin) · MC_step. From
the spins update time point of view, the SQPT and the SQPA
are perfectly equivalent. Indeed, in both cases, it is possible
to perfectly parallelize the system copies evaluations. In a
hardware implementation, this time could compensate for
the overhead related to the re-sampling time, which will be
higher than the parameter update time of SQA, especially
if fast solutions will be found for obtaining the random
number of copies to be kept for each according to the Poisson
distribution. Therefore, in this work, the iterations of the two
algorithms are considered comparable and comparable with
the ones of the SQPT.

C. SIMULATED QUANTUM PARALLEL TEMPERING -
POPULATION ANNEALING VERSION 1
Simulated Quantum Parallel Tempering - Population An-
nealing version 1 (SQPTPA1) was proposed to exploit both
the advantages of SQPT and SQPA algorithms to obtain a
solver as complete as possible. It was obtained substantially
by running at the same time both the SQPT and the SQPA.
In particular, a system of SY Stemp plus SY Spop copies com-
posed of SQA Trotter systems was considered. The SY Stemp
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copies evolve according to the SQPT algorithm, while the
SY Spop copies follow the SQPA one. The system copies
related to SQPT and ones related to SQPA are, so it is equiv-
alent to running the two algorithms in parallel and choosing
the optimal solution with a majority voting mechanism. This
should allow an increase in the capability of solving problems
of different types.
The main algorithm evolution steps are the following:

1) For each Trotter of each system, an arbitrary solution
is considered.

2) At a given time instant t, a transverse field Γ(t), a
correlation factor J+(t) and a temperature parameter
T (t) are assigned to each SQPT system copy from a
uniformly distributed list in range 0 to MCstep − 1.

3) For each spin of each replica of each system copy, an
update is considered and accepted according to the MH
algorithm.

4) Evaluate which replica gives the current best solution
and if this solution is better than the ones obtained in
the previous step.

5) Save the best current solution of each system copy.
6) Evaluate for each couple of SQPT system copies the

time instants swap according to the MH algorithm with
an acceptance rate equal to Equation 58.

7) re-sampling the SQPA system copies according to
their energies.

8) Repeat from 2) for MCstep number of times, updating
Γ(t), J+(t) and T (t) parameters for the SQPA copies

In this case, steps 2) to 8) constitute a single Monte Carlo
step of the algorithm.
The ith spin of the mth Trotter of the sth system copy flip,
analogously to SQA, is accepted if ∆E is non-positive or if
∆Epot is lower than 0 or with a probability equal to e

−∆E·M
T (s) .

The parameters evolution is monotonic with time as in SQA
for the SQPA copies. The SQPA copies re-sampling is done
by computing Q as a function of the energy of the best
configuration of each copy, computing N(Ei) for the ith

system copy and sampling the number of copies to be kept
from a Poisson distribution centered in N(Ei). For SQPT
copies, the correlation factor J+ considered in the ∆Ekin
computation and the temperature T are not functions of the
current iteration but of the considered system copy. Indeed,
the algorithm SQPT parameters Γ, T and J+ do not have a
monotonic evolution with time, but their values change with
time depending on the system copies energies according to
the swap mechanism. A detailed and complete pseudo-code
is reported in Algorithm 5.

Algorithm 5 Simulated Quantum Parallel Tempering - Population
Annealing version 1

Input: J matrix and h vector
Output: Solution vector sol and Energy value

Initialize:
//Fill randomly spin configurations
//tensor N ×M × SY S with -1 or 1
//where SY S = SY Stemp + SY Spop is

//the total number of system copies
Randomly initialize s_m ∈ {−1, 1}
//Variables initialization
Energies← 0
∆E_local← 0
//Vector of systems optimal energy
Esys_opt ← 0
//Precomputation of the involved Γ, T
//and J+ parameters
Γ← Γ0

T ← MC_step
1− 1

8

J+ = T
2
log (cot ( Γ

M·T ))
//Precomputation of the involved Γ, T
//and J+ parameters for SQPT

Γlist ← linspace
(
Γ0,Γ0

(
1− MCstep

MCstep

))
, SY Stemp

)
Tlist ← linspace

(
MC_step
1− 1

8

, MC_step
(1− 1

8
)·(MC_step)

, SY Stemp

)
J+

list ←
Tlist
2

log (cot ( Γlist
M·Tlist

))
//Systems time instant initialization
s← linspace(0, SY Stemp − 1, SY Stemp)
//Systems time instant initialization
//∆E_local precomputation
//Current energy evaluation
for sys = 0 To (SY Stemp + SY Spop)− 1 do

for m = 0 To M − 1 do
for n = 0 To N − 1 do

for k = 0 To N − 1 do
//Symmetric J matrix
∆E_localn,m,sys += 2 · Jn,k · s_mm,n,sys

end for
∆E_localn,m,sys += hn

end for
Energiesm,sys = s_mm,sys × (J× s_mT

m,sys)
T

+s_mm,sys × hT

//Save current optimal solution
if m,n = 0 or Energy ≥ Energiesm,sys then

Energy← Energiesm,sys

sol← s_mm

end if
//Save current optimal solution
//system energy
if m = 0 or Esys_optsys

≥ Energiesm,sys then
Esys_optsys

← Energiesm,sys

end if
end for

end for

Monte Carlo steps:
for t = 0 To MC_step− 1 do

for sys = 0 To SY Spop − 1 do
for m = 0 To M − 1 do

//Identify Trotter neighbors
Identify n_dx and n_sx //m− 1 and m+ 1
for n = 0 To N − 1 do

//Evaluation of ∆E
//for flipping the spin
∆E_pot = −∆E_localn,m,sys

·(2 · s_mm,n,sys)
∆E_kin = J+

list(ssys) · (s_mn_dx,n,sys+
+s_mn_sx,n,sys) · (−2 · s_mm,n,sys)

∆E = ∆E_pot
M

+∆E_kin
r = rand(0, 1)
//Metropolis-Hasting condition
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if ∆E_pot < 0 or r < e
−∆E·M

Tlist(ssys) then
//Spin-flip
s_mm,n,sys = −s_mm,n,sys

Energiesm,sys = Energiesm,sys +∆E_pot
//Update optimal solution
if Energy ≥ Energiesm,sys then

Energy← Energiesm,sys

sol← s_mm,sys

end if
//Update ∆E_local
if m = 0 or Esys_optsys

≥ Energiesm,sys then
Esys_optsys

← Energiesm,sys

end if
for k = 0 To N − 1 do

//Symmetric J matrix
∆E_localk,m,sys += 4 · Jn,k·

s_mm,n,sys

end for
end if

end for
end for

end for
//Update the evolution parameters
for sys1 = 0 To SY Spop − 1 do

for sys2 = 0 To SY Spop − 1 do
Compute Teffsys1

Compute Teffsys2

//Metropolis-Hasting condition

if r < e
( 1
Teffsys1

− 1
Teffsys2

)(Esys_optsys1
−Esys_optsys2

)

then
//Time instants swap
ssys1 ↔ ssys1

end if
end for

end for
for sys = SY Stemp To (SY Spop + SY Stemp)− 1 do

for m = 0 To M − 1 do
//Identify Trotter neighbors
Identify n_dx and n_sx //m− 1 and m+ 1
for n = 0 To N − 1 do

//Evaluation of ∆E
//for flipping the spin
∆E_pot = −∆E_localn,m,sys

·(2 · s_mm,n,sys)
∆E_kin = J+

list(ssys) · (s_mn_dx,n,sys+
+s_mn_sx,n,sys) · (−2 · s_mm,n,sys)

∆E = ∆E_pot
M

+∆E_kin
r = rand(0, 1)
//Metropolis-Hasting condition

if ∆E_pot < 0 or r < e
−∆E·M

Tlist(ssys) then
//Spin-flip
s_mm,n,sys = −s_mm,n,sys

Energiesm,sys = Energiesm,sys +∆E_pot
//Update optimal solution
if Energy ≥ Energiesm,sys then

Energy← Energiesm,sys

sol← s_mm,sys

end if
//Update ∆E_local
if m = 0 or Esys_optsys

≥ Energiesm,sys then
Esys_optsys

← Energiesm,sys

end if
for k = 0 To N − 1 do

//Symmetric J matrix
∆E_localk,m,sys += 4 · Jn,k·

s_mm,n,sys

end for
end if

end for
end for

end for
//re-sampling
Q← 0
Γnext = Γ0 · (1− t+1

MC_step+1
)

for sys = SY Stemp To (SY Spop + SY Stemp)− 1 do

Teff1 = 2

[
ln

(∣∣∣∣√Γ2+1

Γ
+ 1

Γ

∣∣∣∣2)]−1

Teff1 = 2

[
ln

(∣∣∣∣√Γ2
next+1

Γnext
+ 1

Γnext

∣∣∣∣2)]−1

Q+ = exp

((
1

Teff1
− 1

Teff2

)
Esys_optsys

)
end for
Q = Q

SY Spop

//declare temporary tensor N ×M × SY S
s_mtemp
Esys_opttemp

∆E_localtemp
for sys = 0 To SY Stemp − 1 do

s_mtempsys
= s_msys

Esys_opttempsys
= Esys_optsys

∆E_localtempsys
= ∆E_localsys

end for
//Variable for counting copies
c← SY Stemp
for sys = SY Stemp To (SY Spop + SY Stemp)− 1 do

Teff1 = 2
[
ln
(∣∣√Γ2+1

Γ
+ 1

Γ

∣∣2)]−1

Teff1 = 2
[
ln
(∣∣√Γ2

next+1

Γnext
+ 1

Γnext

∣∣2)]−1

Nmean = 1
Q
exp

((
1

Teff1
− 1

Teff1

)
Esys_optsys

)
R = Poisson(N)
for r = 0 To R− 1 do

//For maintaining constant the
//number of system
if c < (SY Spop + SY Stemp) then

s_mtempc = s_msys

Esys_opttempc
= Esys_optsys

∆E_localtempc = ∆E_localsys
c+ = 1

end if
end for

end for
//For maintaining constant the number
//of system
while c < (SY Spop + SY Stemp) do

s_mtempc = s_mSY S−1

Esys_opttempc
= Esys_optSY S−1

∆E_localtempc = ∆E_localtemp

c+ = 1
end while
s_m = s_mtemp
Esys_opt = Esys_opttemp

∆E_local = ∆E_localtemp
//Update the evolution parameters
Γ = Γ0 · (1− t

MC_step+1
)

T = MC_step
(1− 1

8
)·(t+1)

J+ = T
2
log (cot ( Γ

M·T ))
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end for

Return: Energy, sol

A further advantage of the presented approach is that the
spins update of each system copy can be done completely
in parallel to the other without delays. In this way, the time
required for the algorithm execution is:

texe_parallel = tinit + ((M − 1) · tspin +N · tspin+

+max (tre-sampling, tswap)) · MC_step , (66)

where tinit is the initialization time, tspin is the time required
for the update of a single spin (inner loop), tre-sampling is the
one required for re-sampling system copies and tswap is the
one required for swapping the system copies time instant,
instead of:

texe_serial = tinit + ((M ·N · (SY Spop + SY Stemp)) · tspin+

+ tre-sampling + tswap) · MC_step . (67)

The savings is equal to (M · N · (SY Spop + SY Stemp) −
M + 1−N) · tspin · MC_step. By comparing texe_parallel with
one of SQA in the same condition, i.e. with the same total
number of Ising copies (MSQA =MSQPTPA1 ·(SY SpopSQPTPA1

+
SY StempSQPTPA1

)), for spins update, the saving is equal to
(MSQPT · ((SY SpopSQPTPA1

+ SY StempSQPTPA1
) − 1) · tspin) ·

MC_step. From the spins update time point of view, con-
sidering the same operating condition, i.e. with the same
total number of Ising copies (MSQPTPA1 · (SY SpopSQPTPA1

+
SY StempSQPTPA1

) = MSQPT · SY SSQPT = MSQPA · SY SSQPA),
the SQPTPA1, the SQPT and the SQPA are perfectly equiva-
lent, indeed, in all cases, it is possible to perfectly parallelize
the system copies evaluations. In a hardware implementation,
this time could compensate for the overhead related to the re-
sampling and swapping time, which will be higher than the
parameter update time of SQA, especially if fast solutions
will be found. Therefore, in this work, the iterations of the
algorithms are considered comparable.

D. SIMULATED QUANTUM PARALLEL TEMPERING -
POPULATION ANNEALING VERSION 2
Simulated Quantum Parallel Tempering - Population An-
nealing version 2 (SQPTPA2) was proposed to join the ad-
vantages of SQPT and SQPA algorithms to obtain a solver as
flexible as possible. It was obtained substantially by running
at the same time both the SQPT and the SQPA, but with a one
system copy shared between the two approaches. This means
that the spins configurations of the last SQPT system copy
are considered in the evaluation of the number of copies to
be kept of each system copy-spins configuration of SQPA.
In particular, a system of SY Stemp plus SY Spop copies com-
posed of SQA Trotter systems was considered. The SY Stemp
copies evolve according to the SQPT algorithm, while the
SY Spop copies plus the last SQPT follow the SQPA one.
This is different from running the two algorithms in parallel
and choosing the optimal solution with a majority voting

mechanism in that the two algorithms can influence each
other through the shared system copy. In this way, if SQPT
is exploring a more promising region of the energy profile, it
can guide the search of SQPA towards that area. Vice versa, if
SQPA obtains lower energy spins configurations than SQPT,
it can orient SQPT exploration. The main algorithm evolution
steps are the following:

1) For each Trotter of each system, an arbitrary solution
is considered.

2) At a given time instant t, a transverse field Γ(t), a
correlation factor J+(t) and a temperature parameter
T (t) are assigned to each SQPT system copy from a
uniformly distributed list in range 0 to MCstep − 1.

3) For each spin of each replica of each system copy, an
update is considered and accepted according to the MH
algorithm.

4) Evaluate which replica gives the current best solution
and if this solution is better than the ones obtained in
the previous step.

5) Save the best current solution of each system copy.
6) Evaluate for each couple of SQPT system copies the

time instants swap according to the MH algorithm with
an acceptance rate equal to Equation 58.

7) re-sampling the SQPA system copies plus the last
SQPT according to their energies.

8) Repeat from 2) for MCstep number of times, updating
Γ(t), J+(t) and T (t) parameters for the SQPA copies

In this case, steps 2) to 8) constitute a single Monte Carlo
step of the algorithm.
The flip of the ith spin of the mth Trotter of the sth system
copy is accepted, analogously to SQA, if ∆E is non-positive
or if ∆Epot is lower than 0 or with a probability equal to
e

−∆E·M
T (s) . The parameters evolution is monotonic with time as

in SQA for the SQPA copies. The SQPA copies re-sampling
is done by computing Q as a function of the energy of the
best configuration of each copy, computing N(Ei) for the ith

system copy and sampling the number of copies to be kept
from a Poisson distribution centered in N(Ei). For SQPT
copies, the correlation factor J+ considered in the ∆Ekin
computation and the temperature T are not functions of the
current iteration but of the considered system copy, in that
these parameters do not have a monotonic evolution with
time, but ones depending on the parameters swap mechanism.
A detailed and complete pseudo-code is reported in Algo-
rithm 6.

