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Stability and lifetime of diffusion-trapped 
oxygen in oxide-derived copper CO2 
reduction electrocatalysts

Zan Lian    1  , Federico Dattila    2 & Núria López    1 

Oxide-derived Cu has an excellent ability to promote C–C coupling in 
the electrochemical carbon dioxide reduction reaction. However, these 
materials largely rearrange under reaction conditions; therefore, the 
nature of the active site remains controversial. Here we study the reduction 
process of oxide-derived Cu via large-scale molecular dynamics with 
a precise neural network potential trained on first-principles data and 
introducing experimental conditions. The oxygen concentration in the 
most stable oxide-derived Cu increases with an increase of the pH, potential 
or specific surface area. In long electrochemical experiments, the catalyst 
would be fully reduced to Cu, but removing all the trapped oxygen takes 
a considerable amount of time. Although the highly reconstructed Cu 
surface provides various sites to adsorb oxygen more strongly, the surface 
oxygen atoms are not stable under common experimental conditions. This 
work provides insight into the evolution of oxide-derived Cu catalysts and 
residual oxygen during reaction and also a deep understanding of the nature 
of active sites.

Closing the carbon cycle through electrochemical carbon dioxide 
(CO2) reduction with renewable energy has drawn attention for its 
potential to create net-zero technologies1–3. Cu-based catalysts are 
considered the only class of materials able to perform C–C coupling4,5 
and to provide valuable C2+ products at high reaction rates6–11. Cu and 
particularly oxide-derived Cu (OD-Cu) catalysts exhibit significant 
structure sensitivity12–15; the latter produce C2+ with higher current 
density and faradaic efficiency (FE = 45% to 80%) at reasonable overpo-
tentials (U = –0.40 to –1.00 V versus the reversible hydrogen electrode 
(VRHE))12,16–20. These materials show a highly dynamic behaviour with 
profound stoichiometric and structural rearrangements under the 
experimental conditions21–24.

The unique performance of OD-Cu has been attributed to the 
singularities of its morphology23–28; however, the real structure under 
reaction conditions remains controversial15,16,29–36 due to its highly 
dynamic behaviour under experimental conditions. According to X-ray 
diffraction and Raman experiments31,37, OD-Cu should be reduced in 

the bulk, which is also consistent with the thermodynamics38,39, but 
pulse experiments16 show that residual oxygen40,41 can be trapped, thus 
enhancing the electrocatalytic process42,43. Uniformly dispersed oxide 
nanoparticles NPs reduced under CO2 reduction reaction (CO2RR) 
conditions were found to evolve morphologically very rapidly via an 
electrochemical scrambling process, with an initial formation of Cu 
aggregates that under air exposure change into Cu2O nanocubes6. 
Moreover, the existence of oxygen species under reductive condi-
tions was investigated with grazing incidence hard X-ray photoelec-
tron spectroscopy of OD-Cu prepared by the reduction of Cu oxide 
with H2 without exposure to air. These conditions enabled authors 
to extract the oxygen depth distribution profiles29. These experi-
ments identify separated Cu2O buried in the material; oxygen in the 
lattice close to the surface, replacing Cu atomic positions; and O as 
interstitials in the Cu. Computational models have attempted to dis-
entangle such complexity, but they face similar severe limitations. 
Models for fully oxygen-depleted materials have been investigated in 
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for models under extreme conditions (at least 1,200 K, for 1 ns) were 
performed (Supplementary Note 1 and Supplementary Figs. 1–3). These 
models include the following: a Cu slab with 3,240 atoms generated 
by removing all oxygens from a Cu2O(111) pristine system; for Cu2O, 
a Cu1415O784 cluster; and for CuxO, a slab of OD-Cu (Cu444O56) from our 
previous study14.

To ensure representativity and transferability, the dataset was 
constructed in two stages. First, the datasets for Cu and Cu2O were 
built separately via active learning. Then the intermediate composi-
tion structures of CuxO were selected. In total, 433 iterations of the 
active learning process were conducted, in which 8.16 × 1010 steps 
were run from NN-MDs; 8.30 × 107 structures were compared using 
two NNPs; and a final dataset with 59,491 points was obtained (Sup-
plementary Table 1). The NNPs applied in the following MD simulation 
were trained using the final dataset. From the model, the r.m.s.e. of the 
energy is 4.58 meV per atom and the r.m.s.e. of force is 63.61 meV Å–1 
on the training set, and 4.59 meV per atom and 63.48 meV Å–1 on the 
test set, as shown in Supplementary Fig. 4. The energy errors are one 
order of magnitude smaller than the requirement for chemical accu-
racy (1 kcal mol–1, that is, 43 meV per atom), which denotes that the 
NNP has reached the same level of chemical accuracy as the reference 
PBE-D2 functional. Similar errors in the training and test sets indicate 
no overfitting.

Thermodynamics of the OD-Cu reduction
To address the fraction of oxygen in OD-Cu under different condi-
tions from a thermodynamic point of view, we started with a perfect 
Cu2O(111) slab to examine the role of pH, electric potential and spe-
cific surface area (SSA; surface/volume; Fig. 2). Electric potential and  
pH were introduced through the computational hydrogen electrode56. 
The O-deficient configurations were simulated by the sequential 
removal of O atoms. For each step, the same number of oxygens  
(1/48 of the total number of oxygens in the perfect slab) were randomly 
chosen and removed from the previous structure until all oxygen 
atoms were removed after 48 steps. Ten random runs were completed 
to achieve statistical significance. The thermodynamic minima  
were identified for each case by using a NN-MD annealing simulation 
(Supplementary Note 2).

