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Abstract: The paradigm of Industry 5.0 pushes the transition from the traditional to a novel, smart, dig-
ital, and connected industry, where well-being is key to enhance productivity, optimize man–machine
interaction and guarantee workers’ safety. This work aims to conduct a systematic review of current
methodologies for monitoring and analyzing physical and cognitive ergonomics. Three research
questions are addressed: (1) which technologies are used to assess the physical and cognitive well-
being of workers in the workplace, (2) how the acquired data are processed, and (3) what purpose
this well-being is evaluated for. This way, individual factors within the holistic assessment of worker
well-being are highlighted, and information is provided synthetically. The analysis was conducted
following the PRISMA 2020 statement guidelines. From the sixty-five articles collected, the most
adopted (1) technological solutions, (2) parameters, and (3) data analysis and processing were iden-
tified. Wearable inertial measurement units and RGB-D cameras are the most prevalent devices
used for physical monitoring; in the cognitive ergonomics, and cardiac activity is the most adopted
physiological parameter. Furthermore, insights on practical issues and future developments are
provided. Future research should focus on developing multi-modal systems that combine these
aspects with particular emphasis on their practical application in real industrial settings.

Keywords: workplace well-being; physical ergonomics; cognitive ergonomics; industry 5.0; hu-
man–robot interaction; human–machine interaction

1. Introduction

The digital transition opened up by the concept of Industry 5.0 [1] is leading to the
necessity of a further step in the development of new manufacturing systems. In fact, if
in the last decade the production has been boosted to smart, connected, self-controlling
manufacturing (Industry 4.0), the future of the industry is inseparable from the devel-
opment of a sustainable, resilient, and human-centered production system, given the
utmost importance of the human factor [2] (Industry 5.0). The adoption of this approach
in the ongoing industrial revolution raises questions about the coexistence between the
technology-centricity of the former and the human-centricity of the latter [3]. Industry 5.0
represents a departure from its predecessor in that it places an emphasis on the harmo-
nious integration of advanced technologies with human-centric values. This approach is
designed to create environments where human well-being, rather than mere technological
advancement, is the focal point of innovation. This paradigm shift addresses the growing
need to balance automation with human involvement, ensuring that technological progress
enhances rather than diminishes human roles in manufacturing [4]. From this viewpoint,
the “age of augmentation” appears as that of the reconciliation between technology-driven
and value-driven paradigms of the factory of the future [5], in which digital technologies,
such as extended reality (XR), artificial intelligence (AI), and collaborative robotics, will
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develop in a human–machine co-evolution, built upon inclusiveness and sustainability, to
reach high performances throughout an adaptive relationship between technology and
human. The specific issue under investigation in this research is the optimal integration
of these advanced technologies within the context of Industry 5.0, ensuring the contin-
ued primacy of worker well-being in industrial processes [3]. In this sense, Industry 5.0
is intended to pursue a human-centric adaptive manufacturing system [6–9] through a
wide employment of acquisition technologies aimed to monitor and acquire data related
to workers that are subsequently analyzed through the usage of AI techniques. In this
scenario, machine learning (ML) [10] and deep learning (DL) [11] algorithms proved to be
suitable approaches to obtain cutting-edge results in terms of classification performances,
supporting workers both from efficiency and safety perspectives [12–14] and allowing the
designers to shift from a less demanding paradigm (ML) to a more challenging, versatile,
and potentially performing one (DL).

In light of this new wave in the production panorama, a reasonable question arises:
how can the workplace be re-engineered to reach the human-centric paradigm of the factory
of the future? Indeed, knowledge about the actual perceived well-being of workers on the
workplace is crucial to understand how to design the workplace of the future. In this sense,
“holistic ergonomics” [15] is an approach to the design and arrangement of workspaces
and systems that takes into account the entire well-being of individuals within a given
environment, gathering the key factors into the following categories: physical, cognitive,
emotional, social, and organizational [16,17]. Attention toward ergonomics often focuses
on physical factors such as posture, lighting and equipment design to optimize efficiency
and prevent physical strain or injury, but it neglects the other aspects of holistic ergonomics,
namely cognitive ergonomics and social ergonomics, which can affect a person’s overall
well-being and performance. This study, therefore, seeks to address the current research
gap by examining the dual aspects of physical and cognitive ergonomics. These are the two
elements of holistic ergonomics that can directly influence the design (or re-design) of the
human-centered workplace advocated by Industry 5.0. Physical ergonomics involves those
aspects of ergonomics [18] addressing factors such as seating, workstation layout, and tools
to promote comfortable and efficient physical work. Cognitive ergonomics [19] focuses
on mental processes, including perception, memory, and decision making. Designing
work environments that support cognitive functions can improve overall productivity and
reduce mental fatigue.

In light of the aforementioned considerations, the aim of this work is to conduct a
systematic review of the state-of-the-art technologies and methodologies used to analyze
workers’ well-being from these two viewpoints. This review employs rigorous method-
ology to examine existing literature, using a structured approach to identify, evaluate,
and synthesize relevant studies, ensuring that the findings are both comprehensive and
applicable to real-world industrial settings [20]. In fact, it is core to monitor and analyze the
worker’s well-being in the workplace as an individual before considering the interactions
in terms of social dynamics involving collaboration, communication, teamwork, and also
company policies and procedures, particularly in the industrial domain. Since analyzing
workers’ well-being is an increasingly cross-disciplinary task, the review includes studies
about (1) the acquisition, tracking, and recognition of workers’ posture and movements
related to the physical point of view, and (2) studies on the physiological measurements to
assess the mental workload and work-related mental stress. This way, the wide panorama
of existing solutions can be captured, and researchers on this topic can receive essential
information on the strengths and weaknesses of current solutions on which to base future
studies for the materialization of the human-centered factory promoted by Industry 5.0.

The objective of this literature review can be resumed in three research questions (RQs):

• RQ1: What are the state-of-the-art technologies currently adopted for the assessment
of both physical and cognitive well-being in industrial workplaces?

• RQ2: What advanced data processing methods, including those belonging to the field
of AI, are employed to interpret the data acquired from these well-being assessments?
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• RQ3: What are the principal objectives of assessing the well-being of workers in
the context of Industry 5.0, and how do these assessments contribute to enhancing
productivity, safety, and human–machine interaction in smart factories?

By addressing these research questions, this study not only elucidates the current state of
the art in the assessment of worker well-being but also paves the way for future develop-
ments in this field, offering insights of value to both academic researchers and industry
practitioners.

The study is structured as follows: the employed methodology is described in the next
Section 2; then, the review results are presented Section 3 and debated in Section 4; finally,
conclusions are drawn in Section 5.

2. Methodological Analysis

The analysis was conducted following the PRISMA 2020 statement guidelines [20]
(Figure 1).
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Records removed before screening:

 Duplicate records removed: n=203

Records identified from databases:

n=3330

Records excluded with reasons:

     Thesis (n=18)
     Oral presentations (n=7)
     Websites (n=6)

Records assessed for eligibility:

n=2983

Studies included in the review:

n=65

Reports excluded:

    Title reading (n=2654)
    Abstract reading (n=247)
    Not available full text (n=17)

Figure 1. PRISMA flowchart.
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A set of criteria was established to evaluate the eligibility of the papers:

1. Databases used for the search: Google Scholar and Scopus;
2. Only articles from indexed, peer-reviewed journals were selected;
3. Publication year: papers published before 2016 were excluded;
4. Context of the application: only papers involving industrial/productive contexts

were included;
5. An appropriate combination of keywords, detailed below, has been used for the

paper selection.

Due to the lack of studies integrating the physical and cognitive perspectives, the
investigation follows a two-fold approach, considering both the articles focused on the
physical perspective and the papers about evaluation related to the cognitive point of
view. This way, a comprehensive analysis of the assessment of workers’ well-being in the
workplace has been drawn. The following keywords were considered for dealing with
the physical perspective: artificial intelligence, machine learning, deep learning combined
with body tracking, body recognition, motion capture, gesture recognition, postural moni-
toring, posture monitoring, and ergonomics, each of them combined with manufacturing,
assembly line, industrial (for greater transparency, see Table 1). Similarly, the following
keywords were adopted to deepen the cognitive perspective: mental ergonomics, mental
workload, work-related stress, and cognitive ergonomics, which, in turn, were combined
with assembly line, manufacturing, and workplace design (for greater transparency, see
Table 2).

Table 1. Keywords adopted for physical perspective.

AI Keywords Application Keywords Context Keywords

Artificial Intelligence Body Tracking Manufacturing

Machine Learning Body Recognition Assembly Line

Deep Learning Motion Capture Industrial

Gesture Recognition

Postural Monitoring

Ergonomics

Table 2. Keywords adopted for cognitive perspective.

Application Keywords Context Applications

Mental Ergonomics Assembly Line

Mental Workload Manufacturing

Work-Related Stress Workplace Design

Cognitive Ergonomics

The resulting sixty-five articles have been assessed by four investigators: a mechanical
investigator, two biomedical investigators, and a computer science engineer. The diversity
of the investigators’ backgrounds has been core to taking into consideration the different
expertise necessary for the design and implementation of these solutions. In fact, these
solutions require the employment of task-specific technology (acquisition systems, wearable
sensors, etc.) to gather different types of data depending on the target analysis. These data
must be classified, typically through AI techniques, and interpreted to correctly provide
feedback to the users that could support the working activity (e.g., posture correction). This
process of selection of the articles allowed to assess the presence of potential bias in the
articles, excluding those that did not meet with the approval of all four investigators.

At the end of the paper selection process, forty-two articles related to the physical
perspective and twenty-three articles related to the cognitive perspective have been selected.
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The research revealed a very low level of overlap between the two sets of keywords, which
was evidenced by the fact that very few papers covered both physical and cognitive aspects,
resulting in an inevitable need to integrate these two perspectives in order to draw a
comprehensive review on the workers’ well-being assessment on the workplace.

The categories according to which the selected articles have been classified are the
following ones:

• Authors;
• Year;
• Monitored activity: physical monitoring task or adopted physiological measurement;
• Data acquisition device: class of the devices employed in the examined study;
• Data acquisition device model;
• Data processing approach: machine learning (ML) or deep learning (DL). This in-

formation is particularly useful to group the studies in terms of cost–benefit ratio,
recalling that DL typically provides state-of-the-art results to the cost of being equally
demanding in terms of the amount of data and required computational power;

• Data processing algorithm: ML and DL are general approaches that identify a wide
range of different specific algorithms;

• Ergonomics: a label to identify, eventually, if the study falls in the physical ergonomics
or in the cognitive ergonomics domain;

• Standard ergonomic index or physiological measure: punctual information high-
lighting the adoption of a specific index in case of a study falling into the physical
domain or one or multiple physiological measures in case of a study falling into the
cognitive domain.

3. Results

In this section, the papers resulting from the review are presented. Table 3 summarizes
the contents and the significant information related to the questions this review aims
to investigate.

