
03 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Limits to predictability of the asymptotic state of the Atlantic Meridional Overturning Circulation in a conceptual climate
model / Mehling, Oliver; Börner, Reyk; Lucarini, Valerio. - In: PHYSICA D-NONLINEAR PHENOMENA. - ISSN 0167-
2789. - STAMPA. - 459:(2024). [10.1016/j.physd.2023.134043]

Original

Limits to predictability of the asymptotic state of the Atlantic Meridional Overturning Circulation in a
conceptual climate model

Publisher:

Published
DOI:10.1016/j.physd.2023.134043

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2984756 since: 2024-01-02T11:03:48Z

Elsevier



Physica D 459 (2024) 134043

A
0

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Limits to predictability of the asymptotic state of the Atlantic Meridional
Overturning Circulation in a conceptual climate model
Oliver Mehling a,∗, Reyk Börner b,c, Valerio Lucarini b,c,d

a DIATI – Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
b Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, United Kingdom
c Centre for the Mathematics of Planet Earth, University of Reading, Reading, RG6 6AX, United Kingdom
d School of Mathematical and Computational Sciences, University of Leicester, Leicester, LE1 7RH, United Kingdom

A R T I C L E I N F O

Dataset link: https://github.com/omehling/am
oc-edgetrack, https://doi.org/10.5281/zenodo.
10370900

Keywords:
Chaotic saddle
Melancholia state
Atlantic Meridional Overturning Circulation
Transient chaos
Tipping point
Conceptual climate model

A B S T R A C T

Anticipating critical transitions in the Earth system is of great societal relevance, yet there may be intrinsic
limitations to their predictability. For instance, the asymptotic state of a dynamical system possessing multiple
chaotic attractors depends sensitively on the initial condition in the proximity of a fractal basin boundary.
Here, we approach the problem of final-state sensitivity of the Atlantic Meridional Overturning Circulation
(AMOC) using a conceptual climate model, composed of a slow bistable ocean coupled to a fast chaotic
atmosphere. First, we explore the occurrence of long chaotic transients in the monostable regime, which can
mask a loss of stability near bifurcations. In the bistable regime, we explicitly construct the chaotic saddle
using the edge tracking technique. We quantify the final-state sensitivity through the maximum Lyapunov
exponent and the lifetime of the saddle and find that the system exhibits a fractal basin boundary with almost
full phase space dimension, implying vanishing predictability of the second kind near the basin boundary. Our
results demonstrate the usefulness of studying non-attracting chaotic sets in the context of predicting climatic
tipping points, and provide guidance for the interpretation of critical transitions in higher-dimensional climate
models.
1. Introduction

Like many systems in nature, several elements of the Earth system
are thought to be multistable: for a given forcing, they may possess
multiple competing attractors that can be reached from different initial
conditions [1]. Multistability has been demonstrated in rather complex
physical models of the Greenland [2] and West Antarctic [3] ice
sheets, the Amazon rainforest [4], the Atlantic Meridional Overturning
Circulation (AMOC) [5], and even Earth as a whole [6], supported by
paleoclimatic evidence for abrupt climate changes in the past [7,8].
The proposed multistability of the AMOC has been intensively studied
for several decades [9–11] and has recently attracted renewed atten-
tion due to a suggested loss of stability over the past century seen
in observation-based indicators [12]. The paradigm of a multistable
AMOC dates back to the seminal model introduced by Stommel [13],
who showed that there can be two competing (‘‘on’’ and ‘‘off’’) states for
a given freshwater forcing due to the positive salt-advection feedback.
This concept has been invoked to explain qualitative changes of the
ocean circulation in past climates [14,15] as well as the response of
climate models to changes in the hydrological cycle [16–18].

∗ Corresponding author.
E-mail address: oliver.mehling@polito.it (O. Mehling).

Collectively, the multistable climate subsystems mentioned above
are subsumed under the term tipping elements [19], as anthropogenic
global warming may trigger a possibly irreversible transition (tipping)
to a qualitatively different state on timescales relevant for policy [20].
In turn, the concept of a ‘‘safe operating space’’ has been framed as
keeping a control parameter (such as greenhouse gas forcing) below a
critical value to avoid the transition into an undesired state of the Earth
system [21]. However, in addition to the classical picture of crossing
a bifurcation (‘‘bifurcation tipping’’), internal variability and the rate
of the forcing can also lead to noise-induced and rate-induced tipping,
respectively [22], which means that in reality the safe operating space
is likely more complex than what can be described with a single critical
value [23–25].

By incorporating the dominant physical processes into low-
dimensional conceptual models, dynamical systems theory has proven
extremely useful in advancing our understanding of the mechanisms
of tipping points in the Earth system (see [8,26–29] for recent reviews
on this topic). For example, the derivation of statistical early warning
indicators [30–32], which can be applied to observational (e.g., [12,
33]) or modeled (e.g., [34]) climatic time series, has increased the
vailable online 23 December 2023
167-2789/© 2023 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.physd.2023.134043
Received 30 August 2023; Received in revised form 18 December 2023; Accepted 2
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1 December 2023

https://www.elsevier.com/locate/physd
https://www.elsevier.com/locate/physd
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://github.com/omehling/amoc-edgetrack
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
https://doi.org/10.5281/zenodo.10370900
mailto:oliver.mehling@polito.it
https://doi.org/10.1016/j.physd.2023.134043
https://doi.org/10.1016/j.physd.2023.134043
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2023.134043&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Physica D: Nonlinear Phenomena 459 (2024) 134043O. Mehling et al.

r
a

𝑓

w
t

f
t
s
o
p
e

w
t
a
t
t
𝑥
t
a
f
G
e
s
w
c

t
A
t
a
h
A
f

𝑆

prospect of anticipating that a bifurcation is approached. However,
in a multistable chaotic system there are fundamental limitations to
predictability of the final state even in the autonomous case. The
question of whether the attractor reached from a given initial condition
can be accurately predicted has been coined ‘‘predictability of the
second kind’’ by Lorenz [35]. This is in contrast to predictability ‘‘of
the first kind’’, which refers to the ability to predict the future state
of a system at a given horizon, given the knowledge of the initial
conditions with finite precision. The presence of a limited predictability
of the first kind is a key characteristic of chaotic systems and is usually
investigated through Lyapunov analysis [36,37].

Let us consider the simpler case of bistable systems. Uncertainty in
our ability to predict the final state emerges from the (unavoidably)
finite observation time. Beyond a bifurcation point, one may encounter
so-called ‘‘ghost attractors’’ — states that are not asymptotically stable
but feature transient chaos with finite yet possibly very long lifetimes,
which depend sensitively on the initial conditions [38]. In practice,
this means that the system appears to reside in a well-defined steady
state until a sudden transition to the actual attractor occurs. This phe-
nomenon is common in many areas of physics; for example, turbulence
in pipe flows is often regarded as a very long chaotic transient rather
than a genuine attractor (e.g., [39]). In this case, given a finite time of
observation or simulation (such as in state-of-the-art climate models,
which are typically integrated for decades to centuries), one might
misjudge the stability properties of the system. This is particularly rel-
evant when a control parameter is close to the critical value separating
monostable and bistable behavior.

