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ABSTRACT

An integrable Hamiltonian variant of the two species Lotka–Volterra (LV) predator–prey model, shortly referred to as geometric mean (GM)
predator–prey model, has been recently introduced. Here, we perform a systematic comparison of the dynamics underlying the GM and LV
models. Though the two models share several common features, the geometric mean dynamics exhibits a few peculiarities of interest. The
structure of the scaled-population variables reduces to the simple harmonic oscillator with dimensionless natural time TGM varying as ωGM t
with ωGM = √

c12 c21. We found that the natural timescales of the evolution dynamics are amplified in the GM model compared to the LV
one. Since the GM dynamics is ruled by the inter-species rather than the intra-species coefficients, the proposed model might be of interest
when the interactions among the species, rather than the individual demography, rule the evolution of the ecosystems.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0158723

Despite its extreme simplicity, the Lotka–Volterra (LV) preda-
tor–prey model does not admit a closed-form analytical solution,
and for this reason, numerical integration methods are usually
adopted to apply it to various fields of science. The present paper
presents a model for describing a new predator–prey interaction
called the geometric mean (GM) model. The GM model shares
the broad features of the standard LV one and, at the same time,
offers the advantage of possessing closed-form exact analytical
solutions. The GM model allows the analysis of predator–prey
dynamics through a Hamiltonian approach and may be described
by the well-established physics of harmonic oscillators.

I. INTRODUCTION

The Lotka–Volterra (LV) predator–prey model, independently
proposed in Refs. 1 and 2, and its several variants put forward
afterward3,4 have been widely used and still represent a paradigm5

in the nonlinear statistical analysis of population dynamics, with
applications transcending the field of ecology,6–17 as, for example,
in plasma physics,18 machine learning,19 and astrophysics.20 Popula-
tion dynamics analysis based on the LV description is increasingly

gaining importance in strategic planning and policy decision-
making in relation to sustainability issues.

The LV two-species model is described by the coupled first-
order differential equations:

d x1

d t
= c12 x1 x2 − c11 x1, (1a)

d x2

d t
= −c21 x1 x2 + c22 x2, (1b)

where x1(t) and x2(t) are positive functions representing preda-
tor and prey populations at time t ≥ 0. The positive parameters cij

characterize the predator–prey interaction (i 6= j) and the mortal-
ity–birth rate (i = j). In particular, c11 represents the predator’s mor-
tality (migration) rate, while c22 is the prey’s birth rate. The terms
c12 x1 x2 and −c21 x1 x2 stand for the growth rate of the predator pop-
ulation and the predation rate of the prey population, respectively.
The number of free parameters in Eqs. (1a) and (1b) can be reduced
by scaling the variables

X1 =
c21

c11

x1, X2 =
c12

c11

x2, (2a)

T = c11 t, r =
c22

c11

. (2b)
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Then, the two-species LV equations for the scaled populations X1, X2

become

d X1

d T
= X1 X2 − X1, (3a)

d X2

d T
= −X1 X2 + r X2, (3b)

with r being the only one free-parameter.
The scaled populations admit two equilibrium points at

dX1/dT = dX2/dT = 0 and singularity at (X1, X2) = (0, 0) and
(X1, X2) = (r, 1). In the X1X2 phase plane, the trajectories are
described by the conserved quantity

H(X1, X2) = X1 − r ln(X1) + X2 − ln(X2), (4)

with the initial conditions H0 = H(X10, X20) with H > Hmin

= H(r, 1) = 1 + r
[

1 − ln(r)
]

. The conserved quantity H depends
on the parameter r and on the initial conditions X10 and X20 and
plays the role of the Hamiltonian or Lyapunov function of the LV
system.21 The bounds for the predator and prey populations follow
directly by examining the trajectory H(X1, X2) = H0,

−r W+ (a) ≤ X1 ≤ −r W− (a) and − W+
(

b
)

≤ X2 ≤ −W−
(

b
)

,

(5)

where W± are the principal and negative branches of the Lam-
bert function, with a = −r−1 e(1−H0)/r and b = −r−r er−H0 . Despite
the deep insight gained through the LV model and its successful
applications, a number of drawbacks are still outstanding, which
prevent a thorough comprehension of the dynamics underlying real-
world system evolution.18,22 The standard LV model is not integrable
and, thus, is mainly studied numerically. Its solution is notori-
ously periodic3 with the exact expression of the oscillation frequency
unknown, except in its linearized version.