The resulting papers have been gathered according to the ergonomics branch to which
they refer (Sections 3.1 and 3.2). Moreover, in Section 3.1, papers are further grouped into
three subsections in order to highlight the purpose of analyzing physical ergonomics in
the considered activities. In fact, Section 3.1.1 focuses on fostering the manual processes
through the analysis of the workers’ behavior in terms of gestures and posture. Section 3.1.2
highlights the importance of adopting a user-centered approach to foster man–machine
interaction (MMI) both in terms of productivity and safety. Section 3.1.3 specifically explores
those studies related to the physical ergonomics assessment tools, which are indexes
employed to assess and improve safety, fatigue, and discomfort to preserve workers’
health and well-being. Section 3.2 collects the papers in which the workers’ well-being is
considered from the viewpoint of mental and cognitive ergonomics. Papers are presented
first referring to the employed acquisition technology, then to the use of artificial intelligence
techniques (machine learning and deep learning) for the workers’ physical and cognitive
parameters identification and classification, and lastly to the ergonomic assessment. This
structure may vary depending on the information provided by the selected papers.
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Table 3. Summary of the selected articles. Authors, year of publication, context of application, monitored activity, data collection technology, type of ergonomic
parameter (when applicable), and data processing/analysis approach (when applicable) are reported. List of abbreviations: ML/DL Alg. = machine learning/deep
learning algorithm, Ergo. = physical or mental ergonomics, Std. ergo. index/Phys. measure = standard ergonomic index/physiological measure.

Authors (Year) Application Context Monitored Activity Acquisition Device Device Model ML/DL Alg. Ergo. Std. Ergo. Index/
Phys. Measure

Pławiak et al. (2016)
[21]

Hand gestures analysis
(body language) Gesture recognition Wearable IMUs

DG5 VHand glove
(DGTech Engineering
Solutions, Bazzano, BO,
Italy)

ML SVM (nu-SVC) N/A -

Grzeszick et al.
(2017) [22]

Process order picking
(warehouse settings) Pose estimation Wearable IMUs Not specified DL CNN N/A -

Luo et al. (2018) [23] Collaborative human–robot
work in a shared workspace

Human motion
prediction

Optical IR marker-based
motion capture system

Vicon system (Oxford
Metrics, UK)—not
specified

ML GMM N/A -

Moya Rueda et al.
(2018) [24]

Locomotion gestures and
settings in a warehouse
(order picking in a
logistics scenario)

Human activity
recognition Wearable IMUs Not specified DL CNN N/A -

Urgo et al. (2019)
[25]

Correctness of movement
and safe behaviour in
manufacturing mechanical
components

Pose estimation and
hand/tool tracking RGB camera Not specified Both HMM

CNN (OpenPose) N/A -

Chen et al. (2020)
[26]

Upper limb assembly action
in an industrial setting Pose estimation RGB camera Not specified DL YOLO

CNN (OpenPose) N/A -

Jiao et al. (2020) [27] Wind turbine blade
manufacturing process

Pose estimation and
action recognition RGB camera Not specified DL

YOLO
SHM
STN
GCN
CNN

N/A -

Manitsaris et al.
(2020) [28]

TV assembly lines, the
glassblowing industry,
automated guided vehicles,
and human–robot
collaboration in the
automotive assembly lines

Action recognition (1) RGB camera
(2) RGB-D camera

(1) Not specified
(2) Not specified ML HMM N/A -
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Table 3. Cont.

Authors (Year) Application Context Monitored Activity Acquisition Device Device Model ML/DL Alg. Ergo. Std. Ergo. Index/
Phys. Measure

Phan et al. (2020)
[29]

Stiffness along the wrist
radial–ulnar deviation
during a polishing task

estimation of Human
Operators’ Joint Stiffness

(1) Instrumented tool
with force/torque
sensors; wearable sEMG
sensors

(1) ATI mini 40 loadcell and
Motion capture VZ4000
(Phoenix Technologies Inc.,
Vancouver, BC, Canada;
(2) BIOPAC MP150 Data
Acquisition and Analysis
System (BIOPAC Systems
Inc., Goleta, CA, USA)

- - N/A -

Xiong et al. (2020)
[30]

Cleaning with lying and
standing engine block Action recognition - - DL CNN N/A -

Luipers et al. (2021)
[31]

Collaborative work
human–robot on the
assembly of sensor cases

Human motion
prediction

RGB-D
camera—Structured light

Kinect (Microsoft
Corporation, Redmond,
WA, USA)

ML
GP
MetaL
ANN

N/A -

Manns et al. (2021)
[32]

Manual assembly of
extruded aluminium profile
in shop floor environments

Action recognition and
human motion
prediction

Wearable IMUs

(1) XSENS MVN Awinda
(Movella Inc., Henderson,
NV, USA); (2) Manus
Prime II (Movella Inc.,
Henderson, NV, USA)

DL LSTM N/A -

Niemann et al. (2021)
[33]

Order picking and packaging
activities

Pose estimation and
action recognition

Optical IR marker-based
motion capture system Not specified DL tCNN N/A -

Papanagiotou et al.
(2021) [34]

Collaborative work
human–robot on the
assembly of LCD TV
assembly

Pose estimation and
gesture recognition

(1) RGB camera
(2) RGB-D camera

(1) GoPro hero9 (San
Mateo, CA, USA);
(2) Intel-RealSense RGB-D
(Santa Clara, CA,
USA)—not specified

DL CNN (OpenPose)

3DCNN N/A -

Al-Amin et al. (2022)
[35]

Assembly of a
three-dimensional printer Action recognition Wearable IMUs

Myo armbands
(Thalmic Labs, Waterloo,
ON, Canada)

DL CNN N/A -

Choi et al. (2022) [36]
Human–robot interaction in
manufacturing and
industrial fields

Pose estimation and
Instance Segmentation

RGB-D
camera—Time-of-Flight

Azure Kinect (Microsoft
Corporation, Redmond,
WA, USA)

DL Mask-RCNN N/A -
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Table 3. Cont.

Authors (Year) Application Context Monitored Activity Acquisition Device Device Model ML/DL Alg. Ergo. Std. Ergo. Index/
Phys. Measure

De Feudis et al.
(2022) [37]

Manual industrial
assembly/disassembly
procedure (power drill)

Pose estimation and
hand/tool tracking

RGB-D
camera—Time-of-Flight Azure Kinect DL

CNN (OpenPose)
ArUco
YOLO
AKBT

N/A -

Lima et al. (2022)
[38]

Developing natural user
interfaces to control a
robotic arm

Hand state classification RGB-D
camera—Time-of-Flight Kinect v2 DL LRCN N/A -

Mendes (2022) [39]
Assembly of electric motor in
a human–robot collaboration
environment

Gesture recognition Wearable sEMG sensors

(1) Myo armbands;
(2) sEMG prototype
(Technaid S.L., Alcorcon,
Spain)

Both kNN
CNN N/A -

Orsag et al. (2023)
[40]

Collaborative work
human–robot in an industrial
environment

Action recognition and
human motion
prediction

Wearable IMUs
Combination Perception
Neuron 32 Edition v2
(Miami, FL, USA)

DL LSTM N/A -

Álvarez et al. (2016)
[41]

Instruments for evaluation of
the workers’ movements for
employee injury and illness
reduction (occupational
health)

Pose estimation Wearable IMUs
Model PTUD46 (Directed
Perception) (Artisan TG,
Champaign, IL, USA)

- - Physical -

Fletcher et al. (2018)
[42]

Aircraft wing system
installations

Integration of human
activity data and
ergonomic analysis for
digital design modelling
and system monitoring

Wearable IMUs IGS-Bio v1.8 (Animazoo
Ltd., Hove, UK) - - Physical REBA

Golabchi et al. (2018)
[43] Construction job site Pose estimation and

action recognition RGB camera Not specified DL kNN Physical -

Nath et al. (2018)
[44]

Warehouse operation
(transport and loading an
item)

Human activity
recognition Smartphone IMUs

Google Nexus 5X, Google
Nexus 6 (Mountain View,
CA, USA)

ML SVM Physical -

Grandi et al. (2019)
[45]

Workstation layout and the
working cycle using digital
manufacturing tools (manual
assembly of cabin supports
on the chassis of a tractor)

Pose estimation - - - - Physical EAWS
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Table 3. Cont.

Authors (Year) Application Context Monitored Activity Acquisition Device Device Model ML/DL Alg. Ergo. Std. Ergo. Index/
Phys. Measure

Maurice et al. (2019)
[46]

Industry-oriented activities
(car manufacturing) Pose estimation

(1) Wearable IMUs;
(2) Optical IR
marker-based motion
capture system;
(3) Flexion and force
sensor; (4) RGB camera

(1) Xsens MVN Link
system (Xsens MVN
whole-body Lycra suits;
(2) Qualisys motion
capture system (Qualisys,
Goteborg, Sweden);
(3) E-glove (Emphasis
Telematics, Athens,
Greece); (4) Not specified

Both HMM
CNN (OpenPose) Physical EAWS

Conforti et al. (2020)
[47]

Manual material
handling tasks Pose estimation Wearable IMUs MIMUs MTw (Xsens

Technologies) ML SVM Physical -

Massiris Fernández
et al. (2020) [48]

Outdoor working scenarios
(performing Marshall signs
to an airplane, wall
plastering and hammering
work activities, tree cutting
and drilling job)

Pose estimation RGB camera Not specified DL CNN (OpenPose) Physical RULA

Peruzzini et al.
(2020) [49]

Assembly of the air cabin
filters Pose estimation

(1) Multi-parametric
wearable sensor for
real-time vital
parameters monitoring;
(2) RGB camera;
(3) Optical IR
marker-based motion
capture system

(1) Zephyr BioHarness 3.0
(Medtronic, Minneapolis,
MN, USA); (2) GoPro
Hero3; (3) VICON Bonita
cameras

- - Physical OWAS, REBA,
RULA

Dimitropoulos et al.
(2021) [50]

Collaborative work in the
elevator production sector

Pose estimation and
action recognition

RGB-D
camera—Time-of-Flight Azure Kinect DL CNN Physical RULA

Mazhar et al. (2021)
[51]

Human–robot interaction in
social or industrial settings

Pose estimation and
gesture recognition

RGB-D
camera—Time-of-Flight Kinect v2 DL CNN (OpenPose) Physical -

Mudiyanselage et al.
(2021) [52]

Measurement of muscle
activity while performing
manual material handling

Pose estimation Wearable sEMG sensors Noraxon Mini DTS
(Scottsdale, AZ, USA) ML

Decision Tree
SVM
KNN
Random forest

Physical -
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Table 3. Cont.

Authors (Year) Application Context Monitored Activity Acquisition Device Device Model ML/DL Alg. Ergo. Std. Ergo. Index/
Phys. Measure

Ciccarelli et al. (2022)
[53]

Posture classification in
manufacturing settings
(kitchen manufacturing)

Pose estimation Wearable IMUs Xsens MTw (Wireless
Motion Tracker) DL CNN Physical RULA

Generosi et al. (2022)
[54]

Manufacturing work
operations (postures, hand
grip types, and body
segments)

Pose estimation RGB camera iPhone XS (Apple,
Cupertino, CA, USA) DL CMU

CNN (Mediapipe) Physical REBA, RULA,
OCRA, OWAS

Guo et al. (2022) [55]

Building a virtual scenario
for industrial maintenance
and assembly process
(satellite manufacturing)

Pose estimation Optical IR marker-based
motion capture system Not specified - - Physical RULA

Kačerová et al. (2022)
[56]

Implementation of
ergonomic changes in
working position (upper limb
loading in the assembly
workplace)

Pose estimation Wearable IMUs
MoCap suit Perception
Neuron Studio (Noitom
Inc., Miami, FL, USA)

- - Physical -

Lin et al. (2022) [57]

Video-based motion capture
and force estimation
frameworks for
comprehensive ergonomic
risk assessment

Pose estimation

(1) RGB camera;
(2) Optical IR
marker-based motion
capture system

(1) GoPro HERO 6;
(2) Vicon system—not
specified

DL CNN (OpenPose) Physical OWAS, REBA,
RULA

Lorenzini et al.
(2022) [58]

Kinematic/dynamic
monitoring of physical load Pose estimation

(1) Wearable IMUs;
(2) Integrated
piezoelectric force
platforms; (3) Wearable
sEMG sensors

(1) Xsens MVN suit;
(2) Kistler force plate
(Kistler Holding AG,
Winterthur, Switzerland);
(3) Delsys Trigno Wireless
platform (Delsys Inc.,
Natick, MA, USA)

- - Physical EAWS

Nunes et al. (2022)
[59]

Posture evaluation in
industrial settings
(automotive assembly line)

Pose estimation Wearable IMUs

Kallisto IMUs (Sensry
Gmbh, Dresden, Germany);
MVN Awinda (Xsens,
Enschede, The
Netherlands)

- - Physical EAWS
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Table 3. Cont.