Algorithm 6 Simulated Quantum Parallel Tempering - Population
Annealing version 2

Input: J matrix and h vector
Output: Solution vector sol and Energy value

Initialize:
//Fill randomly spin configurations
//tensor N ×M × SY S with -1 or 1
//where SY S = SY Stemp + SY Spop is
//the total number of system copies
Randomly initialize s_m ∈ {−1, 1}
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//Variables initialization
Energies← 0
∆E_local← 0
//Vector of systems optimal energy
Esys_opt ← 0
//Precomputation of the involved Γ, T
//and J+ parameters
Γ← Γ0

T ← MC_step
1− 1

8

J+ = T
2
log (cot ( Γ

M·T ))
//Precomputation of the involved Γ, T
//and J+ parameters for SQPT

Γlist ← linspace
(
Γ0,Γ0

(
1− MCstep

MCstep

))
, SY Stemp

)
Tlist ← linspace

(
MC_step
1− 1

8

, MC_step
(1− 1

8
)·(MC_step)

, SY Stemp

)
J+

list ←
Tlist
2

log (cot ( Γlist
M·Tlist

))
//Systems time instant initialization
s← linspace(0, SY Stemp − 1, SY Stemp)
//Systems time instant initialization
//∆E_local precomputation
//Current energy evaluation
for sys = 0 To (SY Stemp + SY Spop)− 1 do

for m = 0 To M − 1 do
for n = 0 To N − 1 do

for k = 0 To N − 1 do
//Symmetric J matrix
∆E_localn,m,sys += 2 · Jn,k · s_mm,n,sys

end for
∆E_localn,m,sys += hn

end for
Energiesm,sys = s_mm,sys × (J× s_mT

m,sys)
T

+s_mm,sys × hT

//Save current optimal solution
if m,n = 0 or Energy ≥ Energiesm,sys then

Energy← Energiesm,sys

sol← s_mm

end if
//Save current optimal solution
//system energy
if m = 0 or Esys_optsys

≥ Energiesm,sys then
Esys_optsys

← Energiesm,sys

end if
end for

end for

Monte Carlo steps:
for t = 0 To MC_step− 1 do

for sys = 0 To SY Spop − 1 do
for m = 0 To M − 1 do

//Identify Trotter neighbors
Identify n_dx and n_sx //m− 1 and m+ 1
for n = 0 To N − 1 do

//Evaluation of ∆E
//for flipping the spin
∆E_pot = −∆E_localn,m,sys

·(2 · s_mm,n,sys)
∆E_kin = J+

list(ssys) · (s_mn_dx,n,sys+
+s_mn_sx,n,sys) · (−2 · s_mm,n,sys)

∆E = ∆E_pot
M

+∆E_kin
r = rand(0, 1)
//Metropolis-Hasting condition

if ∆E_pot < 0 or r < e
−∆E·M

Tlist(ssys) then
//Spin-flip

s_mm,n,sys = −s_mm,n,sys

Energiesm,sys = Energiesm,sys +∆E_pot
//Update optimal solution
if Energy ≥ Energiesm,sys then

Energy← Energiesm,sys

sol← s_mm,sys

end if
//Update ∆E_local
if m = 0 or Esys_optsys

≥ Energiesm,sys then
Esys_optsys

← Energiesm,sys

end if
for k = 0 To N − 1 do

//Symmetric J matrix
∆E_localk,m,sys += 4 · Jn,k·

s_mm,n,sys

end for
end if

end for
end for

end for
//Update the evolution parameters
for sys1 = 0 To SY Spop − 1 do

for sys2 = 0 To SY Spop − 1 do
Compute Teffsys1

Compute Teffsys2

//Metropolis-Hasting condition

if r < e
( 1
Teffsys1

− 1
Teffsys2

)(Esys_optsys1
−Esys_optsys2

)

then
//Time instants swap
ssys1 ↔ ssys1

end if
end for

end for
for sys = SY Stemp To (SY Spop + SY Stemp)− 1 do

for m = 0 To M − 1 do
//Identify Trotter neighbors
Identify n_dx and n_sx //m− 1 and m+ 1
for n = 0 To N − 1 do

//Evaluation of ∆E
//for flipping the spin
∆E_pot = −∆E_localn,m,sys

·(2 · s_mm,n,sys)
∆E_kin = J+

list(ssys) · (s_mn_dx,n,sys+
+s_mn_sx,n,sys) · (−2 · s_mm,n,sys)

∆E = ∆E_pot
M

+∆E_kin
r = rand(0, 1)
//Metropolis-Hasting condition

if ∆E_pot < 0 or r < e
−∆E·M

Tlist(ssys) then
//Spin-flip
s_mm,n,sys = −s_mm,n,sys

Energiesm,sys = Energiesm,sys +∆E_pot
//Update optimal solution
if Energy ≥ Energiesm,sys then

Energy← Energiesm,sys

sol← s_mm,sys

end if
//Update ∆E_local
if m = 0 or Esys_optsys

≥ Energiesm,sys then
Esys_optsys

← Energiesm,sys

end if
for k = 0 To N − 1 do

//Symmetric J matrix
∆E_localk,m,sys += 4 · Jn,k·

s_mm,n,sys

end for
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end if
end for

end for
end for
//re-sampling
Q← 0 re-sampling sys = SY Stemp − 1
Γnext = Γlist(ssys)− Γ0 · ( 1

MC_step+1
)

Teff1 = 2

[
ln

(∣∣∣∣√Γlist(ssys)2+1

Γlist(ssys)
+ 1

Γlist(ssys)

∣∣∣∣2)]−1

Teff1 = 2

[
ln

(∣∣∣∣√Γ2
next+1

Γnext
+ 1

Γnext

∣∣∣∣2)]−1

Q+ = exp

((
1

Teff1
− 1

Teff2

)
Esys_optsys

)
Γnext = Γ0 · (1− t+1

MC_step+1
)

for sys = SY Stemp To (SY Spop + SY Stemp)− 1 do

Teff1 = 2

[
ln

(∣∣∣∣√Γ2+1

Γ
+ 1

Γ

∣∣∣∣2)]−1

Teff1 = 2

[
ln

(∣∣∣∣√Γ2
next+1

Γnext
+ 1

Γnext

∣∣∣∣2)]−1

Q+ = exp

((
1

Teff1
− 1

Teff2

)
Esys_optsys

)
end for
Q = Q

SY Spop+1

//declare temporary tensor N ×M × SY S
s_mtemp
Esys_opttemp

∆E_localtemp
for sys = 0 To SY Stemp − 2 do

s_mtempsys
= s_msys

Esys_opttempsys
= Esys_optsys

∆E_localtempsys
= ∆E_localsys

end for
//Variable for counting copies
c← SY Stemp − 1 re-sampling sys = SY Stemp − 1
Γnext = Γlist(ssys)− Γ0 · ( 1

MC_step+1
)

Teff1 = 2

[
ln

(∣∣∣∣√Γlist(ssys)2+1

Γlist(ssys)
+ 1

Γlist(ssys)

∣∣∣∣2)]−1

Teff1 = 2

[
ln

(∣∣∣∣√Γ2
next+1

Γnext
+ 1

Γnext

∣∣∣∣2)]−1

Nmean = 1
Q
exp

((
1

Teff1
− 1

Teff1

)
Esys_optsys

)
R = Poisson(N)
for r = 0 To R− 1 do

//For maintaining constant the
//number of system
if c < (SY Spop + SY Stemp) then

s_mtempc = s_msys

Esys_opttempc
= Esys_optsys

∆E_localtempc = ∆E_localsys
c+ = 1

end if
end for
Γnext = Γ0 · (1− t+1

MC_step+1
)

for sys = SY Stemp To (SY Spop + SY Stemp)− 1 do

Teff1 = 2
[
ln
(∣∣√Γ2+1

Γ
+ 1

Γ

∣∣2)]−1

Teff1 = 2
[
ln
(∣∣√Γ2

next+1

Γnext
+ 1

Γnext

∣∣2)]−1

Nmean = 1
Q
exp

((
1

Teff1
− 1

Teff1

)
Esys_optsys

)
R = Poisson(N)
for r = 0 To R− 1 do

//For maintaining constant the

//number of system
if c < (SY Spop + SY Stemp) then

s_mtempc = s_msys

Esys_opttempc
= Esys_optsys

∆E_localtempc = ∆E_localsys
c+ = 1

end if
end for

end for
//For maintaining constant the number
//of system
while c < (SY Spop + SY Stemp) do

s_mtempc = s_mSY S−1

Esys_opttempc
= Esys_optSY S−1

∆E_localtempc = ∆E_localtemp

c+ = 1
end while
s_m = s_mtemp
Esys_opt = Esys_opttemp

∆E_local = ∆E_localtemp
//Update the evolution parameters
Γ = Γ0 · (1− t

MC_step+1
)

T = MC_step
(1− 1

8
)·(t+1)

J+ = T
2
log (cot ( Γ

M·T ))
end for

Return: Energy, sol

A further advantage of the presented approach is that the
spins update of each system copy can be done completely
in parallel to the other without delays. In this way, the time
required for the algorithm execution is:

texe_parallel = tinit + ((M − 1) · tspin +N · tspin+

+max (tre-sampling, tswap)) · MC_step , (68)

where tinit is the initialization time, tspin is the time required
for the update of a single spin (inner loop), tre-sampling is the
one required for re-sampling system copies and tswap is the
one required for swapping the system copies time instant. On
the other hand, the execution time for sequential execution is:

texe_serial = tinit + ((M ·N · (SY Spop + SY Stemp)) · tspin+

+ tre-sampling + tswap) · MC_step . (69)

The savings is equal to (M · N · (SY Spop + SY Stemp) −
M + 1−N) · tspin · MC_step. By comparing texe_parallel with
one of SQA in the same condition, i.e. with the same total
number of Ising copies (MSQA =MSQPTPA2 ·(SY SpopSQPTPA2

+
SY StempSQPTPA2

)), for spins update, the saving is equal to
(MSQPT · ((SY SpopSQPTPA2

+ SY StempSQPTPA2
) − 1) · tspin) ·

MC_step. From the spins update time point of view, con-
sidering the same operating condition, i.e. with the same
total number of Ising copies (MSQPTPA2 · (SY SpopSQPTPA2

+
SY StempSQPTPA2

) = MSQPT · SY SSQPT = MSQPA · SY SSQPA),
the SQPTPA2, the SQPT and the SQPA are perfectly equiva-
lent, indeed, in all cases, it is possible to perfectly parallelize
the system copies evaluations. In a hardware implementation,
this time could compensate for the overhead related to the re-
sampling and swapping time, which will be higher than the
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equal to 50 in the prange
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(b) Effect of moving average with a
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dred times a solver with the same
problem

Faster convergence

(d) An example of the energy evolu-
tion of a single run and the average
energy evolution of one hundred runs
of a solver

FIGURE 13: Explanation through examples of the graphical representation of figures of merit. In Figure 13a shows the effect
of moving average on prange

MC_step evolution varying the number of the involved binary variables. It is possible to notice that it
smooths the profile and removes isolated peaks, thus allowing easier recognition of the trend. It has the same effect on the
time-to-solution (TTS) evolution varying the number of the involved binary variables, as reported in Figure 13b. Figure 13c
shows a cumulative distribution, obtained by running one hundred times a solver on the same problem. In order to understand
the meaning of this, one rule has to be considered: the probability of obtaining the optimal value (or a value close to it) with
a specific strategy is higher when its corresponding cumulative distribution is more concentrated on the left of the plot, where
the lowest values of the objective function are located. Finally, Figure 13d reports the energy evolution of a single run and the
average energy evolution of one hundred runs of a solver. In this case, the higher the derivative of the evolution on the left, the
faster the convergence to the final energy, which can be the optimal one.

parameter update time of SQA, especially if fast solutions
will be found. Therefore, in this work, the iterations of the
algorithms are considered comparable.
The only time difference between the SQPTPA1 and
SQPTPA2 algorithms from the execution time point of view
is that the tre-sampling of the second one is longer than the ones
of the first for the same number of SQPA and SQPT systems.
This is because SQPTPA2 has to compute the number of
copies to be kept also for the last SQPT copy. However, for
a sufficiently high number of systems, the time difference is

negligible. For the sake of simplicity, the total execution time
of the two algorithms was considered comparable.

IV. RESULTS

This section reports the results associated with the most com-
plex benchmark problems (Section II-A4) solved with the
SQA, the SQPT, the SQPA, the SQPTPA1 and the SQPTPA2
algorithms. All the other results not reported in the following
are available in the supplementary information file, with
the same format, in terms of plots and tables. The codes
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(i) Linear regression problems

FIGURE 14: Evolution of prange

MC_step varying the number of involved binary variables in the optimization problems.

employed for obtaining the reported results are available in
the GitHub repository.

A. SETUP OVERVIEW

All the tests were performed by exploiting Python imple-
mentations of SQA, an SQPT, an SQPA, an SQPTPA1 and
SQPTPA2. The same programming language was chosen
in all cases to test the algorithms in equivalent conditions.
Moreover, Python provides many libraries for describing op-
timization problems in QUBO formalism, such as qubovert,

which was exploited for generating benchmark problems in
this work.
Each solver was implemented as a Python class with proper
methods for setting the degrees of freedom of the algorithm,
such as the number of iterations and the number of runs,
for executing the algorithm and for writing report files. The
developed solver classes must be seen as proof of concept or
software models for hardware accelerators, which could be
developed in the future. Indeed, the potential of the proposed
algorithms is expected to be entirely appreciated only with a
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FIGURE 15: Evolution of time-to-solution (TTS) varying the number of involved binary variables in the optimization problems.

hardware implementation, capable of parallelizing the com-
putation as much as possible.
Tests were executed on a single-process Intel(R) Xeon(R)
Gold 6134 CPU @ 3.20 GHz opta-core, Model 85, with a
memory of about 103 GB [95]. Each analyzed solver was
executed on the same optimization problem one hundred
times to extract statistics on its effectiveness in solving
it. To better compare the results, the same number of it-
erations, the same initial transverse-field-temperature pair

(Γ0 = 1, T0 = 1), and the same total number of copies
(MSQA = MSQPT · SY SSQPT = MSQPA · SY SSQPA =
MSQPTPA1 · (SY SpopSQPTPA1

+ SY StempSQPTPA1
) = MSQPTPA2 ·

(SY SpopSQPTPA2
+ SY StempSQPTPA2

)) were considered for each
solver in each test.
The benchmark problems were automatically generated by
starting from a generic QUBO description, defining the size
and randomly generating some elements of the problems,
such as the weights of edges in the max-cut problem, the
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total copies and 2000 MC_step
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(c) Cumulative distribution of a 51-
variable clustering problem obtained
considering 32 total copies and 5100
MC_step
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considering 18 total copies and 120
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(g) Cumulative distribution of a 31-
node minimum vertex cover problem
obtained considering 18 total copies
and 124 MC_step
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node number partitioning problem
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power (400-variable) linear regres-
sion problem obtained considering
18 total copies and 200 MC_step

FIGURE 16: Cumulative distributions obtained by running one hundred times each solver for each optimization
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ing problem obtained considering 18
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(f) Energy evolution of a 10-node and
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FIGURE 17: Energy evolutions obtained by averaging values obtained in each iteration in the on-hundred running each solver
for each optimization
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values of the features in the clustering one or the numbers
in the starting set of number partitioning. The problems size
was increased gradually to define a sufficient number of
iterations to reach the optimal value (estimated by solving
each problem with the qubovert simulated annealer on an
extremely long annealing duration) by at least one solver and
that the majority of the algorithms achieved a value close
to the optimal one. Moreover, the gradual increase of the
problem dimension permits to clearly identify the considered
figures of merit trends and, consequently, to predict them for
larger optimizations.