A Hamiltonian predator–prey model, shortly referred to as
geometric mean (GM) predator–prey model, capturing the main fea-
tures of the standard LV model and admitting exact solutions in
terms of elementary functions has been recently proposed.23 In the
GM model, the growth and death rates are proportional to the
square root of the populations

√
xi rather than the populations

themselves xi. Similar behavior is also assumed for the predating
rate on prey whose food supply depends on the square root of the
prey population. The interaction between predator and prey popu-
lations is described by the geometric mean of the two populations√

x1 x2, implying that the growth rate of the predator population are
c12

√
x1 x2 and −c21

√
x1 x2, respectively.

This work is aimed at comparing the geometrical mean model
to the standard Lotka–Volterra model by numerically solving the
differential equations and highlighting similarities and differences
in the underlying dynamics. In particular, we show that the evolu-
tion dynamics’ timescale of the LV model is amplified in the GM
model, which is driven by the inter-species rather than the intra-
species interactions. Hence, while the characteristic time of the LV
dynamics simply depends on the predator mortality, the charac-
teristic time of the GM model depends on the joint effect of the
growth rate of the predator population and the death rate of the
prey population. The difference is summarized in r, the only param-
eter which appears in the rescaled GM and LV models. While in

the latter r depends only on the demographic parameters, in the
GM model, r depends also on the interaction strength between the
populations. These results open new scenarios in the modeling of
population dynamics to analytically describe the predator–prey time
evolution when the dynamics is driven by the interaction between
the two species rather than by the demographic features of each
species. As stated above, the main purpose of this work is to high-
light the structural differences in the mean field description of the
two models hence the current analysis is kept limited to the deter-
ministic forms of the prey–predator dynamic equations. However,
one should bear in mind that real-world ecosystems are featured
by stochastic rather than deterministic interactions as already sug-
gested in the early literature dealing with oscillatory phenomena in
ecological and biological networks24,25 and still under active scrutiny.
Additive and multiplicative noise sources affecting the interaction
processes have been considered in Refs. 26–29, and 30 The onset
of the oscillatory behavior and its offset have been related to the
fluctuating interactions about the network entries accounted for in
the framework of random matrix approaches.31–36 The eigenvalue
spectrum between arbitrary pairs of the random matrix elements is
investigated to ascertain the situations when off diagonal or circu-
lar other than diagonal elements might impact the system stability.
Overall, the effects of fluctuations, in particular, those related to the
inter-species terms (off diagonal entries of the random matrices) are
highly relevant to the aging and extinction of a large class of interact-
ing systems. Hence, though not included in the present discussion,
one could expect that fluctuations emerging from asymmetric terms
might play an important role in the geometric mean model where
the inter-species dominate over the intra-species interactions.

The paper is organized as follows. In Sec. II, the main equa-
tions describing the geometric mean (GM) predator–prey dynamics
model and its scaled form are briefly recalled. In Sec. III, we per-
form a comparative analysis from a computational viewpoint and
discuss the outcomes of the analytical solutions against numerical
ones. Then, we compare the two dynamics by analyzing the respec-
tive Hamiltonians. In Sec. IV, a few remarks on the outcomes and
implications of the novel predator–prey model beyond current work
are addressed.

II. GEOMETRIC MEAN PREDATOR–PREY MODEL (GM

MODEL)

The geometric mean (GM) predator–prey model is described
by the following coupled first-order differential equations:

d x1

d t
= c12

√
x1x2 − c11

√
x1, (6a)

d x2

d t
= −c21

√
x1x2 + c22

√
x2, (6b)

with x1 = x1(t) and x2 = x2(t) being the predator and the prey pop-
ulations, as in the standard LV model.23,37 The positive parameters
c11 and c22 characterize the mortality–birth rates. In particular, c11

represents the predator’s mortality (migration) rate and reflects how
fast the predator population declines in the absence of prey. It indi-
cates the predators’ natural mortality rate due to several aspects,
such as diseases, aging, and resource competition among predators.
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The parameter c22 represents the prey’s birth rate and reflects how
quickly the prey population can grow in the absence of predators
around. It indicates the prey population growth rate due to, for
instance, the reproduction rate and resource availability. The pos-
itive parameters c12 and c21 represent the predator–prey interaction.
In this regard, c12 describes the efficiency of the converting con-
sumed prey into predator offspring and indicates the proportion of
“prey energy” successfully transferred to the predator population,
considering energy transfer aspects after a possible predator–prey
binary interaction. Finally, c21 defines the predation rate and indi-
cates how often the predators capture and consume the prey. The
set of free parameters is reduced by scaling the variables according
to

X1 =
c12 c21

c2
11

x1, X2 =
c2

12

c2
11

x2, (7a)

T =
√

c12 c21 t, r =
c22

c11

√

c12

c21

. (7b)

The scaled version of the equations reads

d X1

d T
=

√

X1X2 −
√

X1, (8a)

d X2

d T
= −

√

X1X2 + r
√

X2. (8b)

The geometric mean (GM) and the standard (LV) predator–prey
model share the following features: (i) the appetite of predators is
insatiable; (ii) food is always available in abundance to the prey com-
munity; (iii) the number of preys is the only source of food for the
predator population’s; (iv) genetic variants and adaptations to habi-
tat have little impact on predation dynamics since the environment
conditions does not change in a way that benefits one over the other
species.