In the parametric region where bistability is observed, a separate
instance of difficulty emerges in predicting the asymptotic state from
the choice of the initial condition. In a chaotic, bistable 𝐷-dimensional
system, limited final state predictability is directly linked to the pres-
ence of a fractal boundary between the two basins of attraction with
fractal dimension 𝐷 − 1 ≤ 𝐷𝑏 < 𝐷 [40]: given that an initial condition
𝐮0 can only be determined to a precision 𝜀, the fraction 𝑓 of (a bounded
egion of) phase space in which the outcome is uncertain (i.e., different
ttractors can be reached from within 𝐮0 ± 𝜀) scales like

∝ 𝜀𝛼 , (1)

here 𝛼 = 𝐷 − 𝐷𝑏 is the uncertainty exponent [40]. In practical
erms, 𝛼 ≪ 1 means that decreasing the uncertainty 𝜀 only yields

a very small improvement in final state predictability as given by
𝑓 , and the phase space region around the boundary is essentially
a ‘‘grey zone’’ in which the final state is almost unpredictable. The
case 𝛼 ≪ 1 is believed to be relatively common [41]. It has been
conjectured that the fractal basin boundary dimension is linked to the
Lyapunov spectrum and the lifetime of the chaotic saddle [42,43],
with 𝛼 ≪ 1 being associated with a chaotic instability on the saddle
that is fast compared to its lifetime [44]. While their importance for
the transient and asymptotic behavior of chaotic dynamical systems
has long been recognized [38,45], both fractal basin boundaries and
chaotic saddles remain understudied in the context of climatic tipping
points. To our knowledge, the only study that explicitly determined the
basin boundary dimension in the context of two competing climatic
attractors has been by Lucarini & Bódai [46]. They used a climate
model of intermediate complexity to investigate the ‘‘Snowball Earth’’
transition [47,48], in which the ice-albedo feedback drives almost
every initial condition either to a fully glaciated or an ice-free cli-
mate, and found that the basin boundary has almost full dimension,
with 𝛼 ≈ 0.02. Regarding the AMOC, Lohmann & Ditlevsen [25]
ound that in the context of rate-induced tipping (occurring before
he bifurcation point is crossed [22]), the final AMOC state in a
implified ocean general circulation model (GCM) depends sensitively
n the initial condition. They qualitatively linked this behavior to the
resence of a fractal basin boundary but did not assess its properties
xplicitly.
2

In this study, we quantitatively explore the limits of predictability of
the final AMOC state in a conceptual atmosphere–ocean model inspired
by Gottwald [49] (Section 2). The model mimics a key feature of
more complex GCMs: it exhibits chaotic dynamics driven by a fast
atmospheric component, while the oceanic component acts as a slow
integrator. The oceanic component introduces the bistability in the
system as a result of the coexistence of the AMOC ‘‘on’’ and ‘‘off’’
states. We investigate aspects related to both time and phase space that
limit predictability of the second kind. First, we focus on the lifetime
of chaotic transients which may effectively prevent the system from
tipping on finite timescales, even when overshooting the bifurcation
(Section 3). Then, building on the methods of [46], we use the edge
tracking algorithm [50] to construct the chaotic saddle (also called
Melancholia state in [46]) between two competing AMOC states, whose
lifetime and Lyapunov exponents are directly linked to the dimension of
the fractal basin boundary [42,43] (Section 4). Finally, we discuss the
implications of both phenomena on the predictability of AMOC tipping
and on the concept of a safe operating space (Section 5), and summarize
our conclusions in Section 6.

2. The conceptual atmosphere–ocean model

First, we introduce the conceptual climate model that describes
succinctly the main features of atmosphere–ocean flow that we will
focus on in this study — a fast, chaotic atmosphere coupled to a slow,
bistable ocean component. To this end, we use a coupled configuration
of two seminal conceptual models for mid-latitude atmospheric flow
and of the AMOC, the Lorenz-84 model [51] (L84 hereafter) and the
Stommel model [13], respectively.

2.1. Model components

The L84 model for the atmospheric mid-latitude circulation is given
by a set of three ordinary differential equations [51]:

𝑥̇ = −(𝑦2 + 𝑧2) − 𝑎 (𝑥 − 𝐹 )

𝑦̇ = 𝑥𝑦 − 𝑏𝑥𝑧 − (𝑦 − 𝐺)

𝑧̇ = 𝑏𝑥𝑦 + 𝑥𝑧 − 𝑧,

(2)

here 𝑥 is the strength of the westerly winds (a conceptual represen-
ation of the jet stream) given by thermal wind balance, and 𝑦 and 𝑧
re the amplitudes of the cosine and sine phases of a superimposed
raveling wave. The parameters 𝐹 and 𝐺 are the background values for
he meridional and zonal temperature gradients, respectively, to which
and 𝑦 would relax in an uncoupled setting; 𝑎 and 𝑏 control the internal

imescales of the model and will be kept at their original values 𝑎 = 0.25
nd 𝑏 = 4 [51]. Despite its very simple representation of atmospheric
low, the model has a strong physical basis, as it can be derived by
alerkin truncation of a two-layer quasi-geostrophic model [52]. It also
xhibits a complicated bifurcation structure on its own [53,54], but
ince different states of atmospheric flow are not the focus of our study,
e remain in the regime 𝐺 = 1 where the L84 model only has a single

haotic attractor depicted in Fig. 1.
The Stommel model [13] is the canonical conceptual model for

he bistable AMOC and describes the thermohaline flow in the North
tlantic as a function of the meridional temperature gradient 𝑇 and

he salinity gradient 𝑆 between two boxes representing the subtropical
nd subpolar North Atlantic. For several decades, Stommel’s model
as served as a key model to interpret qualitative changes in the
MOC [10,11,16]. Here, we use the version derived by Cessi [55] and

ollow the notation of Gottwald [49]:

𝑇̇ = − 1
𝜀𝑎

(𝑇 − 𝜃) − 𝑇 − 𝜇|𝛹 |𝑇

̇ = 𝜎 − 𝑆 − 𝜇|𝛹 |𝑆,
(3)

where 𝜀𝑎 = 𝑡𝑟∕𝑡𝑑 is the ratio between the restoring timescale for tem-
perature 𝑡 and the diffusive timescale of the ocean 𝑡 , 𝜇 = 𝑡 ∕𝑡 is the
𝑟 𝑑 𝑎𝑑 𝑑
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Fig. 1. Sketch of the coupled L84-Stommel model. In the Stommel model, 𝑇𝑒 and 𝑆𝑒
are temperature and salinity in the subtropical North Atlantic box, and 𝑇𝑝 and 𝑆𝑝 are
temperature and salinity in the subpolar North Atlantic box, with 𝑇 ≡ 𝑇𝑒 − 𝑇𝑝 and
𝑆 ≡ 𝑆𝑒 − 𝑆𝑝. The atmosphere–ocean coupling terms via heat fluxes and freshwater
fluxes are sketched in red and blue, respectively.