B. FIGURES OF MERIT
The effectiveness of a solver in optimizing a objective func-
tion was evaluated in terms of optimal value (opt), average
value (avg), probability (prange) of obtaining a value which
is the optimal one or lower than it by a certain percentage
(pcons) and the time-to-solution (TTS).
In particular, the optimal value is the lowest final value
obtained by each solver in the one hundred runs, while
the average one is obtained by averaging the one hundred
obtained final values. These metrics are the most intuitive to
take into account. In fact, lower best-obtained and average
energy values imply that the results provided by the solver
have higher quality.
In addition, the prange was evaluated. This is the probability
of obtaining final energy lower than:

val = opt +
∣∣∣∣opt · pcons

∣∣∣∣ , (70)

where opt is the expected optimal value. It is possible to say
that one solver is better than another if its prange is higher.
This metric is defined as:

prange ≜
nin_range

ntot
100 , (71)

where nin_range is the number of times in which the solver
achieved final energy lower than val, and ntot is the number
of runs. In order to appreciate the meaning of this metric, it is
important to remind that prange is expected to depend on the
number of Monte Carlo steps; in particular, a higher number
of steps will increase prange. For this reason, the normalized
prange

MC_step , varying the problem size for each type of considered
optimization problem and for each solver, is reported (Figure
14).
As shown in Figure 13a, the moving average (MA) of the
obtained samples with a window size w was applied to
smooth the variation and to identify easier the trend:

MA =
1

w

w−1∑
i=0

x[k − i] , (72)

where x is the array of data to be moving-averaged and k ≥ 1
the index of the last sample of the window. For k < w, the
first element of x is replicated w − k times.
The most complex and complete metric considered is the
time-to-solution (TTS). This figure of merit is commonly

employed in the literature for comparing heuristic algorithms
and in particular, for detecting quantum speed-up [96]–[100]
given by quantum, quantum-inspired and quantum-compliant
optimization approaches. It is defined as the time required to
find a target solution, which is the optimal one or a sub-
optimal one with final energy lower than a certain value
with a percentage of confidence pconf, usually set to 99%. In
particular, it can be computed as:

TTS = tf
log (1− pconf)

log (1− prange(tf ))
, (73)

where tf is the algorithm execution time, prange(tf )) is the
probability of finding energy lower than a certain value,
executing the algorithm for a time tf . In this work, con-
sidering that the implementations were realized in Python
language without any particular code optimization, the time
tf and, consequently, the TTS are expressed in terms of the
number of iterations. Indeed, as explained in Section III, the
iterations of the analyzed algorithm and execution time can
be reasonably considered equivalent.
In the evaluation of this metric, some particular cases were
managed:

• if prange is equal to 0, TTS was computed by considering
a prange equal to 0.1%;

• if prange is equal to 100%, TTS was computed by con-
sidering a prange equal to 99%.

This parameter is expected to grow exponentially with the
problem dimension [97] for QA and for SQA:

TTS ≈ 10a+b
√
n+c log (

√
n) , (74)

where n is the number of involved binary variables, a, b
and c are interpolation coefficients. In order to verify this,
the evolution of TTS varying the number of binary variables
involved is reported in logarithmic scale for each type of
considered optimization problem and for each solver (Figure
15). As shown in Figure 13b, the moving average (MA) of
the obtained samples with a window size w was applied to
smooth the variation and to identify more easily the trend.
In addition to these explicit figures of merit, the energy
evolution (Figure 17) and the cumulative distribution (Figure
16) — obtained through the multiple repetitions of the algo-
rithm — of one of the solved problems for each optimization
category are reported.

C. PERFORMED TESTS
This paragraph reports and comments on the obtained results
for each kind of benchmark problem. In particular, three ta-
bles for each are shown: one with the setup of each problem,
one for the number of Monte Carlo steps, opt and avg and
one with prange and TTS.

1) Max-cut
Table 1 reports the setup configuration of the performed max-
cut tests, in particular the number of Trotters, system copies
and binary variables. Each problem is identified with a name
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TABLE 1: Setup configuration considered for solving one hundred times max-cut problems of different sizes with the proposed
algorithms and the SQA as a reference. The initial values for transverse fields and temperature are both equal to one for all the
tests, while the number of involved copies differs according to the problem and is reported in the following.

Problem
Ntot_copies

SQA SQPT SQPA SQPTPA1 SQPTPA2
Name vq M M SY S M SY S M SY Stemp SY Spop M SY Stemp SY Spop

MaxCut_100 100 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_105 105 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_110 110 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_115 115 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_120 120 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_135 135 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_140 140 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_145 145 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_150 150 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_155 155 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_160 160 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_165 165 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_170 170 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_175 175 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_180 180 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_185 185 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_190 190 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_195 195 18 18 3 6 3 6 3 3 3 3 3 3
MaxCut_200 200 18 18 3 6 3 6 3 3 3 3 3 3

TABLE 2: Results obtained by solving one hundred times max-cut problems of different sizes with the proposed algorithms
and the SQA as a reference. Test setup configurations are reported in Table 1. In this table, the energy of the best solution
between ones obtained by each solver in the one hundred repetitions is reported (opt) together with the average of the final
energies found.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name MC_step opt avg opt avg opt avg opt avg opt avg

MaxCut_100 400 -13667.00 -13662.26 -13667.00 -13643.57 -13667.00 -13666.45 -13667.00 -13666.53 -13667.00 -13666.20
MaxCut_105 420 -14934.00 -14926.41 -14934.00 -14908.19 -14934.00 -14931.61 -14934.00 -14931.87 -14934.00 -14930.71
MaxCut_110 440 -16747.00 -16737.59 -16747.00 -16713.41 -16747.00 -16743.47 -16747.00 -16742.53 -16747.00 -16742.04
MaxCut_115 460 -17911.00 -17898.38 -17911.00 -17883.37 -17911.00 -17902.88 -17911.00 -17903.58 -17911.00 -17902.30
MaxCut_120 480 -19471.00 -19460.71 -19471.00 -19442.06 -19471.00 -19466.32 -19471.00 -19465.20 -19471.00 -19464.41
MaxCut_135 540 -24621.00 -24608.07 -24621.00 -24571.86 -24621.00 -24620.94 -24621.00 -24620.10 -24621.00 -24620.56
MaxCut_140 560 -26485.00 -26464.60 -26485.00 -26452.52 -26485.00 -26472.43 -26485.00 -26472.35 -26485.00 -26471.79
MaxCut_145 580 -28375.00 -28357.20 -28375.00 -28321.42 -28375.00 -28371.07 -28375.00 -28372.52 -28375.00 -28369.23
MaxCut_150 600 -30101.00 -30086.69 -30101.00 -30047.61 -30101.00 -30094.55 -30101.00 -30094.60 -30101.00 -30095.31
MaxCut_155 620 -32078.00 -32062.33 -32078.00 -31993.13 -32078.00 -32076.96 -32078.00 -32075.31 -32078.00 -32076.36
MaxCut_160 640 -34295.00 -34270.65 -34295.00 -34223.67 -34295.00 -34286.62 -34295.00 -34286.86 -34295.00 -34288.28
MaxCut_165 660 -36135.00 -36117.01 -36135.00 -36078.99 -36135.00 -36131.86 -36135.00 -36131.58 -36135.00 -36130.24
MaxCut_170 680 -38574.00 -38554.81 -38574.00 -38510.76 -38574.00 -38570.10 -38574.00 -38569.27 -38574.00 -38567.92
MaxCut_175 700 -41002.00 -40948.24 -41002.00 -40924.70 -41002.00 -40972.66 -41002.00 -40976.09 -41002.00 -40977.16
MaxCut_180 720 -43417.00 -43406.33 -43417.00 -43361.54 -43417.00 -43413.72 -43417.00 -43414.91 -43417.00 -43410.70
MaxCut_185 740 -45320.00 -45292.85 -45320.00 -45241.92 -45320.00 -45313.89 -45320.00 -45317.23 -45320.00 -45313.94
MaxCut_190 760 -48060.00 -48025.74 -48060.00 -47979.10 -48060.00 -48047.50 -48060.00 -48046.80 -48060.00 -48046.85
MaxCut_195 780 -50872.00 -50853.35 -50872.00 -50793.23 -50872.00 -50869.77 -50872.00 -50868.34 -50872.00 -50866.92
MaxCut_200 800 -53286.00 -53254.13 -53286.00 -53201.93 -53286.00 -53278.44 -53286.00 -53278.74 -53286.00 -53277.01
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TABLE 3: Results obtained by solving one hundred times max-cut problems of different sizes with the proposed algorithms
and the SQA as a reference. Test setup configurations are reported in Table 1. In this table, the probability of finding the final
energy in a given range (prange) and the TTS.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name pcons[%] prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS

MaxCut_100 0.10 90.00 800.00 49.00 2735.70 98.00 470.87 99.00 400.00 98.00 470.87
MaxCut_105 0.10 77.00 1316.05 42.00 3550.72 99.00 420.00 100.00 420.00 98.00 494.42
MaxCut_110 0.10 84.00 1105.69 51.00 2840.51 94.00 720.22 91.00 841.50 93.00 761.97
MaxCut_115 0.10 74.00 1572.58 47.00 3336.67 95.00 707.13 94.00 752.96 93.00 796.60
MaxCut_120 0.10 77.00 1504.06 24.00 8054.61 95.00 737.88 94.00 785.69 94.00 785.69
MaxCut_135 0.10 86.00 1264.83 56.00 3029.05 100.00 540.00 99.00 540.00 100.00 540.00
MaxCut_140 0.10 75.00 1860.28 51.00 3615.19 98.00 659.22 99.00 560.00 97.00 735.45
MaxCut_145 0.10 72.00 2098.25 28.00 8130.79 97.00 761.72 98.00 682.77 95.00 891.60
MaxCut_150 0.10 86.00 1405.36 26.00 9176.54 98.00 706.31 97.00 787.98 97.00 787.98
MaxCut_155 0.10 74.00 2119.56 20.00 12795.38 98.00 729.85 94.00 1014.86 96.00 887.02
MaxCut_160 0.10 62.00 3046.05 16.00 16904.23 87.00 1444.60 85.00 1553.57 89.00 1335.27
MaxCut_165 0.10 88.00 1433.51 52.00 4141.06 100.00 660.00 100.00 660.00 99.00 660.00
MaxCut_170 0.10 85.00 1650.67 46.00 5082.09 100.00 680.00 100.00 680.00 99.00 680.00
MaxCut_175 0.10 29.00 9412.29 18.00 16243.91 70.00 2677.49 71.00 2604.16 79.00 2065.56
MaxCut_180 0.10 94.00 1178.54 47.00 5222.61 100.00 720.00 100.00 720.00 99.00 720.00
MaxCut_185 0.10 75.00 2458.23 38.00 7128.81 92.00 1349.24 98.00 871.12 96.00 1058.70
MaxCut_190 0.10 74.00 2598.17 36.00 7842.33 95.00 1168.31 96.00 1087.31 93.00 1316.13
MaxCut_195 0.10 90.00 1560.00 38.00 7514.15 100.00 780.00 100.00 780.00 100.00 780.00
MaxCut_200 0.10 74.00 2734.92 30.00 10329.11 97.00 1050.64 97.00 1050.64 97.00 1050.64

in the format: MaxCut_nn, where nn is the number of
nodes. In this case, the Ntot_copies is equal to 18 for all the
considered problems.
Table 2 shows the optimal value (opt), which is the lowest
final value obtained by each solver in the one hundred runs
considered, the average one (avg), which is obtained by
averaging the one hundred obtained final values, and the
number of iterations for obtaining these (MC_step).
Table 3 provides the prange, the TTS and the considered pcons.
The latter was fixed at 0.1 % for all the considered problems
because all solvers reached the optimal value at least once,
and the value obtained is sufficiently close to it to appreciate
prange lower than 100% 1.
The prange

MC_step and the TTS evolutions, varying the problem
size with a window w equal to 50, are reported in Figures
14a and 15a. The obtained TTS shape is coherent with
expectations. In fact, it is possible to recognize a square-
root evolution with the problem size in the logarithmic axis
(10a+b

√
n+c log(

√
n) ≈ 10b

√
n, for n→ ∞ and a ≃ b ≃ c).

It is possible to notice that SQPTPA1 and SQPA provide the
best results, while SQPT has the worst ones. Indeed, the high-
est prange and the lowest TTS were found with the first solvers.
At the same time, SQPT provides a TTS significantly higher
than the other solvers. Instead, the SQA performance is
better than SQPT but significantly worse than SQPTPA1 and
SQPA, while SQPTPA2 results quality is close to SQPTPA1
and SQPA.
Examples of cumulative distribution and energy evolutions

1A higher prange could imply a prange = 100%, thus making difficult the
comparison of the quality of the solutions provided by different solvers.

are reported in Figures 16a and 17a, respectively. It is pos-
sible to observe that the cumulative distributions of SQPT,
SQPTPA1 and SQPTPA2 are more concentrated on the left,
i.e. the probability of reaching the optimal solution is higher,
as explained in Figure 13c. At the same time, it is possible to
observe that SQPTA1 has a faster convergence to the optimal
than the other algorithms.
Considering all the analyzed figures of merit, it is possible to
conclude that the SQPTPA1 algorithm is the most suitable
for exploring the max-cut problems energy profile.

2) Clustering

Table 4 reports the setup configuration of the performed
clustering tests, in particular the number of Trotters, system
copies and binary variables. Each problem is identified with a
name in the format: Clustering_x, where x is the number
of considered data (the number of clusters was fixed to four
and, consequently, the number of involved binary variables is
equal to 4x). In this case, the Ntot_copies is equal to 18 for the
smaller problem considered and equal to 32 for all the others.
Due to the rapid growth of the problem size increasing the
number of data, the number of performed tests is lower than
in the max-cut case.
Table 5 shows the difference between the actual optimal
value and the lowest final value obtained by each solver
in the one hundred runs (∆opt), one between the actual
optimal value and the average one (∆avg), which is obtained
by averaging the one hundred obtained final values, and
the number of iterations for obtaining these (MC_step). In
this case, the choice of showing the divergence from the
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TABLE 4: Setup configuration considered for solving one hundred times clustering problems (Clustering_x) of different
sizes (four-cluster, x-data) with the proposed algorithms and the SQA as a reference. The initial values for transverse fields and
temperature are both equal to one for all the tests, while the number of involved copies differs according to the problem and is
reported in the following.