The scaled GM populations admit two equilibrium points at
dX1/dT = dX2/dT = 0, which are given by (X1, X2) = (0, 0) and
(X1, X2) = (r2, 1). The Hamiltonian of the system

H(X1, X2) = X1 − 2 r
√

X1 + X2 − 2
√

X2 (9)

is a conserved quantity whose value can be obtained from the initial
conditions H0 = H(X10, X20),

H0 =
(

√

X10 − r
)2

+
(

√

X20 − 1
)2

− 1 − r2, (10)

which yields the minimum value of the Hamiltonian

Hmin = −1 − r2, (11)

for X10 = r2 and X20 = 1. The trajectory of the system in the phase
space is defined through H(X1, X2) = H0. The latter relationship
provides the bounds of X1 and X2

(r − c)2 ≤ X1 ≤ (r + c)2 and (1 − c)2 ≤ X2 ≤ (1 + c)2 , (12)

with c =
√

1 + H0 + r2.

The quadratic transformation

Xi =
1

4
Y2

i (13)

provides the Hamiltonian counterpart for the canonical system in
the following form:

H(Y1, Y2) =
1

4
Y2

1 − r Y1 +
1

4
Y2

2 − Y2, (14)

representing, in the phase space, the circle

(Y1 − Y1c)
2 + (Y2 − Y2c)

2 = R2, (15)

with Y1c = 2 r, Y2c = 2, and R2 = (Y10 − Y1c)
2 + (Y20 − Y2c)

2. The
maximum and minimum values of the parameter r can be obtained
by the conditions Y1c > R and Y2c > R, i.e.,

X10 +
(√

X20 − 1
)2

2
√

X10

≤ r ≤
√

X10 +
√

2
√

X20 − X20. (16)

The Hamilton–Jacobi equations for the canonical system

d Y1

d T
=

∂ H

∂ Y2

, (17a)

d Y2

d T
= −

∂ H

∂ Y1

(17b)

allow writing the evolution equations for the canonical populations
Yi = 2

√
Xi in the following form:

d Y1

d T
=

1

2
Y2 − 1, (18a)

d Y2

d T
= r −

1

2
Y1. (18b)

The system of linear Eqs. (18a) and (18b) can be easily decou-
pled, resulting in a simple harmonic oscillator-type model as follows:

d2 Yi

d T2
+

1

4
Yi =

1

2
r2−i, (19)

for i = 1, 2. In this regard, note that the GM model enables the use
of a general and well-established physics of harmonic oscillators to
model the dynamics of prey–predator dynamics. The solution of
Eq. (19) is remarkable and, by using Eq. (13), the scaled populations
Xi write

X1(T) =
[

r +
(

√

X10 − r
)

cos (ωT) +
(

√

X20 − 1
)

sin (ωT)

]2

,

(20a)

X2(T) =
[

1 +
(

√

X20 − 1
)

cos (ωT) −
(

√

X10 − r
)

sin (ωT)

]2

,

(20b)

where ω = 1/2 is the angular frequency. The populations xi(t) can
be obtained from the scaled populations Xi(T), Eqs. (20a) and (20b),
by using Eqs. (7a) and (7b).

The functions X1(T) and X2(T) in Eqs. (20a) and (20b) are the
analytical solutions of the GM model.23 In Sec. III, the behavior of
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the geometric mean predator–prey model to the standard LV will be
compared. As the LV model does not admit an analytical solution,
various computational steps are required for numerically evaluate
the related differential equations. These issues will be addressed in
Sec. III.

