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Tackling Time-Variability in sEMG-based Gesture Recognition with
On-Device Incremental Learning and Temporal Convolutional Networks

Alessio Burrello1, Marcello Zanghieri1, Cristian Sarti1, Leonardo Ravaglia1, Simone Benatti1,3, Luca Benini1,2

Abstract— Human-machine interaction is showing promising
results for robotic prosthesis control and rehabilitation. In
these fields, hand movement recognition via surface elec-
tromyographic (sEMG) signals is one of the most promis-
ing approaches. However, it still suffers from the issue of
sEMG signal’s variability over time, which negatively impacts
classification robustness. In particular, the non-stationarity of
input signals and the surface electrodes’ shift can cause up to
30% degradation in gesture recognition accuracy. This work
addresses the temporal variability of the sEMG-based gesture
recognition by proposing to train a Temporal Convolutional
Network (TCN) incrementally over multiple gesture training
sessions. Using incremental learning, we re-train our model
on stored latent data spanning multiple sessions. We validate
our approach on the UniBo-20-Session dataset, which includes
8 hand gestures from 3 subjects. Our incremental learning
framework obtains 18.9% higher accuracy compared to a
baseline with a standard single training session. Deploying our
TCN on a Parallel, Ultra-Low Power (PULP) microcontroller
unit (MCU), GAP8, we achieve an inference latency and energy
of 12.9 ms and 0.66 mJ, respectively, with a weight memory
footprint of 427 kB and a data memory footprint of 0.5-32 MB.

I. INTRODUCTION

Human-Machine Interfaces (HMI) are constantly evolving
in many industrial, commercial, and clinical applications [1].
HMI based on decoding surface electromyographic (sEMG)
signals, to recognize hand gestures, is a well-established
paradigm [2] and recently proposed machine learning meth-
ods improve the classification accuracy above 90% [3], [4],
[5].

However, sEMG is strongly affected by fatigue, user
adaptation, perspiration, sensor shifts, and other factors [6],
which cause a strong variability of the signal over time, and
impair the long-term robustness of recognition algorithms,
causing up to 30% accuracy drop [7]. Deep Learning (DL),
thanks to larger sEMG datasets and feature learning, miti-
gated the issue, leveraging training on multiple acquisition
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sessions [5], reducing the inter-session accuracy degradation
to less than 5%. On the other hand, multi-session training
presents 2 major drawbacks: it requires a large amount of
data, impossible to fit into embedded devices with strict
memory constraints, and the computational resources needed
for a complete online forward/backward propagation exceed
the capabilities of edge processors. Hence it is only possible
in a laboratory setting, where data from new sessions can be
uploaded on desktop machines or servers for re-training the
DL model.

Incremental learning [8] tackles the problem of continually
improving a learning model over new training examples. To
perform it at the extreme edge, we can re-train only a portion
of the network by exploiting stored feature maps in place of
the full training dataset. This is often sufficient to allow the
network to learn new data distributions [9] incrementally.
A similar problem has recently been addressed in [10] for
sEMG signals, where new gestures are learned over time,
reaching an accuracy of ∼ 85%, using Hyperdimensional
Computing (HDC). Despite the high efficiency of the HDC,
its accuracy reduces progressively as new classes are added,
posing limits to the number of learned gestures.

In this work, we target on-device multi-session training,
and we tackle the time-variability of sEMG-based hand
gesture recognition, proposing to incrementally train a Tem-
poral Convolutional Network (TCN), a DL model for time
series suitable for resource-constrained devices and real-time
applications. We developed an incremental learning approach
that allows training the network directly on the embedded
device, as shown in [9], after gathering new data over time.
The main contributions of the paper are:

• We show an incremental learning setup improving
a TCN’s accuracy from a single-session training by
18.9%, from 74.6% to 93.5%. The accuracy degrades
only by 1.3% if compared to simultaneous training on
all training sessions1, thus showing that a continuous re-
training of the network is possible by storing only latent
data from previous training sessions, using only a small
incremental dataset with a footprint of only 8MB (as
opposed to the full dataset of 144 MB).

• We compare our TCN with SoA gesture recognition
classifiers SVM [5] and HDC with the incremental
learning policy, reaching 5.60% higher accuracy than
the best competitor, an RBF-SVM using RMS input
feature.