Fig. 2. Bifurcation diagram of the uncoupled Stommel model (Eq. (3)): fixed points
of the AMOC strength 𝛹 as a function of the control parameter 𝜎. Solid lines
indicate stable fixed points and the dashed line indicates the unstable fixed point.
The saddle–node bifurcation points are labeled as 𝐿1 and 𝐿2.

ratio between the advective timescale 𝑡𝑎𝑑 and the diffusive timescale,
𝜃 is the surface temperature gradient to which 𝑇 is restored, and 𝜎 is
the surface freshwater flux. The advective terms are proportional to the
absolute value of the AMOC strength 𝛹 = 𝑇 − 𝑆, where 𝛹 > 0 rep-
resents a thermally driven circulation like in the present-day climate,
and 𝛹 < 0 represents a salinity-driven AMOC where the circulation
would be reversed. Here, as in many previous studies, we consider the
freshwater flux 𝜎 as the main control parameter that determines the
AMOC regime. The corresponding bifurcation diagram, which reveals
a bistable region bounded by two saddle–node bifurcations, is shown
in Fig. 2.
3

2.2. Coupled model equations

As in several previous studies [49,56,57] of conceptual atmosphere–
ocean coupling, we couple the Stommel model to the L84 atmo-
sphere through the temperature gradients and the freshwater flux
(Fig. 1). Here, we follow the recent formulation of coupling terms by
Gottwald [49] (without the sea ice component), who introduced an
explicit timescale separation 𝜀𝑓 between the atmospheric and oceanic
components, similar to earlier studies [56,57]. The equations of the
five-dimensional coupled model used in our study are given by:

𝜀𝑓 𝑥̇ = −𝛥 − 𝑎 (𝑥 − 𝐹0 − 𝐹1𝑇 )

𝜀𝑓 𝑦̇ = 𝑥𝑦 − 𝑏𝑥𝑧 − (𝑦 − 𝐺0)

𝜀𝑓 𝑧̇ = 𝑏𝑥𝑦 + 𝑥𝑧 − 𝑧

𝑇̇ = − 1
𝜀𝑎

(𝑇 − 𝑇surf) − 𝑇 − 𝜇|𝑆 − 𝑇 |𝑇

𝑆̇ = 𝑆surf − 𝑆 − 𝜇|𝑆 − 𝑇 |𝑆

(4)

with

𝛥 = 𝑦2 + 𝑧2

𝑇surf = 𝜃0 + 𝜃1
𝑥 − 𝑥̄
√

𝜀𝑓

𝑆surf = 𝜎0 + 𝜎1
𝛥 − 𝛥
√

𝜀𝑓

Here, in a similar spirit as in [56,57], we use a two-way coupling:
the fast atmospheric component drives the ocean via the restoring
temperature and salinity/freshwater flux, while the slow ocean com-
ponent couples to the atmosphere via the meridional temperature
gradient 𝐹 . For simplicity, we keep the zonal temperature gradient
𝐺 = 𝐺0 constant, noting that the chaotic properties of the L84 model
as characterized by its maximum Lyapunov exponent already follow an
intricate non-monotonic structure when only 𝐹 is varied [58].

The main coupling constant is 𝐹1, which we set to 𝐹1 = 0.1 following
[57], who argued that the atmosphere should be weakly coupled to
the ocean. Furthermore, the timescale separation parameter between
atmosphere and ocean is chosen as 𝜀𝑓 = 3 ⋅ 10−4, which corresponds
to defining a timescale of about 10 days for the atmosphere and of
100 years for the ocean. Note that this oceanic timescale defines the
scale of the dimensionless time 𝑡, such that all times given here can
be read in a ‘‘unit’’ of centuries. Our oceanic timescale is slightly
shorter than the one given by Cessi [55], but we mostly aim at a
realistic order of magnitude, as a smaller 𝜀𝑓 needs to be traded off
against a higher computational cost for the edge tracking. Except for
𝐹1 and 𝜀𝑓 , we use the default parameters of [49] (see Appendix A
for a full list of parameter definitions and values). The equations are
solved numerically using a fifth-order Runge–Kutta scheme with a fixed
timestep of 7.5 ⋅ 10−6, which corresponds to a timestep of 1∕40 of the
atmospheric timescale as used in [56].

We remark that it is possible to perform a rigorous asymptotic
analysis of Eq. (4) that, in the limit 𝜀𝑓 → 0, leads to writing the homog-
enized dynamics for the slow variables (𝑇 , 𝑆) in terms of a stochastic
differential equation. The presence of a two-way coupling between the
fast and the slow variables requires a more general approach [59]
than the more common case of skew-symmetric systems, where the
dynamics of the fast variables has an impact on the slow variables but
not the other way around [60,61]. See Appendix B for a sketch of the
asymptotic multiscale analysis of the system given in Eq. (4) and a
derivation of the corresponding homogenized evolution equations for
the slow variables.

3. Chaotic transients

We first turn our attention to the limits of predictability caused
by the sensitivity of the lifetime of chaotic transients to the initial
condition. As an example, we select a set of initial conditions by
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Fig. 3. An example of long transients for 𝜎0 = 0.932. Initial conditions were sampled
from the ‘‘AMOC on’’ attractor for 𝜎0 = 0.926 and were integrated forward after the
parameter change. The lifetime of the transients spans one order of magnitude and
appears unpredictable, but eventually all trajectories convergence to the only remaining
attractor.

sampling the ‘‘AMOC on’’ state for 𝜎0 = 0.926 every 𝛥𝑡 = 7.5. As we will
show explicitly below (cf. Fig. 8), at this value of 𝜎0 the ‘‘AMOC on’’
state is globally stable. Then, we integrate trajectories from these initial
conditions but with the freshwater parameter set to 𝜎0 = 0.932 (Fig. 3),
i.e. slightly larger than for the bifurcation point 𝐿2 of the uncoupled
Stommel model, 𝜎(𝐿2) = 0.9263. We can assume that this value is also
close to the bifurcation point of the coupled model because the coupling
is weak (see Fig. 8).

The initial conditions in Fig. 3 remain in the vicinity of a ‘‘ghost
attractor’’ reminiscent of the ‘‘AMOC on’’ state for a long time (up
to 400 time units ≈ 40 000 years) before converging to the only
remaining genuine attractor, the ‘‘AMOC off’’ state. In this section, we
systematically explore the lifetime of such chaotic transients and show
that they can be observed over a wide range of 𝜎0.