Problem
Ntot_copies

SQA SQPT SQPA SQPTPA1 SQPTPA2
Name vq M M SY S M SY S M SY Stemp SY Spop M SY Stemp SY Spop

Clustering_4 16 18 18 3 6 3 6 3 3 3 3 3 3
Clustering_5 20 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_6 24 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_7 28 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_8 32 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_9 36 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_10 40 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_11 44 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_12 48 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_13 52 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_14 56 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_15 60 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_16 64 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_17 68 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_18 72 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_19 76 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_20 80 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_21 84 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_22 88 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_23 92 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_24 96 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_25 100 32 32 4 8 4 8 4 4 4 4 4 4
Clustering_26 104 32 32 4 8 4 8 4 4 4 4 4 4

actual optimal solution, instead of the actual obtained value,
was done because, in this type of optimization, the energy
difference among some solutions is so small that is not
possible to appreciate it by reading the absolute value without
considering an excessive number of decimal digits.
Table 6 provides the prange, the TTS and the considered
pcons. The latter is computed for each optimization problem
according to the following formula:

pcons[%] =

∣∣∣∣1− minh
minl

∣∣∣∣100 , (75)

where minh is the highest opt among ones of all the analyzed
solvers, while minl is the lowest one. In this way, the value
obtained (val) is sufficiently close to the actual optimal value
to appreciate prange lower than 100% and sufficiently high to
obtain a prange higher than 0% in all cases.
The prange

MC_step and the TTS evolutions, varying the problem size
with a window w equal to 20, are reported in Figures 14b and
15b. The obtained TTS shape is coherent with expectations.
In fact, it is possible to recognize a square-root evolution —
even if less evident than in the max-cut case due to the lower
number of performed tests — with the problem size in the
logarithmic axis.
It is possible to notice that SQPT, SQPTPA1 and SQPTPA2
provide the best results, while SQA has the worst ones.
Indeed, the highest prange and the lowest TTS were found
with the first solvers. At the same time, SQPA provides TTS

significantly higher than the other solvers.
Examples of cumulative distribution and energy evolutions
are reported in Figures 16b and 17b respectively. It is possible
to observe that the cumulative distributions of SQPT, SQPA,
SQPTPA1 and SQPTPA2 are more concentrated on the left,
i.e. the probability of reaching the optimal solution is higher,
as explained in Figure 13c. At the same time, it is possible to
observe that SQPTA1 and SQPTA2 have a faster and better
convergence to the optimal than the other algorithms. On the
other hand, the SQPA reaches the optimal solution but has a
slow convergence, This implies that it does not represent the
best exploration approach in this case.
Considering all the analyzed figures of merit, it is possible to
conclude that the SQPTPA1 and SQPTA2 algorithms are
the most suitable for exploring the clustering problems
energy profile.

3) Knapsack
Table 7 reports the algorithms configurations exploited for
solving knapsack problems, in particular the number of Trot-
ters, system copies and binary variables. Each problem is
identified with a name in the format: Knapsack_x, where
x is the number of involved binary variables. In this case,
the Ntot_copies increases from 10 to 32 with the problem size.
For knapsack problems, a granular and linear increase in the
problem size is impossible because auxiliary variables are
introduced to represent the inequality constraint. Therefore,
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TABLE 5: Results obtained by solving one hundred times clustering problems (Clustering_x) of different sizes (four-
cluster, x-data) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 4.
In this table, the difference between the actual optimal energy and ones of the best solution found by each solver in the one
hundred repetitions is reported (∆opt) together with the difference between the actual optimal energy and the average of the
final energies found (∆avg).

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name MC_step ∆opt ∆avg ∆opt ∆avg ∆opt ∆avg ∆opt ∆avg ∆opt ∆avg

Clustering_4 16 0.00e+00 7.03e-13 0.00e+00 5.89e-13 6.82e-13 9.00e-13 2.27e-13 6.03e-13 0.00e+00 5.84e-13
Clustering_5 200 4.77e-12 7.73e-12 2.73e-12 6.62e-12 8.19e-12 9.51e-12 6.82e-13 5.08e-12 0.00e+00 4.87e-12
Clustering_6 240 2.27e-12 8.05e-12 4.55e-13 6.46e-12 7.28e-12 1.03e-11 1.82e-12 6.82e-12 0.00e+00 6.36e-12
Clustering_7 280 3.64e-12 1.46e+00 0.00e+00 4.94e-12 4.09e-12 9.05e-12 4.55e-13 6.83e-12 4.55e-13 6.38e-12
Clustering_8 640 1.00e-11 1.21e+01 9.09e-13 2.03e-11 3.87e-11 5.48e-11 0.00e+00 2.08e-11 4.55e-12 1.87e-11
Clustering_9 720 1.18e-11 3.02e+01 4.55e-12 1.60e-11 2.73e-12 2.26e-11 0.00e+00 2.23e-11 2.73e-12 2.29e-11
Clustering_10 800 8.09e-11 6.01e+01 3.18e-11 6.36e-11 7.09e-11 1.02e-10 1.64e-11 6.91e-11 0.00e+00 5.72e-11
Clustering_11 880 1.04e-10 7.82e+01 3.82e-11 9.04e-11 6.73e-11 1.24e-10 1.64e-11 1.03e-10 0.00e+00 8.71e-11
Clustering_12 960 2.17e+01 1.15e+02 1.44e-10 1.88e-10 1.87e-10 2.59e-10 0.00e+00 1.70e-10 2.82e-11 1.23e-10
Clustering_13 1040 1.51e-10 1.20e+02 1.64e-11 7.85e-11 6.37e-11 1.36e-10 0.00e+00 1.08e-10 5.46e-12 9.52e-11
Clustering_14 1120 1.06e+01 1.40e+02 8.19e-11 1.97e-10 2.07e-10 2.84e-10 3.27e-11 2.33e-10 0.00e+00 1.71e-10
Clustering_15 1200 1.96e-10 9.37e+01 5.64e-11 1.16e-10 0.00e+00 1.72e-10 1.09e-11 1.56e-10 6.55e-11 1.48e-10
Clustering_16 1280 3.00e-10 8.33e+01 9.82e-11 1.93e-10 1.42e-10 2.92e-10 1.07e-10 2.77e-10 0.00e+00 1.62e-10
Clustering_17 1360 8.66e-10 7.79e+01 4.69e-10 6.51e-10 7.48e-10 9.16e-10 3.27e-10 8.68e-10 0.00e+00 5.51e-10
Clustering_18 1440 1.17e+00 6.77e+01 0.00e+00 2.25e-10 1.22e-10 2.80e-10 1.55e-10 4.10e-04 0.00e+00 2.05e-04
Clustering_19 1520 5.61e+00 5.22e+01 4.40e-10 6.47e-01 3.35e-10 6.12e-01 4.44e-10 7.48e-01 0.00e+00 5.46e-01
Clustering_20 1600 9.00e+00 4.86e+01 1.82e-10 3.62e+00 3.38e-10 3.12e+00 3.67e-10 6.10e+00 0.00e+00 3.57e+00
Clustering_21 1680 9.58e+00 5.26e+01 8.22e-10 9.58e-01 3.67e-10 1.21e-01 6.33e-10 4.23e-01 0.00e+00 1.09e-01
Clustering_22 1760 5.27e+00 2.45e+01 2.33e-10 3.31e+00 1.09e-10 2.49e+00 2.29e-10 3.42e+00 0.00e+00 3.49e+00
Clustering_23 1840 2.21e+00 1.28e+01 1.82e-09 7.46e-01 1.38e-10 2.66e-01 0.00e+00 8.86e-01 4.37e-10 5.05e-01
Clustering_24 1920 1.31e+00 2.28e+01 1.82e-11 3.15e+00 1.78e-10 6.43e+00 0.00e+00 1.10e+01 1.56e-10 9.45e+00
Clustering_25 2000 2.12e+00 3.38e+01 4.15e-10 1.23e+01 5.28e-10 3.32e+00 5.68e-10 5.23e+00 0.00e+00 4.82e+00
Clustering_26 2080 1.31e+01 6.62e+01 8.15e-10 1.02e+00 1.96e-10 7.04e+00 0.00e+00 7.61e+00 3.20e-10 6.76e+00

TABLE 6: Results obtained by solving one hundred times clustering problems (Clustering_x) of different sizes (four-
cluster, x-data) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 4. In
this table, the probability of finding the final energy in a given range (prange) and the TTS.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name pcons[%] prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS

Clustering_4 7.50e+01 58.00 84.94 88.00 34.75 13.00 529.09 82.00 42.97 79.00 47.21
Clustering_5 1.24e-10 74.00 683.73 99.00 200.00 5.00 17956.23 99.00 200.00 100.00 200.00
Clustering_6 3.56e-11 34.00 2659.93 76.00 774.46 4.00 27074.64 69.00 943.70 67.00 996.91
Clustering_7 1.29e-11 3.00 42333.59 35.00 2993.27 2.00 63825.49 10.00 12238.43 16.00 7395.60
Clustering_8 7.17e-11 20.00 13208.13 100.00 640.00 1.00 293254.77 95.00 983.84 100.00 640.00
Clustering_9 1.50e-11 2.00 164122.68 14.00 21984.21 13.00 23809.23 6.00 53587.09 5.00 64642.42

Clustering_10 1.54e-10 1.00 366568.46 99.00 800.00 6.00 59541.21 73.00 2813.75 90.00 1600.00
Clustering_11 9.29e-11 1.00 403225.31 89.00 1836.00 8.00 48602.44 41.00 7680.63 73.00 3095.12
Clustering_12 1.67e+01 1.00 439882.15 100.00 960.00 100.00 960.00 100.00 960.00 100.00 960.00
Clustering_13 1.10e-10 1.00 476539.00 100.00 1040.00 77.00 3258.80 99.00 1040.00 100.00 1040.00
Clustering_14 5.13e+00 1.00 513195.85 100.00 1120.00 100.00 1120.00 100.00 1120.00 100.00 1120.00
Clustering_15 7.79e-11 1.00 549852.69 100.00 1200.00 73.00 4220.62 91.00 2294.99 95.00 1844.69
Clustering_16 1.03e-10 1.00 586509.54 100.00 1280.00 52.00 8031.15 63.00 5928.69 100.00 1280.00
Clustering_17 3.08e-10 1.00 623166.38 100.00 1360.00 17.00 33612.65 35.00 14538.72 99.00 1360.00
Clustering_18 3.26e-01 1.00 659823.23 100.00 1440.00 100.00 1440.00 100.00 1440.00 100.00 1440.00
Clustering_19 1.42e+00 1.00 696480.08 100.00 1520.00 100.00 1520.00 100.00 1520.00 100.00 1520.00
Clustering_20 2.26e+00 1.00 733136.92 89.00 3338.18 88.00 3475.17 72.00 5788.27 86.00 3747.63
Clustering_21 2.04e+00 1.00 769793.77 100.00 1680.00 100.00 1680.00 100.00 1680.00 100.00 1680.00
Clustering_22 1.02e+00 1.00 806450.61 76.00 5679.35 94.00 2880.88 81.00 4880.44 84.00 4422.78
Clustering_23 4.64e-01 1.00 843107.46 86.00 4309.78 96.00 2632.44 89.00 3838.90 90.00 3680.00
Clustering_24 2.57e-01 1.00 879764.31 44.00 15249.47 25.00 30735.06 14.00 58624.57 13.00 63491.28
Clustering_25 3.58e-01 1.00 916421.15 11.00 79035.77 39.00 18633.24 23.00 35239.41 23.00 35239.41
Clustering_26 1.88e+00 1.00 953078.00 99.00 2080.00 65.00 9124.17 63.00 9634.13 71.00 7738.07
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TABLE 7: Setup configuration considered for solving one hundred times knapsack problems (Knapsack_x) of different sizes
(x-variable) with the proposed algorithms and the SQA as a reference. The initial values for transverse fields and temperature
are both equal to one for all the tests, while the number of involved copies differs according to the problem and is reported in
the following.

Problem
Ntot_copies

SQA SQPT SQPA SQPTPA1 SQPTPA2
Name vq M M SY S M SY S M SY Stemp SY Spop M SY Stemp SY Spop

Knapsack_10 10 10 10 2 5 2 5 2 3 2 2 3 2
Knapsack_20 20 10 10 2 5 2 5 2 3 2 2 3 2
Knapsack_25 25 10 10 2 5 2 5 2 3 2 2 3 2
Knapsack_30 30 18 18 3 6 3 6 3 3 3 3 3 3
Knapsack_35 35 18 18 3 6 3 6 3 3 3 3 3 3
Knapsack_41 41 18 18 3 6 3 6 3 3 3 3 3 3
Knapsack_46 46 32 32 4 8 4 8 4 4 4 4 4 4
Knapsack_51 51 32 32 4 8 4 8 4 4 4 4 4 4
Knapsack_52 52 32 32 4 8 4 8 4 4 4 4 4 4
Knapsack_53 53 32 32 4 8 3 6 3 3 3 3 3 3
Knapsack_56 56 32 32 4 8 4 8 4 4 4 4 4 4
Knapsack_57 57 32 32 4 8 4 8 4 4 4 4 4 4
Knapsack_58 58 32 32 4 8 4 8 4 4 4 4 4 4
Knapsack_59 59 32 32 4 8 4 8 4 4 4 4 4 4

TABLE 8: Results obtained by solving one hundred times knapsack problems (Knapsack_x) of different sizes (x-variable)
with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 7. In this table, the
energy of the best solution between ones obtained by each solver in the one hundred repetitions is reported (opt) together with
the average of the final energies found.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name MC_step opt avg opt avg opt avg opt avg opt avg

Knapsack_10 10 -12.80 -12.20 -12.80 -11.81 -12.80 -11.57 -12.80 -11.89 -12.80 -12.04
Knapsack_20 200 -15.00 -14.15 -15.00 -13.15 -15.00 -14.59 -15.00 -14.42 -15.00 -14.41
Knapsack_25 250 -15.80 -11.85 -14.80 -10.44 -15.80 -14.45 -15.80 -13.92 -15.80 -13.73
Knapsack_30 3000 -17.00 -14.24 -16.80 -12.73 -17.00 -16.60 -17.00 -16.10 -17.00 -16.22
Knapsack_35 3500 -14.80 -12.42 -13.00 -10.37 -14.80 -14.00 -14.80 -13.79 -14.80 -13.70
Knapsack_41 4100 -21.80 -17.36 -22.20 -15.55 -23.80 -21.93 -23.80 -21.48 -23.80 -21.54
Knapsack_46 4600 -22.80 -16.19 -22.80 -21.60 -20.80 -17.19 -22.80 -21.91 -22.80 -21.96
Knapsack_51 5100 -19.20 -15.30 -21.80 -20.68 -20.00 -15.98 -21.80 -20.95 -21.80 -20.84
Knapsack_52 5200 -21.00 -16.77 -23.80 -22.13 -19.20 -16.21 -23.80 -22.33 -23.80 -22.31
Knapsack_53 5300 -17.80 -10.41 -18.80 -17.70 -18.80 -16.98 -18.80 -17.22 -18.80 -17.54
Knapsack_54 5400 -14.80 1.86 -16.80 -15.87 -16.80 -14.82 -15.80 -14.99 -16.80 -15.07
Knapsack_55 5500 -18.80 -9.15 -24.80 -22.31 -22.20 -19.51 -23.80 -21.17 -24.20 -21.39
Knapsack_56 16800 -17.80 -1.18 -18.80 -17.58 -16.20 -10.03 -18.80 -17.60 -18.80 -17.67
Knapsack_57 17100 -19.80 -10.07 -22.80 -21.37 -19.20 -15.17 -22.80 -21.70 -22.80 -21.76
Knapsack_58 17400 -16.80 -8.26 -18.80 -18.13 -16.80 -13.69 -18.80 -17.89 -18.80 -18.03
Knapsack_59 17700 -19.00 -10.82 -23.80 -22.50 -19.20 -14.54 -23.80 -21.81 -23.80 -22.41

the number of performed tests is lower than in the max-cut
case since the problem grows very fast.
Table 8 shows the optimal value (opt), the average one (avg),
and the number of iterations for obtaining these (MC_step).
Table 9 provides the prange, the TTS and the considered pcons.
In case of achievement of the optimal solution by all solvers,
the latter is fixed to 0.01%, while if even just one solver
does not reach the expected energy, it is computed for each
optimization problem according to the formula reported in
the equation 75. In this way, the value obtained (val) is
sufficiently close to the actual optimal value to appreciate
prange lower than 100% and sufficiently high to obtain a prange
higher than 0% in all cases.