Authors (Year) Application Context Monitored Activity Acquisition Device Device Model ML/DL Alg. Ergo. Std. Ergo. Index/
Phys. Measure

Panariello et al.
(2022) [60]

Execution of overhead
industrial task (an overhead
drilling task)

Pose estimation

(1) Optical IR
marker-based motion
capture system;
(2) Integrated Strain
Gauge force platforms;
(3) Wearable sEMG
sensors

(1) SMART DX 6000 (BTS
Bioengineering,
Garbagnate Milanese,
Milano, Italy; (2) P600, BTS
Bioengineering;
(3) FREEEMG 1000 and
300, BTS Bioengineering

- - Physical RULA

Paudel et al. (2022)
[61]

Human body joints
estimation for ergonomics
(manufacturing settings)

Pose estimation RGB camera Not specified DL 3DMPPE
Yolo Physical OWAS, REBA,

RULA

Vianello et al. (2022)
[62]

Online ergonomic feedback
to industrial operators
with/without interaction
with a robot

Pose estimation and
action recognition Wearable IMUs Xsens MVN suit DL VAE Physical RULA

Mattsson et al. (2017)
[63]

Worker well-being
evaluation in manufacturing
setting

Mental load
measurement Wearable sensors

Qsensor, Breathing Activity
Device, Smart Band 2
(Xiaomi, Beijing, China)

- - Mental
HRV, BVP, EDA,
skin temperature,
respiration

Nardolillo et al.
(2017) [64]

Fatigue pattern evaluation in
different aged workers
(construction,
manufacturing)

Mental/physical fatigue Wearable sensors
Polar heart rate monitor
(Polar Electro Oy, Kempele,
Finland)

- - Mental/physicalHRV

Chen et al. (2017)
[65]

Mental workload assessment
in contruction workers Mental load assessment Wearable sensors Prototype wearable EEG

helmet - - Mental EEG

Cheema et al. (2018)
[66]

Mental load assessment in
multitasking activities (HRC) Mental load assessment Wearable sensors Emotiv Epoc+ (Emotiv, San

Francisco, CA, USA) ML RF Mental EEG

Hwang et al. (2018)
[67]

Emotional assessment in
construction workers Mental load assessment Wearable sensors Not specified - - Mental EEG

Bommer et al. (2018)
[68]

Mental workload assessment
in manufacturing settings Mental load assessment Near infrared eye tracker Tobii e T 120 (Tobii,

Danderyd, Sweden) - - Mental eye tracking

D’Addona et al.
(2018) [69]

Mental load assessment in
manufacturing Mental load assessment Passive brain–computer

interface (pBCI) - - - Mental EEG

Landi et al. (2018)
[70]

Mental workload assessment
in industrial settings

Mental load assessment
for affective robotics Wearable sensors Samsung Gear S (Samsung,

Suwon, Republic of Korea) - - Mental HRV
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Table 3. Cont.

Authors (Year) Application Context Monitored Activity Acquisition Device Device Model ML/DL Alg. Ergo. Std. Ergo. Index/
Phys. Measure

Kosch et al. (2019)
[71]

Workload evaluation in
manual assembly Mental load assessment Wearable sensors Empatica E4 (Empatica,

Boston, MA, USA) - - Mental EDA

Arpaia et al. (2020)
[72]

Mental workload in working
environments Mental load assessment Wearable sensors EEG-SMT Olimex (Olimex,

Plovdiv, Bulgaria) Both SVM, kNN, RF,
ANN Mental EEG

Bettoni et al. (2020)
[73]

Mental workload assessment
in manufacturing settings for
adaptive HRC

Mental load assessment Wearable sensors Polar heart rate monitor,
Empatica E4 ML RF Mental HRV, EDA, skin

temperature

Lee et al. (2020) [74]

Evaluation of burnout
influence on performance in
unskilled construction
workers

Burnout assessment (1) Wearable sensors,
(2) Wearable IMUs

(1) Zephyr BioHarness3,
(2) ActiGraph GT9X
(ActiGraph LLC, Pensacola,
FL, USA)

- - Mental/
physical HR

Papetti et al. (2020)
[75]

Integration of physical and
mental well-being in
industrial settings

Improvement of workers’
well-being

Wearable sensors,
eye-tracking glasses Not specified - - Mental/

physical

HR, HRV,
respiration, pupil
diameter, eye blink

Van Acker et al.
(2020) [76]

Mental workload
measurement in manual
assembly

Mental load assessment Eye-tracking glasses
SMI ETG 2w
(SensoMotoric Instruments,
Teltow, Germany)

- - Mental Pupillometry

Chen et al. (2020)
[26]

Mental workload
measurement in HRC Mental load assessment Eye tracking glasses Tobii pro glasses2 - - Mental Pupillometry

Digiesi et al. (2020)
[77]

Mental load assessment in
smart operators
(manufacturing activities)

Mental load assessment ECG monitor
BITalino plugged kit
(PLUX wireless biosignals,
Lisboa, Portugal)

- - Mental HRV

Mahmad Khairai
et al. (2021) [78]

Work stress assessment in
assembly line workers Mental load assessment Wearable sensors EmWavePro (HeartMath,

Boulder Creek, CA, USA) - - Mental HRV

Hopko et al. (2021)
[79]

Evaluation of mental
workload and cognitive
fatigue in HRC

Menta load assessment Wearable sensors
Actiheart 5 (CamNTech,
Fenstanton,
Cambridgeshire, UK)

- - Mental HRV
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Table 3. Cont.

Authors (Year) Application Context Monitored Activity Acquisition Device Device Model ML/DL Alg. Ergo. Std. Ergo. Index/
Phys. Measure

Argyle et al. (2021)
[80]

Analysis of fatigue and
cognitive state in digital
manufacturing

Mental load assessment
(1) Wearable sensors,
(2) Thermal camera,
(3) RGB camera

(1) Artinis Octamon+
(Artinis Medical Systems,
Elst, The Netherlands),
Zephyr BioHarness3,
(2) FLIR A65sc (Teledyne
FLIR, Wilsonville, Oregon,
USA), (3) Not specified

- - Mental
fNIRS, HR,
respiration, skin
temperature

Brunzini et al. (2021)
[81]

Analysis of ergonomics of
operators in manual
assembly

Workload assessment for
HCD of industrial
processes

(1) Eye-tracking glasses,
(2) Wearable sensors,
(3) Wearable IMUs

(1) Tobii glasses2,
(2) Empatica E4, (3) Vive
trackers 3.0 (HTC, Taoyuan,
Taiwan)

- - Mental/
physical

RULA, HR, EDA,
pupillometry

Bläsing et al. (2021)
[82]

Mental workload assessment
in manual assembly with
assistance system

Mental load assessment (1) Portable ECG monitor,
(2) Eye-tracking glasses

(1) Faros eMotion 180
(BlindSight Gmbh,
Fröndenberg, Germany),
(2) SMI ETG 2w

- - Mental ECG, eye tracking

Lin et al. (2022) [83] Mental workload prediction
in HRC

Mental workload
assessment Wearable sensors Smartwatch DTA-S50

(DTAudio, Taiwan) ML RF Mental
GSR, skin
temperature, HR,
BVP

Mach et al. (2022)
[84]

Mental workload
measurement for application
in industry

Mental load assessment (1) Wearable sensors,
(2) Chest strap

(1) Samsung Gear S3,
(2) Garmin premium heart
rate monitor (Garmin Ltd.,
Olathe, KS, USA)

- - Mental HR
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3.1. Physical Ergonomics

As explained above, in this section, the resulting papers have been grouped ac-
cording to the purpose of the physical ergonomics analysis: productivity enhancement,
man–machine interaction optimization, and safety support.

3.1.1. Productivity Enhancement

The ratio behind the following articles relies on the idea that ergonomically designed
environments and tools can contribute to increase productivity. When people are comfort-
able and not experiencing physical discomfort or fatigue, they are more likely to maintain
focus and work efficiently.

In this sense, Grzeszick et al. [22] presented a new method for optimizing manual
processes in factories and warehouses using human activity recognition (HAR). They
collected data from two warehouses, focusing on order picking, using inertial measurement
units (IMUs) on the wrists and torso. The data were fed into a deep neural network
using temporal convolutions, allowing different sensors to be handled separately and
information fused at each step. The IMU-centered CNN architecture showed improved
results compared to conventional methods.

In the paper written by Moya Rueda et al. [24], the authors proposed a CNN for HAR
using multi-channel time-series data from inertial sensors worn by warehouse workers.
This architecture reduces asynchrony between sensors and outperforms traditional CNNs
and previous approaches, with a detection accuracy of around 71%, which was justified by
its theoretical advantage.

In the work by Chen et al. [26], the RGB camera and Kinect camera were used to
monitor repetitive assembly operations using dynamic learning methods. The Kinect
camera, equipped with RGB technology, can compute skeleton joints and track larger
scenes, reducing segment misalignment issues during complex tasks [85]. These cameras
use RGB data for object recognition and human pose estimation, detecting worker activity
and assessing repetitive assembly movements. The YOLOv3 object detection algorithm
has a 92.8% accuracy in action detection, while the convolutional pose machine (CPM)
pose estimation algorithm has an 82.1% accuracy in determining repetitive assembly
action timing.

The research held by Jiao et al. [27] proposed a framework for action recognition
using RGB cameras in industrial workflows. It used deep-learning networks like CNNs,
spatial transformer networks (STNs), and graph convolutional networks (GCNs) to extract
spatial and temporal information from videos, estimate human poses, and obtain operator
skeletons using YOLOv3. STN corrects skeleton images, while GCN extracts spatial and
temporal information simultaneously.

Niemann et al. [33] highlighted the importance of automating the assessment of
human activity in production and logistics to enhance efficiency and ergonomics. They
present a dataset of picking and packing tasks with context information and introduce
an activity recognition model that combines motion data and context information. This
model, using optical IR marker-based motion capture (oMoCap), improves performance by
feeding data into a temporal Convolutional Neural Network (tCNN) for shallow classifier
prediction. Several classifiers, including decision trees (DTs), are tested, ensuring that
processing human motion data requires sophisticated feature extraction models that are
domain-independent.

With reference to De Feudis et al. [37], we evaluated some vision-based hand tool
tracking methods for quality assessment and training in human-centric Industry 4.0. It
compares four tracking systems, including Azure Kinect Body Tracking technology, which
uses Microsoft’s Azure Kinect Body Tracking SDK for 3D body configuration estimation.
The system tracks upper limb segments using sensors like RGB cameras, depth cameras,
microphone arrays, and orientation sensors. The study explores two methods of tool track-
ing: direct detection and tracking of the tool itself and indirect tracking of the operator’s
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body joints and hands to infer tool pose. OpenPose is the most comprehensive option,
offering acceptable point-to-point distance and low variability.