Figure 2a shows the energy of OD-Cu reduction as a function of 
pH. At low pH, OD-Cu tends to be fully reduced to generate pure cop-
per. However, at high pH values, which are typical of highly active and 
ethylene-selective CO2RR electrolysers57, all the steps of the reduction 
are endothermic, and the perfect Cu2O is the most stable state. At 
intermediate pH, the partially reduced Cu2O system is the thermody-
namic ground state. In electrochemical media, with KHCO3 buffer as 
the electrolyte (pH 6.8–8), about ~8.6 at.% oxygen would remain in a 
system with a SSA of 0.070 Å−1 (diameter of 8.6 nm; Supplementary 
Table 2) at zero potential versus the standard hydrogen electrode (SHE). 
However, the elimination of the first 37.5% (18/48) of the oxygens is 
endothermic, which indicates that starting the reduction will require a 
driving force. As expected, the driving force can be the electric poten-
tial, as shown in Fig. 2b; at more reductive potentials, the reduction to 
copper is favourable. Metallic copper is more favourable than all the 
partially reduced OD-Cu structures at computational potentials as 
small as –0.19 V versus the SHE (VSHE; +0.29 VRHE). As an approximation 
to kinetics, we considered the step with the largest positive reaction 
energy as the potential limiting step that prevents further reduction. 
This results in a computational potential of –0.39 VSHE (+0.09 VRHE) to 
ensure that all steps are exothermic, indicating that OD-Cu reduction 
is kinetically limited at weak reduction potentials. The potential for 
the limiting step was obtained from the mean energy diagram of the 
ten random reduction simulations. For the single-energy diagrams, 
the average potential is –1.09 VSHE with a sample standard deviation of 
0.36 V, indicating the variance resulting from the annealing simulations 
and the differently chosen removal order of oxygen.

classical molecular dynamics (MD)44. Particularly, four types of sites 
were reported for roughened copper surfaces consisting of 106–107 
atoms created by removing heteroatoms from cuprous oxide, nitride, 
phosphide and sulfide44 with classical effective medium theory. The 
results show that over-coordinated four-fold hollow sites were benefi-
cial to produce C2+ species in the electrochemical CO2RR. Alternatively, 
OD-Cu models were investigated by ab initio MD (AIMD)14 but at fixed 
oxygen contents, that is, decoupled from the experimental conditions.

Recent developments in neural network potential (NNP) derived 
from massive density functional theory (DFT) simulations hold the 
key for a proper structural and energetic analysis of the long-time 
and extended length OD-Cu dynamic phenomena. A first attempt that 
shows the feasibility of the approach45 was carried out for an OD-Cu 
slab built by removing surface oxygens gradually until no oxygen 
appears on the surface after 1 ns equilibration. A pure Cu surface with 
a base of Cu2O was finally formed, and the results show that the Cu-only 
planar-square and convex-square sites are selective to ethylene. How-
ever, oxygen diffusion is difficult to observe due to the short times 
and low temperatures in typical MD simulations; thus, the process 
of Cu2O reduction to Cu observed in many experiments has not been 
considered in these state-of-the-art simulations.

Both the content and the depth profile of the oxygen distribution 
are highly contentious since OD-Cu is easily re-oxidized when it is 
characterized by ex situ methods, limiting the experimental capability 
to assess active and selective ensembles during operation. To gain an 
insight into the change of OD-Cu structures during the electrochemical 
CO2RR, here we trained an accurate NNP to address the highly dynamic 
nature of the catalysts, strongly coupled to the history of the sample 
and to the reaction conditions, and we analyse the kinetics of oxygen 
diffusion in detail and compare it to the most recent experimental 
observations. Based on the simulations, the OD-Cu structures under 
different conditions and distributions of active sites were obtained, 
thus paving the way for their control.

Results
Methodological approach
The modelling procedure fits a NNP to simulate OD-Cu systems, in 
order to perform long MD simulations coupled to an external oxygen 
reservoir, to identify the most likely oxygen contents under differ-
ent experimental conditions (Fig. 1). To this end, we generated a DFT 
(Perdew–Burke–Ernzerhof functional and refitted DFT-D2 van der 
Waals parameters (PBE-D2; (refs. 46–49)) initial dataset with the most 
common Cu, CuxO and Cu2O models, generated by optimization and 
AIMD simulations of the bulk and surface structures.

The Behler–Parrinello high-dimensional NNP (HDNNP)50 was 
constructed using a neural network potential package (n2p2)51 on 
the initial dataset (Fig. 1), as described in the Methods. The NNPs were 
trained via multistream extended Kalman filter algorithms using 
energies and forces, and the dataset was expanded via active learn-
ing (Fig. 1). In short, two NNPs were trained with the initial dataset. 
Some 1–25% of structures of the dataset were used to perform the 
neural-network-based MD (NN-MD) simulations using one of the NNPs. 
The NN-MD simulations were performed using Large-scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS)52 code with the NNP 
interface from n2p2 (ref. 53). We collected 1/1000 of total structures 
obtained from the NN-MD as the seeds for further DFT simulations. 
These were further selected as follows: one third of structures whose 
symmetry function values are not within the range of the current data-
set (that is, extrapolations54) and by comparison of the two NNP runs, 
when the differences between two predictions (energy and forces) are 
larger than a threshold (~5–10 × root mean squared error (r.m.s.e.)). 
The latter strategy allows the identification of structures beyond the 
explored structure space as an interpolation. Then the dataset was 
updated with the DFT values for these newly calculated structures. 
Finally, to ensure the robustness of the potential55, NVT simulations 
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To understand the size effect on the reduction degree of OD-Cu, 
slabs of different thicknesses (equivalent to spherical nanoparticles of 
diameters between 17.5 and 4.1 nm in the SSA) were simulated. Figure 2c 
shows that the final state differs significantly and approaches the 
value of the bulk phase as the SSA decreases. Larger nanoparticles  
(lower SSA) keep lower oxygen quantities, while the smallest one retains 
16.5 at.% of O atoms, and the overall reaction energy of the latter is 
slightly endothermic (Supplementary Table 2). In general, the lower 
the SSA, the larger the amount of energy per Cu2Ox released to reach 
the same reduction level. On the contrary, the higher the SSA, the more 
oxygen retained in the most stable structure. Following the data in 
Supplementary Table 2, the oxygen content at the minimum in Fig. 2c 
for each of the SSAs is very close to the nominal value of a counter-
part model system, placing only O atoms on the surface. Therefore,  
we can deduce that, in most cases, all oxygens are left as surface oxygen. 
After the minimum, the uphill part presents a very similar slope in all 
cases as it corresponds to the same surface oxygen removal process.