1Complete network training is not feasible neither on-chip and in a real-
scenario where data are acquired over time



• We analyze the memory footprint and MACs of our
solution. We also deploy our TCN on the commercial
GAP8 edge processor [11], achieving 12.9 ms latency
and an energy envelope of only 0.66 mJ per inference.

II. MATERIALS & METHODS

A. Surface Electromyographic Signal

EMG signal [12], [13] is a valuable index of muscles’
activity since it is the biopotential that originates from the
current generated by the ions flowing through the membrane
of the muscular fibres in response to electrical stimuli from
the central nervous system. Typical EMG amplitudes range
from 10 µV to 1mV, with bandwidth up to ∼ 2 kHz. The
major noise sources which increase EMG variability and
reduce signal quality are generated by motion artefacts,
floating ground noise, crosstalk, power line interference [14]
as well as variable skin impedance, electrode repositioning,
and user adaptation [15]. For this reason, a pattern recogni-
tion algorithm requires periodic re-training or calibration to
enable a reliable interface.

B. UniBo-20-Session Dataset

The dataset analyzed in this work comprises 20 acquisition
sessions spread over 10 days (morning + afternoon) [5]. The
dataset involves 3 subjects (all male, age 29±3 years). Data
were acquired using a custom 8-electrodes platform sampling
at 4 kHz. [5]

The average duration of each session is 7.5min, and each
includes the rest position and 8 hand gestures repeated 6
times, with both contraction time and a rest interval of 3 s.
With 16-bit data resolution and subsampling to 2 kHz, every
single session has a memory footprint of 24.3MB ± 2.8MB.
Therefore, storing even a single session could be critical for
edge nodes with a small FLASH memory.

C. Temporal Convolutional Networks

Temporal Convolutional Networks (TCNs) are a promising
sub-class of CNNs that have obtained outstanding results on
benchmark time-series tasks [16], [17]. In addition to higher
accuracy, TCNs have lower complexity than Recurrent Neu-
ral Networks (RNNs) [3]. Hence they represent a promising
solution for edge deployment and time-series processing. A
TCN contain many 1D convolutional layers, presenting two
key characteristics:
(1) causality: each output ytn of the layer is computed by
combining only elements xti s.t. ti ≤ tn, to not include
future information in the intermediate time series through
the network;
(2) dilation: to increase the Receptive Field (RF) without
increasing the number of parameters, a fixed step d is applied
between kernel weights; for instance, a filter with kernel size
k = 3 and dilation d = 4 leads to RF = (k − 1)d + 1 = 9.
Thus, a 1D convolution layer produces an output as:

yo
n = Conv(x) =

L∑
l=1

k−1∑
i=0

Wl,m
i xl

n−d,i

with x input feature map and y output feature map, n the
time index, W the filter weights, L the number of input
channels, m the output channel, d dilation, and k the kernel
size.

For this work, we exploit a similar topology to the one
proposed in [5], as depicted in Figure 1. The network is
composed of three sections:
- the Features Extractor, composed of 6 1D convolutional
layers and 3 pooling layers; the structure is identical to the
one shown in [5];
- the Features Aggregator includes 3 1D convolutions and 2
fully-connected layers, which mix the features extracted into
a 256-dimension latent space;
- the final Classifier, two fully-connected layers, one 256×
128 and one 128 × 9, which takes latent space as input
and returns a 9-dimension score. The highest number is the
assigned gesture. All layers have ReLU non-linearity as an
activation function and are followed by Batch-Normalization
(BN).

D. Incremental Learning applied to Gesture Recognition

Algorithm 1 Incremental Re-training protocol
1: Input: TCNint8 weights [0:12], TCNfp32 weights [6:12],

stored latent data Dl from all seen sessions.
2: for epochs← 1, · · · , 22 do
3: for batch← 1, · · · , 244 do
4: forward: loss ← TCNint8[6:12][Dl[batch]]
5: backward: TCNfp32[6:12] weights ← loss
6: end for
7: end for
8: TCNint8[6:12] ← linear quant.(TCNfp32[6:12])
9: Output: TCNint8[6:12]

Incremental Learning (or Continual Learning) has been
introduced to address the challenge of learning new data
distributions or patterns, updating a pre-existing model in-
crementally. The simplest way to tackle the problem is to
periodically re-train a model on a dataset enriched with
novel data. However, this approach poses a key challenge
for deployment on constrained edge devices since training an
entire network, running forward and backward propagation,
is computationally demanding and requires maintaining a
large amount of data stored on the device.