From these first proposed studies, and a considerable number of studies described
below, it has been confirmed that DL, and in particular convolutional-based architectures,
gain a not negligible role in these domains.

3.1.2. Man–Machine Interaction Optimisation

In settings where humans interact with machines, physical ergonomics is essential for
ensuring that interfaces, controls, and displays are designed in a way that is intuitive and
minimizes the potential for errors. The following articles present solutions according to
this perspective.

Pławiak et al. [21] developed a system in which the DG5 VHand glove device is
designed to efficiently recognize hand gestures in body language. It consists of ten sensors,
including finger flexion sensors, accelerometers, and gyroscopes. The glove interface
connects to an external device via a four-wire connector. Researchers used the data to train
a machine-learning approach, using the support vector machine (SVM), which achieved a
sensitivity of 98.32%.

Luo et al. [23] involved the implementation of the VICON system, a combination of
nine markers and three rigid plates, which is used to predict human reaching motions
quickly, enabling robots to avoid interference while performing complementary tasks. The
system uses an unsupervised learning algorithm to model trajectories, learning Gaussian
mixture models (GMMs) to adapt robot behavior in real time. This approach is effective in
human–robot collaboration (HRC). The two-layer framework updates models with new
observations, distinguishing it from previous methods that rely on supervised learning
and manual labeling. The system uses Gaussian mixture regression (GMR) to predict the
missing path in the remaining trajectory by identifying the GMM.

In the research led by Urgo et al. [25], the authors presented a human modeling and
monitoring approach to support manufacturing operations in high variability collaborative
environments. It uses RGB data and hidden Markov models (HMMs) to identify errors and
unsafe situations. The OpenPose library is used for operator pose estimation, enabling the
real-time recognition and tracking of human body parts. The HMM mitigates uncertainties
in acquired variables, making it suitable for tasks requiring pose estimation.

The research by Manitsaris et al. [28] explored the use of human-centered artificial
intelligence in professional workplaces to improve collaboration, skills and work quality.
RGB sensors capture and segment gesture images, enabling pose estimation and operator
skeleton extraction. In real-world scenarios, an RGB-D camera extracts 3D hand positions.
The HMM is implemented on RGB and RGB-D data and translated into concurrent equa-
tions using state space (SS) modeling and maximum likelihood estimation. Simulations
create confidence-based spatial variance tolerance bounding boxes that are effective for
gesture recognition and human motion trajectory prediction.

Xiong et al. [30] proposed a transferable two-stream CNN architecture for human
action recognition in manufacturing environments. The architecture uses optical flow
to extract temporal and spatial information from video images and transfer learning to
transfer a model learned in one domain to another target domain.

Luipers and Richert [31] focused on improving human–robot interaction efficiency
and safety by increasing the predictability and intuitiveness of cobot movements. The
authors used a Microsoft Kinect RGB-D camera to track body joints and calculate ergonomic
positions for handovers. Augmented reality is integrated to enhance collaboration from a
human perspective. Machine learning techniques are combined with a Gaussian process
model to predict hand position. Hyperparameter optimization and Artificial Neural Net-
works (ANNs) are used for time-series prediction due to their promising results. Model
agnostic meta-learning is one of the most widely used meta-learning algorithms in human
motion prediction research for an intuitive HRC. The authors propose integrating ML and
GP regression for fast adaptation.
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The study by Manns et al. [32] explored potential applications of Operator 4.0 within
manufacturing systems. The Pupil Invisible, XSens MVN Awinda, and Manus Prime II
are used in a technology setup to simulate human motion behavior in assembly tasks.
These devices use inertial measurements to capture body motion data, while Manus Prime
II incorporates inertial sensors into its finger-tracking hardware. The authors proposed
a new method for identifying spatial region-based activity using real-time simulation,
combining virtual environments with wearable full-body human motion capture, including
eye tracking. The long short-term memory (LSTM) architecture detects lapses of attention,
increasing safety and productivity in human–robot collaboration.

Papanagiotou et al. [34] reported the integration of gesture recognition and pose
estimation in a professional environment, specifically an industrial assembly line, as part of
Industry 4.0. The experiment involved assembling a TV panel using a robot, a GoPro Hero 9
camera, and an active vision system for pose estimation. RGB-D camera data were used for
pose estimation, and a real-time DL module was used for gesture recognition. 3DCNNs
and OpenPose were used for egocentric and operator skeleton extraction. Transfer learning
improved gesture recognition accuracy by 11% when new users were introduced, and it
increased to 98.5% after early termination.

Al-Amin et al. [35] presented a novel approach using two wearable devices, Myo
armbands, to collect IMU data from assembly workers’ hands during tasks. The data
are used to train two CNN models with identical architectures, which are designed to
recognize both right-hand and left-hand actions. The classification outcomes are combined
to generate a final action recognition result considering common collaboration. Transfer
learning is used to adapt recognition models to new subjects not included in the training
dataset. The study’s findings show that this approach significantly enhances prediction
accuracy at both action and subject levels.

Choi et al. [36] provided a valuable use of Azure Kinect depth sensors to create a
virtual environment for human–robot collaboration. Sensors scan the operational envi-
ronment, creating a 3D point cloud of a virtual human–robot collaboration environment.
Azure Kinect depth sensors capture RGB-D and skeletal data, merging them into a vir-
tual environment through 3D tracking and matching. These data feed a Mask R-CNN,
which detects and segments target objects, provides task-based guidance, and enhances
synchronization between the physical robot and its digital counterpart.

In the field of human–robot control (HRC), a novel approach to natural human–robot
control has been developed by Lima et al. [38] using a single depth-based camera, the
Microsoft Kinect V2. The Kinect V2 is a depth-sensing camera that captures RGB-D data
from users, enabling real-time hand-state classification. Positioned 0.9 m away, it uses
pose mapping based on Thin-Plate Splines (TPSs) and Long-Term Recurrent Convolutional
Networks (LRCNs), providing an intuitive user interface for teleoperation and improving
accuracy in critical regions of the workspace. Cross-validation experiments show a higher
accuracy of LRCNs compared to CNN classifiers.

The study presented by Mendes [39] developed a two-step hand gesture recognition
algorithm using sEMG devices, specifically the Myo armband. The prototype device uses
sEMG and IMU technology and a two-step gesture recognition algorithm. The first stage is
segmentation, distinguishing between gesture signals and non-signals. Two algorithms,
kNN and threshold-based, are tested. The threshold-based algorithm, using deep learn-
ing, outperforms the kNN algorithm, achieving 97% accuracy (despite kNN’s 92%) and
enhancing human–robot collaboration in various settings.

Orsag et al. [40] investigated the development of a safe, flexible human–robot collabo-
ration system using machine learning techniques like LSTM networks. The system uses the
inHARD dataset, capturing 4804 action samples across 28 videos, and RGB data from three
perspectives. The skeleton modality uses wearable IMUs for motion data. The method
achieved 91.365% accuracy. The LSTM networks can achieve an accuracy of 91.365% on the
training set, ensuring safe and efficient collaboration between robots and human workers.



Sensors 2024, 24, 5473 17 of 47

A consideration that emerges at this point, and further details will be given in the
discussion of the results, is that RGB/RGB-D and IMUs are solutions easily preferred over
others in the data collection in these domains. Furthermore, the use of DL, particularly
convolution-based architectures, seems at this stage to confirm the trend suggested by
the productivity improvement studies. Additionally, tools like OpenPose are gaining
importance also in this type of research when dealing with RGB data.

3.1.3. Safety Support

In the context of the human-centered production system, the development of safe
workplaces is of utmost importance. From this viewpoint, the study of workers’ well-being
and efficiency of operations are channeled into ergonomics and occupational safety. The
most adopted indexes include Rapid Entire Body Assessment (REBA), Rapid Upper Limb
Assessment (RULA), Ergonomic Assessment Worksheet (EAWS), Ovako Working Posture
Analysis System (OWAS) and Occupational Repetitive Actions (OCRA).

Taken together, the methods mentioned above act as architects of change within or-
ganizations, instilling a culture deeply committed to safety and well-being. They form
the foundation upon which the edifice of safer, healthier working environments is built,
reconciling employee well-being with operational efficiency while maintaining an unwa-
vering commitment to formality. Following this perspective, other authors also consider
ergonomics beyond typical ergonomic standard indexes. Along this, it is to be said that the
traditional approach to the computation of risk based on the mentioned indexes relies on
the evaluation given by an expert and on thresholds; thus, situations of uncertainty and
subjectivity may arise [48,58]. This aspect pushes the research toward the exploration of
novel approaches to risk assessment and safety support that promise to be less biased.

From this perspective, the work by Grandi et al. [45] showed a structured methodology
for facilitating automatic data extraction from virtual analyses using digital production
tools. Siemens’ EAWS-JACK worksheet automates manufacturing ergonomics assessment
using a Siemens JACK 7.0 software toolkit. It accurately replicates operator postures and
movements, allowing precise measurements of joint angles and body dimensions.

Maurice et al. [46] introduced a prototype e-glove equipped with three flexion sensors
and four pressure sensors to measure general posture during industrial activities. EAWS is
an ergonomics analysis tool used to improve working conditions in the industrial sector.
Researchers used wearable sensors, optical motion capture technology, cameras, and finger
pressure force data to train recognition models based on Human Movement Models. The
dataset contains over five hours of data, including whole-body kinematics, finger force
data, video recordings, and annotations from three independent human annotators.

Additionally, the need for continuous monitoring of the risk emerges in industrial
scenarios. The study by Lorenzini et al. [58] presented an innovative methodology to
continuously monitor and assess workers’ exposure to factors that cause work-related
musculoskeletal disorders and to provide real-time estimates of physical stress in the
workplace. The system uses an online multi-index human ergonomics assessment system,
including the Xsens MVN Biomech suit, the Kistler Force Plate and the Delsys Trigno
Wireless platform. As a comparison, the EAWS is used to provide a unique score, calculated
by an expert, taking into account the entire work activity. The study used simplified
activities and laboratory settings, and the EAWS score was calculated for each trial of each
task. The authors concluded that the EAWS is a complex approach that can only be applied
offline and is prone to expert subjectivity.

Nunes et al. [59] employed a comprehensive framework for monitoring human motion
in industrial contexts and assessing work-related posture risks. The study focuses on
a comprehensive framework for monitoring human motion in industrial settings and
assessing posture risks. It analyzes joint angles using data-driven synchronization and
kinematic descriptions. The framework compares joint angles with validated inertial
motion capture systems. The study also explores an automated risk assessment tool
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(EAWS) for estimating risk exposure based on posture, strength, force, and repetition
factors. The total risk score is calculated by summing the partial risk scores for all postures.

The work by Massiris Fernández et al. [48] introduced an innovative approach to
ergonomic risk assessment using computer vision and machine learning techniques. The
authors propose a method for ergonomic risk assessment and RULA scoring using digital
video footage, allowing the cost-effective simultaneous handling of multiple workers. They
use RGB cameras and OpenPose to detect joints and limbs in real time, identifying worker
skeletons using open-source neural networks. The method is evaluated using real-world
image datasets and outdoor work environments. Joint angle thresholds are set based on
experiments, and size and confidence thresholds filter out spurious data. Front and rear
camera views are recommended for optimal skeletal data quality. The authors occasionally
infer joint positions in scenarios with occluded body parts, allowing RULA scores to be
calculated in multiple video sequences.