These phenomena can be explained by the weaker oxygen binding 
in the bulk than on the surface34, the lower surface energy of Cu2O(111) 
(0.665 J m–2) compared to Cu(111) (1.339 J m–2)58 and the reconstruc-
tion of the Cu2O surface, which could significantly reduce the energy 
of the system as shown in Supplementary Note 3 and Supplementary 
Fig. 5. This observation is in line with a recent experimental study 
using atomic-scale scanning transmission electron microscopy and 
electron energy loss spectroscopy techniques, in which the small Cu 
nanoparticles were completely oxidized to Cu2O, whereas the large Cu 
nanoparticles formed Cu@Cu2O structures6.

The distribution of oxygen
After annealing, most of the oxygens are located close to the surface 
to form the structure of Cu2O(111) if the remaining number of oxygen 

atoms fits the capacity of the surface (Fig. 2d–f). This could be due to 
the lower surface energy of Cu2O(111) than Cu(111), which suggests 
that the formation of Cu2O on the surface can reduce the energy of 
the system. Nevertheless, oxygen atoms could also be trapped inside 
(Supplementary Fig. 10). If the amount of oxygen atoms exceeds the 
capacity of the surface, the excess oxygen atoms aggregate in the bulk to 
form Cu2O (continuous from the surface or in grains), which is consist-
ent with the experimental results29. The oxygen depth profile shown in 
Fig. 2d for the low SSA model (SSA = 0.034 Å−1; Fig. 2e) shows two peaks 
corresponding to Cu2O. The peaks indicate the formation of Cu2O layers  
(4 atoms per 1.24 Å for Cu2O(111)-p(2 × 2)), as Cu2O has a lower formation 
energy than CuxO (x = 4, 6, 8, 64)14,58. Therefore, oxygen atoms tend to 
aggregate to form Cu2O to reduce the overall formation energy, and 
they tend to stay near the surface to reduce the surface energy further. 
Thus, considering a large-size OD-Cu catalyst containing enough O, the 
stable static configuration should be one in which some of the oxygen 
atoms are located on the surface, forming a Cu2O surface. Meanwhile, 
excess oxygen causes Cu2O formed inside the bulk to segregate from 
the Cu crystal6,29. The diffusion and aggregation of oxygen were also 
observed in the long-time NVT simulation (100 ns) at 300 K (Fig. 3a). 
The two peaks inside the bulk at 10 ns correspond to the two types of 
oxygen proposed by a recent X-ray photoelectron spectroscopy study29 
(Supplementary Fig. 11).

Oxygen will be eliminated from the surface where the material is 
in contact with reactants and, as a result, a Cu shell that could affect 
oxygen diffusion will form. As shown in Fig. 3b, when the top six atomic 
layers of oxygen were removed from the initial slab, the remaining Cu 
atoms collapsed immediately, resulting in the formation of a metallic 
shell on the surface with a similar configuration of face-centred cubic 
(fcc) copper. At 300 K, no oxygen atom diffuses to the surface after 
100 ns equilibration (even after 900 ns at 400 K) as shown in Fig. 3b. 
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Fig. 1 | Computational modelling approach for constructing the NNP. The 
data were collected in two stages. In stage 1, the structures of Cu and Cu2O were 
selected via the active learning procedure. In stage 2, the dataset of CuxO was 
built based on the dataset of stage 1. In the active learning process, 433 iterations 
were performed in total, 8.16 × 1010 steps were run from NN-MDs and 8.30 × 107 
structures were checked for extrapolation and interpolation. In the end, the final 

dataset consists of 59,491 points containing 1,801,491 atomic environments, and 
the NNPs apply to all three validation structures, which were run for 1 ns without 
any extrapolation at at least 1,200 K (Supplementary Note 1). E, energy; F, force; 
Gmin, minimum of explored symmetric function space; and Gmax, maximum of 
explored symmetric function space.
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This suggests that the diffusion of oxygen is highly constrained in this 
model. The diffusion of oxygen from inside to the surface was observed 
in the typical equilibration time in this work, that is, 1 ns, until the 
equilibration temperature increases to 600 K (the first oxygen appears 
on the topmost layer in 0.72 ns). Although the formation of a Cu2O 
surface is more favourable, the sluggish kinetics of oxygen diffusion 
could slow the process.