The prange

MC_step and the TTS evolutions, varying the problem size
with a window w equal to 20, are reported in Figures 14c and
15c. Also in this case, the obtained TTS shape is coherent
with expectation. In fact, it is possible to recognize, despite
the limited number of samples, a square-root evolution with
the problem size in the logarithmic axis.
Observing the obtained results, it is possible to say that the
best solver for small size problems (until 41-variable one) is
the SQPA — since it has the highest prange and the lowest TTS
—, while for larger ones the best performance are provided
by SQPTPA1 and SQPTPA2. The SQA solver gives the
worst results — i.e. TTS significantly higher than the other
solvers — for all the considered problem sizes. Examples of
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TABLE 9: Results obtained by solving one hundred times knapsack problems (Knapsack_x) of different sizes (x-variable)
with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 7. In this table, the
probability of finding the final energy in a given range (prange) and the TTS.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name pcons[%] prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS

Knapsack_10 0.01 39.00 93.17 24.00 167.80 14.00 305.34 24.00 167.80 28.00 140.19
Knapsack_20 0.01 18.00 4641.12 4.00 22562.20 42.00 1690.82 25.00 3201.57 27.00 2926.60
Knapsack_25 6.33 8.00 13807.51 1.00 114552.64 52.00 1568.58 31.00 3102.68 20.00 5159.43
Knapsack_30 1.18 4.00 338433.01 1.00 1374631.73 35.00 32070.70 13.00 99205.12 24.00 50341.31
Knapsack_35 12.16 19.00 76490.21 1.00 1603737.02 96.00 5007.37 81.00 9705.42 80.00 10014.74
Knapsack_41 8.40 1.00 1878663.36 2.00 934587.50 55.00 23645.61 34.00 45440.42 46.00 30642.04
Knapsack_46 8.77 1.00 2107768.65 92.00 8387.20 1.00 2107768.65 100.00 4600.00 100.00 4600.00
Knapsack_51 11.93 1.00 2336873.94 100.00 5100.00 1.00 2336873.94 100.00 5100.00 100.00 5100.00
Knapsack_52 19.33 7.00 329980.11 100.00 5200.00 1.00 2382695.00 100.00 5200.00 100.00 5200.00
Knapsack_53 5.32 1.00 2428516.06 36.00 54689.91 9.00 258797.86 15.00 150181.90 22.00 98234.20
Knapsack_54 11.90 1.00 2474337.11 100.00 5400.00 51.00 34860.76 77.00 16920.68 90.00 10800.00
Knapsack_55 24.19 1.00 2520158.17 100.00 5500.00 70.00 21037.38 100.00 5500.00 99.00 5500.00
Knapsack_56 13.83 1.00 7697937.69 100.00 16800.00 1.00 7697937.69 100.00 16800.00 100.00 16800.00
Knapsack_57 15.79 1.00 7835400.86 100.00 17100.00 1.00 7835400.86 100.00 17100.00 100.00 17100.00
Knapsack_58 10.64 1.00 7972864.03 100.00 17400.00 1.00 7972864.03 100.00 17400.00 100.00 17400.00
Knapsack_59 20.17 1.00 8110327.20 100.00 17700.00 1.00 8110327.20 100.00 17700.00 100.00 17700.00

TABLE 10: Setup configuration considered for solving one hundred times garden optimization problems (Garden_c_r) of
different sizes (c-column and r-row, i.e. (c · r)2-variable) with the proposed algorithms and the SQA as a reference. The initial
values for transverse fields and temperature are both equal to one for all the tests, while the number of involved copies differs
according to the problem and is reported in the following.

Problem
Ntot_copies

SQA SQPT SQPA SQPTPA1 SQPTPA2
Name vq M M SY S M SY S M SY Stemp SY Spop M SY Stemp SY Spop

Garden_1_2 4 10 10 2 5 2 5 2 3 2 2 3 2
Garden_1_3 9 10 10 2 5 2 5 2 3 2 2 3 2
Garden_1_4 16 10 10 2 5 2 5 2 3 2 2 3 2
Garden_2_2 16 10 10 2 5 2 5 2 3 2 2 3 2
Garden_2_3 36 18 18 3 6 3 6 3 3 3 3 3 3
Garden_2_4 64 18 18 3 6 3 6 3 3 3 3 3 3
Garden_3_2 36 18 18 3 6 3 6 3 3 3 3 3 3
Garden_3_3 81 32 32 4 8 4 8 4 4 4 4 4 4

TABLE 11: Results obtained by solving one hundred times garden optimization problems (Garden_c_r) of different sizes
(c-column and r-row, i.e. (c · r)2-variable) with the proposed algorithms and the SQA as a reference. Test setup configurations
are reported in Table 10. In this table, the energy of the best solution between ones obtained by each solver in the one hundred
repetitions is reported (opt) together with the average of the final energies found.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name MC_step opt avg opt avg opt avg opt avg opt avg

Garden_1_2 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Garden_1_3 9 7.00 7.00 7.00 7.00 7.00 7.10 7.00 7.00 7.00 7.00
Garden_1_4 16 0.00 4.35 0.00 0.68 0.00 0.32 0.00 0.21 0.00 0.21
Garden_2_2 8 4.00 13.89 4.00 6.34 4.00 4.70 4.00 4.29 4.00 4.49
Garden_2_3 144 11.00 30.76 10.00 27.13 10.00 22.29 10.00 22.45 10.00 22.06
Garden_2_4 19200 26.00 48.52 17.00 50.22 4.00 20.36 6.00 22.86 6.00 23.27
Garden_3_2 10800 3.00 9.24 3.00 8.24 3.00 3.09 3.00 3.24 3.00 3.23
Garden_3_3 40500 234.00 347.99 16.00 21.83 34.00 48.50 16.00 24.22 16.00 24.92
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TABLE 12: Results obtained by solving one hundred times garden optimization problems (Garden_c_r) of different sizes
(c-column and r-row, i.e. (c · r)2-variable) with the proposed algorithms and the SQA as a reference. Test setup configurations
are reported in Table 10. In this table, the probability of finding the final energy in a given range (prange) and the TTS.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name pcons[%] prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS

Garden_1_2 0.10 100.00 2.00 100.00 2.00 100.00 2.00 100.00 2.00 100.00 2.00
Garden_1_3 0.10 100.00 9.00 100.00 9.00 99.00 9.00 100.00 9.00 100.00 9.00
Garden_1_4 0.10 29.00 215.14 52.00 100.39 68.00 64.67 79.00 47.21 79.00 47.21
Garden_2_2 0.10 29.00 107.57 78.00 24.33 93.00 13.85 98.00 9.42 96.00 11.45
Garden_2_3 10.00 4.00 16244.78 7.00 9137.91 14.00 4396.84 20.00 2971.83 24.00 2416.38
Garden_2_4 20.00 0.00 88375050.57 0.00 88375050.57 1.00 8797643.07 0.00 88375050.57 0.00 88375050.57
Garden_3_2 0.10 8.00 596484.51 13.00 357138.44 91.00 20654.88 77.00 33841.36 78.00 32847.85
Garden_3_3 20.00 0.00 186416122.29 60.00 203548.27 0.00 186416122.29 43.00 331797.04 39.00 377323.04

TABLE 13: Setup configuration considered for solving one hundred times nurse scheduling problems (Nurse_n_d) of
different sizes (n-nurse and d-day, i.e. (n · d)-variable) with the proposed algorithms and the SQA as a reference. The initial
values for transverse fields and temperature are both equal to one for all the tests, while the number of involved copies differs
according to the problem and is reported in the following.

Problem
Ntot_copies

SQA SQPT SQPA SQPTPA1 SQPTPA2
Name vq M M SY S M SY S M SY Stemp SY Spop M SY Stemp SY Spop

Nurse_2_10 20 10 10 2 5 2 5 2 3 2 2 3 2
Nurse_2_15 30 18 18 3 6 3 6 3 3 3 3 3 3
Nurse_2_20 40 18 18 3 6 3 6 3 3 3 3 3 3
Nurse_3_10 30 18 18 3 6 3 6 3 3 3 3 3 3
Nurse_3_15 45 18 18 3 6 3 6 3 3 3 3 3 3
Nurse_3_20 60 18 18 3 6 3 6 3 3 3 3 3 3
Nurse_4_10 40 18 18 3 6 3 6 3 3 3 3 3 3
Nurse_4_15 60 18 18 3 6 3 6 3 3 3 3 3 3
Nurse_4_20 80 18 18 3 6 3 6 3 3 3 3 3 3
Nurse_5_10 50 18 18 3 6 3 6 3 3 3 3 3 3

Nurse_10_10 100 32 32 4 8 4 8 4 4 4 3 3 3
Nurse_10_11 110 18 18 3 6 3 6 3 3 3 3 3 3
Nurse_10_12 120 18 18 3 6 3 6 3 3 3 3 3 3
Nurse_10_13 130 18 18 3 6 3 6 3 3 3 3 3 3
Nurse_10_14 140 18 18 3 6 3 6 3 3 3 3 3 3
Nurse_10_15 150 18 18 3 6 3 6 3 3 3 3 3 3

cumulative distribution and energy evolutions for a large-size
problem are reported in Figures 16c and 17c, respectively.
It is possible to observe that the cumulative distributions of
SQPT, SQPTPA1 and SQPTPA2 are more concentrated on
the left, i.e. the probability of reaching the optimal solution is
higher. From the energy evolution point of view, it is possible
to observe that the SQA reaches the convergence but at an
energy value that is higher than the optimal one. Instead,
the SQPA reaches a very low value in the middle, but after
that starts again to increase the energy without reaching an
effective convergence.
Considering all the analyzed figures of merit, it is possible to
conclude that the SQPTPA1 and SQPTPA2 algorithms are
the most suitable for exploring the knapsack problems
energy profile.

4) Garden optimization

Table 10 reports the setup configuration of the performed
garden optimization tests, in particular the number of Trot-
ters, system copies and binary variables. Each problem is
identified with a name in the format: Garden_c_r, where c
is the number of columns and r is the number of rows, i.e. the
number of pots and plants is equal to c · r and, consequently
the total number of involved variables is equal to (c · r)2.
In this case, the Ntot_copies increases from 10 to 32 with the
problem size. Even this type of problem grows very fast, so
it is not possible to do a granular increase of the problem
dimension and the number of performed tests is limited.
Table 11 shows the optimal value (opt), the average one (avg),
and the number of iterations for obtaining these (MC_step).
Table 12 provides the prange, the TTS and the considered pcons.
In case of achievement of the optimal solution by all solvers,
the latter is fixed to 0.01%, while if even just one solver
does not reach the expected energy, it is computed, exploiting
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TABLE 14: Results obtained by solving one hundred times nurse scheduling problems (Nurse_n_d) of different sizes (n-
nurse and d-day, i.e. (n · d)-variable) with the proposed algorithms and the SQA as a reference. Test setup configurations are
reported in Table 13. In this table, the energy of the best solution between ones obtained by each solver in the one hundred
repetitions is reported (opt) together with the average of the final energies found.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name MC_step opt avg opt avg opt avg opt avg opt avg

Nurse_2_10 10 3.00 3.64 3.00 3.34 3.00 5.06 3.00 3.48 3.00 3.48
Nurse_2_15 300 -24.00 -24.00 -24.00 -24.00 -24.00 -24.00 -24.00 -24.00 -24.00 -24.00
Nurse_2_20 400 -32.00 -32.00 -32.00 -32.00 -32.00 -32.00 -32.00 -32.00 -32.00 -32.00
Nurse_3_10 300 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20
Nurse_3_15 450 -94.00 -94.00 -94.00 -93.83 -94.00 -93.82 -94.00 -93.85 -94.00 -93.87
Nurse_3_20 600 -157.00 -157.00 -157.00 -156.58 -157.00 -156.46 -157.00 -156.62 -157.00 -156.57
Nurse_4_10 400 7.40 7.40 7.40 7.41 7.40 7.40 7.40 7.40 7.40 7.40
Nurse_4_15 600 -67.00 -66.93 -67.00 -66.99 -67.00 -67.00 -67.00 -66.99 -67.00 -67.00
Nurse_4_20 800 -125.60 -125.52 -125.60 -125.59 -125.60 -125.57 -125.60 -125.59 -125.60 -125.60
Nurse_5_4 10 0.30 0.73 0.30 1.09 0.30 1.61 0.30 1.18 0.30 1.31

Nurse_5_10 500 6.40 6.79 6.40 6.74 6.00 6.63 6.00 6.65 6.00 6.65
Nurse_10_10 100000 21.70 44.42 3.00 3.92 6.60 14.36 8.80 14.16 8.20 14.04
Nurse_10_11 1100 11.10 19.73 5.30 17.01 9.50 16.68 9.30 16.34 8.70 15.86
Nurse_10_12 1200 11.60 23.60 9.40 18.92 8.00 19.74 8.80 18.18 7.00 18.15
Nurse_10_13 1300 16.10 27.81 10.50 22.55 12.50 23.02 10.30 20.80 10.50 20.84
Nurse_10_14 1400 19.70 31.24 4.00 22.97 12.80 26.52 11.00 22.79 11.20 22.94
Nurse_10_15 1500 23.60 37.03 14.90 27.89 17.70 29.29 15.90 27.81 12.70 27.62

also a saturation mechanism, for each optimization problem
according to the following formula:

pcons[%] = min

[∣∣∣∣1− minh

minl

∣∣∣∣100, 20] , (76)

where minh is the highest opt among ones of all the analyzed
solvers, while minl is the lowest one. In this way, the value
obtained (val) is sufficiently close to the actual optimal value
to appreciate prange lower than 100%. When the saturation
mechanism is employed, some prange are equal to 0%. This
choice was done for guaranteeing a val which cannot cause
too many prange equal to 100%.
The prange

MC_step and the TTS evolutions, varying the problem
size (values obtained with problems of the same size were
averaged) with a windoww equal to 3, are reported in Figures
14d and 15d. The obtained TTS shape is consistent with
expectations. In fact, even if the number of samples is not
particularly high, it is possible to recognize a square-root
evolution with the problem size in the logarithmic axis.
Observing the obtained results, it is possible to say that the
best solvers are the SQPT, the SQPTPA1 and the SQPTPA2,
i.e. they provide the highest prange and the lowest TTS. The
SQPA assures good results for small-size problems (until
64), while the largest one has not reached the convergence
to the optimal value. At the same time, the SQA solver
gives the worst results — i.e. TTS significantly higher than
the other solvers — for all the considered problem sizes.
Examples of cumulative distribution and energy evolutions
for the 81-variable problem are reported in Figures 16d and
17d, respectively. It is possible to observe that the cumulative
distributions of SQPT, SQPTPA1 and SQPTPA2 are more

concentrated on the left, i.e. the probability of reaching the
optimal solution is higher. From the energy evolution point
of view, it is possible to observe that the SQA reaches the
convergence but at an energy value that is higher than the
optimal one. Instead, the SQPA reach a very low value in
the middle, but after that starts again to increase the energy
without reaching an effective convergence.
Considering all the analyzed figures of merit, it is possible
to conclude that the SQPT, SQPTPA1 and SQPTPA2 al-
gorithms are the most suitable for exploring the garden
optimization problems objective function.

