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A NOTE ON THE DISTRIBUTION OF WEIGHTS OF

FIXED-RANK MATRICES OVER THE BINARY FIELD

CARLO SANNA†

Abstract. Let M be a random m×n rank-r matrix over the binary field F2, and let wt(M)
be its Hamming weight, that is, the number of nonzero entries of M.

We prove that, as m,n → +∞ with r fixed and m/n tending to a constant, we have that

wt(M)− 1−2−r

2
mn√

2−r(1−2−r)
4

(m+ n)mn

converges in distribution to a standard normal random variable.

1. Introduction

Let Fq be a finite field of q elements and, for every matrix M over Fq, let wt(M) be the
Hamming weight of M, that is, the number of nonzero entries of M.

Migler, Morrison, and Ogle [1] proved a formula for the expected value of wt(M) whenM is a
random m×n rank-r matrix over Fq taken with uniform probability. Moreover, they suggested
that if m,n → +∞, with fixed r and q, then wt(M) approaches a normal distribution; and
they made some considerations on the cases r = 1, 2 (see Remark 1.1 below).

We prove the following result.

Theorem 1.1. Fix a positive integer r and a real number ρ > 0. Let M be a random m × n
rank-r matrix over F2 taken with uniform probability. Then, as m,n → +∞ with m/n → ρ,
we have that

wt(M)− 1−2−r

2 mn√
2−r(1−2−r)

4 (m+ n)mn

converges in distribution to a standard normal random variable.

It might be interesting to strengthen Theorem 1.1 by letting also r goes to infinity, but
sufficiently slowly in terms ofm and n. Furthermore, one could consider analogs of Theorem 1.1
for matrices over an arbitrary finite field Fq, or over rings such as Z/nZ (for a suitable definition
of the rank). Then, instead of the Hamming weight, one could more generally consider the
number of entries of M that are equal to a prescribed fixed element.

Remark 1.1. Theorem 3 in [1] asserts that the weight distribution of m × n rank-1 matrices
over Fq approaches a normal distribution as m,n → +∞. However, the proof provided in [1]
is incorrect since, in order to apply the central limit theorem, it assumes that the random
variables XiY are independent, while in fact they are not (they are all multiple of the same
random variable Y ).

2. Preliminaries

Hereafter, let m,n, r be positive integers with r ≤ min(m,n). For every field K, let Km×n

be the vector space of m× n matrices with entries in K, and let Km×n,r be the set of matrices
M ∈ Km×n such that rank(M) = r.
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2 C. SANNA

The following lemma regards the so-called “full rank factorization” of matrices and it is well
known (cf. [2, Theorem 2]). We give a short proof for the sake of completeness.

Lemma 2.1. Let K be an arbitrary field. For every M ∈ Km×n,r there exist X ∈ Km×r,r

and Y ∈ Kr×n,r such that M = XY. Moreover, if M = X′Y′ for some X′ ∈ Km×r,r and
Y′ ∈ Kr×n,r, then there exists R ∈ Kr×r,r such that X′ = XR and Y′ = R−1Y.

Proof. Pick X has a matrix whose columns form a basis of the column space of M. Note that
indeed X ∈ Km×r,r. Since each column of M can be uniquely written as a linear combination
of the columns of X, we get that M = XY for a unique Y ∈ Kr×n. Therefore, we have that

rank(Y) = rank(XY) = rank(M) = r,

and so Y ∈ Kr×n,r. If M = X′Y′ for some X′ ∈ Km×r,r and Y′ ∈ Kr×n,r, then the columns of
X′ form a basis of the column space of M. Hence, there exists R ∈ Kr×r,r such that X′ = XR.
Consequently, we have that

XY = M = X′Y′ = XRY′,

By the uniqueness of Y, we get that Y = RY′ and so Y′ = R−1Y. □

We identify F2 with {0, 1} and we let ⊕ and ⊗ denote the addition and multiplication of
F2, respectively. The next lemma relates the operations of F2 with the usual addition and
multiplication of N.

Lemma 2.2. Let a1, . . . , ar ∈ F2. Then:

(i)
⊗r

k=1 ak =
∏r

k=1 ak and

(ii)
⊕r

k=1 ak =
∑

S⊆{1,...,r}
S̸=∅

(−2)|S|−1
∏

k∈S ak.

Proof. Claim (i) is obvious. For claim (ii), let T :=
{
k ∈ {1, . . . , r} : ak = 1

}
. Then

r⊕
k=1

ak =

{
1 if |T | is odd
0 if |T | is even

=

(
(1− 2)|T | − 1

)
−2

=
∑
S⊆T
S̸=∅

(−2)|S|−1 =
∑

S⊆{1,...,r}
S̸=∅

(−2)|S|−1
∏
k∈S

ak,

as desired. □

In what follows, let X ∈ Fm×r
2 and Y ∈ Fr×n

2 be independent uniformly distributed random
matrices. Moreover, for each S ⊆ {1, . . . , r}, let

XS :=
m∑
i=1

∏
k∈S

xi,k and YS :=
n∑

j=1

∏
k∈S

yk,j ,

and let also

Z :=
m∑
i=1

r∏
k=1

(1− xi,k) and W :=
n∑

j=1

r∏
k=1

(1− yk,j),

where xi,j and yi,j are the entries of X and Y, respectively.
We shall need the following two lemmas.

Lemma 2.3. We have

wt(XY)− 1
2mn =

∑
S⊆{1,...,r}

(−2)|S|−1XSYS .