Figure 3c shows the diffusion coefficient of oxygen, DO, in pristine 
Cu2O bulk as obtained from the meaningful59 data of mean squared 
displacement (MSD) from 1,200 K to 1,800 K. Both the observed trend 
and the structure (Supplementary Fig. 12) suggest the presence of two 
distinct regions within this temperature range. The system exhibits a 
high degree of ordering from 1,200 K to 1,350 K, while it demonstrates 

increased disorder from 1,400 K to 1,800 K. In addition, the two lin-
ear relationships show that the transition of Cu2O from ordered to 
disordered causes an abrupt change in coefficients, which indicates 
the effect of latent heat on diffusion. Using the relation between the 
diffusion coefficient, temperature and energy barrier from Methods 
equation (12), the apparent energy barrier for O diffusion in Cu2O is 
0.38 eV in the disordered state and 3.32 eV in the ordered state. In addi-
tion, nudged elastic band simulations show that the diffusion energy 
barrier is high in the pristine bulk, but it is greatly reduced by defects 
(Supplementary Note 4 and Supplementary Fig. 13).

To further evaluate the diffusion of oxygen in the Cu shell case, 
the simulations for the model in Fig. 3b were run for at least 300 ns at 
400–800 K (with 100 K intervals). Below 500 K, no oxygen appears 
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with different SSAs, at pH = 8 and U = 0 VSHE (c). The reaction energies were 
calculated from the average energy of ten randomly sampled OD-Cu slabs 
(Supplementary Figs. 6–9), using the mean energy during the last 800 ps 
of equilibration in the annealing simulations (6 ns), and the overall energy 
was normalized to the reaction energy of per unit of Cu2O. Dotted lines and 
transparent regions show the sample standard deviation from these ten 

samples. The energy diagram of the bulk is derived from the reduction energy 
from changing bulk Cu2O to Cu by using stoichiometry and the DFT static 
energy instead of MD simulations. d, The distribution of oxygen along the z axis 
for the last frame of OD-Cu (SSA = 0.034 Å−1, sample 1) with different oxygen 
concentrations. The intensity corresponds to the quantity of oxygen atoms per 
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on the surface even after 300 ns. Four surface oxygen atoms appear 
by 600 K, and the last oxygen atom first emerges at 235.7 ns (diffusion 
distance along the z axis across the Cu shell, ~6 Å), while at 900 K this 
happens even below the nanosecond scale (Supplementary Table 3).

Additionally, an exponential relation between the diffusion time 
(Supplementary Table 4) and temperature was obtained (Fig. 3d) using 
ten random initial velocity samples for each temperature from 700 K 
to 1,100 K. The estimated times for an oxygen atom to diffuse ~6 Å are 
1.11 × 103 ns, 2.86 × 105 ns and 3.01 × 109 ns (3 s) at 500 K, 400 K and 
300 K, respectively. The simulations are expected to underestimate the 
time since a large number of defects are created in the initial configura-
tion. From equation (12), the apparent energy barrier for O diffusion is 
0.96 eV. The diffusion path of O in the Cu shell case was further analysed 
via nudged elastic band simulations. The results show that the diffusion 
of O from the Cu2O–Cu interface to the surface roughly involves three 
distinct processes when a stable Cu shell is formed (Supplementary 
Note 4 and Supplementary Fig. 14).

Since the diffusion process crosses interfaces, the diffusion time 
and distance may not follow equation (10) as in a homogeneous phase. 
To evaluate the relation for diffusion time and distance across the 
interfaces and Cu shell, slabs with different oxygen layers removed (6 
to 14) were simulated with ten samples (Supplementary Table 5). Sup-
plementary Fig. 15 shows that the relationship remains strong although 
three different processes exist. Thus, the diffusion time for 3.5 nm is 

103 s at 300 K based on the square proportionality relationship. The 
diffusion of oxygen across the Cu shell case is difficult to observe on 
the timescale of NVT simulations at 300 K, but it certainly can occur 
on the timescale of experiments. Note that each point of diffusion 
time in Fig. 3d was obtained from 40 diffusion events observed in ten 
NVT simulations (Supplementary Table 4). The deviation of the time 
estimates is still significant (yet smaller than one order of magnitude) 
for simulated events, and reasonable values on the order of minutes 
are retrieved in our analysis for an oxygen to diffuse 3.5 nm at 300 K.

The reoxidation of reduced OD-Cu
To assess the effect of air exposure or of a pulsed potential, we simu-
lated the reoxidation process on reduced OD-Cu systems by depositing 
oxygen atoms at 300 K on the pure Cu reconstructed slab obtained 
from the system shown in Fig. 2f. The initial model has 384 Cu atoms 
and, to reach the conversion to Cu2O, 192 oxygen atoms were gradu-
ally added to the system at a rate of one atom per 3 ps, and at an initial 
velocity of 1 Å ps–1 from 3 Å above the surface atom to avoid high-speed 
collision. Initially, the oxygen atoms are adsorbed on the surface, and 
at about 0.06 ns, all the 20 adatoms sit on the surface. As the content 
increases, most of the oxygens (103/172) from the deposition source 
cannot reach the surface due to the repulsion with the surface oxygens. 
However, after a short time (0.1 ns from the start), the copper atoms are 
dragged by the surface oxygens, forming a loose structure that allows 
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a, Evolution of oxygen distribution for OD-Cu (9.43 at.% O of sample 1 in Fig. 2c). 
The dashed grey lines indicate the z coordinate of the outermost Cu atom.  
b, Evolution of oxygen distribution for OD-Cu (SSA = 0.070 Å−1) created by 
removing oxygen atoms at the topmost atomic layers. The dashed grey lines 
denote the z coordinate of the outermost Cu atom. c, The relation between 
temperature and oxygen diffusion coefficient (D) from fitting the MSD 
in perfect Cu2O bulk. The system exhibits a greater degree of disorder at 
higher temperatures (1,400 K to 1,800 K) and a higher level of order at lower 