III. COMPARISON OF THE GEOMETRIC MEAN (GM)

AND LOTKA–VOLTERRA (LV) PREDATOR–PREY

DYNAMICS

The first step to numerically solve the LV differential equation
system is concerned with the choice of the numerical method to be
adopted among the several available approaches. We consider seven
different numerical methods for the solution of ordinary differen-
tial equation (ODE) well established in the literature.38 The methods
are labeled by the acronyms: ODE-15-S, ODE-23, ODE-23-S, ODE-
23-T, ODE-23-TB, ODE-45, and ODE-113. In the acronyms, the
figures refer to the order of accuracy of the numerical integration
scheme, while capital letters refer to performed upgrades in these
schemes. The ODE-15-S method is a variable-order (from first to
fifth) numerical solver widely employed for solving differential-
algebraic equations and stiff ODEs.39 The ODE-23 is a low-order
integration method commonly used to solve nonstiff ODEs based
on the second- and third-order Runge–Kutta (RK) technique, also
known as the Bogacki–Shampine scheme. The ODE-23-S is an alter-
native to the classical ODE-23 approach, which is used in solving
stiff ODEs based on a modified Rosenbrock triple scheme related
to implicit RK methods.39 The ODE-23-T and ODE-23-TB integra-
tion methods are widely employed to solve stiff ODEs based on an
implicit RK formula using the trapezoidal rule for approximating
numerical computing of a definite integral. In the ODE-23-TB case,
the numerical calculation of the definite integral is carried out with a
second-order backward differentiation formula.39 The ODE-45 is a
medium-order integration method widely employed to solve non-
stiff ODEs based on the fourth and fifth-order RK method, also
known as the Dormand–Prince scheme. Finally, the last one is a
high-precision solver for solving nonstiff differential equations,39

namely, the ODE-113.
To address the accuracy issues with the above integration

schemes in solving the GM model evolution Eqs. (8a) and (8b),
we consider 5000 time samples with T ∈ [0, 30], r = 1.2 and
X10 = X20 = 2. Then, we compare the obtained numerical solu-
tions with the analytical ones given by Eqs. (20a) and (20b).
To quantify the accuracy of each numerical result, we use the
normalized root mean square (NRMS) defined through NRMS

=
√

∑

i

(

xtrue
i − xnsol

i

)2
/
∑

i

(

xtrue
i

)2
, where xtrue and xnsol are the exact

analytical and numerical solutions, respectively. The range of NRMS
values varies from 0 (minimum error) to ∞ (maximum error).
The NRMS and the runtime for the numerical simulations are
summarized in Table I. We notice that no numerical method per-
fectly solves the system of ODE under analysis. In addition, the
fastest method (ODE-23-TB) performs with a runtime 51.40 slower
compared to the analytical solution. The most accurate numeri-
cal integration method (ODE-113) solves the novel predator–prey
equations with a runtime 138.44 times slower than the exact ana-
lytical solution. The numerical experiments confirm that solving

TABLE I. The normalized root mean square (NRMS) and the runtime for the numer-

ical simulations using the novel scaled predator–prey model.

NRMS
Numerical Runtime
method 1 runtime = 2.5 ms X1(T) X2(T)

Analytical solution 1.00 0.0000 0.0000
ODE-23-TB 51.40 0.0070 0.0069
ODE-23-S 54.41 0.0068 0.0059
ODE-23 65.91 0.0024 0.0026
ODE-23-T 67.54 0.0076 0.0074
ODE-45 89.20 0.0039 0.0042
ODE-15-S 132.18 0.0032 0.0031
ODE-113 138.44 0.0005 0.0005

ODEs is time-consuming, making it difficult to use them to deal with
real issues such as, for instance, modern big data analysis problems.
Thus, simulating population dynamics by solving ODEs entirely
depends on a good trade-off between runtime and tolerated numer-
ical errors. These problems do not exist when the analytical solution
is known.

In this section, we discuss the similarities and differences
between the dynamics of the standard LV and the GM models.
It is worth remembering that both dynamics follow a population
growth and decline cycle of predators and prey, as discussed in
Sec. II.*** However, the standard LV population model is expo-
nential, while the GM model’s growth rate is quadratic. We simply
eliminate the iteration term between the two species to analyze
these rates. In this regard, from Eqs. (3a) and (3b), note that
d X1
d T

∝ X1 and d X2
d T

∝ r X2 give the growth rates associated with
the standard model, leading to X1(T) = X10 exp(α1 T) and X2(T)

= X20 exp(r α2 T), where ∝ denotes the proportionality and α1 and
α2 proportionality constants. At the same time, from Eqs. (8a)

and (8b), we notice that d X1
d T

∝
√

X1 and d X2
d T

∝ r
√

X2 give the
growth rates associated with the novel predator–prey model, lead-

ing to X1(T) = ( 1
2
α1 T +

√
X10)

2
and X2(T) = ( r

2
α2 T +

√
X20)

2

for X10, X20 > 0. A significant difference between the models is
the impact of the predator–prey pair on each other. To inter-
pret the behavior of the predation rate, we consider only the

first terms of the two predator–prey models, i.e., d X1
d T

= (X1 X2)
α

and d X2
d T

= −(X1 X2)
α , in which the cases α = 1 and α = 1/2

represent the predator–prey interaction term related to the stan-
dard LV and GM models, respectively. In this regime, a mono-
tonically growing population of predators is expected while the
prey population decreases until extinction. Such a regime is
described so that the scaled predator populations are given by
X1(T) = X0 − X2(T), with X0 = X10 + X20, in both cases, while the
scaled prey populations are, respectively, X2(T) = X0/[1 − (1 − X0/