For an ensemble of initial conditions, the lifetime of chaotic tran-
sients, denoted as 𝜏, is expected to be exponentially distributed [62]
with a mean lifetime ⟨𝜏⟩, if 𝜏 is sufficiently large [63]. Indeed, this is
the case for a 100-member initial condition ensemble from which the
trajectories in Fig. 3 were drawn, with ⟨𝜏⟩ ≈ 200 time units (20 000
years). Grebogi et al. [63] then demonstrated that typically, the mean
lifetime follows a power law as one approaches the critical value of the
control parameter 𝜎0,c, such that we expect:

⟨𝜏⟩ ∝ |𝜎0 − 𝜎0,c|
−𝛾 (5)

where 𝛾 is the critical exponent.
Here, we characterize this region of transient chaos by evaluating

the lifetimes of trajectories near the ‘‘ghost attractor’’ using an ensemble
of initial conditions for different values of 𝜎0. The initial conditions
are sampled over 𝑡 = 200 from the ‘‘off’’ or ‘‘on’’ state near the
bifurcation points of the underlying Stommel model, and the results
are not sensitive to the exact location of the sampling. Here and in
the following, all sampling intervals are chosen to be at least several
times larger than the Lyapunov timescale of the fast system (≈ 0.002
time units). Because ⟨𝜏⟩ → ∞ as 𝜎0 → 𝜎0,c, we need to choose a
threshold time 𝑇max after which we deem a trajectory ‘‘stable’’, even
though it may still be a very long chaotic transient. This means that 𝜎0,c
would be biased if determined by direct simulation, as it would depend
on the choice of 𝑇max. Therefore, we look to find a range of values
for 𝜎0 with ⟨𝜏⟩ sufficiently large for the values to be exponentially
distributed, but smaller than 𝑇max. Using Eq. (5), we then determine
𝜎 and 𝛾 within this region via a weighted least-squares fit, taking
4

0,c
into account that the parameter ⟨𝜏⟩ is distributed as 2𝑛 ̂
⟨𝜏⟩∕𝜒2(2𝑛) [64],

where ̂
⟨𝜏⟩ is equal to the sample mean of the lifetimes, 𝑛 is the number

of samples, and 𝜒2(2𝑛) is the chi-square distribution with 2𝑛 degrees of
freedom.

Fig. 4 shows the lifetime of the transients tracking the ‘‘ghost attrac-
tor’’ as a function of the distance to the critical value |𝜎0 − 𝜎0,c|. Here,
we only evaluate the range of 𝜎0 in which the lifetimes of an ensemble
of 𝑛 = 100 initial conditions approximately follow an exponential
distribution, and in which 𝜏 < 𝑇max = 104 for all trajectories. Using
the fitted critical value, there is a clear power-law relation (a straight
line in the log–log plot) between the lifetime and |𝜎0 − 𝜎0,c| near both
boundary crisis points. We obtain 𝜎0,c1 = 0.816 ± 0.008 and 𝜎0,c2 =
0.9273 ± 0.0009 (cf. Fig. 9b), where index ‘‘1’’ denotes the transition
from the monostable ‘‘AMOC on’’ to the bistable regime, and index ‘‘2’’
denotes the transition from the bistable to the monostable ‘‘AMOC off’’
regime. These values are quite robust to the choice of the scaling law.
For instance, fitting the non-power law scaling proposed by [65], we
obtain 𝜎0,c2 = 0.9251 ± 0.0013, which agrees well with the estimate
from the fit to Eq. (5).

The critical exponents are 𝛾1 = 14 ± 3 at the first and 𝛾2 =
7.2 ± 1.5 at the second bifurcation. This implies that long transients
can be observed over a wider range of parameter values at the first
compared to the second bifurcation [45]. For instance, the parameter
range |𝜎0 − 𝜎0,c| for which ⟨𝜏⟩ > 100 is 0.04 at the first bifurcation and
0.005 at the second bifurcation. Nevertheless, both critical exponents
are larger than those of many typical dynamical systems [45]. Using the
scaling law from Eq. (5) and the quantile function of the exponential
distribution, we can now calculate how far the ‘‘safe operating space’’
of the AMOC is extended beyond the genuinely bistable regime through
the existence of long transients. In other words, up to which value of 𝜎0
will the desirable AMOC state (in our case, the ‘‘on’’ state) continue to
act like a stable attractor, even though the bifurcation point has been
crossed? The exponential distribution underlying the transient lifetime
means that this safe operating space is inherently linked to a timescale
of interest and an acceptable probability of survival on the desired
AMOC state (or, equivalently, a tolerable probability of tipping to the
undesired state). Fig. 5 shows this probability of survival on the ‘‘on’’
state as a function of |𝜎0 − 𝜎0,c| and the chosen timescale. For example,
overshooting to 𝜎0 ≈ 0.934 would yield a 5% probability of obtaining a
transient lifetime of less than 100 years (red marker in Fig. 5). On the
other hand, if the probability of a ‘‘transient collapse’’ should be limited
to 0.1% on the same timescale, the safe operating space is limited to no
more than 𝜎0 ≈ 0.931. In this way, if the control parameter is changed
sufficiently rapidly to bring the system back into the bistable regime,
a transition might successfully be avoided despite ‘‘overshooting’’ the
critical value (cf. [66]).

4. Chaotic saddle and fractal basin boundary

We now focus on the limits to predictability in the bistable regime.
The long-lived transients make it difficult to estimate its boundaries
precisely, such that we rely on the two extrapolated critical values from
Section 3 to bound this regime (𝜎0 ∈ [0.82, 0.927] in the following),
within which the ‘‘AMOC on’’ and ‘‘AMOC off’’ states are expected to
coexist as genuine attractors. As outlined above, in the bistable regime
predictability of the asymptotic state is limited by the dimension 𝐷𝑏
of the fractal basin boundary. 𝐷𝑏 is in turn fundamentally linked to
the properties of the chaotic saddle between the two attractors [42–
44]. However, the chaotic saddle is typically a set with Lebesgue
measure zero that has one unstable and one stable manifold (the basin
boundary) [45], and therefore cannot be obtained by direct simulation.
Therefore, we start with constructing a pseudo-trajectory of the saddle
(Section 4.1) which we use to determine its lifetime (Section 4.2) and
Lyapunov exponents (Section 4.3) before assessing the resulting basin
boundary dimension (Section 4.4).
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Fig. 4. Numerically estimated mean lifetime ⟨𝜏⟩ of chaotic transients, corresponding 95% confidence intervals and power-law fit for different values of 𝜎0 for (a) the transient
‘‘AMOC off’’ state and (b) the transient ‘‘AMOC on’’ state outside the regime of bistability. Note that all axes are logarithmic and that the subplots use different 𝑥-axes.
S
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Fig. 5. Probability of survival in the region of chaotic transients beyond the critical
value 𝜎0,c2 ≈ 0.927 as a function of the distance to the critical value |𝜎0 − 𝜎0,c| and the
timescale of interest (reference time) during which tipping should be prevented. The
red marker indicates 𝜎0 ≈ 0.934 for which the transient tipping probability is limited
to 5% on a timescale of 100 years.

4.1. Constructing the chaotic saddle: edge tracking algorithm

While there are different algorithms to construct a reliable approx-
imation of a chaotic saddle [38], we follow [46] and use the edge
tracking algorithm originally proposed in [67] and later re-formulated
by [50]. This allows us to obtain an arbitrarily long pseudo-trajectory
that tracks the chaotic saddle of the conceptual atmosphere–ocean
model. The edge tracking algorithm has previously been applied suc-
cessfully in both high- and low-dimensional chaotic systems (e.g., [46,
50,68–70]). The algorithm is depicted schematically in Fig. 6 and
described in detail in Sects. 4.2 and 5.1 of [46], such that we only
summarize it briefly here.