temperature (1,200 K to 1,350 K). Error bars show the standard error of the 
least-squares fitting of the relationship between D and MSD (equation (9)). d, The 
relation between temperature and diffusion time of oxygen from the inside to the 
surface in the OD-Cu system of b. Data are presented as mean values of ln(t) and 
error bars show the standard deviation of the ln(t) of 40 diffusion processes from 
ten NVT simulations (Supplementary Table 4). e, The evolution of the number of 
added oxygen atoms and deposited oxygen atoms. f, Oxygen distribution during 
the deposition. The dashed lines denote the surface at 0 ns. In a, b and f, a minor 
tick interval on the horizontal axis is two atoms per 1.24 Å.
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the accommodation of more oxygen atoms. Simultaneously, some 
oxygen atoms penetrate deeper into the bulk. The process stops after 
89 oxygen atoms oxidize the material (Fig. 3e). An additional simulation 
involving 300 deposition atoms gives the same results (Supplementary 
Fig. 16). The final thickness of the oxide layer is 16.9 Å (Fig. 3f; from 
46.3 Å to 63.2 Å on the z axis), in which 6.9 Å of oxide copper species 
are below the original surface (upper dashed line in Fig. 3f, at 53.2 Å), 
indicating the diffusion of oxygen into the interior, and 10 Å are above 
the original surface, corresponding to the outward displacement of 
Cu. This agrees with the hypothesis by experimentalists that only the 
near surface layers are oxidic60. In the oxidation simulation, the oxygen 
rapidly diffuses from the surface to 6.9 Å inside the surface, unlike in 
the reduction process, where the oxygen diffusion from inside to the 
surface was not observed at 300 K when pure copper formed on the 
surface. The reason may be that copper has enough space to move on 
the surface. Again, when the oxygen diffuses to 6.9 Å under the surface, 
the shell structure prevents the diffusion of oxygen, in conjunction 
with the difficulty of depositing more oxygen to the surface, and deep 
oxidation takes longer.

Moreover, the composition of oxide layers (atoms above the deep-
est oxygen) on the surface is Cu79O89 (Cu71O89 for the 300 atom case), 
which indicates that the surface Cu is mainly Cu(II). After annealing 
at 700 K (note that 1 ns at 700 K is equivalent to ~1.6 s equilibration at 
300 K, considering only the oxygen diffusion time from the Cu shell 
model; the same consideration is applied below), the composition 
changes to Cu139O89, which includes both Cu(II) and Cu(I). The thickness 
changes from 17 Å to 23 Å, which is comparable to the experimental 
findings (~2–3 nm)6,29,60. After annealing at 1,100 K (the 1 ns at 1,100 K 
is equivalent to ~502.6 s equilibration at 300 K), some of the oxygen 
atoms diffuse from the upper surface to the bottom surface and the 
composition changes to Cu117O60 (upper) and Cu56O29 (bottom), both of 
which are almost Cu(I). Note that the timescale obtained here is based 
on the relation between temperature and time for the Cu shell model 
in Fig. 3d, which has limited statistics.

The active site via graph theory
Considering typical experimental settings, a Cu2O nanoparticle 20 nm 
(ref. 61) in diameter, at pH 8 and U ≤ −0.3 VRHE, should be reduced to 
pure Cu. We used a 3,240 atom Cu slab derived by removing all oxy-
gens from a 30-atomic-layer Cu2O(111)-p(9 × 9) (equivalent to a 7.1 nm 
nanoparticle in SSA) to simulate the high roughness of the surface. After 
equilibration, the slab structure (equivalent to a 4.4 nm nanoparticle 
in SSA) forms a distorted configuration with an average coordination 
number of 9.08, with a decay controlled by an error function14 and an 
average distance of 2.58 Å (Supplementary Fig. 17). Compared to the 
coordination number of 12 and the Cu–Cu distance of 2.56 Å in bulk Cu, 
the structure has low coordination and is stretched less than 1%. The 
2,861 active sites are detected via a Delaunay triangulation sampling62 
of the last frame of the simulation, and there are 16 different active sites 
based on the isomorphism analysis63, as shown in Fig. 4a. The active 
sites are further categorized to eight classes for analysis. Classes I, 
II and III account for the most abundant, 13.28%, 49.98% and 27.19% 
populations, corresponding to atop, fcc/hcp and bridge sites, respec-
tively, and the Cu atoms in these sites could be under-coordinated. 
Class IV (2.48%) also represents three coordinated sites, but unlike 
the hcp/fcc sites, two of the Cu atoms are not interconnected. Classes 
V (4.89%), VI (1.12%) and VII (0.59%) represent four coordinated sites, 
where VI is similar to the hollow site on Cu(100), while the other two 
categories are connected in a slightly distorted way: V, where a pair of 
diagonal atoms bonded, and VII, where one of the four copper atoms 
that make up the square is connected to only one other. The last nine 
active sites together represent only 0.45% of the number of total active 
sites, which are oxygen-adsorbed near steps with high coordination 
numbers (three-dimensional structures are presented in Supplemen-
tary Fig. 18); thus, they are categorized as class VIII for analysis.

The reconstructed surface gives a wide distribution of oxygen 
desorption energies from −0.51 eV to −3.10 eV at pH 0 and U = 0 VSHE. 
At pH 8 and U = 0 VSHE, 25.2% of the oxygen desorption is endothermic 
(Supplementary Fig. 19), and all the oxygens are removed from the 
surface at computational reduction potentials more negative than 
−0.22 VSHE (+0.26 VRHE). Instead, at pH 14, the computational reduction 
potential needs to be lower than −0.58 VSHE (+0.26 VRHE) to remove the 
residual oxygen completely. Thus, the residual oxygen on the surface 
can exist under certain experimental conditions, and the amount of 
residual oxygen can be fine-tuned by controlling the reaction condi-
tions (such as applying pulsed potentials).