X20) exp(X0 T)] for T ∈ [0, ∞) and X2(T) = X0 sin2 (−ω T + arcsin
(√

X20/X0

))

for T ∈ [0, Tmax] in standard and new dynamics,

where Tmax = 2 arcsin(
√

X20/X0). The standard LV model predicts
infinite dynamics over time, even after prey extinction, i.e., X2

(T → ∞) = 0. On the other hand, predators grow following
a logistic curve X1(T) = X0/(1 + (X0/X20 − 1) exp(−X0 T) ), in
which their population remains constant after a lack of food
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FIG. 1. Scaled predator (purple lines) and prey (red lines) populations as a func-
tion of the scaled time with initial conditions X10 = X20 = 1.0, and r = 0.8 (solid
lines) and r = 1.2 (dashed lines), for (a) the standard LV model, and (b) the
geometric mean (GM) model.

(prey extinction), i.e., X1(T → ∞) = X0. In contrast, the GM model
predicts a cessation in predation dynamics when the prey popu-
lation is extinct at time Tmax. As a result of the resistance of the
environment, represented in this instance by the absence of prey,
the GM model suggests the extinction of predation dynamics when
X2(Tmax) = 0 and X1(Tmax) = X0.

Figure 1 shows the time evolution of the scaled predator X1

(purple) and prey X2 (red) populations as a function of the scaled
time T under the same initial conditions (X10 = 1.0 and X20 = 1.0)
for the LV and the GM model. Solid curves refer to r = 0.8, while
dashed lines refer to r = 1.2. A small change in the r-value from
0.8 to 1.2 noticeably affect the predator–prey dynamics. Since the
oscillation frequency of the standard LV system is unknown, its
dynamics may be explored by evaluating a Jacobian matrix40 in an
equilibrium point (that is, through a linearization process using
first-order partial derivatives). When the standard LV model is

TABLE II. Pearson correlation coefficient (ρ) between the solutions of the LV and

GM models, as depicted by the black and colored curves depicted in Fig. 2.

rGM = rLV rGM = 1.1 rLV rGM = 0.9 rLV

X1 rLV = 0.8 −0.0256 −0.0283 −0.0224
rLV = 1.2 +0.0493 +0.0439 +0.0559

X2 rLV = 0.8 −0.0524 −0.0389 −0.0659
rLV = 1.2 −0.0117 −0.0347 +0.0114

scaled according to Eqs. (2a) and (2b), the oscillation frequency,
in first-order approximation, around the equilibrium point ensues
ωLV =

√
c22/c11. At the same time, the oscillation frequency asso-

ciated with the GM model in its scaled version is constant with a
period of 4π , as expected due to the factor ω = 1/2 in the argu-
ments of the sines and cosines functions in Eqs. (20a) and (20b).
Such contrasts are noteworthy when we compare the predator–prey
dynamics of the two models for different r-values for the GM model,
as depicted in Fig. 2.

To quantitatively compare the fluctuations in population sizes
shown in Fig. 2, we consider the Pearson correlation coefficient (ρ)
as a similarity metric. In this regard, the Pearson coefficient statis-
tically measures the degree of the linear relationship between two
time series to assess the similarity between their fluctuations over
time. This parameter ranges from −1 to 1, in which a value close to
1 indicates a systematic association between changes in the fluctu-
ations of the two signals, i.e., a strong positive correlation. On the
other hand, a value close to −1 indicates that the amplitudes of the
fluctuations tend to vary in opposite directions, i.e., a strong negative
correlation. A value close to 0 indicates the absence of a systematic
relationship between the fluctuations of the two signals, i.e., a weak
correlation (or null when ρ = 0). We summarize in Table II the
ρ-values between the colored and black curves depicted in Fig. 2.
In all cases, Pearson coefficients assume values close to zero, indi-
cating that the predator–prey models predict different fluctuations
between them.

Figure 3 reports the predator–prey trajectories with initial con-
ditions X10 = 1.0 and X20 = 1.0, and r = 0.8 (orange) and r = 1.2

FIG. 2. Scaled predator and prey populations as a function of the scaled time with initial conditions X10 = X20 = 1.0, where the black curves refer to the Lotka–Volterra (LV)
model with (a) r = rLV = 0.8 and (b) r = rLV = 1.2, while the colored curves refer to the geometric mean (GM) model.
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FIG. 3. The predator–prey trajectories with initial conditions X10 = X20 = 1.0, and r = 0.8 (orange lines) and r = 1.2 (blue lines), for (a) the standard LV model, and (b) the
geometric mean (GM) model. The black arrows point to the direction of population variation along the increasing scaled-time T .