We start from two initial conditions {𝐮01,𝐮
0
2} inside the two different

basins of attraction. First, by applying the standard bisection method,
we obtain a pair of states {𝐮∗1 ,𝐮

∗
2} with |𝐮∗1 − 𝐮∗2| < 𝛿1, where 𝐮∗1 and 𝐮∗2

still belong to the two different basins of attraction. By construction,
these two states are both within a distance 𝛿1 from the basin boundary.
As a consequence, when the system is evolved from 𝐮𝑖(𝑡0) ≡ 𝐮∗𝑖 ,
they are expected to diverge along the unstable direction of the basin
5

Fig. 6. Schematic depiction of the edge tracking algorithm. Note that in this study,
the distances 𝛿1,2 are calculated over the entire phase space instead of only 𝛹 .
Source: Adapted from Lucarini and Bódai [46], released under a Creative Commons
license (CC-BY 3.0, https://creativecommons.org/licenses/by/3.0/).

boundary while tracking with the flow along its stable direction. Once
|𝐮1(𝑡) − 𝐮2(𝑡)| ≥ 𝛿2 for some 𝑡 > 𝑡0, the bisection is repeated such
that the distance between the two ‘‘shadowing trajectories’’ 𝐮1(𝑡) and
𝐮2(𝑡) is again less than 𝛿1, and the new states are evolved further. This
procedure can be repeated any number of times to obtain a pseudo-
trajectory 𝐮𝑆 (𝑡) = (𝐮1(𝑡) + 𝐮2(𝑡))∕2 that follows the basin boundary and
eventually converges to track the chaotic saddle itself.

In the following, we set 𝛿2 = 0.004 and 𝛿1 = 0.0025, such that only
one bisection step is needed per iteration. However, as in more complex
models, it is not clear a priori how the norm |𝐮1(𝑡) − 𝐮2(𝑡)| should be
defined, as the state vector 𝐮 comprises different model components
with possibly different magnitudes for mean and variability. Here, we
define the norm by rescaling the atmospheric variables with a scaling
factor 𝜉 < 1 (we choose 𝜉 = 1∕5000). It can be viewed as a hyperparam-
eter of our method and does not alter the dynamics of the dynamical
system. This enables us to calculate the divergence of trajectories over
the full phase space (instead of just the 𝑇 − 𝑆 subspace), but ensures
that the divergence is not dominated by the fast chaotic motion. We
run the edge tracking algorithm for 2000 iterations, generating around
50 time units (≈ 5000 years) of pseudo-trajectory.

Fig. 7 shows an example result of the edge tracking algorithm for
𝜎0 = 0.9. While the attractors and the saddle separate clearly in both
𝑇 and 𝑆 as expected from the phase space structure of the underlying
tommel model, the atmospheric motion differs little between the two
ttractors. However, close to the saddle the atmospheric energy 1

2 (𝑋
2+

𝑌 2 + 𝑍2) has longer tails, which might be due to the repulsion along
the unstable direction, and therefore indicates that the weak coupling
does exert a certain influence on the atmosphere.

https://creativecommons.org/licenses/by/3.0/
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Fig. 7. Three-dimensional projection of a pseudo-trajectory of the saddle (green) and
trajectories tracking the attractors (blue, orange) for 𝜎0 = 0.9. Axis show the slow
variables 𝑇 and 𝑆 and the atmospheric energy 𝐸 = (𝑋2 + 𝑌 2 +𝑍2)∕2.

Applying the edge tracking algorithm for different values of 𝜎0,
we can compute the unstable branch of the AMOC bifurcation dia-
gram for the coupled atmosphere–ocean model (Fig. 8). Over most
of the parameter range, our bifurcation diagram follows that of the
underlying uncoupled Stommel model very closely, as expected from
weak atmosphere–ocean coupling combined with a large timescale
separation. Outside the bistable parameter range, we can also perform
edge tracking in a region of parameter space where very long-lived
chaotic transients exist; in this case, the algorithm detects an edge state
lying in between the long-lived chaotic solution and the actual unique
asymptotic solution (unfilled circles in Fig. 8). Note that in this regime,
the approach is very similar to the one taken in turbulence [50], where
one finds the unstable solution between the laminar fixed point and
the long-lived turbulent state. An interesting feature of the bifurcation
diagram in Fig. 8 is that the stable and unstable branches do not meet
at the critical values 𝜎0,c𝑖. This might put into question the extrapolated
critical values from Section 3, but we have verified the transient nature
of some of the unfilled points on the ‘‘AMOC on’’ branch of Fig. 8 via
direct simulation (e.g., Fig. 3). In these cases, the transient lifetime
is longer than the length of the edge tracking trajectory (𝑡 ≈ 50).
Therefore, the discrepancy seems to arise from the particular multiscale
nature of our system, which merits further investigation in future
studies.

4.2. Lifetime of the saddle

We now focus on two properties of the chaotic saddle, its lifetime
and its spectrum of Lyapunov exponents (LEs) [45], for different values
of the freshwater forcing 𝜎0 in the bistable regime. Both can be obtained
by sampling a large number of initial conditions from the edge tracking
trajectory obtained in Section 4.1. Since a state initialized on the
trajectory 𝐮𝑆 is very close to but not precisely on the actual saddle,
it will remain in a phase space region  containing the saddle for some
time before converging to one of the attractors.

Defining  as the bounding box of 𝐮𝑆 after the initial spin-up,
the number of remaining trajectories within  is expected to decay
exponentially [45]:

𝑁 (𝑡) = 𝑁 𝑒−𝑡∕⟨𝜏⟩,
6

𝑆 0
Table 1
Lyapunov exponents for the two attractors (labeled as in Fig. 7) and the chaotic
saddle for 𝜎0 = 0.9. Uncertainty estimates are 95% confidence intervals generated from
bootstrap resampling of 100 trajectories each from the 2000-member ensemble.

‘‘AMOC on’’ ‘‘AMOC off’’ Saddle

𝜆1 535 ± 2 531 ± 2 538 ± 2
𝜆2 −0.04 ± 0.02 −0.015 ± 0.017 0.13 ± 0.07
𝜆3 −0.67 ± 0.02 −2.65 ± 0.03 −0.56 ± 0.14
𝜆4 −8.11 ± 0.13 −2.91 ± 0.04 −6.0 ± 0.3
𝜆5 −1230 ± 2 −1155 ± 2 −1182 ± 4

where 𝑁0 is the number of sampled initial conditions (𝑁0 = 600 in our
numerical simulations), which are all within  by construction, and ⟨𝜏⟩
is the mean lifetime. In practice, this exponential scaling is not expected
to hold for small and large 𝑡 due to the non-uniform initial distribution
in  and the finite size of the ensemble, respectively. However, we can
obtain ⟨𝜏⟩ via a least-squares fit of the slope of log𝑁𝑆 (𝑡)∕𝑁0 against 𝑡
for intermediate values of 𝑡.