5) Nurse scheduling
Table 13 reports the algorithms configurations considered
for solving nurse scheduling problems. In particular, the
number of Trotters, system copies and binary variables are
shown. Each problem is identified with a name in the format:
Nurse_n_d, where n is the number of nurses and d is
the number of days, and, consequently, the total number of
involved variables is equal to (n·d). In this case, theNtot_copies
varies from 10 to 32. Therefore problem grows rapidly and
it is impossible to do a granular increase of the problem
dimension.
Table 14 shows the optimal value (opt), the average one (avg),
and the number of iterations for obtaining these (MC_step).
Table 15 provides the prange, the TTS and the considered pcons.
Also in this case, the choice of pcons is done by considering
the following policy: if the optimal solution is achieved by
all solvers, it is fixed to 0.01%, while if even just one solver
does not reach the expected energy, it is computed, exploiting
also a saturation mechanism, for each optimization problem

VOLUME 4, 2016 41



Deborah Volpe et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 15: Results obtained by solving one hundred times nurse scheduling problems (Nurse_n_d) of different sizes (n-
nurse and d-day, i.e. (n · d)-variable) with the proposed algorithms and the SQA as a reference. Test setup configurations are
reported in Table 13. In this table, the probability of finding the final energy in a given range (prange) and the TTS.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name pcons[%] prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS

Nurse_2_10 0.01 64.00 45.08 85.00 24.27 44.00 79.42 82.00 26.86 83.00 25.99
Nurse_2_15 0.01 100.00 300.00 100.00 300.00 100.00 300.00 100.00 300.00 100.00 300.00
Nurse_2_20 0.01 100.00 400.00 100.00 400.00 100.00 400.00 100.00 400.00 100.00 400.00
Nurse_3_10 0.01 100.00 300.00 100.00 300.00 100.00 300.00 100.00 300.00 100.00 300.00
Nurse_3_15 0.01 100.00 450.00 17.00 11121.83 11.00 17783.05 25.00 7203.53 33.00 5174.64
Nurse_3_20 0.01 100.00 600.00 47.00 4352.18 32.00 7164.56 53.00 3659.63 46.00 4484.20
Nurse_4_10 0.01 100.00 400.00 98.00 470.87 100.00 400.00 100.00 400.00 100.00 400.00
Nurse_4_15 0.01 71.00 2232.13 93.00 1039.05 98.00 706.31 96.00 858.41 99.00 600.00
Nurse_4_20 0.01 65.00 3509.30 94.00 1309.49 83.00 2079.13 96.00 1144.54 98.00 941.75
Nurse_5_10 6.67 1.00 229105.29 8.00 27615.02 2.00 113974.09 5.00 44890.57 7.00 31728.86
Nurse_10_10 20.00 0.00 460286721.69 12.00 3602478.86 0.00 46028672.17 0.00 46028672.17 0.00 4602867.22
Nurse_10_11 20.00 0.00 5063153.94 1.00 504031.63 0.00 5063153.94 0.00 5063153.94 0.00 5063153.94
Nurse_10_12 20.00 0.00 5523440.66 0.00 5523440.66 1.00 549852.69 0.00 5523440.66 1.00 549852.69
Nurse_10_13 20.00 0.00 5983727.38 3.00 196548.82 0.00 5983727.38 2.00 296332.62 4.00 146654.31
Nurse_10_14 20.00 0.00 6444014.10 1.00 641494.81 0.00 6444014.10 0.00 6444014.10 0.00 6444014.10
Nurse_10_15 20.00 0.00 6904300.83 1.00 687315.86 0.00 6904300.83 0.00 6904300.83 1.00 687315.86

TABLE 16: Setup configuration considered for solving one hundred times graph colouring problems (GraphColouring_y)
of different sizes (three-colour, y-node) with the proposed algorithms and the SQA as a reference. The initial values for
transverse fields and temperature are both equal to one for all the tests, while the number of involved copies differs according
to the problem and is reported in the following.

Problem
Ntot_copies

SQA SQPT SQPA SQPTPA1 SQPTPA2
Name vq M M SY S M SY S M SY Stemp SY Spop M SY Stemp SY Spop

GraphColouring_3 9 10 10 2 5 2 5 2 3 2 2 3 2
GraphColouring_4 12 10 10 2 5 2 5 2 3 2 2 3 2
GraphColouring_5 15 10 10 2 5 2 5 2 3 2 2 3 2
GraphColouring_6 18 10 10 2 5 2 5 2 3 2 2 3 2
GraphColouring_7 21 10 10 2 5 2 5 2 3 2 2 3 2
GraphColouring_8 24 10 10 2 5 2 5 2 3 2 2 3 2
GraphColouring_9 27 10 10 2 5 2 5 2 3 2 2 3 2

GraphColouring_10 30 18 18 3 6 3 6 3 3 3 3 3 3
GraphColouring_31 93 32 32 4 8 4 8 4 4 4 4 4 4

TABLE 17: Results obtained by solving one hundred times graph colouring problems (GraphColouring_y) of different
sizes (three-colour, y-node) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in
Table 16. In this table, the energy of the best solution between ones obtained by each solver in the one hundred repetitions is
reported (opt) together with the average of the final energies found.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name MC_step opt avg opt avg opt avg opt avg opt avg

GraphColouring_3 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GraphColouring_4 12 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00
GraphColouring_5 15 0.00 0.01 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.02
GraphColouring_6 18 0.00 0.15 0.00 0.05 0.00 0.46 0.00 0.04 0.00 0.09
GraphColouring_7 21 0.00 1.04 0.00 0.43 0.00 1.51 0.00 0.51 0.00 0.48
GraphColouring_8 24 1.00 1.65 1.00 1.49 1.00 2.49 1.00 1.71 1.00 1.67
GraphColouring_9 27 0.00 1.21 0.00 0.86 0.00 1.89 0.00 0.82 0.00 0.93
GraphColouring_10 120 1.00 1.83 1.00 1.98 1.00 1.81 1.00 1.72 1.00 1.84
GraphColouring_31 37200 33.00 42.74 16.00 18.37 20.00 23.97 21.00 24.04 20.00 24.04
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TABLE 18: Results obtained by solving one hundred times nurse scheduling problems graph colouring problems
(GraphColouring_y) of different sizes (three-colour, y-node) with the proposed algorithms and the SQA as a reference.
Test setup configurations are reported in Table 16. In this table, the probability of finding the final energy in a given range
(prange) and the TTS.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name pcons[%] prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS

GraphColouring_3 0.10 100.00 9.00 100.00 9.00 100.00 9.00 100.00 9.00 100.00 9.00
GraphColouring_4 0.10 100.00 12.00 100.00 12.00 97.00 15.76 100.00 12.00 100.00 12.00
GraphColouring_5 0.10 99.00 15.00 100.00 15.00 90.00 30.00 100.00 15.00 98.00 17.66
GraphColouring_6 0.10 85.00 43.69 95.00 27.67 56.00 100.97 96.00 25.75 91.00 34.42
GraphColouring_7 0.10 21.00 410.26 61.00 102.71 15.00 595.06 56.00 117.80 62.00 99.95
GraphColouring_8 0.10 40.00 216.36 55.00 138.41 10.00 1049.01 38.00 231.20 42.00 202.90
GraphColouring_9 0.10 15.00 765.08 31.00 335.09 9.00 1318.40 39.00 251.55 29.00 363.05

GraphColouring_10 0.10 18.00 2784.67 12.00 4322.97 20.00 2476.52 30.00 1549.37 16.00 3169.54
GraphColouring_31 20.00 0.00 171226660.47 97.00 48854.84 0.00 171226660.47 0.00 171226660.47 0.00 171226660.47

according to the formula of equation 76. In this way, the value
obtained (val) is sufficiently close to the actual optimal value
to appreciate prange lower than 100%. When the saturation
mechanism is employed, some prange are equal to 0%. This
choice was done for guaranteeing a val which cannot cause
too many prange equal to 100%.
The prange

MC_step and the TTS evolutions, varying the problem
size (values obtained with problems of the same size were
averaged) with a window w equal to 20, are reported in
Figures 14e and 15e. The obtained TTS shape is as expected.
In fact, it is possible to recognize, even if not in a particularly
clean way due to the limited amount of samples, a square-
root evolution with the problem size in the logarithmic axis.
Analyzing the obtained results, it is possible to say that the
best solvers are the SQPT and the SQPTPA2, since they
provide the highest prange and the lowest TTS. At the same
time, the SQA, and the SQPA solvers give the worst results,
i.e. TTS is significantly higher than the others. Examples
of cumulative distribution and energy evolutions for the
80-variable problem are reported in Figures 16e and 17e,
respectively. It is possible to observe that the cumulative
distributions of the SQPT, the SQPTPA1 and the SQPTPA2
are more concentrated on the left, i.e. the probability of
reaching the optimal solution is higher. From the energy
evolution point of view, it is possible to notice that all the
algorithms have reached convergence. However, the SQA
and the SQPA are significantly slower than the others.
Considering all the analyzed figures of merit, it is possible
to conclude that the SQPT and SQPTPA2 algorithms are
the most suitable for exploring the nurse scheduling prob-
lems’ objective function.

6) Graph Colouring
Table 16 reports the setup configuration of the performed
graph colouring tests. In particular, the number of Trotters,
system copies and binary variables are shown for each prob-
lem solved. Each problem is identified with a name in the
format: GraphColouring_y, where y is the number of
nodes and the number of colours is fixed at three, and,

consequently, the total number of involved variables is equal
to 3 · y. In this case, the Ntot_copies grows from 10 to 32 with
the problem size.
Table 17 shows the optimal value (opt), which is the lowest
final value obtained by each solver in the one hundred runs
considered, the average one (avg), which is obtained by
averaging the one hundred obtained final values, and the
number of iterations for obtaining these (MC_step).
Table 18 provides the prange, the TTS and the considered
pcons. In case of achievement of the optimal solution by all
solvers, the latter is fixed to 0.01%, while if even just one
solver does not reach the expected energy, it is computed,
exploiting also a saturation mechanism, for each optimization
problem according to the formula reported in Equation 76. In
this way, the value obtained (val) is sufficiently close to the
actual optimal value to appreciate prange lower than 100%.
When the saturation mechanism is employed, some prange are
equal to 0%. This choice was done for guaranteeing a val
which cannot cause too many prange equal to 100%.
The prange

MC_step and the TTS evolutions, varying the problem
size (values obtained with problems of the same size were
averaged) with a window w equal to 5, are reported in
Figures 14f and 15f. The obtained TTS shape is coherent with
expectations. In fact, it is possible to identify a square-root
evolution with the problem size in the logarithmic axis.
Reading the obtained results, it is possible to say that the
best solver is the SQPT, and the SQPTPA1, i.e. they provide
the highest prange and the lowest TTS. At the same time, the
SQA, and the SQPA solvers give the worst results, i.e. TTS
is significantly higher than the others. Examples of cumu-
lative distribution and energy evolutions for the 30-variable
problem are reported in Figures 16f and 17f respectively.
It is possible to observe that the cumulative distributions
of the SQPT, the SQPTPA1 and the SQPTPA2 are more
concentrated on the left, i.e. the probability of reaching the
optimal solution is higher. From the energy evolution point
of view, it is possible to observe that all the algorithms except
SQPT have reached convergence. However, the SQA and the
SQPA are significantly slower than the others.
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TABLE 19: Setup configuration considered for solving one hundred times minimum vertex cover problems
(MinimumVertexCover_x) of different sizes (x-node) with the proposed algorithms and the SQA as a reference. The
initial values for transverse fields and temperature are both equal to one for all the tests, while the number of involved copies
differs according to the problem and is reported in the following.

Problem
Ntot_copies

SQA SQPT SQPA SQPTPA1 SQPTPA2
Name vq M M SY S M SY S M SY Stemp SY Spop M SY Stemp SY Spop

MinimumVertexCover_20 20 10 10 2 5 2 5 2 3 2 2 3 2
MinimumVertexCover_25 25 10 10 2 5 2 5 2 3 2 2 3 2
MinimumVertexCover_30 30 18 18 3 6 3 6 3 3 3 3 3 3
MinimumVertexCover_35 35 18 18 3 6 3 6 3 3 3 3 3 3
MinimumVertexCover_40 40 18 18 3 6 3 6 3 3 3 3 3 3
MinimumVertexCover_45 45 18 18 3 6 3 6 3 3 3 3 3 3
MinimumVertexCover_50 50 18 18 3 6 3 6 3 3 3 3 3 3
MinimumVertexCover_55 55 18 18 3 6 3 6 3 3 3 3 3 3
MinimumVertexCover_60 60 18 18 3 6 3 6 3 3 3 3 3 3
MinimumVertexCover_65 65 18 18 3 6 3 6 3 3 3 3 3 3
MinimumVertexCover_70 70 18 18 3 6 3 6 3 3 3 3 3 3
MinimumVertexCover_71 71 18 18 3 6 3 6 3 3 3 3 3 3
MinimumVertexCover_72 72 18 18 3 6 3 6 3 3 3 3 3 3
MinimumVertexCover_73 73 18 18 3 6 3 6 3 3 3 3 3 3
MinimumVertexCover_74 74 18 18 3 6 3 6 3 3 3 3 3 3

TABLE 20: Results obtained by solving one hundred times minimum vertex cover problems (MinimumVertexCover_x)
of different sizes (x-node) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in
Table 19. In this table, the energy of the best solution between ones obtained by each solver in the one hundred repetitions is
reported (opt) together with the average of the final energies found.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name MC_step opt avg opt avg opt avg opt avg opt avg

MinimumVertexCover_20 10 15.00 16.01 15.00 15.04 15.00 15.05 15.00 15.00 15.00 15.00
MinimumVertexCover_25 12 20.00 22.36 20.00 20.29 20.00 20.13 20.00 20.07 20.00 20.06
MinimumVertexCover_30 120 24.00 25.67 24.00 25.88 24.00 25.34 24.00 25.87 24.00 25.74
MinimumVertexCover_35 140 30.00 33.06 30.00 31.93 28.00 31.64 29.00 31.70 28.00 31.78
MinimumVertexCover_40 160 35.00 41.84 34.00 37.01 34.00 36.77 34.00 36.95 34.00 37.13
MinimumVertexCover_45 180 40.00 57.11 40.00 42.82 39.00 43.13 39.00 43.19 40.00 42.60
MinimumVertexCover_50 200 45.00 67.33 44.00 49.26 42.00 48.23 42.00 47.76 43.00 48.04
MinimumVertexCover_55 220 58.00 88.41 51.00 58.02 48.00 53.53 48.00 53.61 48.00 53.49
MinimumVertexCover_60 240 70.00 112.95 55.00 61.10 52.00 60.43 52.00 59.01 53.00 59.27
MinimumVertexCover_65 260 76.00 134.87 60.00 69.01 58.00 68.45 58.00 66.67 57.00 65.46
MinimumVertexCover_70 280 82.00 170.12 66.00 73.66 63.00 73.29 64.00 71.39 64.00 70.80
MinimumVertexCover_71 284 82.00 168.97 67.00 74.55 64.00 75.10 64.00 72.60 64.00 72.52
MinimumVertexCover_72 288 92.00 176.10 68.00 76.35 64.00 74.78 65.00 73.23 64.00 71.86
MinimumVertexCover_73 292 106.00 179.57 68.00 79.05 66.00 76.83 66.00 74.16 67.00 73.94
MinimumVertexCover_74 296 125.00 191.00 70.00 79.06 67.00 78.03 67.00 76.88 67.00 75.32

Considering all the analyzed figures of merit, it is possible
to conclude that the SQPTPA1 algorithm is the most suit-
able for exploring the graph colouring problems energy
profile.