(blue), for (a) the standard LV model described by Eqs. (3a)
and (3b) and (b) the GM model described by Eqs. (8a) and (8b).
The black arrows point to the direction of the increasing scaled
time. It is remarkable that the frequency of the evolution cycles
is different for the two models. While in the standard LV model
the frequency is a function of the parameter r, in the GM model,
it is a constant ω = 1/2. By considering X10 = 1 and X20 = 1, we
notice that the GM model predicts a time evolution with popula-
tion sizes more prominent than those predicted by the LV model
for r > 1 (represented in Fig. 3 by the case r = 1.2; depicted by the
blue lines) and smaller when r < 1 (represented in Fig. 3 by the case
r = 0.8; depicted by the orange lines). This feature is because the
r-parameter governs the insertion of energy, associated with envi-
ronmental aspects that promote prey population growth, into the
predator–prey scaled system. Indeed, as the prey and predator pop-
ulations initiate to interact, their populations increase when r > 1,
since the prey scaled-population variation rate (d X2/d T) is positive,
which induces an increase in the first term of Eqs. (3a) and (8b), leav-
ing it to be more significant than the second term of these equations,
conducting to the positivity of the predator scaled-population vari-
ation rate (d X1/d T). When r < 1, the prey scaled-population vari-
ation rate, at the commencement of the dynamics, is less than zero,
causing a decline of the prey population, which in turn induces the
negativity of the predator scaled-population variation rate; there-
fore, both populations decrease in this regime at the beginning of
the predator–prey iteration, as depicted by the orange lines in Fig. 3.

Figure 4 presents the phase portrait of the two models to
assess the effect of the initial conditions on the predator-predator
dynamics. The colored lines represent the phase plane trajectories
corresponding to r = 1.2 and different values of the Hamiltonian
(a) Eq. (4) for the standard LV model and (b) Eq. (9) for the GM
model. The black dot represents the value of the predator and prey
populations whose minimum Hamilton value is reached, i.e., when
(X1 = r, X2 = 1) and (X1 = r2, X2 = 1) in the LV model and in

the GM model, respectively. In both dynamics, the phase portraits
exhibit closed trajectories that represent the possible population
dynamics of predator and prey species. Although common patterns
are observed, note that the minimum energy points (black dot in
Fig. 4) are positioned differently along the X1-axis; they can be
obtained in the steady state from Eqs. (3) and (8) for the LV and GM
models, respectively. Such equilibrium points occur when X2 = 1 in
both dynamics, but it ensues for different values of X1, being X1 = r
in the LV case and X1 = r2 in the GM case. The existence of this
equilibrium point suggests that if both populations are extinct, they
will remain extinct until an outside factor can change that.4 Also,
predator and prey populations’ maximum and minimum possible
values differ in both dynamics following Eq. (5) for the LV model
and Eq. (12) for the GM dynamics.

Figure 5 reports the phase plane trajectories related to con-
stant values of Hamiltonian with initial conditions X10 = 2.0 and
X20 = 1.5, for some different r-values. The panel (a) refers to the
standard LV model, while panel (b) refers to the GM model. It is
remarkable that the minimum and maximum populations of preda-
tors (i.e., X1 min and X1 max) are increasing functions of the parameter
r in the two models. For the prey population, the behavior of X2 min

and X2 max can be an increasing or decreasing function depending on
the r-value. In both dynamics, X2 min is an increasing function of the
r-parameter for r < X10 in the case of the LV model and r <

√
X10

in the GM model. At the same time, X2 min is a decreasing func-
tion of the r-parameter for r > X10 in the case of the LV model and
r >

√
X10 in the GM model. We notice a similar behavior for the

maximum value of the prey population, where X2 max decreases with
r when r <

√
X10 in the GM model case (r < X10 in the LV dynam-

ics), while X2 max becomes an increasing function when r >
√

X10

in the GM model (r > X10 in the LV dynamics). The orbit with
r =

√
X10 for the GM model and the one with r = X10 for the LV

model are depicted by black lines in Fig. 5. We notice the existence
of two nodes in both dynamics, equally positioned along the X1-axis.
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FIG. 4. Phase plane trajectories for three different values of the Hamiltonian, with r = 1.2, for (a) the standard LV model where Hmin = 1 + r [1 − ln(r)], and (b) the
geometric mean (GM) model where Hmin = −1 − r

2.