Therefore, literature proposes several novel approaches,
such as [18], where the regularization is used to avoid for-
getting the previously learned information. Another solution
consists of storing in a non-volatile memory only a small
amount of the new-gathered inputs (e.g., new images from a
camera) to perform few-epochs of re-training of the network
on all the saved data (Rehearsal Strategies) [19]. However,
these methods either achieve low performance or necessitate
large storage memories. For instance, [8] shows that, on
the CORe50 benchmark, iCaRL [19] has 375 MB memory
overhead, with an accuracy drop of up to 70%.

A promising approach for memory-constrained devices is
based on the re-training of a network with latent data [8],



Fig. 1. Temporal Convolutional Network architecture. Three different configurations for feeding input / latent data for re-training over different sessions
are highlighted with red arrows. Each sample has a memory footprint of 4 kB, 2 kB and 256B, respectively, in the three different settings.

Fig. 2. Incremental Learning scenario with latent data stored on external
non-volatile memory. At each new data acquisition session (1), a new re-
training is performed: first, input data are fed-forward through the first
network stage, which is frozen, and the outputs of this stage are stored
as latent data (2); then, these latent data are used to re-train the second part
of the network to adapt it to the new signal pattern (3).

Fig. 3. Data storing for continual learning. Two approaches are analyzed,
uniform and exponential decaying data distribution. In each single session,
each class is equally represented by downsampling the rest class.

which are partial outputs coming from the forward propa-
gation of initial layers of the network. As depicted in Fig.
2, latent data are intermediate activations produced a subset
of the layers of a network. During a new training session,
several latent data (labelled) are produced by calculating the
output (forward prop) of the first N layers. Part of these
latent data are stored in the local memory, partially replacing
existing latent data stored from previous sessions.

Stored latent data are used to re-train the last layers of
the network (i.e., from layer N + 1), resulting in partial
re-training of the neural network, updating only the last
layers with the conventional forward/backward propagation,
while freezing the first layers. Besides the advantage in terms
of computational resources, continual learning also benefits

reduced memory occupation of the latent data compared to
raw signals. For instance, Fig. 1 shows that storing latent data
produced by the last layer of the Feature Extractor reduces
the data memory footprint by 2×, or equally allows storing
2× more training data in the same memory footprint (if
compared to raw inputs storage). Note that this is possible
since the dimension of intermediate activations progressively
shrinks through the network. While we have a network input
dimension of 2048 elements, the input data dimension of the
Features Aggregator is 1024 elements, and the one of the
Classifier is just 256 elements.

In our experiments, we use an incremental learning strat-
egy with latent data [8] to re-train our TCN on new recording
sessions over time directly on the edge microcontroller to
tackle the inter-session signal variability due to user ex-
perience and sensor repositioning. If not considered, EMG
variability leads to a catastrophic performance loss of up to
30% [7]. This technique allows training on sessions acquired
over time directly on a wearable device, avoiding having
a static model whose performance degrades over time and
streaming data to a cluster for re-training [9]. In Algorithm 1,
we report the pseudocode of the TCN re-training procedure
based on [8]. We re-train our network for 22 epochs, each
with 244 mini-batches. Note that while we use the int8
format to reduce inference time, we store an fp32 copy of the
model for re-training. At the end of this step, the new fp32
trained model is quantized, and both the fp32 (for future re-
training) and the int8 (for inference) models are saved. In this
example, we show the re-training of layers 6 to 12, i.e., the
Feature Aggregator and the Classifier, using the latent data
Dl (the intermediate activation produced by layer 5, obtained
from all training sessions) stored in the data memory (64MB
flash memory of the board we target).

To the best of our knowledge, we are the first to analyze
how re-training a neural network on the edge impacts gesture
recognition accuracy over time.

E. Incremental Learning Policies

We show that our method can improve up to 20% a
conventional 1-session training, and it reaches accuracy
comparable with a conventional 10-session training strategy,
tested on the UniBo-20-Sessions dataset. [5]. We test either
the storage of raw data or the intermediate (latent) activations
of the network. In particular, as shown in Figure 1, we
explore the re-training of either i) the whole TCN, ii) the
Feature Aggregator + Classifier, or iii) only the Classifier.