Discussion
The computational framework employed here provides a systematic 
approach for understanding the material changes from bulk to sur-
face during operando conditions, not only from a thermodynamic 
perspective but also from a kinetic standpoint. The simulations point 
to an OD-Cu oxygen content at zero electric potential versus SHE 
that is highly dependent on the pH, with Cu2O reduced to Cu under 
strongly acidic conditions while Cu2O is stable under strongly basic 
conditions. Under near-neutral conditions at zero electric potential 
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versus SHE, the Cu2O with a SSA of 0.146 Å−1 retains 16.5 at.% of the 
oxygen. The pH and electric potential dependence were obtained via 
the computational hydrogen electrode model and could benefit from 
further refined modelling of the environment. The SSA of the Cu2O 
particle affects the reduction degree: the lower the SSA, the higher 
the reduction degree. Depending on the size distribution of the Cu2O 
particles, the time windows for the simultaneous presence of oxidic 
and metallic surfaces are different. While a strong reduction potential 
could lead to the complete reduction of Cu2O, the sluggish kinetics of 
oxygen diffusion from inside to the surface causes the process to take 
a long time to complete (from seconds to hours, depending on the 
size), which agrees with experimental observations60, and the diffusion 
roughly involves three distinct processes: diffusion across the Cu2O– 
Cu interface, inside the Cu and from the subsurface to the surface. 
Compared to the most recent experiments29, the evidence from grazing 
incidence XPS can be seen as being originated by defect species for O 
close to the surface and by the interstitial defect species, and we also 
found these configurations in our simulations.

As for the reducing/oxidating processes, our computational 
results match the experimental values, even those regarding the 
timescale of the events6. X-ray absorption spectroscopy combined 
with electron energy loss spectroscopy analysis demonstrates the 
metallic nature of the 7 nm nanoparticle after 30 min at −0.8 VRHE. 
After 1 h, the extended X-ray absorption fine structure (EXAFS) of 
these particles retrieves a coordination number for Cu of 8.1 ± 1.6. 
As EXAFS corresponds to an average of bulk and surface atoms, the 
observation means that the Cu catalyst contains a large fraction of 
under-coordinated sites under steady-state conditions. In our calcula-
tion for the equivalent system, we find that the average coordination 
number is 9.08, and complete oxygen depletion is achieved in 1.7 min 
(computational deviation below one order of magnitude), within the 
same range as that observed experimentally. In addition, the small Cu 
structures (7 nm) fully reoxidize after 5 h of air exposure6, while the 
larger structures form Cu@Cu2O shell structures (2 nm oxide shell). 
This also agrees with our result that the large-size structures have 
a lower O content, and with a computed reoxidation shell of 2.3 nm 
after 700 K annealing.

EXAFS analysis shows that the removal of oxygens results in 
materials with significant degrees of disorder. Electrocatalytic 
experiments show that the disordered grains are responsible for the 
under-coordinated sites active in the CO2RR. In experiments with air 
exposure, these defects can react with O2, leading to the spontaneous 
incorporation of oxygen in the lattice. In our simulations, once O2 is 
split, the penetration of O into these disordered layers is rather fast, 
with the oxidation layer reaching saturation within 0.4 ns when deposit-
ing one O atom per 3 ps.

In conclusion, the structures of OD-Cu during the reduction 
process under different conditions were systematically studied via 
large-scale MD at first-principles accuracy with a NNP (r.m.s.e. of 
4.58 meV per atom with respect to PBE-D2). The oxygen concentra-
tion of the OD-Cu materials strongly depends on the history of the 
sample and the reaction conditions: the higher the pH/potential/
SSA, the higher the oxygen concentration in the most stable OD-Cu 
configuration. The oxygen atoms tend to aggregate to form Cu2O 
on the surface and inside the bulk to reduce the energy by lower-
ing the formation energy and surface energy instead of being dis-
tributed uniformly. In long electrochemical experiments, OD-Cu 
materials reduce to Cu, but a considerable amount of time (several 
seconds to hours, with diffusion time proportional to the square 
of the distance and exponential to the reciprocal of temperature) 
is required to remove all the trapped oxygen. Moreover, the highly 
reconstructed Cu surface yields sites with widely distributed oxy-
gen adsorption energy values, although the residual oxygen will 
be reduced under common experimental conditions. These results 
not only reveal the dynamics of the stable structure of OD-Cu under 

different experimental conditions but also give insight into the 
mechanism of the reduction of OD-Cu and the limits for fine-tuning 
by controlling experimental conditions.

Methods
Ab initio simulations
The DFT simulations were performed using the Vienna Ab initio Simula-
tion Package64,65 with the Perdew–Burke–Ernzerhof functional46 and 
our refitted DFT-D2 van der Waals parameters47–49. For valence elec-
trons, a plane-wave basis set was adopted with an energy cut-off of 
450 eV, and the ionic cores were described with the projector 
augmented-wave method. The Brillouin zone was sampled using 
gamma-centred Monkhorst–Pack with a k-point spacing of 0.03 × 2π Å−1 
for the Cu and CuxO system, and 0.05 × 2π Å−1 for the Cu2O system, with 
an accuracy converging to 1.4 meV per atom (using the energy from 
the lowest k-point spacing as a reference), as shown in Supplementary 
Fig. 20. The numbers of k points along different axes for different cells 
were generated using vaspkit (ref. 66) with the aforementioned k-point 
spacing, where the k-point spacing along the i axis is 

bi×2π
Ni

. In addition, 
only one k point is employed for the axis along the normal direction of 
the surface of the slab model. Previous DFT tests for the Cu2O demon-
strated that no significant contribution of self-interaction error is 
present for these materials14. The total energy was converged to an 
accuracy of 1 × 10−6 eV, and a force tolerance of 0.03 eV Å–1 was used in 
all structure optimizations.