As remarked previously, the role of artificial intelligence is not negligible in the context
of physical ergonomics. Dimitropoulos et al. [50] investigated the use of artificial intelli-
gence and wearable devices to improve human–robot collaboration during assembly tasks.
The methodology focuses on enhancing collaboration between three modules: the Action
Perception Module (APM), the Ergonomics Improvement Module (EIM), and the Learning
and Programming Module (LPM). These modules monitor working conditions and adapt
robot behavior to make it more human-centered. Data are collected using Kinect Azure
sensors and a simulated shop floor digital representation environment. Communication is
facilitated using a ROS-based architecture. The LPM module transitions from predefined
program execution to automated, continuous learning and adaptation of robot motion. The
Ergonomics Improvement Module (EIM) aims to reduce the physical strain experienced by
operators working with robots.

SPECTRE is a deep learning network designed by Ciccarelli et al. [53] to classify
workplace postures and assess ergonomic risks with minimal disruption. It uses 18 Xsens
MTw (Wireless Motion Tracker) units for comprehensive whole-body monitoring, focusing
on the upper arm, forearm, wrist, neck and trunk. SPECTRE uses a sensor-independent
convolutional network-based learning model, Mediapipe, to identify and categorize work-
place postures. The architecture includes a segmentation layer and a parallel convolutional
layer that uses pattern recognition to assess postures and identify ergonomic hazards.

Guo et al. [55] proposed an integrated VR-based approach to improve ergonomic
design in manual assembly and maintenance scenarios. The methodology involves the in-
tegration of VR hardware components, motion capture data, and an evaluation framework
within the DELMIA environment to analyze ergonomic elements in a virtual industrial
maintenance and assembly scene. The SHELL model is used, and real-time motion data are
captured through immersive simulations. Tools include 8 infrared cameras and 41 optical
markers. The DELMIA environment optimizes design evaluation and decision making,
potentially outperforming desktop-based ergonomic assessment methods.

Panariello et al. [60] conducted a biomechanical analysis of the human movements and
internal load dynamics of operators performing overhead drilling tasks. The study used
infrared digital cameras, integrated force platforms and eight EMG sensors to analyze joint
angles, torques and muscle activation. The study revealed a rise in shoulder torque, anterior
deltoid activation, and biceps brachii activity at higher working heights, suggesting the
potential for assistive devices like robotic exoskeletons to enhance task performance and
worker well-being.

In light of continuous monitoring, Vianello et al. [62] proposed a comprehensive suite
of tools, including the Xsens MVN motion-tracking suit, which has been developed to
provide real-time ergonomic feedback to human workers during tasks, including physical
interaction with robots. The Digital Human Model (DHM) visually represents specific
areas and joints of the human body based on ergonomic metrics such as RULA. The suit
incorporates, additionally to accelerometers, magnetometers and barometers to improve
accuracy. Variational Auto-Encoders (VAE) generate Latent Ergonomics Maps (LEMs)
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to visually distinguish between non-ergonomic and ergonomic postures, enhancing the
accuracy of the DHM.

The Operator 4.0 framework explored by Peruzzini et al. [49] focuses on human-
centered principles and their applicability in computerized industrial environments. It aims
to ensure operator safety by monitoring their well-being and workload while improving
the process performance and overall quality of operations. Key components of the facility
include an eye-tracking system (Glasses 2 by Tobii), a wearable sensor for the real-time
monitoring of vital signs (BioHarness 3.0 by Zephyr), a video camera (GoPro Hero3) and
digital human modeling software (Tecnomatix Jack, Siemens, 2017) for creating virtual
environments and digital twins of monitored operators. The Vicon Optical Tracking System
allows full-body tracking of operator positions and digitization of movements, enabling
the creation of virtual factory prototypes by merging digital mock-ups with real operator
manikins.

A web platform system has been developed by Generosi et al. [54] to facilitate a future
human-centered factory by semi-automatically calculating multiple risk indices and pro-
viding advanced analytics to proactively improve the monitoring of ergonomic risks. The
system, based on RULA and OCRA, aims to improve ergonomic risk assessment and safety
in industrial environments by using deep learning models and video analysis algorithms
to collect data on worker postures, grip types and body segment angles. Although this
system offers a user-friendly interface for defining work cycles and tasks, it has limitations
in hand detection and gesture recognition, particularly for gloved hands.

Lin et al. [57] aimed to develop a system that uses joint angle data from image-
based motion capture technology to identify high-risk postures and prevent occupational
injuries. The system uses RGB cameras like GoPro HERO 6 Black and Vicon, calculates
risk scores using OpenPose technology, and uses a decision tree to determine the most
appropriate assessment method. The system provides an automated and comprehensive
means of assessing and preventing injury, identifying frames with high-risk scores for
further improvement by ergonomists.

Paudel et al. [61] introduced a framework for automating the analysis of industrial
worker poses to reduce the risk of long-term musculoskeletal disorders (MSDs). It presents
a novel method for analyzing industrial worker pose using Yolov3.3. The framework uses
2D images and Darknet-53 video datasets to detect workers and determine their body
regions. The Pose Net network estimates human joints, and the Body Angle Reliability
Decision (BARD) network checks reliability. If satisfactory, the system converts 2D poses
to 3D using the 3DMPPE pose net method. The framework automates ergonomic risk
analysis using key features and scoring methods. The study yielded significant results,
showing high accuracy in ergonomic scoring for well-executed postures and obstructed or
occluded postures.

Automated or semi-automated MSD risk assessment poses challenges not only in the
calculation of appropriate indices and scores but also in the suitability of image capture
systems. In this light, Alvarez et al. [41] investigated the importance of measuring upper
limb joint angles in occupational health, focusing on the limitations of traditional motion
capture systems. It identifies tasks that pose a risk of workplace injury due to repetitive
or awkward postures and uses inertial sensors such as accelerometers, gyroscopes and
magnetic sensors to measure joint angles (XSens MTx sensors). The data are then analyzed
to identify potential risks and areas for improvement. The findings form the basis for
targeted interventions to reduce workplace injuries and improve overall occupational
health.

Fletcher et al. [42] used inertial-recording-body technology to analyze ergonomic risks
in manufacturing. The IGS-Bio v1.8 full-body suit employed in this study automatically
documents body segments and joints, ensuring objective data collection even in obscured
areas. The technology assesses musculoskeletal risks of different postures based on REBA
criteria with three primary assessment stages and result tables divided into groups. The
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final scores assign comprehensive scores to specific postures, determining the urgency of
remedial action.

One aspect that makes these studies of great interest is that ergonomic concerns can
lead to changes in working posture or redesign of the workplace to meet safety standards.
The 3DSSPP software (version 6.0.6) was used in a study by Golabchi et al. [43] to improve
construction projects by increasing productivity, safety, quality and cost efficiency. An
RGB camera collected data on site conditions, work tasks, and worker movements. Action
recognition modules identified operations, creating a simulation model. A path-planning
algorithm assessed biomechanical conditions, updating work and workstation design.

In the research led by Nath et al. [44], the authors aimed to automate ergonomic risk
monitoring using body-mounted sensors and ML techniques. The framework aimed to
reduce the duration of ergonomic risks. Data were collected using body-mounted smart-
phones, and HAR techniques were used to categorize workers’ activities (lift/lower/carry,
push/pull or no-risk activities) with SVM classifiers achieving 80% accuracy.

A similar approach was adopted in the study conducted by Conforti et al. [47], in
which 26 people were equipped with wireless IMUs to assess postural patterns during
manual material handling tasks. The data collected were processed using eight wireless
IMUs (MIMUs MTw, Xsens Technologies), and they were used to train machine learning
algorithms to identify postural patterns associated with high biomechanical risk. The
study utilized an SVM classifier with 92% accuracy to develop an experimental protocol
for assessing postural patterns, identifying appropriate postures, and evaluating motion
analysis using a wearable system and biomechanical model.

Mazhar et al. [51] suggested a framework for static and dynamic gesture recognition
using simple RGB vision, focusing on spatial attention driven by posture; the aim of the
study was to provide a vision-oriented approach to human–robot or human–computer
interaction in both social and industrial environments, ensuring safety while managing
robot actions. The framework, StaDNet, works solely with RGB vision, estimating, with
OpenPose, the depth of operators and identifying the region of interest that includes their
hands. The framework can be implemented on any RGB camera, and it provides a frontal
perspective of the upper body and can integrate alternative pose extraction systems for
specific application scenarios.

As illustrated by Mudiyanselage et al. [52], the use of surface electromyography
(sEMG)-based systems and machine learning algorithms can be used to automatically
detect harmful body movements during manual material handling tasks. The National
Institute for Occupational Safety and Health (NIOSH) has developed a system using sEMG-
based systems and machine learning algorithms to detect harmful body movements during
manual material handling tasks. The system uses the lifting equation to determine safe
weight limits and assess risk levels. The study focuses on everyday static lifting tasks and
presents an innovative ergonomic workstation design using motion capture hardware and
virtual reality.

A pragmatic approach to estimating joint stiffness was introduced by Phan et al. [29]
in a tooling task. The method uses a customized handle with multi-axis force/torque
sensors and sEMG technology to capture complex 3D dynamics of forearm and wrist
muscle activity. Optical motion tracking is used to monitor the tool’s pose. Tested on an
industrial robot and human operator, it shows a positive correlation between impedance
values and forearm muscle activity. Infrared markers track tool position and orientation
during polishing.

For the sake of clarity, Figure 2 provides the occurrences of the physical ergonomic
assessment tools taken into consideration by the resulting articles.



Sensors 2024, 24, 5473 21 of 47

Figure 2. Number of occurrences of ergonomic physical indexes.

The REBA is taken into account in the studies conducted by Fletcher et al. [42],
Peruzzini et al. [49], Lin et al. [57], and Paudel et al. [61].

The studies conducted by Massiris Fernández et al. [48], Peruzzini et al. [49],
Dimitropoulos et al. [50], Generosi et al. [54], Panariello et al. [60], Vianello et al. [62],
Ciccarelli et al. [53], Lin et al. [57], Paudel et al. [61] and Guo et al. [55] incorporate the
RULA ergonomic index. Vianello et al. [62] also introduce RULA-C because RULA’s time
evolution often exhibits discontinuities and plateaus, making it less suitable for motion
optimization and continuous postural assessment.

The ergonomic index EAWS is included in the studies led by Grandi et al. [45], Mau-
rice et al. [46], Nunes et al. [59] and Lorenzini et al. [58].

The OWAS evaluation is factored into the research conducted by Peruzzini et al. [49],
Lin et al. [57], and Paudel et al. [61].

The OCRA ergonomic index is a component of the research conducted by Generosi
et al. [54].

3.2. Cognitive Ergonomics

In addition to physical well-being, the design of human-centered workplaces cannot
neglect the emotional and cognitive aspect, as evidenced by the increasing number of
studies on this aspect in manufacturing.

Cognitive ergonomics becomes core also in the development of human–machine inter-
faces and supervisory systems (SCADAs). In fact, these user interfaces should be taken into
account in the context of workplace design in Industry 5.0, as the user experience (UX) plays
a key role in the development of effective, human-centered solutions for human–machine
interaction [86–88].