Fig. 9a shows 𝑁𝑆 (𝑡)∕𝑁0 for several values of the freshwater forcing
𝜎0 in the bistable regime of the Stommel model. As expected, the
number of remaining trajectories in  shows a clear exponential decay.
The lifetime is of (1) (about one century in physical units) but depends
strongly on 𝜎0: approaching the saddle–node bifurcation of the under-
lying Stommel model, trajectories spend more time in the vicinity of
the saddle. While the number of sampled 𝜎0 is too small to conclusively
establish a functional relation ⟨𝜏⟩(𝜎0), the lifetime increases clearly non-
linearly as the critical freshwater forcing parameter 𝜎0,𝑐2 is approached
(Fig. 9b).

4.3. Lyapunov spectrum of the saddle

Having explored the global instability of the coupled model char-
acterized by the lifetime of the saddle, we now turn towards the local
instability due to its chaotic dynamics. To this end, we compute the
full spectrum of Lyapunov exponents of the saddle using the stan-
dard procedure of successive Gram–Schmidt orthonormalization [71]
as implemented in [72]. The Lyapunov spectrum of the saddle is ap-
proximated by choosing 2000 initial conditions on 𝐮𝑆 with the longest
lifetimes in  and then averaging over the Lyapunov spectra of a subset
of these individual trajectories while they remain in . For consistency,
we tested the same method for the attractors, where averaging over
2000 finite-time LEs calculated over a similar duration (𝑡 = 7.5) yielded
a comparable result to letting the algorithm converge along one long
trajectory.

The Lyapunov spectra {𝜆𝑖}, 𝑖 = 1,… , 5 for the saddle and each of
the two attractors are given in Table 1 for 𝜎0 = 0.9. For the attractors,
we expect one positive LE characterizing the chaotic instability on the
attracting set, a zero LE associated with the motion along the attractor,
and otherwise negative LEs encapsulating the convergence of initial
conditions to the attractor. Indeed, we find a large, positive maximum
Lyapunov exponent (MLE) 𝜆1, while 𝜆2 is very close to zero and all
remaining LEs are negative. Similarly, the saddle possesses one positive
LE (𝜆1), one LE close to zero (𝜆2) and three negative LEs. Note that
obtaining a good numerical estimate for the vanishing LE of a saddle
is more difficult than for an attractor. This is because the trajectories
considered for the evaluation of the LEs have a finite lifetime, as they
unavoidably end up veering towards one of the competing attractors,
realizing a positive stretching along the direction of the flow. We
have verified (Fig. S1 in the Supplementary Information [SI]) that
the estimate of 𝜆2 converges towards zero as we consider longer-lived
trajectories for our estimates, so that the stretching along the flow is
minimized (being zero if we could generate a trajectory living exactly
on the saddle).
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Fig. 8. Bifurcation diagram for AMOC strength 𝛹 of the coupled model. Each dot represents one (pseudo-)trajectory averaged over about 50 time units after a spin-up period.
oints in the transient regime (gray background) as determined in Section 3 are marked with unfilled circles. Vertical solid and dashed lines represent best estimates ± one
tandard deviation of the critical values 𝜎0,c𝑖. The colored, solid lines represent square-root fits for the upper and the unstable branches and a linear fit for the lower branch. The
ifurcation diagram of the uncoupled Stommel model (Eq. (3)) is shown in gray for comparison. Saddle–node bifurcation points for the Stommel model are labeled 𝐿1 and 𝐿2.
Fig. 9. Lifetimes of the chaotic saddle. (a) Fraction of trajectories 𝑁(𝑡)∕𝑁0 within the saddle bounding box  as a function of time for different values of 𝜎0. Colored lines indicate
linear fits in lin–log space, whose slope is −𝜅, in the range 𝑁∕𝑁0 ∈ [0.03, 0.7]. (b) Lifetime 𝜏 = 1∕𝜅 obtained from the fits in panel a for all simulated values of 𝜎0. Error bars
eflect the uncertainty in 𝜏 with respect to reasonable changes in the fitting range in panel a. The vertical lines and shaded areas indicate estimates of the critical values 𝜎0,𝑐 plus
nd minus one standard deviation, corresponding to the vertical solid and dashed lines in Fig. 8.
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The MLE of our model can be attributed to the chaotic motion
nduced by the atmosphere via a simple scaling test. First, we note that
he magnitude of the maximum and minimum LEs (|𝜆1| and |𝜆5|) is
arge compared to the other LEs. Furthermore, the values of 𝜆1 and 𝜆5,
espectively, are similar for all three invariant sets. This is consistent
ith the assumption that the atmospheric and oceanic components of
ur model are weakly coupled, and we may associate 𝜆1 and 𝜆5 with
he maximal and minimal LE of the uncoupled L84 model, rescaled with
he atmospheric timescale 1∕𝜀𝑓 . This can be confirmed by computing
he Lyapunov spectrum of the attractors for different values of 𝜀𝑓 (Fig.
2 in the SI). We find that 𝜆1 and 𝜆5 scale in very good agreement
ith 𝜆𝑖,L84∕𝜀𝑓 , where 𝜆𝑖,L84 is the corresponding LE of the uncoupled
84 model from Eq. (2), while the second to fourth LEs are mostly
ndependent of the timescale separation.

The results shown here exemplarily for 𝜎0 = 0.9 are qualitatively
epresentative for all values of 𝜎0 which we have tested within the
istable regime, and there is no clear dependence of 𝜆1 or 𝜆2 on the
reshwater flux. The MLE 𝜆1 is very similar across different 𝜎0 (mean:
36 ± 4) and the second LE is very small (𝜆 < 0.3 ≪ 𝜆 ) for all 𝜎 .
7

2 1 0
.4. Dimension of the fractal basin boundary

Given the spectrum of Lyapunov exponents and the lifetime of the
addle, we can use the dimension formula proposed in [42,43] to
elate these two invariants to the information dimension of the stable
anifold of the saddle, i.e., the basin boundary. However, provided

hat the escape rate from the saddle 𝜅 = 1∕𝜏 is much smaller than
he MLE 𝜆1, Bódai and Lucarini [44] showed that the formula for the
imension of the basin boundary 𝐷𝑏 can be simplified to (see their Eq.
5)

𝑏 = 𝐷 − 𝜅
𝜆1

. (6)

This relation can be viewed as a generalization of the formula proposed
earlier by Hsu et al. [73] to the case of rough basin boundaries [44].
Note that, strictly speaking, Eq. (6) gives the information dimension
and not the box-counting dimension of the basin boundary which will
be needed later for assessing the question of predictability, but the two

are expected to yield very similar values here [42].
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Fig. 10. Fractal basin boundary along a sample cross-boundary section for 𝜎0 = 0.9: (a) Outcome (final AMOC state, color-coded) of the forward integration of 512 evenly spaced
nitial conditions along a one-dimensional phase space section intersecting with the fractal basin boundary (see Fig. S4 in the SI for a visualization of all 213 outcomes of the
ull section), (b) Computation of the box-counting dimension from 213 initial conditions from the same boundary section. Here, the ‘‘pruning’’ parameter is 𝑁𝑝 = 3, i.e., the three
ightmost points (unfilled markers) are not taken into account for the linear fit.
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Since the Lyapunov spectra and lifetimes obtained above clearly
atisfy 𝜅 < 𝜆1, we can apply Eq. (6) to obtain a theoretical value for
he basin boundary dimension. The resulting dimension 𝐷𝑏 is between
.997 and 4.999 for different values of 𝜎0, with slightly increasing
alues as the critical values 𝜎0,c2 is approached (Fig. S3 in the SI). This
eans that the basin boundary dimension is extremely close to (within
.1%) but strictly smaller than the phase space dimension 𝐷 = 5.
ollowing Eq. (6), this can be attributed to the escape rate being small
ompared to the MLE.