In this case, the maximum X2 max = X20 and minimum X2 min = X∗
2

values of the prey population are reached when X1 = X10 and defines
two nodes (X10, X20), (X10, X

∗
2) as shown in Fig. 5. The upper node

corresponds to the starting point (X10, X20) at T = 0. The employed
time T to reaches the lower node (X10, X

∗
2) is an increasing function

of the r-parameter for both models. The two nodes can be obtained
from the conservation of the Hamiltonian by solving the algebraic
system

H(X1, X2, r1) = H(X10, X20, r1), (21a)

H(X1, X2, r2) = H(X10, X20, r2), (21b)

involving two different r-parameters. For the standard LV model,
X∗

2 = −W+ (s) for X20 > 1 and X∗
2 = −W− (s) for X20 < 1, where

s = −X20 e−X20 . For the GM model, the mathematical expression of

X∗
2 is much more straightforward without needing the use of special

functions and is given by the expression X∗
2 =

(

2 −
√

X20

)2
.

Figure 6 illustrates the orbits, when the r-parameter ranges
from 0.6 to 1.5, in the phase space for the two models [panel (a)
for the LV model and (b) for the GM model] in the special case
where the two nodes collapse in a unique one, i.e., (X10, X

∗
2 = X20).

This node is given by (X10 = r, X20 = 1) and (X10 = r2, X20 = 1),
for the LV and the GM model, respectively. For the orbits on the
right-hand side of the node, corresponding to r >

√
X10 for the

GM model and r > X10 for the LV model, the maximum preda-
tor X1 max and prey X2 max populations are increasing functions of
the r-parameter in both the models. The minimum prey popula-
tion X2 min is a decreasing function of the r-parameter, while the
minimum predator population does not vary with the r-parameter
and assumes the value X1 min = X10. For the orbits on the left-hand

FIG. 5. Phase plane trajectories related to constant values of Hamiltonian with initial conditions X10 = 2.0 and X20 = 1.5, for some different r-values. The panel refers to
(a) the standard LV model, while panel (b) refers to the geometric mean (GM) model. The upper node corresponds to the starting point (X10, X20) at T = 0. The employed
time T to reaches the lower node (X10, X

∗
2 ) is an increasing function of the r-parameter.
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FIG. 6. Phase portraits for various r-values, ranging from 0.6 to 1.5, with X10 = 1.2 and X20 = 1.0 for (a) the standard LV model and (b) the geometric mean (GM) model.23

The periodic orbits have a fixed energy at H0 and are around the fixed node at the point (X10, 1).

side of the node, corresponding to r <
√

X10 for the GM model
and r < X10 for the LV model, the maximum predator population
remains fixed at the value X1 max = X10, while the maximum prey
population X2 max is a decreasing function of the r-parameter. The
minimum predator X1 min and prey X2 min populations are increas-
ing functions of the r-parameter. Although the GM model predicts a
dynamic with larger predator–prey populations than the LV one for
the same r-value (prey per capita growth rate), both exhibit stable
limits in the phase portrait even when the initial conditions coin-
cide with the equilibrium point (X2 = 1 in both models, X1 = r and
X1 = r2 for the LV and GM models, respectively), except for the
case r = 1.

Figure 7 shows the contour plot under surface basemap rep-
resenting the two models’ Hamiltonian from a three-dimensional
perspective for r = 0.5, r = 1.0, and r = 1.5. The left column refers
to the standard LV model, while the right one refers to the novel
predator–prey model. The region annotated with colors closest to
dark red (representative of the smallest amplitudes among the H-
values) is centered on the equilibrium point (r, 1) for the standard
LV model and (r2, 1) for the GM model. From a visual inspection,
the similarities between the Hamiltonians are noticeable, although
they have different mathematical expressions. When r = 0.5, it is
worth noting that both population models predict rapid predator
growth [Figs. 7(a) and 7(b)], while in the case of r = 1.5, the prey
population’s growth is drastically impacted, as depicted in Figs. 7(e)
and 7(f). In other words, the r-parameter directly influences which
species dominate the energy content of the predator–prey dynam-
ics. When r takes on the value of 1, the 3D representation of
the Hamiltonians predicts higher energies in the extreme pop-
ulations [Figs. 7(c) and 7(d)]. Clearly, the r-parameter impacts
the morphology of the H-surface and then of the phase-space
orbits.

IV. DISCUSSION AND CONCLUSION

A comparative analysis of the standard LV model and the GM
predator–prey dynamics recently introduced in Ref. 23 has been per-
formed. The GM model is integrable and its closed-form solution
assumes an analytical expression involving standard trigonomet-
ric cyclic functions. The expression of the oscillation frequency
is obtained and only depends on the interaction coefficients, i.e.,
ω = √

c12 c21. These results are related to the particular forms of
the demographic (natality and mortality) rates and the interaction
between the predator and prey populations. For the comparison, the
solution of the LV model has been obtained by adopting the stan-
dard numerical integration techniques available in the literature. It
is shown that the GM model and the LV one exhibit the same main
features despite being based on different dynamics.