Nevertheless, cognitive workload and work-related stress are topics that have yet to
be fully explored. In recent years, there has been a proliferation of studies seeking the best
physiological parameters to characterize and detect these emotional states [89,90], but most
of these have been carried out in the laboratory under controlled conditions. In industry
and production, additional conditions must be taken into account, such as the tolerability
of measuring devices by the worker and the adaptability of laboratory measurements to the
production environment and to continuous monitoring. Mattsson et al. [63] proposed an
industrial experimental setup to investigate how physiological measurement can be used
to assess real-time operators’ well-being, performances and associated risks in an industrial
context. They pinpointed heart rate variability (HRV), electrodermal activity (EDA), and
respiratory factors as pertinent physiological indicators for monitoring changes in operator
emotions and motivation. HRV data were collected using the Smartband 2 from Sony® and
the Activity bracelet E4 by Empatica®. Significantly, 50% of participants identified HRV as
the most reliable parameter.

Nardolillo et al. [64] studied the HRV during simulated assembly line tasks to try to
deduce the pattern of fatigue in different aged workers. Their findings show differences in
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HR between different body positions and genders and changes in the time domain with the
increasing task complexity. Following the results obtained in this study, the HRV analysis
gives effective cues to improve task demand decisions. Moreover, insights on the need
for particular attention to the age of the workers in designing workplaces are given by the
statistical analysis.

The appropriateness of task allocation in construction activities is the field of the
investigation of Chen et al. [65]. They proposed an electroencephalography (EEG)-based
approach to measure the mental load associated with construction tasks through the study
of power spectral density (PSD) of EEG frequency bands acquired with a prototype EEG
helmet. Even if preliminary, the statistical analysis conducted on PSD shows significant
effects of tasks and frequency bands (particularly gamma band) on PSD and thus on mental
workload. Their EEG results were validated by the ground truth NASA-TLX score.

Hwang et al. [67] employed a 2D emotional model, i.e., a valence–arousal emotional
space, to quantify the emotional state of workers involved in construction tasks. A wearable
EEG sensor was used to monitor the workers during construction activities. The results
show that EEG-based affective indicators, particularly valence, are crucial in depicting
the emotional state, even in the specific working scenario. Correlations with the levels of
cortisol were computed to validate the results.

Bommer and Fendley [68] proposed a six-step theoretical framework for the analy-
sis of mental workload in repetitive tasks in manufacturing activities based on cognitive
ergonomics concepts and Multiple Resource Theory. Subjective measures provided by
NASA-TLX and Workload Profile are adopted along with eye-tracking technology. Valida-
tion of the framework is performed with computer simulations, mathematical modelling
and mental workload measures.

D’Addona et al. [69] stressed the need for an aware inclusion of the human factor in
the increasingly automated and digital production systems. Their proposal for a human-
in-the-loop factory adaptive automation framework was applied to two case studies, air
traffic control and white goods production. The authors selected EEG as the physiological
parameter to measure the operators’ mental workload.

The monitoring and assessment of mental workload in the workplace has the aim of
giving crucial information on how to redesign the workplace to reduce workers’ stress and
assist workers in stressing situations. In this sense, the study conducted by Landi et al. [70]
presents a method for analyzing the mental workload of operators and adjusting assistive
technologies accordingly, using affective robotics, to be applied in industrial settings. The
operator’s stress level is monitored through heart rate variability (HRV), which is measured
using a Samsung Gear S smartwatch equipped with a heart rate sensor. A group of 15 users
teleoperated an industrial robot to perform a pick and place task. The operators’ R-R series,
which is the time elapsed between two successive R waves, was monitored. When an
excessive increase in the operators’ mental stress was detected, an assistive system based
on virtual fixtures was activated to decrease their mental workload. The study’s findings
indicate that the use of virtual fixtures in assistive systems can effectively reduce stress
levels for users when the interaction task exceeds their sustainable mental workload.

As delineated by the previously mentioned works, EEG and HR are physiological pa-
rameters that well describe mental stress and workload. Along these, other measurements
can be found in the literature such as electrodermal activity (EDA) and electro-oculogram
(EOG). Kosch et al. [71] investigated the potentiality of EDA as a tool to real-time monitor
the mental workload induced by two different assistive systems in manual assembly. This
preliminary study suggests that EDA is a valuable measure of the cognitive load in this
particular scenario along with working performance. As in many of the analyzed studies,
the NASA-TLX subjective assessment was adopted, and data were analyzed by means of a
statistical approach (ANOVA).

Papetti et al. [75] addressed their research to the human-centered connected factories;
particularly, a real-world scenario is considered to suggest solutions to analyze the physical,
cognitive and environmental ergonomics of industry workers. A number of different
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physiological parameters are monitored: HR, HRV, respiration, pupil size, and eye blink.
Particularly, the authors remarked on the potentiality of EOG, suggesting its use in future
studies in industrial settings. Contrarily, from the study by Van Acker et al. [76], it emerges
that although employed eye-tracking glasses are felt as physically and mentally comfortable
by participants in the study, pupil size does not provide significant information on the
increased mental workload perceived by participants between different difficulty levels
of manual assembly. This result, in contrast with laboratory studies, suggests that further
advancement of this technology is needed for its use in real-world mental workload
measures.

Albeit less frequently than in the case of the physical ergonomics discussed above,
the use of artificial intelligence techniques, especially traditional machine learning but
also neural networks, is also gaining ground in the analysis of cognitive ergonomics.
Arpaia et al. [72] aimed to classify the stress levels of workers based on real-time EEG
measurements acquired with single-channel EEG-SMT Olimex and Raspberry Pi® 3. Other
metrological references were used: standardized stress tests, observations from experts,
and performance measures. The authors analyze the frontal asymmetry, which previous
studies have shown to be a reliable EEG feature to characterize stress. Differently from the
majority of the studies in the field, the authors adopted a machine learning approach to
data analysis: SVM, k-Nearest-Neighbor (kNN), RF, and artificial neural network (ANN)
were applied.

Bettoni et al. [73] used machine learning to propose a paradigm for adaptive hu-
man–machine collaboration to improve the productivity and well-being of workers. An
injection molding manufacturing line involving humans and cobots is considered to test
their proposal. Three wearable devices (Polar H10 chest strap, Empatica® E4 wristband and
Huawei Watch 2) were used to monitor HR, EDA, and skin temperature. The results show
that the introduction of a smart decision-maker and a system of monitoring physiological
parameters determines a reduction in workers’ mental workload. EEG signal acquisition
and machine learning data processing is the approach proposed by Cheema et al. [66]
to study the mental workload typical of multitasking activity, such as human–machine
interactions. Their objective is to propose an automatic mental workload estimation to
reduce the biases that can derive from evaluators and subjective analysis. A reduced set of
features is used, and EEG channel selection is performed through mutual information. To
classify mental workload, different classifiers are tested, and random forest (RF) shows the
highest accuracy; the results support the hypothesis that EEG-based workload estimation
via machine learning is a better solution compared to traditional subjective approaches.

Another issue to be stressed is that in the context of a smart, connected industry, the
introduction of collaborative robotics to alleviate the workload of operators may lead,
on the contrary, to increased mental workload [91]. For this reason, mental workload
assessment becomes a useful tool for developing guidelines for mutual adaptation between
humans and cobots through (1) human awareness and education in the interaction with
the machine and (2) affective computing solutions integrated into collaborative robotics
to calibrate the response of cobots to humans, thus approaching a truly human-centered
collaboration [92]. In this light, Chen et al. [93] analyzed the effects of mobile robots on the
mental workload of workers in smart warehouses. Order picking and assembly tasks are
considered in three configurations of human–robot collaborations. The mental workload
is assessed via pupil diameter and NASA-TLX score. An expansion of pupil diameter of
workers emerges, and statistical data analysis (ANOVA) indicates an increase in mental
workload due to collaboration with the mobile robot. This result is confirmed by the
subjective assessment given by the NASA-TLX.

In the framework of information theory, Digiesi et al. [77] proposed an analytical model
to measure the cognitive and mental workload of operators in smart factories via subjective
(NASA-TLX) and physiological (HRV) parameters. ECG monitoring technology was used
to monitor the cardiac activity of the operators performing standard tasks following the
n-back procedure. The results obtained from the ECG monitoring are coherent with those
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in the literature; in fact, tasks with higher cognitive workload lead to an increase in cardiac
activity. The same result was obtained in the experimental study from the subjective
assessment. The Wilcoxon signed-rank test and the t-test are applied to analyze the data of
the two assessments, HRV and NASA-TLX scores, respectively. Hopko et al. [79] studied
the effect of different levels of automation in HRC on performance and on workers; sex,
fatigue awareness and perceived workload and their relation with physiological parameters
were considered.

Confirming its widespread use in stress studies, HRV is used with self-reports to
monitor 36 workers on an electronics assembly line in the study by Khairai et al. [78]. Their
objective is to measure the effect of workplace stress on workers’ HRV (monitored with
EmWavePro® system equipment) and to evaluate these effects compared to self-reports.
Workers are divided into a treatment group and a control group; Mann–Whitney statistics is
used to assess the significant difference between the two groups. The authors conclude that
self-assessment and HRV-based evaluation of workplace stress are parallel, since subjects
understand and report comprehensively their physical conditions. Moreover, the authors
stated that HRV biofeedback interventions may help alleviate emotional symptoms in
high-stress individuals.

The work by Argyle et al. [80] analyzed the relationship between task demand, fatigue,
cognitive load and physiological parameters in operators involved in visual inspection
tasks. FNirs, cardiac activity, respiration, and facial temperature were considered.

As observed so far, most of the studies on the well-being of workers tend to privilege
one or the other aspect of well-being (physical or cognitive), moving away from the
concept of holistic well-being cited above. A more complete analysis is proposed by
Brunzini et al. [81], who presented an experimental study for the ergonomic evaluation
of the physical and cognitive workload of operators to support the design of product and
processes. Motion capture trackers allow analyzing of posture and movements, whilst eye
tracking and bracelets play a role in monitoring the physiological response. The reliability of
the monitoring system was supported by the use of traditional self-reports (NAS, Numerical
Analogue Scale, and NASA-TLX). A video analysis enabled the performance analysis at
the time of execution of the activities. A real industrial case was reproduced through
a laboratory mock-up. Their results suggested that a whole analysis of the working
conditions and of the human–machine interaction would be needed to perform a robust
analysis enabling the optimization of the human and industrial performances. The authors
suggested that a larger sample of participants would be needed for statistical validation of
the proposed approach, and other devices should be tested to monitor the physiological
parameters.

A slightly different aspect is analyzed by Lee et al. [74], who proposed an observational
study on workers performing common construction tasks. The authors studied burnout
in unskilled construction workers and proposed a protocol to include wearable sensors in
burnout assessment. As previous studies reported, surveys and physiological parameters
(HR) are involved; both physical and mental ergonomics are considered. Statistical analysis
is performed using Partial Least Squares Structural Equation Modeling (PLS-SEM).

The influence on the mental load of the tasks’ complexity and assistance systems in
manual mixed assembly is investigated in the work by Bläsing and Bornewasser [82]. The
authors proposed a simulation of a real assembly task with two levels of difficulty and three
different assistance systems; physiological responses and performance indicators were
used to measure the mental workload. The results obtained show that the complexity of
the assigned task has an influence on the mental load of the operator. Moreover, differences
emerge between the types of assistance systems. The authors’ conclusion is that the
combined approach of physiological parameters and performance indicators is apt to assess
the operators’ mental load in assembly tasks, but that additional research is needed.