To verify these results numerically, we also compute the dimen-
ion of the basin boundary directly using the standard box-counting
lgorithm. We follow the methodology of [46] and [44] in sampling
venly spaced initial conditions along a line that intersects with the
asin boundary, and determine the attractor to which each initial
ondition eventually converges. In Fig. 10a, we show a sample plot
f the outcomes of 512 initial conditions, where the endpoints of the
ampling interval are within 𝛿1 = 10−3 of the basin boundary (using
he definition of the norm from Section 4.1), but away from the saddle.
epeating this procedure in different regions of phase space and then

or each value of 𝜎0 considered previously, we find that the standard
ox-counting dimension (0 < 𝐷box ≤ 1) calculated from 213 initial
onditions, as shown exemplarily in Fig. 10b, is very close to one
between 0.988 and 0.999) for all 𝜎0. Both methods therefore confirm,
egardless of whether the information or box-counting dimension is
sed, that a large scale separation between 𝜅 and 𝜆1 yields a basin
oundary with almost full phase space dimension.

The basin boundary dimension 𝐷𝑏 and the uncertainty exponent 𝛼
hat determines the final state sensitivity as given by Eq. (1) are linked
y the simple relation 𝛼 = 𝐷−𝐷𝑏 [40]. With the values of 𝐷𝑏 predicted
rom the saddle properties (Fig. S3 in the SI), 𝛼 varies between 0.003
nd about 0.001 close to the critical value 𝜎0,c2. From the viewpoint
f Eq. (1), this means that an improvement in accuracy of the initial
ondition has a negligible effect on the uncertainty of the final climate
8

tate: if the accuracy of the initial condition is doubled, the phase
pace volume in which the outcome is uncertain decreases by about
−
(

1
2

)𝛼
≈ 0.1–0.2%. Even if slightly larger values of 𝛼 obtained from

the box-counting algorithm are used, which are often on the order of
10−2, predictability of the final state only increases by 1%–2% for a
doubling in the accuracy of the initial condition. Note that, formally,
this vanishing predictability refers to the full five-dimensional system,
but the two competing attractors separate mostly along the oceanic
variables (𝑇 , 𝑆) (cf. Fig. 7). Hence, we can interpret our results as
anishing predictability of the asymptotic AMOC state. In summary,
he final AMOC state is essentially unpredictable in an extended region
f phase space close to the basin boundary, to first order irrespective
f the value of 𝜎0.

. Discussion

Using a conceptual climate model that comprises a chaotic atmo-
phere and a bistable AMOC, we have investigated two fundamen-
al limits to predictability of the asymptotic AMOC state: a fractal
asin boundary in the bistable AMOC regime and chaotic transients
n the monostable regime. In the bistable regime, we approximated
he chaotic saddle (or Melancholia state) between the two competing
MOC attractors using the edge tracking algorithm and found a large

imescale separation between the fast chaotic motion on the saddle and
he slow escape rate from the saddle. This timescale separation implies

fractal basin boundary with close to full phase space dimension,
hich we verified by explicitly computing the box-counting dimension
f the boundary. In the monostable regime, chaotic transients with
xponentially distributed lifetimes arise close to the bifurcation points
ver a relatively wide range of the freshwater parameter 𝜎0.

This complex behavior complicates the assessment of a system’s
esilience in two distinct ways. In dynamical systems theory [74], one
ommon definition of resilience relies on measuring the minimal ‘‘kick’’



Physica D: Nonlinear Phenomena 459 (2024) 134043O. Mehling et al.

M
–

perturbation that causes the system to transition into a competing
(undesired) attractor [75]. A fractal basin boundary, as quantified by
Eq. (1), thus implies a complete loss of resilience in an extended region
in phase space, where an arbitrarily small perturbation may cause a
critical transition. In parameter space, resilience is often defined via the
distance to critical points delimiting a ‘‘safe operating space’’ [21,74].
The presence of long chaotic transients on ‘‘ghost attractors’’ renders it
essentially impossible to determine the exact position of such bifurca-
tion points on finite timescales by observing or simulating only a single
time series. Hence, defining a safe operating space requires a probabilis-
tic definition due to the exponential distribution of transient lifetimes,
and predictability depends crucially on the timescale of interest.

The two phenomena described here have recently been framed as
fractality-induced tipping and transient-reduced tipping, respectively, by
Kaszás et al. [76]. To our knowledge, this is the first study in which
both phenomena have been systematically explored for a deterministic
but chaotic (conceptual) climate model. In contrast to [76], we did
not focus on individual tipping probabilities, but rather on a global
characterization of phase space through the uncertainty exponent 𝛼 (in
the bistable regime) and the transient lifetime ⟨𝜏⟩ (in the monostable
regime). In the bistable regime, this can be achieved with a much
smaller computational cost than the local phase space sampling ap-
proach taken by [76]. In fact, calculating 𝛼 via the saddle properties
and Eq. (6) also appears to yield more accurate results than repeatedly
sampling the box-counting dimension of the basin boundary. While
both global and local approaches would ideally complement each other,
the construction of the saddle and computation of its properties might
be computationally feasible in GCMs [46], while a sufficiently large
ensemble might not.

To our knowledge, this is the first time that the edge tracking
algorithm has been applied to find the chaotic saddle between two com-
peting AMOC states. While it is not guaranteed that our results from a
conceptual climate model will generalize to (much) higher-dimensional
atmosphere–ocean models, we note several similarities with the results
of Lucarini & Bódai [46], who used an intermediate-complexity climate
model with (104) degrees of freedom to study a different tipping
point. From a technical standpoint, the edge tracking algorithm worked
robustly, independently of the exact nature of the positive feedback
and regardless of whether internal variability of the target variable
was larger (as in our case) or smaller than 𝛿1. This makes us confident
that the edge tracking algorithm is a suitable method even for models
with many more degrees of freedom in which bistability of the AMOC
has been identified (e.g., [5,25,77,78]), even to those featuring large
internal variability [78]. Indeed, we have recently implemented the
edge tracking algorithm successfully in a coupled atmosphere–ocean
GCM of intermediate complexity to investigate a Melancholia state
separating the two competing AMOC states [79]. While other methods
such as numerical continuation have previously been applied to find
unstable AMOC equilibria [80], the edge tracking method only requires
(sufficiently long) forward integration, which makes it easy to apply
and very suitable for tipping elements in explicit models like typical
GCMs.