TABLE I
ACCURACY OF OUR TCN AND OF STATE-OF-THE-ART METHODS

TRAINED WITH SINGLE SESSION (1ST , 10TH ), ALL TRAINING SESSIONS

SIMULTANEOUSLY (1ST -TO-10TH ), AND OVER TIME (CONTINUAL).

Recognition accuracy

Train session(s): 1st 10th 1st-to-10th Incremental

SVM [5] 78.3% 88.1% 91.4% 87.9%
HDC [10] 70.6% 81.0% 82.9% 82.9%

TCN (Our Work) 74.6% 81.2% 94.8% 93.5%

Note that to train only part of the network (i.e., only Features
Aggregator+Classifier or only Classifier), all previous layers
are frozen, thus performing back-propagation only on deepest
blocks, as explained in [9]. Furthermore, we show two ways
of storing data in a constrained memory: a uniform allocation
and an exponential allocation, shown in Figure 3. With
uniform allocation, an equal memory footprint is assigned to
each training session, giving the same weight to all sessions.
For instance, when a new session i is gathered, a portion
(i − 1)/i of the allocated memory is preserved, while 1/i
of the memory is assigned to the new session. In contrast,
the exponential allocation increases the importance of most
recent sessions: each newly added session receives 1/2 of
the data memory while discarding 1/2 of the previously
stored data. Both uniform and exponential allocation policies
follow the same rule in discarding old samples: discarding
step preserves the current ratio between stored sessions, i.e.
each old session discards the same fraction of its own data.
The uniform or exponential distribution is thus preserved at
each new step.

Fig. 2 demonstrates our on-chip training procedure, in-
spired by [9]. On a new sEMG training session (1), we
produce and store the new latent data in the data memory
using one of the above-described policies, i.e. exponential or
uniform allocation (2). After that, we perform the re-training
of the second part of the network on the whole data stored
in the data memory (3).

III. EXPERIMENTAL RESULTS

This section analyzes our TCN network’s performance
when trained over many sessions with different memory
constraints. We then compare our TCN with SoA algorithms.
Finally, we report the power and energy consumption of
the network when deployed on a commercial edge-device,
GAP8 [11].

A. Incremental Learning improvement

The last row of Table I shows our TCN accuracy under
four training conditions. Note that all the models and the
configurations are always tested on the last 10 data sessions,
i.e., sessions 11-20. First, we show a single-session training.
In the first column, we train only with 1st gathered session,
while in the second column with the 10th session, i.e.,
the last gathered session before the testing ones. Then,
we show a complete offline training with all the sessions
from 1st to 10th, which represents the ideal case where all

Fig. 4. Incremental training with sessions 1 to 10. We used 8 MB of
data for re-training the algorithm. No cpr. (compression) refers to the re-
training of the entire network, 2× cpr. to re-training of last two blocks,
Features Aggregator and Classifier, and 8× cpr. to the re-training of solely
the Classifier.

Fig. 5. Sweeping of data memory for TCN re-training. The data memory
stores raw input/latent data from the first ten sessions of the dataset.

newly acquired data can be stored and used for network re-
training. Finally, we present the re-training over sessions of
our network. In particular, in Table I, we report the case
of maximum data stored compression2, with only the final
Classifier re-trained. Compared to single-session training,
the incremental learning approach improves the classification
accuracy of 12.3%-18.9%. Remarkably, the higher is the time
gap between training sessions and testing ones, the bigger
is the accuracy loss. Further, compared to using all the 10
sessions simultaneously to train our network (unfeasible on
an edge device, since storing all data requires ∼ 144 MB),
the incremental approach causes a loss of only 1.3% accuracy
(93.5% vs. 94.8%).

Fig. 4 shows the incremental training trend of our TCN
when new sessions are added (from session 1 to 10). We
report both exponential and uniform memory allocation.
We also report the 3 scenarios of re-training previously
introduced, i.e., re-training the whole network, re-training
the Features Aggregator and the Classifier, or re-training only

2A memory of 8MB was considered as a constraint for storing latent
data.



Fig. 6. Comparison of the best configuration of our TCN with SVM and
HD classifiers.

the Classifier. For these three cases, for each single stored
example, we either store the raw input data of dimension
8×1×256, the Features Extractor output (8×1×128 latent
data, thus with a 2× compression compared to input), or the
Features Aggregator output (1 × 256 latent data, 8× com-
pression), respectively, as shown in Fig. 1. Since our problem
can be classified as a new instances problem [8] (i.e., new
examples from the same classes are shown, changing the data
distribution over time), giving more relevance to most recent
sessions using exponential allocation results in slightly better
performance, namely 93.5% vs. 92.6%. Moreover, the graphs
show that re-training only the Classifier and thus storing
latent data of dimension 1 × 256 (with compression of 8×
compared to input data) is always convenient.