A machine learning classification of the mental workload is the approach proposed by
Lin and Lukodono [83]. Physiological data collected from wearable sensors are used to feed
an RF algorithm to predict the perceived mental load of an operator in an HRC scenario.
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The NASA-TLX score is used to self-report the perceived mental load. The features selected
among those computed from the collected parameters allow a classification accuracy of
around 94%, showing the potentiality of this type of approach. Moreover, the duration
of the data acquisition (120 min) is in line with the real-world HRC scenario, further
suggesting that studies in this direction would be needed to contribute to the human–robot
co-evolution concept.

Mach et al. [84] study the feasibility of HR and arm motion measurements collected
with a smartwatch to assess the mental workload of an operator. From their laboratory
study, it appears that HR can be successfully adopted to monitor mental workload, but the
authors suggest that its applicability may be limited to the measurement of mentally de-
manding activities only with a low level of physical activity. This suggestion opens the way
for further contemplation of the practicality of implementing physiological measures in an
industrial setting. Although the physiological approach is effective in stress detection, the
proposed works do not seem to provide a sufficiently thorough analysis of its applicability
in the real-world manufacturing scenario.

4. Discussion

In this section, the Research Questions (RQs) identified in the Introduction have been
answered. Once again, the discussion is divided into two groups: physical ergonomics
and cognitive ergonomics. Works related to physical ergonomics showed a common path:
extraction of the human body synthesis parameters, synthesis parameters tracking, activity
analysis, and recommendations. The first two steps aim to identify the anatomical districts
employed to assess human activity in terms of gesture and posture and formalize them so
that they can be tracked. For instance, joints such as shoulders, elbows, wrists, hips, knees,
and ankles can be mapped into key points to compute Euclidean distances and angles. Thus,
RQ1 aims to focus on these two steps in order to identify the most used technologies for
acquiring these data. The activity analysis results are performed mainly through machine
learning (ML) and deep learning (DL) to manage significant data dimensionality and
cardinality. RQ2 details which artificial intelligence (AI) approaches are currently used to
process the data. The last step is represented by the recommendations provided to improve
productivity, man–machine interaction (MMI), or safety, namely the purpose of the selected
works, which highlight the aim of assessing the workers’ well-being, as formalized by the
RQ3. Answers to these RQs are aimed at a more aware choice of tools, methods, parameters
and approaches to develop increasingly effective solutions within the domain of holistic
well-being enhancement.

An increase in publications can be noticed over the years covered by the review,
particularly during the 2020–2021 biennium, reflecting a considerable interest in the research
on the topic (Figure 3).

Figure 3. Amount of surveyed papers over years.
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4.1. Physical Ergonomics

Concerning RQ1, this literature review reveals that motion capture systems (MoCaps)
in the industrial domain can be categorized into nine primary groups based on operational
principles: wearable IMUs, RGB cameras, RGB-D cameras, optical IR marker-based systems,
wearable sEMG sensors, force sensors, smartphone IMUs, multi-parametric wearable
sensors for real-time vital parameters monitoring, and instrumented tool with force/torque
sensors (Table A1 provided in Appendix A).

Optical technology is commonly considered top-tier, wherein body joint positions are
estimated through triangulation using images from multiple cameras or data obtained from
depth cameras. These developments have spurred research and innovation in RGB camera
systems for 3D human movement recognition and RGB-D depth cameras that enable the
measurement of an actor’s distance from the sensor by projecting an infrared light pattern
and reading its reflection. These systems can make use of markers or operate without them.
Inertial systems utilize accelerometers and gyroscopes to convey data about a performer’s
movements and associate them with a virtual skeleton. This highly portable approach can
be employed outdoors, although it may experience position drift. In particular, wearable
sensors are suitable in environments where optical systems can be affected by occlusions or
issues associated with reflective marker-based tools.

The ergonomic validation of a product or workstation is recommended whenever
a human operator is responsible for manual tasks involving lifting, assuming awkward
postures, or repetitive actions. Some indices like NIOSH, OWAS and lower-back analysis
methods do not necessitate meticulous human body tracking; in fact, even a minor deviation
in joint positioning (less than 20 mm) is generally inconsequential and does not influence
the analysis results [85]. Therefore, while it might be simple to calculate skeletal joints using
a Kinect camera, RGB can be employed to monitor extensive environments under diverse
conditions. After proper data acquisition, software solutions like DELMIA, SIEMENS
JACK, and others can compute ergonomic metrics from Mocap data. However, for a
comprehensive physical ergonomics analysis, the worker’s gesture and posture recognition
data with adequate accuracy and precision for transmitting data to any DHM should
be provided. In this sense, certain technological limitations, among which low camera
resolution, sensor invasiveness, and occlusions, still impede the adoption of MoCap and
DHM solutions in the industry, since even a slight divergence from the actual position
can impact the calculation of ergonomic indices. Furthermore, there are fewer challenges
related to the misalignment of virtual body segments during intricate activities [26].

The literature analysis shows that the most adopted technology is represented by
wearable inertial measurement units (IMUs), adopted in fifteen articles, followed by the
RGB cameras (twelve articles), the RGB-D cameras (eight articles), the optical IR marker-
based (seven articles), and the wearable surface electromyography (EMG), which was
employed in five articles. Among the cited papers, eleven of them integrated different
technologies; in particular, multi-modal integrated assessment systems are adopted in
seven works.

Figure 4 shows the distribution of the devices in the considered time span. Considering
the time distribution of the technologies adopted over the years, IMUs are distributed over
the entire time span, while cameras are most used from 2019 onwards. In particular, RGB-D
cameras are concentrated from 2021 onwards. These data suggest that the technological
development of RGB cameras, particularly RGB-D cameras, seems to push researchers to
prefer this type of technology to wearable IMUs. Among the reasons behind this change in
the data acquisition approach is the huge technological development of RGB-D cameras [94]
that made it possible to improve the devices in terms of resolution, frame rate, and flexibility
related to the operative conditions both for the color and the depth streams. A similar
consideration can be made for surface electromyography (sEMG) wearable sensors; their
adoption is concentrated from 2020 onwards. This relatively new technology can detect the
electrical signals generated by muscle cells when they contract, preserving the naturalistic
context of the acquisition thanks to being minimally invasive. It can be seen that seven
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out of eight of the articles using RGB-D concern applications of human–robot interaction
and, thus, collaborative work; in fact, the additional spatial information can facilitate the
monitoring of the pose and movements of the operator and the collaborative robot more
than other types of cameras. Moreover, a slight preference toward RGB-D cameras is also
registered in human–robot collaboration (HRC).

Analyses relating to human–robot interaction are core, since robots are increasingly
required to achieve greater interaction and collaboration with human workers, surpassing
mere coexistence. This requires real-time communication and coordination between the
worker and the robot, which is achieved through on-site sensing, data processing, advanced
computational infrastructure like cloud computing [30], and a user-friendly interface. In
this scenario, gesture recognition becomes the core for implementing a naturalistic inter-
action. In this sense, the goal of gesture analysis is to extract unique features describing
manual and finger movements regardless of the device used to record them. However,
these characteristics regarding camera-based systems cannot be directly identified from
video frames without considering the temporal correlation. The examination of video
streams raises concerns that are distinct from image handling. Extracting necessary traits
normally necessitates several preliminary stages not directly associated with the funda-
mental aim. This supplementary procedural component can create difficulties that may
prove challenging to surmount in designing a solution for physical ergonomics assessment.
Hence, it is pragmatic to evaluate the possibility of detecting human body language via
hand gestures using pertinent gesture feature data [21]. However, several recent trends are
increasing the demand for research in the field of human–machine interaction, of which
the Industrial 5.0 revolution is a key driver. This revolution promotes the adoption of
advanced digital technologies to facilitate human interaction with products and machines,
thereby increasing productivity and reintegrating individuals into the modern workforce.
The Industry 5.0 approach facilitates connectivity between different production resources,
such as machines and workstations, enabling the generation and sharing of information to
create self-adaptive, predictive, and automated decision-making processes. An empirical
study [49] has demonstrated the effectiveness of this approach and the value of monitoring
human physiological responses in defining socially sustainable workplaces. In this sense,
virtual and mixed reality setups foster designers and engineers in their real-time design
solution validation [49], making gesture recognition even more core. For instance, previous
research has shown that the early prediction of human grasping movements can help the
robot plan its trajectory while avoiding the area the human intends to occupy. This leads to
smoother collaboration in the shared workspace.

Figure 4. Adoption of the different devices in the time span covered by the review.

Table A2, provided in Appendix A, shows the relationship between the employed
acquisition devices usage and the monitored activity. Since there could be more than
one purpose of use in a paper, as shown in Table 3 (e.g., “Pose estimation and Gesture



Sensors 2024, 24, 5473 28 of 47

Recognition”), these were considered separately in Table A2, in Appendix A, to develop
further analyses. Force sensors, multi-parametric wearable sensors for real-time vital pa-
rameters monitoring, and instrumented tools with force/torque sensors are typically used
in integrated systems as highlighted, for instance, in gesture recognition and estimation
of human operator joint stiffness. This analysis shows that wearable IMUs and RGB-D
cameras are used for monitoring the largest number of activities (six), followed by oMocap
devices (three), proving once again the flexibility and efficacy of adopting such technolo-
gies. From the monitored activities perspective, gesture recognition and pose estimation
were investigated using different devices eight and five times, respectively, to witness the
primary importance of developing user-centered solutions. The other categories identify
monitored activities often used as support for further evaluations. For instance, action
recognition allows for a semantic comprehension of the workers’ activity, while human
motion prediction aims to describe the dynamic behavior of the workers even away from
their workstations or during position changes. Undoubtedly, this approach allows for a
deeper analysis of the production process in terms of productivity and safety.

Regarding RQ2, the literature analysis clearly showed the wide diffusion of adopting
an artificial intelligence (AI) approach for data processing. AI refers to the simulation of
human intelligence in machines that are programmed to think and learn like humans. AI is
typically implemented through machine learning (ML) and deep learning (DL) techniques,
which involve the use of algorithms that allow systems to learn and improve from experi-
ence without being explicitly programmed. Thirty-two articles adopted these approaches
singularly or combined as shown in Table A3 provided in Appendix A.

Machine learning analysis is often employed when sensor data are employed, par-
ticularly human activity recognition (HAR), offering the potential to consistently and
objectively determine time data. This choice is fostered by the possibility of extracting
features from the data, from which it is possible to identify and analyze patterns and trends
for further classifications. For instance, in the work by Niemann et al. [33], the position of
the trolley handle and the packing table were the most informative for activity recognition,
properly identifying the correct features to perform the classification. There is no clear pre-
dominance of one algorithm over the others for what concerns ML; only a slight prevalence
of SVM, HMM, and kNN emerges, confirming that ML techniques have strengths and
weaknesses strongly dependent on the application domain and the available data in terms
of dimensionality and cardinality [95]. To provide a clearer understanding of the technical
aspects of one of the algorithms identified as being prevalent in the analysis, some technical
aspects are provided. SVM has been demonstrated to be effective for the classification of
specific activities or gestures particularly in the context of hand gesture analysis and human
activity recognition in warehouse operations (Table 3). Its popularity can be attributed to
its robustness in high-dimensional spaces and effectiveness with limited data [96]. The
choice of the kernel (linear or radial basis function), the regularization parameter, and the
gamma parameter are decisive for defining decision boundaries and ensuring the ability to
generalize to new data [97].