A time step of 3 fs was chosen for MD simulations, which allows 
at least 16 samples within a normal Cu–O vibration period according 
to our previous test14. The AIMD was performed using the canonical 
ensemble (NVT) with a Nosé–Hoover thermostat67,68. For Cu, fcc, 
body-centred cubic (bcc) and two hcp bulk structures with supercells 
of 1 × 1 × 1, 2 × 2 × 2, 3 × 3 × 3 and 4 × 4 × 4 were used for the AIMD 
simulation at temperatures of 300 K, 500 K and 700 K. The (111), 
(110), (100) and (211) surfaces of the fcc bulk with five and eight layers 
were simulated at 300 K and 700 K. Each AIMD simulation was run 
for 300 steps, and 1,398 bulk structures and 690 surface structures 
were chosen, returning an initial dataset for copper of 2,088 data 
points. For Cu2O, bulks with supercells of 1 × 1 × 1, 2 × 1 × 1, 2 × 2 × 2 and 
3 × 3 × 3 were used to run the AIMD at 700 K and 1,550 K. In addition, 
the (111), (110), (100) and (211) surfaces with six layers were simulated 
at 1,550 K. These simulations gave 3,600 structures for the initial 
dataset for Cu2O.

For the initial dataset of CuxO, the data points were generated 
via the optimization of structures of randomly adsorbing oxygen on 
Cu surfaces or removing oxygen from Cu2O bulks and surfaces. One 
to four oxygen atoms were randomly adsorbed on a (100)-p(2 × 2), 
(110)-p(3 × 2), (111)-p(3 × 3) and (211)-p(1 × 3) surface five times, result-
ing in 80 data points. The 2 × 2 × 2 bulk and (111), (110), (100) and (211) 
unit surfaces, and the (111)-p(2 × 2), (110)-p(4 × 2), (100)-p(4 × 2) and 
(211)-p(1 × 4) of Cu2O were used to generate the structure of CuxO. 
The number of randomly removed oxygen atoms increased from 
one to the pristine number of oxygens in the models minus one 
unit. The oxygen atoms were randomly removed five times, giving 
the 725 data points. In total, the initial dataset of CuxO consisted of 
805 data points.

Neural network potential
The Behler–Parrinello-type HDNNP (ref. 50) was constructed using 
n2p2 (refs. 51,53). The NNPs were trained via multistream extended 
Kalman filter algorithms using energies and forces. The following radial 
symmetry function and angular symmetry function were employed to 
describe the local atomic environment with the parameters shown in 
Supplementary Tables 6 and 7:

Grad
i = ∑j≠ie

−η(rij−rs)
2
fc(rij) (1)
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Gang
i = 21−ζ ∑

j, k ≠ i

j < k

(1 + λ cosθijk)
ζe−η(r

2
ij+r

2
ik+r

2
jk)fc(rij)fc(rik)fc(rjk) (2)

where

fc(rij) = {
0.5 (cos πrij

rc
+ 1) for rij ≤ rc

0 otherwise.
(3)

rij is the distance between atoms i and j; η and rs control the width 
and center, respectively, of the Gaussian function. θijk is angle centered 
at atom i, angular resolution is provided by the parameter ζ, λ shifts the 
maxima of the cosine function to different θijk, rc is cutoff radius. In total, 
98 symmetry functions were used, 40 of which were for oxygen and 
58 of which were for Cu (Supplementary Tables 6 and 7). Thus, neural 
networks with an architecture of 98–15–15–1 were employed, that is, 
98 neurons for the input layer to represent the structure, two hidden 
layers with 15 neurons each and 1 neuron for the output layer. The data-
set was divided into a training set (90% data) and a test set (10% data).

To improve the quality of the NNPs, an expanded dataset was built 
via active learning using a modified framework based on RuNNerActive-
Learn (refs. 69–71). The active learning procedure was stopped when 
no extrapolation was found in the runs, all energy differences between 
the two NNPs were lower than five times the r.m.s.e. of the energy and 
all force differences between the two NNPs were lower than ten times 
the r.m.s.e. of the forces. If the potential is not applicable to the three 
validation systems, the active learning is launched again, and the tem-
perature of NN-MDs is increased to gain structural diversity. Further 
tests regarding the lattice constant and melting point are presented in 
Supplementary Note 1 and Supplementary Figs. 21 and 22.

NN-MD simulations
The simulations of NN-MD were performed using the LAMMPS code52 
with the NNP interface from n2p2 (refs. 51,53). For equilibration, the 
simulations were run for 1 ns at the indicated temperature. For anneal-
ing, the simulations were run at 1,100 K for 1 ns; then the systems were 
cooled to 300 K in 4 ns with a cooling rate of 0.2 K ps–1 and finally 
another 1 ns for equilibration at 300 K. The canonical (NVT) ensem-
ble simulations were modelled with the Nosé–Hoover thermostat for 
surface systems, and the Nosé–Hoover thermostat and barostat were 
employed for isobaric–isothermic (NPT) ensemble simulations of the 
bulk systems72. To ensure a thorough exploration of the configura-
tion space and to avoid artefacts arising from the random sampling, 
the reduction process for each slab was simulated with ten random 
samplings (that is, ten randomized indexed lists for sequential oxygen 
removal), which contain 1,960 annealing processes, each with a time 
length of 6 ns. Then, the mean values from these samples were used, 
and the sample standard deviation was analysed to quantify errors 
due to random samplings. In addition, ten NNPs were trained to test 
the robustness of the current NNP and the dataset, and all the differ-
ent parameters of the annealing were extensively tested, as shown in 
Supplementary Note 2 and Supplementary Figs. 23–27.