Finally, Fig. 5 demonstrates our technique applied with
different memory footprint constraints. Using just 2 MB, the
exponential allocation, and re-training only the Classifier, we
can already reach an accuracy of 93.2%. Notably, reducing
the data memory leads to the re-training of only the Clas-
sifier to outperform the other two scenarios, with a higher
performance gap of 2.4%-4.9%. Overall, re-training only the
Classifier achieves the highest accuracy while reducing the
data memory footprint by a factor of 8× (less than ∼ 1%
loss using 1 MB memory instead of 8MB).

We compare our algorithm with two state-of-the-art classi-
fiers for sEMG gesture recognition, RBF-SVM [6], and HDC
[10] fed with the RMS feature, using the same four training
configurations previously exposed. While HDC naturally
learns new classes and new instances over time, for SVM, we
consider the same memory allocation of our TCN, re-training
the Classifier with the RMS data stored over sessions. We
consider a data memory of 8 MB. The Tab.I shows that while
using a single session for training leads our TCN to under-
perform compared to SoA, when we apply our incremental
learning approach, we outperform SoA by 5.6% after training
with 10 sessions. Further, Fig.6 shows that after having seen
at least 3 training sessions, our TCN outperforms both SoA
methods.

TABLE II
DEPLOYMENT METRICS OF OUR CONTINUAL LEARNING SETUP. THE

ADDITIONAL 136 kB DURING TRAINING REPRESENT THE STORAGE OF

FLOATING-POINT WEIGHTS.

Data memory Net memory Latency Energy

Training 0.5÷ 8MB 427 + 136 kB 54.4 s 2.77 J
Inference 0MB 427kB 12.9ms 0.66mJ

On GAP8 [11] @ 100MHz, 1V (51mW).

B. Edge deployment

We have deployed our solution on the GAP8 multi-
core platform [11], a microcontroller focused on AI edge-
applications, to demonstrate its suitability for edge execu-
tion. GAP8 couples a fabric controller composed of one
CV32E40P core for control tasks and 512 kB L2 memory
extendable via a HyperBus interface with an 8-cores clus-
ter accelerator for highly demanding workloads and 64 kB
single-cycle latency L1 data memory. The clock frequency
reaches up to 250MHz, with an average power consumption
of 51.0mW at 100MHz. After a post-training linear quan-
tization, performed with the NEMO tool [20], to deploy our
int8 quantized network, we use the DORY tool presented
in [21] with an extension to the backend to support the
dilation parameter.

Table II reports the memory footprint, the latency, and
the energy per classification during inference. Our TCN
only requires 427 kB for inference and an additional 136 kB
to store fp32 weights of re-training layers, while the data
memory occupies from 0.5 to 8MB, depending on the
chosen trade-off between data-memory and accuracy. The
data are stored in the Flash, and the memory constraint
depends on the used chip (for our tests, we test the algorithms
on the GAPuino board with 64MB flash memory). Running
the TCN framework on GAP8 at 100MHz, 1V, the power
envelope is SI51.0mW (most energy-efficient configuration),
and we obtain 12.9ms latency per inference, with an energy
consumption of just 0.66mJ.

Furthermore, based on the work of [9], considering
22 epochs for a full re-training with a minibatch size of
244 and Stochastic Gradient Descent (SGD), we estimate a
total latency of 54.4 s with an energy consumption of 2.77 J,
for a complete update of the network3.

IV. CONCLUSIONS

We present a novel technique to tackle the time-variability
in sEMG based gesture recognition. We combine Incre-
mental Learning with a Temporal Convolutional Network
to demonstrate an almost full recovering of performance
compared to the “offline” training and an improvement
of 18.9% compared to single-session training. We explore
different memory allocation methodologies and different
retraining network sections, achieving better performance
than the state-of-the-art. Finally, we deploy our solution

3Both input data and intermediate activations are saved on 32 bits and
the training is done in fp32.



on a commercial edge node, demonstrating its suitability
for onboard gesture recognition. Future work will focus on
retraining by using smaller formats than 32 bit fp.
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