In order to get further insight into the results of the numeri-
cal simulations and their relation to the microstructure of the two
set of equations, a few remarks might be conveniently derived from
the scaled variables Eqs. (2a) and (8a). The ratio between the scaled
amplitudes is the same for the LV and GM model,

X1

X2

=
c21

c12

x1

x2

. (22)

Conversely, the characteristic times exhibit different dependence on
the parameters cij,

TGM =
√

c12 c21 t and TLV = c11 t. (23)

While TLV simply depends on the predator mortality, the natu-
ral time TGM depends on the joint effect of the growth rate of
the predator population and the death rate of the prey population,
respectively. In other words, the delay between the oscillation phases
for the GM model is determined by two parameters related to two
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FIG. 7. Contour plot under surface basemap representing the two models’ Hamiltonian from a three-dimensional perspective for (a) and (b) r = 0.5, (c) and (d) r = 1.0,
and (e) and (f) r = 1.5. The left column refers to the standard LV model described by Eq. (4), while the right one refers to the geometric mean (GM) predator–prey model
described by Eq. (9).
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populations. Hence, it is characterized by a higher degree of com-
plexity compared to the standard LV model. This difference is also
exhibited in the parameter r that in the case of the standard LV
model depends only on the demographic parameters. Contrarily, for
the GM model, r depends on the interaction strength through c12

and c21,

rGM =
c22

c11

√

c12

c21

and rLV =
c22

c11

, (24)

which are equal only in the case of equal interaction rates for the
growth and death of the predators and prey. In summary, the inter-
action parameters rule the temporal scale of the GM model rather
than the demographic parameters as in the LV model.

To the purpose of better understanding the mechanism under-
lying the LV dynamics, it can be observed that the LV model foresees
two types of growth and decrease for each population. The rates of
decrease of predators and growth of preys depend linearly on the two
populations involved. Conversely, the growth rate of predators and
the rate of decrease of prey are non-linear functions that depend on
the product of the two populations. When only the two linear rates
are present in the dynamics, they induce an exponential decrease for
the predators and an exponential growth for the preys in the system.
In Ref. 41, a limiting case was considered with only the non-linear
interaction between the two populations, and it was demonstrated
that the dynamics of the system is subject to a saturation of the two
populations described by the logistic equation. The predators grow
and the preys decrease, asymptotically reaching their limit values.
It can, therefore, be concluded that the LV dynamics turns out to
be a combination of a linear and a logistic dynamics. The combi-
nation of the two integrable dynamics generates the non-integrable
LV dynamics. This type of analysis can also be applied to the GM
model23 to better understand its underlying dynamics.

Let us first consider the effects of the demographic dynamics of
the system, i.e., the predator mortality and prey birth rate described
by the equations dXi/dt = −(−r)i−1√Xi with i = 1 for predators
and i = 2 for preys. The two equations are decoupled and after their
integration, we get

X1(t) =
(

√

X10 −
1

2
t

)2

and X2(t) =
(

√

X20 +
1

2
rt

)2

. (25)

The first difference between the GM and LV models is that these
equations are quadratic and no longer linear.

A second difference is that while in the LV model, the dura-
tion of the phenomenon is infinite; in the GM model, the number of
predators decreases non-linearly and the dynamical process evolves
within a finite time 0 ≤ t ≤ 2

√
X10, i.e., when their number becomes

zero due to their mortality. The preys instead continue to grow with
a law that asymptotically becomes linear instead of exponential as in
the case of the LV model.

Let us now consider the effects of the predation dynamics, i.e.,
the predator growth and prey decrease following the interaction
between the two populations. The population evolution equations
read dXi/dt = (−1)i−1√X1X2, where i = 1 corresponds to preda-
tors and i = 2 to preys. The above system of coupled equations can

be integrated easily obtaining

X1(t) = (X10 + X20) sin2

(

a0 +
1

2
t

)

and

X2(t) = (X10 + X20) cos2

(

a0 +
1

2
t

)

,

(26)

with a0 = arcsin
√

X10/(X10 + X20). The evolution of the system is
no longer described by the logistic equation, as in the LV model.
An important difference between the two models consists in the
fact that while in the LV model, the dynamics has an infinite dura-
tion; in the GM model, it ends in a finite time i.e., 0 ≤ t ≤ tf, with
tf = π

2
− a0 > 0, which corresponds to the instant that the number

of preys becomes zero due to predation.
As in the LV model, the overall dynamics of the GM model

combines two partial dynamics. The first is the demographic
dynamics that accounts for the mortality of predators and the birth
rate of preys, while the second dynamics describes the phenomenon
of predation accounting for the increase of predators and decrease
of preys following the interaction between the two populations. The
above partial dynamics are completely different in the two models
considered here. The overall dynamics of both models result to be
oscillating even if different in the two cases.
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