The energy minimization of the adsorption of oxygen (where all 
the slab atoms are fixed to simulate the surface under equilibrium) 
was stopped when the energy change converged to 10−7 of the total 
energy (~0.01 eV). Active sites were detected via Delaunay triangula-
tion sampling of the last frame of the equilibration simulation, and the 
different active sites were obtained based on the isomorphism analysis 
of the first-order graphs (only the first neighbours of oxygen and their 
connections were considered) on the minimized configurations. In this 
representation, the fcc and hcp sites are identical, since increasing to 
second order would result in an excessive number of different unique 
sites, making the analysis difficult. Climbing image nudged elastic band 
method73 implemented in the LAMMPS REPLICA package was used to 

search the transition state of the diffusions with a force tolerance of 
0.03 eV Å–1. For oxygen diffusion in the Cu shell case, the structures 
from sampling 1 with a SSA of 0.070 Å−1 were used. The configurations 
taken 30 ps before the oxygen atom appears on the surface were mini-
mized and employed as the initial state. The bottom 15 atomic layers 
were fixed, and the upper 12 atomic layers were relaxed.

Reaction energy and desorption energy
The reduction of Cu2O to OD-Cu is considered to occur as follows, 
where e– is an electron:

Cu2O + n × (2H+ + 2e−) → Cu2O1−n + n ×H2O.

Then, the reaction energies at U versus SHE were calculated by

ΔE =< ECu2O1−n > +nEH2O− < ECu2O > −nEH2 + n × 2kBT × ln(10)

×pH + n × 2 × e × U
(4)

where < ECu2O1−n >  and < ECu2O >  are the mean potential energy of  
Cu2O1–n (0 ≤ n ≤ 1) and Cu2O, respectively, in the last 800 ps equilibration 
of the annealing simulation; EH2O and EH2 are the energy of H2O and  
H2, respectively, from the DFT simulation; T is temperature; and  
(1 – n)/(3 – n) equals the atomic content of oxygen in the OD-Cu.

The desorption energy of oxygen is calculated as follows:

ForO ∗ +2H+ + 2e− → ∗ +H2O,

EO−des = E∗ + EH2O − EH2 − EO∗ + 2kBT × ln(10) × pH + 2 × e × U
(5)

where E∗ and EO∗ are the energies of the slab and the adsorption con-
figuration, respectively, from the NNP.

Specific surface area
The SSA was calculated as follows:

SSA = surface area
volume

. (6)

For the slab model

SSA = 2A
Ad

= 2
d
. (7)

The nanoparticle was treated as a sphere:

SSA = 4πr2
4
3
πr3

= 3
r =

6
Dp

. (8)

Here, A is the cross-sectional area of the slab, d is the thickness of the 
slab, r is the radius of the nanoparticle and Dp is the diameter of the 
nanoparticle.

Diffusion coefficient
The Einstein relation associates the self-diffusion coefficient, D, with 
the mean square displacement (MSD) as a function of observation time.

D = 1
2d

lim
t→∞

⟨[r(t0 + t) − r(t0)]
2⟩

t (9)

where D is the self-diffusion coefficient, d is the dimensionality of the 
system, t is time, t0 is time zero and ⟨[r (t0 + t) − r (t0)]

2⟩  is the MSD.  
The diffusion coefficient is fitted74 on the MSD of displacement time 
length (the lag time) from 0.1 times the simulation time to 0.5 times 
the simulation times (Supplementary Fig. 12) to avoid the ballistic 
trajectory in the short-time region and increased noise in the long-time 
region59. To obtain reasonable MSD values, 3 × 3 × 3 Cu2O bulk was 
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equilibrated for 1,500 ns (1,200 K), 600 ns (1,250 K, 1,300 K), 100 ns 
(1,350 K), 10 ns (1,400 K, 1,500 K) or 2 ns (1,600 K, 1,700 K, 1,800 K).

From the above, the diffusion time is as follows:

t = r2
2dD

. (10)

Furthermore, for solid and liquid75, the diffusion coefficient and 
temperature have a relationship following the Arrhenius equation  
as follows:

D (T) = D0 exp (
−Ea
kBT

) (11)

lnD (T) = lnD0 −
Ea
kB

× 1
T . (12)

Then, the relationship between diffusion time and temperature 
is as follows:

ln[t (T)] = ln r2
2dD0

+ Ea
kB

× 1
T . (13)

For the Cu shell model built by removing the top six atomic oxy-
gen layers, because of its constrained diffusion nature, the diffusion 
coefficient can hardly be fitted using the MSD (equation (9)), but the 
relationship between diffusion time and temperature still follows 
equation (13). Thus, ten samplings with random initial velocities were 
simulated for each temperature from 700 K to 1,100 K. Four oxygen 
diffusion processes were traced and treated as independent for each 
simulation, as the diffusion time is related only to the diffusion distance 
at constant temperature, theoretically. The average value was used 
as the diffusion time for the fitting. All the times, the average and the 
sample standard derivation, s, are shown in Supplementary Table 4.

Data availability
The source of the initial dataset, the final dataset, the machine learn-
ing potential files, the MD trajectories (reconstitution, coexistence, 
reduction, deposition, diffusion and tests of annealing parameters), 
the energy minimization of the oxygen adsorption and nudged elastic 
band simulations are available on the ioChem-BD database76 (https://
doi.org/10.19061/iochem-bd-6-228).
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