7) Minimum Vertex Cover

Table 19 reports the setup configuration of the per-
formed minimum vertex cover tests, in particular the
number of Trotters, system copies and binary variables.
Each problem is identified with a name in the format:

MinimumVertexCover_x, where x is the number of
nodes, i.e. the total number of involved variables. In this case,
the Ntot_copies grows from 10 to 18 with the problem size.
Table 20 shows the optimal value (opt), the average one (avg),
and the number of iterations for obtaining these (MC_step).
Table 21 provides the prange, the TTS and the considered
pcons. In case of achievement of the optimal solution by all
solvers, the latter is fixed to 0.01%, while if even just one
solver does not reach the expected energy, it is computed,
exploiting a saturation mechanism in both directions (prange ∈
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TABLE 21: Results obtained by solving one hundred times minimum vertex cover problems (MinimumVertexCover_x)
of different sizes (x-node) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in
Table 19. In this table, the probability of finding the final energy in a given range (prange) and the TTS.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name pcons[%] prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS

MinimumVertexCover_20 0.10 25.00 160.08 97.00 13.13 96.00 14.31 100.00 10.00 100.00 10.00
MinimumVertexCover_25 0.10 3.00 1814.30 76.00 38.72 87.00 27.09 94.00 19.64 94.00 19.64
MinimumVertexCover_30 0.10 8.00 6627.61 4.00 13537.32 14.00 3664.04 9.00 5859.57 11.00 4742.15
MinimumVertexCover_35 6.67 5.00 12569.36 8.00 7732.21 48.00 985.93 31.00 1737.50 36.00 1444.64
MinimumVertexCover_40 2.86 6.00 11908.24 6.00 11908.24 46.00 1195.79 35.00 1710.44 28.00 2242.98
MinimumVertexCover_45 2.50 1.00 82477.90 2.00 41030.67 31.00 2233.93 22.00 3336.26 21.00 3516.56
MinimumVertexCover_50 6.67 1.00 91642.12 6.00 14885.30 37.00 1993.43 29.00 2689.23 26.00 3058.85
MinimumVertexCover_55 17.24 2.00 50148.60 60.00 1105.69 94.00 360.11 91.00 420.75 89.00 459.00
MinimumVertexCover_60 20.00 0.00 1104688.13 68.00 969.99 79.00 708.19 82.00 644.53 78.00 729.95
MinimumVertexCover_65 20.00 0.00 1196745.48 54.00 1541.92 63.00 1204.27 65.00 1140.52 72.00 940.59
MinimumVertexCover_70 20.00 0.00 1288802.82 74.00 957.22 68.00 1131.66 80.00 801.18 83.00 727.70
MinimumVertexCover_71 20.00 0.00 1307214.29 72.00 1027.42 56.00 1593.06 72.00 1027.42 81.00 787.53
MinimumVertexCover_72 20.00 0.00 1325625.76 59.00 1487.54 64.00 1298.18 74.00 984.57 82.00 773.44
MinimumVertexCover_73 20.00 0.00 1344037.23 74.00 998.25 63.00 1352.48 87.00 659.10 85.00 708.82
MinimumVertexCover_74 20.00 0.00 1362448.70 77.00 927.50 60.00 1487.66 73.00 1041.09 81.00 820.80

TABLE 22: Setup configuration considered for solving one hundred times number partitioning problems
(NumberPartitioning_x) of different sizes (x-number) with the proposed algorithms and the SQA as a reference.
The initial values for transverse fields and temperature are both equal to one for all the tests, while the number of involved
copies differs according to the problem and is reported in the following.

Problem
Ntot_copies

SQA SQPT SQPA SQPTPA1 SQPTPA2
Name vq M M SY S M SY S M SY Stemp SY Spop M SY Stemp SY Spop

NumberPartitioning_10 10 10 10 2 5 2 5 2 3 2 2 3 2
NumberPartitioning_20 20 10 10 2 5 2 5 2 3 2 2 3 2
NumberPartitioning_30 30 10 10 2 5 2 5 2 3 2 2 3 2
NumberPartitioning_40 40 10 10 2 5 2 5 2 3 2 2 3 2
NumberPartitioning_50 50 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_60 60 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_70 70 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_80 80 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_90 90 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_100 100 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_110 110 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_120 120 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_130 130 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_140 140 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_150 150 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_160 160 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_170 170 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_180 180 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_190 190 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_200 200 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_210 210 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_220 220 18 18 3 6 3 6 3 3 3 3 3 3
NumberPartitioning_230 230 18 18 3 6 3 6 3 3 3 3 3 3
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TABLE 23: Results obtained by solving one hundred times number partitioning problems (NumberPartitioning_x) of
different sizes (x-number) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in
Table 22. In this table, the energy of the best solution between ones obtained by each solver in the one hundred repetitions is
reported (opt) together with the average of the final energies found.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name MC_step opt avg opt avg opt avg opt avg opt avg

NumberPartitioning_10 10 96100.00 939751.96 96100.00 1080232.28 96100.00 1691727.16 96100.00 1375236.96 96100.00 1692447.16
NumberPartitioning_20 20 1.00 500670.52 9.00 719254.76 441.00 921029.24 81.00 710539.24 9.00 597222.12
NumberPartitioning_30 30 1.00 30789.88 25.00 36294.92 9.00 66638.68 1.00 31594.92 25.00 33995.64
NumberPartitioning_40 40 4.00 93099.20 16.00 82772.40 144.00 177001.24 16.00 153620.24 16.00 136018.36
NumberPartitioning_50 200 0.00 5548.00 0.00 5088.04 4.00 10990.56 0.00 7557.48 4.00 9020.40
NumberPartitioning_60 240 16.00 44570.80 0.00 47638.20 0.00 114826.52 4.00 86962.88 4.00 69656.64
NumberPartitioning_70 280 0.00 2865.40 0.00 2883.20 0.00 6820.12 4.00 3756.52 4.00 3123.96
NumberPartitioning_80 320 1.00 23157.64 1.00 22475.72 9.00 36160.12 1.00 31681.56 1.00 40771.72
NumberPartitioning_90 360 1.00 62042.04 1.00 62679.56 1.00 65237.08 1.00 53520.84 49.00 55889.72

NumberPartitioning_100 400 0.00 34211.52 4.00 32500.00 4.00 29220.32 4.00 33642.24 16.00 38132.00
NumberPartitioning_110 440 1.00 5501.00 1.00 7145.64 1.00 9657.48 1.00 8043.64 1.00 8803.64
NumberPartitioning_120 480 0.00 8457.40 0.00 7120.96 0.00 7555.12 0.00 9168.28 0.00 10320.44
NumberPartitioning_130 520 1.00 14621.08 25.00 16072.36 1.00 14013.32 1.00 14543.72 1.00 13258.60
NumberPartitioning_140 560 0.00 2432.44 0.00 1797.44 0.00 5318.48 0.00 3208.72 0.00 1569.68
NumberPartitioning_150 600 1.00 1671.08 1.00 1589.48 1.00 2693.72 1.00 2052.44 1.00 2048.76
NumberPartitioning_160 640 0.00 3476.16 0.00 3131.20 0.00 4669.08 0.00 4245.92 0.00 4034.52
NumberPartitioning_170 680 1.00 10426.76 1.00 9144.52 9.00 11383.40 1.00 10645.88 1.00 14475.16
NumberPartitioning_180 720 0.00 1336.96 0.00 1403.56 0.00 2962.32 0.00 1968.80 0.00 2420.44
NumberPartitioning_190 760 0.00 1720.52 0.00 1571.64 0.00 2534.76 0.00 3151.08 0.00 1861.00
NumberPartitioning_200 800 1.00 1651.80 1.00 1964.92 1.00 2352.76 1.00 2183.48 1.00 2260.52
NumberPartitioning_210 840 0.00 4639.72 4.00 4559.36 0.00 6221.80 4.00 6675.00 0.00 5007.00
NumberPartitioning_220 880 0.00 3057.40 0.00 4229.92 0.00 4257.44 0.00 3259.92 0.00 3616.68
NumberPartitioning_230 920 0.00 881.00 0.00 1343.40 0.00 3231.20 0.00 1779.48 0.00 4553.88

TABLE 24: Results obtained by solving one hundred times number partitioning problems (NumberPartitioning_x) of
different sizes (x-number) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in
Table 22. In this table, the probability of finding the final energy in a given range (prange) and the TTS.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name pcons[%] prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS

NumberPartitioning_10 0.10 71.00 37.20 69.00 39.32 69.00 39.32 66.00 42.69 68.00 40.42
NumberPartitioning_20 20.00 1.00 9164.21 0.00 92057.34 0.00 92057.34 0.00 92057.34 0.00 92057.34
NumberPartitioning_30 20.00 2.00 6838.45 0.00 138086.02 0.00 138086.02 4.00 3384.33 0.00 138086.02
NumberPartitioning_40 20.00 1.00 18328.42 0.00 184114.69 0.00 184114.69 0.00 184114.69 0.00 184114.69
NumberPartitioning_50 20.00 1.00 91642.12 1.00 91642.12 0.00 920573.44 3.00 30238.28 0.00 920573.44
NumberPartitioning_60 20.00 0.00 1104688.13 2.00 54707.56 1.00 109970.54 0.00 1104688.13 0.00 1104688.13
NumberPartitioning_70 20.00 1.00 128298.96 4.00 31587.08 1.00 128298.96 0.00 1288802.82 0.00 1288802.82
NumberPartitioning_80 20.00 1.00 146627.38 4.00 36099.52 0.00 1472917.51 1.00 146627.38 2.00 72943.41
NumberPartitioning_90 20.00 2.00 82061.34 1.00 164955.81 4.00 40611.96 5.00 32321.21 0.00 1657032.20
NumberPartitioning_100 20.00 1.00 183284.23 0.00 1841146.89 0.00 1841146.89 0.00 1841146.89 0.00 1841146.89
NumberPartitioning_110 0.10 6.00 32747.66 1.00 201612.65 4.00 49636.84 4.00 49636.84 2.00 100297.20
NumberPartitioning_120 0.10 2.00 109415.12 2.00 109415.12 1.00 219941.08 1.00 219941.08 2.00 109415.12
NumberPartitioning_130 20.00 3.00 78619.53 0.00 2393490.95 1.00 238269.50 2.00 118533.05 7.00 32998.01
NumberPartitioning_140 0.10 2.00 127650.98 5.00 50277.44 3.00 84667.18 1.00 256597.92 1.00 256597.92
NumberPartitioning_150 0.10 6.00 44655.90 5.00 53868.68 4.00 67686.60 6.00 44655.90 5.00 53868.68
NumberPartitioning_160 0.10 3.00 96762.50 4.00 72199.04 1.00 293254.77 4.00 72199.04 2.00 145886.83
NumberPartitioning_170 20.00 1.00 311583.19 2.00 155004.76 0.00 3129949.71 3.00 102810.15 3.00 102810.15
NumberPartitioning_180 0.10 5.00 64642.42 1.00 329911.62 2.00 164122.68 4.00 81223.92 5.00 64642.42
NumberPartitioning_190 0.10 3.00 114905.46 3.00 114905.46 3.00 114905.46 2.00 173240.61 1.00 348240.04
NumberPartitioning_200 0.10 6.00 59541.21 7.00 50766.17 4.00 90248.80 4.00 90248.80 4.00 90248.80
NumberPartitioning_210 20.00 1.00 384896.88 0.00 3866408.46 1.00 384896.88 0.00 3866408.46 1.00 384896.88
NumberPartitioning_220 0.10 3.00 133048.43 2.00 200594.39 1.00 403225.31 5.00 79007.40 1.00 403225.31
NumberPartitioning_230 0.10 3.00 139096.09 5.00 82598.64 2.00 209712.32 6.00 68472.39 1.00 421553.73
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TABLE 25: Setup configuration considered for solving one hundred times linear regression problems
(LinearRegression_p) of different sizes (p-power, i.e. 4p-variable) with the proposed algorithms and the SQA as
a reference. The initial values for transverse fields and temperature are both equal to one for all the tests, while the number of
involved copies differs according to the problem and is reported in the following.

Problem
Ntot_copies

SQA SQPT SQPA SQPTPA1 SQPTPA2
Name vq M M SY S M SY S M SY Stemp SY Spop M SY Stemp SY Spop

LinearRegression_5 20 10 10 2 5 2 5 2 3 2 2 3 2
LinearRegression_6 24 10 10 2 5 2 5 2 3 2 2 3 2
LinearRegression_7 28 10 10 2 5 2 5 2 3 2 2 3 2
LinearRegression_8 32 10 10 2 5 2 5 2 3 2 2 3 2
LinearRegression_9 36 10 10 2 5 2 5 2 3 2 2 3 2

LinearRegression_11 44 10 10 2 5 2 5 2 3 2 2 3 2
LinearRegression_12 48 10 10 2 5 2 5 2 3 2 2 3 2
LinearRegression_13 52 10 10 2 5 2 5 2 3 2 2 3 2
LinearRegression_14 56 10 10 2 5 2 5 2 3 2 2 3 2
LinearRegression_15 60 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_16 64 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_17 68 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_18 72 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_19 76 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_20 80 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_25 100 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_35 140 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_45 180 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_60 240 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_70 280 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_80 320 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_90 360 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_100 400 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_110 440 18 18 3 6 3 6 3 3 3 3 3 3
LinearRegression_120 480 18 18 3 6 3 6 3 3 3 3 3 3

[0.01%, 20%]), for each optimization problem according to
the following formula:

pcons[%] =

∣∣∣∣1− minh

minl

∣∣∣∣100 , (77)

where minh is the highest opt among ones of all the analyzed
solvers, while minl is the lowest one. In this way, the value
obtained (val) is sufficiently close to the actual optimal value
to appreciate prange lower than 100%. When the saturation
mechanism is employed, some prange are equal to 0%. This
choice was done for guaranteeing a val which cannot cause
too many prange equal to 100%.
The prange

MC_step and the TTS evolutions, varying the problem size
with a window w equal to 50, are reported in Figures 14g and
15g. The obtained TTS shape is coherent with expectations.
In fact, it is possible to identify a square-root evolution with
the problem size in the logarithmic axis.
Reading the obtained results, it is possible to say that the best
solver for middle-size problems is the SQPA, while for small
and large ones the best are the SQPTPA1 and the SQPTPA2,
i.e. they provide the highest prange and the lowest TTS. At
the same time, the SQA, and the SQPT solvers provide the
worst results for all problem sizes, i.e. TTS is significantly
higher than the others. Examples of cumulative distribution
and energy evolutions for the 31-variable problem are re-

ported in Figures 16g and 17g, respectively. It is possible to
observe that the cumulative distribution of the SQPA is more
concentrated on the left, i.e. the probability of reaching the
optimal solution is higher. From the energy evolution point
of view, it is possible to observe that all the algorithms have
reached convergence.
Considering all the analyzed figures of merit, it is possible to
conclude that the SQPTPA2 algorithm is the most suitable
for exploring the minimum vertex cover problems energy
profile.