Proof. By Lemma 2.2, we get that

wt(XY)=
m∑
i=1

n∑
j=1

r⊕
k=1

(xi,k⊗yk,j) =
m∑
i=1

n∑
j=1

r⊕
k=1

xi,kyk,j =
m∑
i=1

n∑
j=1

∑
S⊆{1,...,r}

S̸=∅

(−2)|S|−1
∏
k∈S

xi,kyk,j .
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Hence, since the empty product is equal to 1, we obtain that

wt(XY)− 1
2mn =

m∑
i=1

n∑
j=1

∑
S⊆{1,...,r}

(−2)|S|−1
∏
k∈S

xi,kyk,j

=
∑

S⊆{1,...,r}

(−2)|S|−1
m∑
i=1

∏
k∈S

xi,k

n∑
j=1

∏
k∈S

yk,j =
∑

S⊆{1,...,r}

(−2)|S|−1XSYS ,

as claimed. □

Lemma 2.4. We have

wt(XY)− 1−2−r

2 mn =
∑

S⊆{1,...,r}

(−2)|S|−1(XS − 2−|S|m)(YS − 2−|S|n)

− 1
2n(Z − 2−rm)− 1

2m(W − 2−rn).

Proof. From Lemma 2.3 and the identity

XSYS = (XS − 2−|S|m)(YS − 2−|S|n) + 2−|S|nXS + 2−|S|mYS − 2−2|S|mn,

it follows that

wt(XY)− 1
2mn =

∑
S⊆{1,...,r}

(−2)|S|−1(XS − 2−|S|m)(YS − 2−|S|n)(1)

− 1
2n

∑
S⊆{1,...,r}

(−1)|S|XS − 1
2m

∑
S⊆{1,...,r}

(−1)|S|YS + 1
2mn

∑
S⊆{1,...,r}

(−1
2)

|S|.

Furthermore, we have that∑
S⊆{1,...,r}

(−1)|S|XS =
∑

S⊆{1,...,r}

(−1)|S|
m∑
i=1

∏
k∈S

xi,k

=

m∑
i=1

∑
S⊆{1,...,r}

∏
k∈S

(−xi,k) =

m∑
i=1

r∏
k=1

(1− xi,k) = Z,

and similary for the third sum in (1); while the fourth sum in (1) is equal to (1− 1
2)

r = 2−r.
Hence, we get that

wt(XY)− 1
2mn =

∑
S⊆{1,...,r}

(−2)|S|−1(XS − 2−|S|m)(YS − 2−|S|n)− 1
2nZ − 1

2mW + 1
22

−rmn,

and the claim follows. □

Lemma 2.5. We have that

P
[
rank(X) = rank(Y) = r

]
→ 1,

as m,n → +∞ with r fixed.

Proof. It is well-known (see, e.g., [1, Formula 3]) that

|Fm×r,k
2 | =

k−1∏
i=0

(2m − 2i)(2r − 2i)

2k − 2i
,

for every nonnegative integer k ≤ r. Therefore, we have that

P
[
rank(X) < r

]
=

1

2mr

r−1∑
k=0

|Fm×r,k
2 | <

r−1∑
k=0

2rk−m(r−k) → 0,

as m → +∞ with r fixed. A similar reasoning gives that P
[
rank(Y) < r

]
→ 0, as n → +∞

with r fixed. The claim follows. □
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3. Proof of Theorem 1.1

Fix a positive integer r and a real number ρ > 0, and assume that m,n → +∞ with
m/n → ρ. By Lemma 2.5, the probability that X and Y have ranks equal to r tends to 1.
Moreover, by Lemma 2.1, under the condition that X and Y have rank r, the random variable
XY is uniformly distributed in Fm×n,r

2 . Therefore, for the sake of proving Theorem 1.1, we
can assume that M = XY.

It can be easily checked that XS and YS are binomial random variables of m and n trials,
respectively, and probabilities of success equal to 2−|S|. Similarly, Z and W are binomial
random variables of m and n trials, respectively, and probabilities of success equal to 2−r.
For the sake of brevity, for each random variable T that has finite expected value and finite
nonzero variance, we put T ′ := (T − E[T ])/

√
V[T ]. Then, by the central limit theorem, we

have that X ′
S , Y

′
S , Z

′, W ′ converge in distribution to some standard normal random variables,

which we call X̂S , ŶS , Ẑ, Ŵ , respectively.
Morever, from Lemma 2.4, it follows that

wt(M)− 1−2−r

2 mn√
2−r(1−2−r)

4 (m+ n)mn

=
∑

S⊆{1,...,r}

(−1)|S|−1(1− 2−|S|)√
2−r(1− 2−r)(m+ n)

X ′
SY

′
S(2)

− Z ′√
1 +m/n

− W ′√
1 + n/m

.

SinceX ′
S and Y ′

S are independent, their product converges in distribution to the product X̂S ŶS .
Therefore, from Slutsky’s theorem, we get that the sum in (2) converges in distribution to the
constant 0. Consequently, the sum in (2) converges in probability to the constant 0.

Since Z ′ and W ′ are independent and m/n → ρ, we get that

(3)
Z ′√

1 +m/n
+

W ′√
1 + n/m

→ 1√
1 + ρ

Ẑ +
1√

1 + 1/ρ
Ŵ

in distribution. Also, since Z ′ and W ′ are independent, it follows that the right-hand-side
of (3) is a standard normal random variable. Hence, again from Slutsky’s theorem, we obtain
that the left-hand-side of (2) converges in distribution to a standard normal random variable.

The proof is complete.
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