A perhaps surprising similarity to [46] is that the basin boundary
dimension is similarly close to full dimension despite the very different
models and feedbacks. We believe that this is indeed the case for a
rather wide class of models that feature (explicit or emergent) timescale
separation, with the local instability governed by the fast component
(atmosphere/weather) and the global instability governed by the slow
component (ocean/climate). Thus, it seems plausible that sensitive and
seemingly random dependence on the initial condition of the final
AMOC state [25,81] or of the transient lifetime of a weak AMOC
state [82] may be linked to the presence of a high-dimensional chaotic
saddle and a fractal basin boundary.

So far, we have only investigated the autonomous case, which is
approached when a parameter (here, the freshwater flux 𝜎0) is varied
9

very slowly compared to the internal timescales of the system. This
assumption is, however, invalid for the current anthropogenic warming
and associated changes in the water cycle. Therefore, rate-dependent
AMOC tipping could be observed, but the inertia of the system can
also give rise to ‘‘safe overshoots’’ [66] beyond the effect of transient
phenomena discussed here. It remains an intriguing open question how
the barriers to final state predictability discussed here would be altered
in a non-autonomous setting and how they would depend on the forcing
rate.

6. Conclusions

Our results show that predictability of the asymptotic AMOC state
is limited by a fractal basin boundary with almost full phase space
dimension as well as long chaotic transients, which both arise from the
chaotic multiscale nature of the coupled atmosphere–ocean system. We
derived these findings from a conceptual climate model that consisted
of four main ingredients for this behavior – bistability, chaotic motion,
timescale separation and weak coupling –, such that our conclusions
should generalize to more complex models with similar properties
and even other components of the Earth system. This has practical
implications for the boundaries of a safe operating space, which become
intrinsically fuzzy both in a spatial and temporal sense. Starting from
a state in the ‘‘gray zone’’ of phase space near a fractal basin boundary
or near the ‘‘ghost attractor’’ in the parameter region of chaotic tran-
sients, the final outcome depends sensitively on the initial condition,
which may give rise to non-monotonic and seemingly counter-intuitive
outcomes of an initial condition ensemble — interpretable, however,
via dynamical systems theory.
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Appendix A. Parameters of the coupled L84-Stommel model

Parameter Value Physical meaning
𝑎 0.25 –
𝑏 4 –
𝐹0 8 Atmospheric meridional temperature

gradient
𝐺0 1 Atmospheric zonal temperature gradient
𝜀𝑎 0.34 Ratio between temperature restoring

timescale and diffusive timescale of the
ocean

𝜇 7.5 Ratio between advective and diffusive
ocean timescales

𝜃0 1 Sea surface temperature gradient
𝜎0 Is varied Sea surface freshwater flux
𝜃1 0.0195 Sea surface temperature gradient

perturbation
𝜎1 0.00934 Sea surface freshwater flux perturbation
𝑥̄ 1.0147 Time-mean of 𝑥 of the uncoupled L84
𝛥 1.7463 Time-mean of 𝛥 of the uncoupled L84
𝐹1 0.1 Atmospheric meridional temperature

gradient perturbation
𝜀𝑓 3 ⋅ 10−4 Ratio between atmospheric and oceanic

timescale

Appendix B. Multiscale model reduction

As discussed in Section 2, 𝜀𝑓 is a small parameter that controls
the timescale separation between the dynamics of the atmospheric and
oceanic component of the system. It is possible to cast Eq. (4) in the
following form,

𝐱̇ = 1
𝜖2

𝑔(𝐱,𝐗) = 1
𝜖2

𝑔1(𝐱) +
1
𝜖2

𝑔2(𝐗)

𝐗̇ = 𝑎(𝐱,𝐗) + 1
𝜖
𝑏(𝐱,𝐗) = 𝑎(𝐗) + 1

𝜖
𝑏(𝐱) ,

(B.1)

with 𝜖2 = 𝜀𝑓 , where 𝐱 = (𝑥, 𝑦, 𝑧) and 𝐗 = (𝑇 , 𝑆) are vectors com-
prising the fast and slow variables, respectively. Because of the non-
vanishing term 𝑔2, the system is not skew-symmetric. Hence, one
cannot straightforwardly apply the homogenization theory presented
in [60,61] to derive the effective stochastic differential equation (SDE)
in Itô convention,

d𝐗 = 𝑎̃(𝐗)d𝑡 + 𝜎(𝐗)d𝐖 , (B.2)

describing the properties of the slow variables 𝐗 in the 𝜖 → 0 limit.
Here 𝑎̃(𝐗) ∈ R2 is the drift term, 𝜎(𝐗) ∈ R2×𝑝 is the matrix describing
the noise law, and d𝐖 ∈ R2 is a vector whose components are the
increments of 2 independent Wiener processes.

Instead, one needs to resort to a more general theory [59] that is
able to deal with the conceptually more challenging case of two-way
coupled systems for rather general functions 𝑔(𝐱,𝐗), 𝑎(𝐱,𝐗), and 𝑏(𝐱,𝐗)
in Eq. (B.1) above. We derive the following explicit expressions for the
drift term and the noise law in Eq. (B.2):

𝑎̃ = 𝑎(𝐗) , 𝜎(𝐗)𝜎(𝐗)𝑇 = ∫

∞

0
𝑑𝑡∫ 𝑑𝜇𝐗(𝐱) (𝑏(𝐱)⊗ 𝑏(𝐱(𝑡)) + 𝑏(𝐱(𝑡))⊗ 𝑏(𝐱)) ,

(B.3)

where ⊗ indicates the tensor product, 𝜇𝐗(𝐱) is the invariant measure
of the system 𝐱̇ = 𝑔1(𝐱) + 𝑔2(𝐗), where 𝐗 is taken as a fixed parameter,
and 𝐱(𝑡) is the evolution at time 𝑡 of the initial condition 𝐱(𝑡 = 0) = 𝐱.
Hence, the correlation matrix of the noise is built starting from the
properties of correlation of the fast system where the slow variables
𝐗 are frozen in. While the general homogenization formulas presented
in [59] are more complex, the rather simple result given in Eq. (B.3)
comes from the fact that in our case the dependence on the fast and
10
slow variables factors out in the functions 𝑔, 𝑎, and 𝑏. Indeed, one
obtains the same result one would derive by naively using the theory
developed for skew-symmetric systems, under the heuristic assumption
that the slow variables can be treated as external parameters for the
stochastic process associated with the fast variables.

We also wish to point out the fundamental difference between
the original system given in Eq. (4) and its homogenized version for
the slow variables given here in Eq. (B.2). In the parametric range
where multistability is found for (4), it is by definition impossible for a
trajectory initialized in the basin of attraction of one state to visit the
competing state. By contrast, the stochastic differential equation given
in Eq. (B.2) allows for (typically rare, when far from the bifurcation
points) noise-induced transitions between the competing states of the
slow variables (see discussion in [84–86]).

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://ars.els-cdn.com/content/image/1-s2.0-S0167278923003974
-mmc1.pdf.
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