8) Number Partitioning
Table 22 reports the algorithms configurations chosen for
solving number partitioning tests. In particular, the number
of Trotters, system copies and binary variables are shown.
Each problem is identified with a name in the format:
NumberPartitioning_x, where x is the number of
numbers, i.e. the total number of involved variables. In this
case, the Ntot_copies grows from 10 to 18 with the problem
size.
Table 23 shows the optimal value (opt), the average one (avg),
and the number of iterations for obtaining these (MC_step).
Table 24 provides the prange, the TTS and the considered
pcons. In case of achievement of the optimal solution by all
solvers, the latter is fixed to 0.01%, while if even just one
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TABLE 26: Results obtained by solving one hundred times linear regression problems (LinearRegression_p) of different
sizes (p-power, i.e. 4p-variable) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported
in Table 25. In this table, the energy of the best solution between ones obtained by each solver in the one hundred repetitions is
reported (opt) together with the average of the final energies found.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name MC_step opt avg opt avg opt avg opt avg opt avg

LinearRegression_5 10 -3565.51 -3565.41 -3565.51 -3565.26 -3565.51 -3563.97 -3565.51 -3565.44 -3565.51 -3565.42
LinearRegression_6 12 -35.28 -35.28 -35.28 -35.28 -35.28 -35.25 -35.28 -35.28 -35.28 -35.28
LinearRegression_7 14 -2194.86 -2194.85 -2194.86 -2194.86 -2194.86 -2194.82 -2194.86 -2194.86 -2194.86 -2194.86
LinearRegression_8 16 -3449.68 -3449.67 -3449.68 -3449.66 -3449.68 -3449.31 -3449.68 -3449.68 -3449.68 -3449.68
LinearRegression_9 18 -574.65 -574.63 -574.65 -574.64 -574.65 -574.63 -574.65 -574.64 -574.65 -574.64

LinearRegression_11 22 -2054.22 -2054.20 -2054.22 -2054.21 -2054.22 -2054.20 -2054.22 -2054.21 -2054.22 -2054.21
LinearRegression_12 24 -158.52 -158.50 -158.52 -158.52 -158.52 -158.49 -158.52 -158.52 -158.52 -158.52
LinearRegression_13 26 -43.79 -43.77 -43.79 -43.78 -43.79 -43.77 -43.79 -43.78 -43.79 -43.78
LinearRegression_14 28 -1268.22 -1268.20 -1268.22 -1268.20 -1268.22 -1268.17 -1268.22 -1268.21 -1268.22 -1268.20
LinearRegression_15 300 -174.63 -174.63 -174.63 -174.63 -174.63 -174.63 -174.63 -174.63 -174.63 -174.63
LinearRegression_16 32 -3345.13 -3345.13 -3345.13 -3345.12 -3345.13 -3345.12 -3345.13 -3345.12 -3345.13 -3345.12
LinearRegression_17 34 -181.54 -181.54 -181.54 -181.53 -181.54 -181.53 -181.54 -181.53 -181.54 -181.53
LinearRegression_18 36 -129.89 -129.89 -129.89 -129.88 -129.89 -129.89 -129.89 -129.89 -129.89 -129.89
LinearRegression_19 38 -2234.23 -2234.22 -2234.23 -2234.22 -2234.23 -2234.23 -2234.23 -2234.22 -2234.23 -2234.23
LinearRegression_20 40 -2405.43 -2405.43 -2405.43 -2405.42 -2405.43 -2405.43 -2405.43 -2405.43 -2405.43 -2405.43
LinearRegression_25 500 -159.27 -159.27 -159.27 -159.27 -159.27 -159.27 -159.27 -159.27 -159.27 -159.27
LinearRegression_35 700 -189.11 -189.10 -189.11 -189.10 -189.11 -189.11 -189.11 -189.11 -189.11 -189.11
LinearRegression_45 900 -1379.65 -1379.65 -1379.65 -1379.65 -1379.65 -1379.65 -1379.65 -1379.65 -1379.65 -1379.65
LinearRegression_60 120 -1310.37 -1310.36 -1310.37 -1310.36 -1310.37 -1310.37 -1310.37 -1310.36 -1310.37 -1310.36
LinearRegression_70 140 -3518.65 -3518.65 -3518.65 -3518.65 -3518.65 -3518.65 -3518.65 -3518.65 -3518.65 -3518.65
LinearRegression_80 160 -1284.62 -1284.62 -1284.62 -1284.62 -1284.62 -1284.62 -1284.62 -1284.62 -1284.62 -1284.62
LinearRegression_90 180 -2287.15 -2287.14 -2287.15 -2287.14 -2287.15 -2287.14 -2287.15 -2287.14 -2287.15 -2287.14
LinearRegression_100 200 -156.18 -156.18 -156.18 -156.18 -156.18 -156.18 -156.18 -156.18 -156.18 -156.18
LinearRegression_110 220 -235.21 -235.21 -235.21 -235.21 -235.21 -235.21 -235.21 -235.21 -235.21 -235.21
LinearRegression_120 240 -1246.65 -1246.65 -1246.65 -1246.65 -1246.65 -1246.65 -1246.65 -1246.65 -1246.65 -1246.65

solver does not reach the expected energy, it is computed,
exploiting a saturation mechanism, for each optimization
problem according to the formula reported in Equation 76.
In this way, the value obtained (val) is sufficiently close to
the actual optimal value to appreciate prange lower than 100%.
When the saturation mechanism is employed, some prange are
equal to 0%. This choice was done for guaranteeing a val
which cannot cause too many prange equal to 100%.
The prange

MC_step and the TTS evolutions, varying the problem size
with a window w equal to 50, are reported in Figures 14h and
15h. The obtained TTS shape is coherent with expectations.
In fact, it is possible to identify a square-root evolution with
the problem size in the logarithmic axis.
Reading the obtained results, it is possible to notice that the
SQA and the SQPT are the best solvers, while the SQPA and
the SQPTPA2 solvers give the worst results, i.e. TTS is sig-
nificantly higher than the others. Examples of cumulative dis-
tribution and energy evolutions for the 170-variable problem
are reported in Figures 16h and 17h respectively. It is possible
to notice that the cumulative distribution of the SQPT is
more concentrated on the left, i.e. the probability of reaching
the optimal solution is higher. From the energy evolution

point of view, it is possible to observe that the SQPTPA2
has not reached convergence and the SQPA reaches a lower
energy point at the beginning, starting, however, to grow for
converging in a higher energy configuration.
Considering all the analyzed figures of merit, it is possible
to conclude that the SQA and the SQPT algorithms are
the most suitable for exploring the number partitioning
problems energy profile.

9) Linear regression

Table 25 reports the setup configuration of the per-
formed linear regression tests. In particular, it shows the
number of Trotters, system copies and binary variables.
Each problem is identified with a name in the format:
LinearRegression_p, where p is the number of powers,
i.e. the total number of involved variables is equal to 4p. In
this case, theNtot_copies grows from 10 to 18 with the problem
size.
Table 26 shows the optimal value (opt), the average one (avg),
and the number of iterations for obtaining these (MC_step).
Table 27 provides the prange, the TTS and the considered pcons.
In case of achievement of the optimal solution by all, it is
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TABLE 27: Results obtained by solving one hundred times linear regression problems (LinearRegression_p) of different
sizes (p-power, i.e. 4p-variable) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported
in Table 25. In this table, the energy of the best solution between ones obtained by each solver in the one hundred repetitions is
reported (opt) together with the average of the final energies found.

Problem SQA SQPT SQPA SQPTPA1 SQPTPA2
Name pcons[%] prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS prange[%] TTS

LinearRegression_5 1.00e-05 86.00 23.42 94.00 16.37 57.00 54.57 87.00 22.57 82.00 26.86
LinearRegression_6 1.00e-05 99.00 12.00 100.00 12.00 93.00 20.78 98.00 14.13 96.00 17.17
LinearRegression_7 1.00e-05 79.00 41.31 99.00 14.00 91.00 26.77 98.00 16.48 100.00 14.00
LinearRegression_8 1.00e-05 59.00 82.64 91.00 30.60 52.00 100.39 90.00 32.00 90.00 32.00
LinearRegression_9 1.00e-05 13.00 595.23 28.00 252.33 24.00 302.05 40.00 162.27 49.00 123.11

LinearRegression_11 1.00e-05 4.00 2481.84 41.00 192.02 27.00 321.93 41.00 192.02 50.00 146.16
LinearRegression_12 2.11e-05 1.00 10997.05 9.00 1171.91 16.00 633.91 17.00 593.16 20.00 495.30
LinearRegression_13 1.00e-05 1.00 11913.47 4.00 2933.09 9.00 1269.57 10.00 1136.43 11.00 1027.47
LinearRegression_14 1.00e-05 1.00 12829.90 2.00 6382.55 11.00 1106.50 12.00 1008.69 19.00 611.92
LinearRegression_15 1.00e-05 5.00 26934.34 5.00 26934.34 13.00 9920.51 7.00 19037.31 1.00 137463.17
LinearRegression_16 1.00e-05 7.00 2030.65 2.00 7294.34 8.00 1767.36 4.00 3609.95 6.00 2381.65
LinearRegression_17 4.10e-05 3.00 5140.51 1.00 15579.16 2.00 7750.24 2.00 7750.24 2.00 7750.24
LinearRegression_18 4.91e-05 1.00 16495.58 1.00 16495.58 1.00 16495.58 2.00 8206.13 1.00 16495.58
LinearRegression_19 1.00e-05 5.00 3411.68 2.00 8662.03 9.00 1855.53 4.00 4286.82 8.00 2098.74
LinearRegression_20 1.00e-05 9.00 1953.19 5.00 3591.25 10.00 1748.35 12.00 1440.99 15.00 1133.45
LinearRegression_25 1.00e-05 5.00 44890.57 1.00 229105.29 12.00 18012.39 3.00 75595.70 8.00 27615.02
LinearRegression_35 2.75e-05 1.00 320747.40 1.00 320747.40 32.00 8358.65 18.00 16243.91 18.00 16243.91
LinearRegression_45 1.00e-05 28.00 12616.75 10.00 39337.82 58.00 4777.70 47.00 6528.26 31.00 11169.65
LinearRegression_60 1.00e-05 2.00 27353.78 1.00 54985.27 12.00 4322.97 9.00 5859.57 10.00 5245.04
LinearRegression_70 1.00e-05 14.00 4274.71 7.00 8884.08 18.00 3248.78 9.00 6836.17 10.00 6119.22
LinearRegression_80 1.00e-05 9.00 7812.77 1.00 73313.69 16.00 4226.06 14.00 4885.38 13.00 5290.94
LinearRegression_90 1.00e-05 28.00 2523.35 8.00 9941.41 47.00 1305.65 37.00 1794.08 30.00 2324.05
LinearRegression_100 5.08e-05 7.00 12691.54 1.00 91642.12 17.00 4943.04 10.00 8741.74 15.00 5667.24
LinearRegression_110 1.00e-05 2.00 50148.60 1.00 100806.33 3.00 33262.11 2.00 50148.60 1.00 100806.33
LinearRegression_120 1.00e-05 12.00 8645.95 6.00 17862.36 27.00 3511.93 11.00 9484.29 17.00 5931.64

fixed to 0.1% for each optimization problem, while in the
others it is computed according to the formula of Equation
76. In this way, the value obtained (val) is sufficiently close to
the actual optimal value to appreciate prange lower than 100%.
The prange

MC_step and the TTS evolutions, varying the problem size
with a window w equal to 10, are reported in Figures 14i and
15i. The obtained TTS shape is consistent with expectations.
In fact, it is possible to identify a square-root evolution with
the problem size in the logarithmic axis.
Reading the obtained results, it is possible to notice that, for
large-size problems, the SQPA is the best solver, while the
SQA and the SQPT solvers give good results for small-size
problems, but with larger ones provide the worst, i.e. TTS is
significantly higher than the others. The SQPTPA1 and the
SQPTAPA2 have good performance for all problem sizes.
Examples of cumulative distribution and energy evolutions
for the 400-variable problem are reported in Figures 16i
and 17i, respectively. It is possible to notice that the cu-
mulative distribution of the SQPA and the SQPTPA1 are
more concentrated on the left, i.e. the probability of reaching
the optimal solution is higher. From the energy evolution
point of view, it is possible to observe that all the solvers
have reached convergence. However, the SQA and the SQPT
reached a higher convergence value than the other. Moreover,

the SQPTPA1 and the SQPTPA2 have a faster evolution than
SQPA.
Considering all the analyzed figures of merit, it is possible
to conclude that the SQA, SQPTPA1 and the SQPTPA2
algorithms are the most suitable for exploring the linear
regression problems energy profile.

V. CONCLUSION
This work proposed four new hybrid quantum-classical algo-
rithms obtained from the combination of SQA, PT and PA
and compared them with SQA solving many types of QUBO
problems. The results show that the proposed approaches can
significantly improve the quality of the results with equal
iterations with respect to SQA. However, the best solver is
strongly correlated with the energy profile characteristics of
the target optimization problem, coherently with expectation.
For example, the SQPTPA1 is the best solver for max-cut
problems, while the SQPT provides the best results with
graph colouring optimization. Nevertheless, on average, the
SQPTPA1 and the SQPTPA2 give a significantly good per-
formance thanks to their capability to exploit the advantages
of both SQA, PT and PA solution space exploration. There-
fore, these approaches can be defined as promising.
The software implementations of the approaches considered
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FIGURE 18: Automatic toolchain for QUBO solving. Staring from a real-world problem in an abstract description, the QUBO
generation block provides the QUBO formulation. Then, the QUBO pre-processing block tries to reduce the problem dimension
by fixing some variables. The Best solver and setting block identifies the best solver for the problem energy profile based on
previous experience, establishes the value of algorithm degrees of freedom and, eventually, performs an additional solver-
aware pre-processing. Furthermore, the solver looks for the optimal solution (Optimization step). Finally, the solution found is
interpreted and applied to the starting real-world application (Solution interpretation).

in this work have to be seen as a proof-of-concept of the
exploration mechanisms’ validity. In order to exploit the
potential of the new proposed algorithm, it will be necessary
to obtain optimized and parallelized hardware implementa-
tions as possible. This should also allow the extension of the
benchmark analysis to larger optimizations. Moreover, they
can become more effective if a pre-conditioning procedure is
applied to the QUBO problem for obtaining an energy profile
more compatible with the target solver exploration.
Even though the current status of the work is preliminary,
the performed analysis to evaluate the solver’s effectiveness
in optimizing many types of problems is a fundamental
milestone for obtaining an automatic toolchain which can
help the QUBO-solving procedure. Indeed, from a long-term
perspective, the main idea is to develop a structure like the
one reported in Figure 18, i.e. capable of managing any step
of quantum-compliant optimization. In particular, the first
step will manage the conversion from a real-world problem
to a QUBO formulation, as in [101]. The second will be a
solver-unaware pre-processing step for reducing the number
of involved binary variables. The third will be the solver
selection — among quantum, quantum-inspired and hybrid
quantum-classical ones — based on problem energy profile
characteristics, previous experience and further solver-aware
pre-processing. The solver selection could also include a
preliminary step associated with the degrees of freedom
management, like that reported for the quantum circuit model
in [35], to further improve the exploration quality. Finally,
the solution space will be explored, detecting the optimal
solution and interpreting it.
Even though the project seems particularly ambitious, we
will strive to complete the toolchain to help researchers
and industries in solving optimization problems which can
improve people’s lives. We hope that developing the backend
prototypes discussed in this article can be a good starting
point for achieving the goal.
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