On the other hand, deep learning is the most adopted technique, and within this
group, Convolutional Neural Networks are the architectures used. CNN was found in
19 out of 42 papers relating to gesture and posture recognition with/without attention to
physical ergonomics. Convolutional networks differ widely from other machine learning
and deep learning algorithms in frequency of use, as the second most frequently used (i.e.,
SVM) is found four times. OpenPose and Mediapipe, based on CNN architectures, are
considered CNNs within the Table A3’s categorization, which is provided in Appendix A.
Nonetheless, although using a combination of CNNs to extract characteristic features and
identify human body joints from RGB images, YOLO is considered separately, since it
incorporates specific design elements to efficiently perform real-time object detection. The
diffusion of OpenPose (eight articles) is related to the required input data. In fact, only
RGB images are used to feed the neural network, resulting in the need to provide a simple
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RGB camera for monitoring the activity. The drawback of having a simpler solution is the
impossibility of managing and including 3D data in the analysis.

From this perspective, ML requires fewer sensor data, reducing training time, memory
usage, and overall computational costs [98], which was very effective in those scenarios
where there are a lack of data or an unavailability of computational power. On the other
hand, DL techniques offer several advantages, such as the possibility of learning from
unlabeled raw sensor data, solving complexities in inter-class and intra-class variability,
and avoiding data preparation and dimensionality reduction, but a large amount of data
is mandatory to avoid overfitting and consequently reaching satisfactory performances.
Enhancing deep learning models with a larger dataset (images, videos, sEMG signals) will
improve existing machine learning models and allow for the evaluation of more advanced
algorithms [52], eventually adopting multi-modal approaches.

An interesting viewpoint to frame the context of assessing the workers’ well-being is
to consider the adoption of the algorithm throughout the selected period. Convolutional
Neural Networks (CNNs) are the most adopted classification algorithms throughout the
selected period, especially for tasks related to image and video analysis. The range of
industrial contexts of CNN adoptions includes hand gesture analysis, pose estimation in
collaborative workspaces, and human activity recognition during order-picking processes
(Table 3). This capacity to capture spatial hierarchies in data is the source of their effec-
tiveness. To optimize the performance of CNNs, researchers adjust the parameters of the
network, including the number of layers and filters, to enhance the extraction and classi-
fication of features. The learning rates and optimization methods employed (e.g., Adam,
stochastic gradient descent) are meticulously calibrated to guarantee convergence and avert
overfitting [97]. In the context of deep learning algorithms, another notable architecture,
before returning to highlight the importance of CNNs, is LSTM, which is particularly adept
at modeling temporal dependencies, and it has a role of significance importance in the field
of action recognition and human motion prediction, particularly in data-rich environments
characterized by sequential data, such as manual assembly tasks on shop floors. LSTMs are
preferred for their capacity to retain information over extended sequences, which makes
them well suited for predicting future movements based on past actions [99]. The number
of units, learning rate, and sequence length are important parameters for LSTMs, as they
influence the network’s ability to capture temporal dynamics in human motion. Readdress-
ing the previous topic, CNNs have gained immense popularity in the field of deep learning
after having consistently outperformed traditional computer vision techniques in various
image recognition competitions, including the ImageNet Large Scale Visual Recognition
Challenge, but also for the availability of pre-trained models; in fact, transfer learning
allows researchers and practitioners to leverage the knowledge learned from other large
datasets and apply it to smaller, domain-specific datasets. This is especially valuable when
working with limited labelled data. When analyzing the algorithm distribution excluding
CNNs in order to focus on other solutions in the industrial domain, it can be seen that
machine learning (ML) was widely adopted before 2021, occurring fifteen times over the
six related to the adoption of the deep learning (DL) approach. By contrast, DL became
more popular in the last few years, from 2022 onwards, occurring five times as well as ML,
which still represents a valuable option in specific scenarios such as the paucity of the data
for the training process. This trend further confirms the use of DL in current years, which
is fostered by technological development; in fact, nowadays, simple neural networks can
be trained and tested even in customer-grade computers and by the availability of external
providers to exploit cloud computing, which is an innovative technology to outsource the
required computational need to remote servers.

Considering RQ3, the works also provide an ergonomic assessment of worker well-
being even if ergonomic assessment tools were employed in only 22 of the 42 considered
articles. Musculoskeletal disorders (MSDs) are prevalent health issues affecting individuals
across various professions, leading to long-term disability and economic consequences.
These disorders encompass a range of conditions caused by strain on internal body parts
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during movement, including muscles, nerves, tendons, joints, cartilage, and spinal discs.
Examples include carpal tunnel syndrome (CTS), tendonitis, and bursitis. Work-related
musculoskeletal disorders (WMSD) are occupational injuries that can lead to permanent
disabilities, affecting professional and daily life, and they are a major cause of sickness
absence, disability, and productivity loss in developed countries. In the European Union,
they constitute over 50% of occupational diseases and contribute to more than 40% of
economic losses related to workplace health and safety issues. In the United States, they
account for over 30% of non-fatal illnesses and injuries. An effective ergonomics program
should incorporate evidence-based ergonomic risk assessments (ARs) to identify and rectify
ergonomic issues in different work scenarios. Various methods and tools for ergonomic
ARs, such as self-assessment, human observation, direct measurement, and computer-
based assessment, have been developed. Real-time body posture monitoring, particularly
in manufacturing industries, can provide valuable data for enhancing working conditions
and logistics optimization. These computer vision-based technologies not only classify
human activities but also assess posture and movement safety.

In this sense, safety was shown to be the most relevant purpose of ergonomics studies.
Neglecting to address unsafe postures and movements can lead to injuries, harming an
employee’s physical well-being, morale, quality of life, safety, and productivity. It is prefer-
able to prevent these issues, and one effective way is by raising workers’ awareness of
risky postures and movements. Recently, wearable sensing technologies have enabled the
collection of near-real-time data for analyzing worker safety and health conditions. These
technologies are cost-effective, user-friendly, highly accurate, and non-invasive, proving to
be not an obstacle but rather a catalyst for productivity. Moreover, maintaining proper body
posture, especially during physically demanding tasks like material handling, can reduce
the risk of work-related musculoskeletal disorders (WMSDs), decrease absenteeism, and
enhance work productivity and safety. Inadequate ergonomic conditions in work environ-
ments can result in severe work-related musculoskeletal disorders (WMSDs), potentially
leading to significant disabilities. This combination of assessments opens new possibilities
for ergonomic analysis, considering specific tasks that may vary by time and location [48].

The most adopted ergonomic index is RULA, applied in ten articles, which is followed
by REBA and EAWS (four) and OWAS (three). Undoubtedly, upper limbs are the most
investigated as well as the most involved anatomical districts in executing tasks in the
industrial domain; indeed, ergonomic studies are performed with manifold purposes:
increasing productivity by enhancing manual processes, improving man–machine inter-
action, and designing new solutions to support and guarantee safety working conditions
to the operators. Among the other indices, OCRA is computed only in one work. In eight
works, custom indexes are defined. Four articles involve more than one standard index,
while RULA combines other ergonomics evaluations in one work. Non-standard indexes
are evenly distributed over the period, while a massive use of RULA emerges from 2020
onwards (Table 4), which is possibly related to the ongoing diffusion of collaborative robots.
Of the twenty-two articles on physical ergonomics that were analyzed, only five articles
consider more than one ergonomic evaluation: in particular, four consider several standard
ergonomic indices [49,54,57,61], while one combines a standard evaluation index with a
non-standard evaluation [62].

Traditional kinematics-based ergonomic assessment tools, such as RULA, REBA, and
OWAS, use human joint positions to calculate an ergonomic score for a given body posture.
While kinematics-based scores are quick to calculate, they may need to fully consider
the dynamic aspects of the task [62]. The introduction of wearable technology, such as
motion data and physiological metrics like blood volume pulse (BVP), electrodermal ac-
tivity (sweat), electrocardiogram (ECG), respiration, and electroencephalogram (EEG), is
poised to revolutionize physically demanding sectors like construction and manufactur-
ing, enabling the more accurate prediction of ergonomic risks and physical injuries [44].
Proposing a framework can serve as a tool to assess risks in industrial production lines,
offering quantitative insights into the actual exposure of workstations and operators. This
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framework can also be used to support operator training and evaluate the effectiveness of
ergonomic interventions. In the future, using a more complex upper body model could
be a viable alternative to obtain a more accurate estimates of degrees of freedom (DoF) for
extreme positions, helping to improve motion tracking [59].

Table 4. Summary of the parameters adopted for ergonomic assessments. The last column refers to
non-standard parameters.

Author Reference Year RULA REBA EAWS OWAS OCRA Other

Álvarez et al. [41] 2016 X

Fletcher et al. [42] 2018 X

Golabchi et al. [43] 2018 X

Nath et al. [44] 2018 X

Grandi et al. [45] 2019 X

Maurice et al. [46] 2019 X

Conforti et al. [47] 2020 X

Massiris Fernández et al. [48] 2020 X

Peruzzini et al. [49] 2020 X X X

Dimitropoulos et al. [50] 2021 X

Mazhar et al. [51] 2021 X

Mudiyanselage et al. [52] 2021 X

Ciccarelli et al. [53] 2022 X

Generosi et al. [54] 2022 X X X X

Guo et al. [55] 2022 X

Kačerová et al. [56] 2022 X

Lin et al. [57] 2022 X X X

Lorenzini et al. [58] 2022 X

Nunes et al. [59] 2022 X

Panariello et al. [60] 2022 X

Paudel et al. [61] 2022 X X X

Vianello et al. [62] 2022 X X

The aforementioned considerations allow for affirming that the actual panorama
proposes (1) various solutions based on the activity to be monitored; among these, (2) cost-
effective solutions (e.g., RGB, RGB-D cameras) are proposed, which give satisfactory results
and which (3) represent less invasive alternatives to wearable or marker-based devices.
From the perspective of a multi-modal approach, this latter aspect takes on fundamen-
tal importance when (4) integrating these solutions with cognitive monitoring devices
that must be worn by the worker in order to acquire physiological parameters (and can
be therefore uncomfortable when combined with other wearable devices). Additionally,
(5) the explored solutions propose a wide panorama of approaches typically based on
AI for body/gesture recognition/tracking and posture monitoring/classification that are
accessible to researchers from different backgrounds. (6) The combination of these techno-
logical solutions and the ergonomic risk assessment indices provides the potential for the
development of automatic assessment systems. This, in turn, may result in the elimination
of any potential biases that may be introduced by the evaluator’s experience. On the
other hand, this aspect introduces a limitation of current approaches, in which (1) fully
automated evaluation cannot replace that of an expert evaluator. In this regard, automated
assessments should be developed to support the evaluator in identifying risks and to en-
hance performance, the quality of worker–machine interaction, and overall safety. Another
limitation found in the current literature is the (2) scarcity of precise indications regard-
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ing the operational conditions in which each of the proposed solutions can be effectively
adopted within the complexity of a real production system. For instance, if we were to
adopt solutions that are low-cost and minimally physically invasive, such as RGB/RGB-D
cameras, (3) considerations should be made regarding the limitations arising from the
acquisition of sensitive data (e.g., the worker’s face), which have minimal impact at the
level of scientific studies but become significant when transitioning from experimental
settings to real-world workplace applications. In general, (4) the acceptability of monitoring
in a real work context is likely lower than in a study setting. A meticulous assessment of the
positioning of the cameras allows, where possible, not to capture the face of the operator;
in this way, together with compliance with the specific regulations on sensitive data, a
clear statement to the worker of the purpose, and an exhaustive explanation of the benefits
derived from a conscious and focused application of well-being monitoring solutions,
this limitation can at least partly be managed. The influence of this human factor on the
actual accuracy of the proposed methodologies should be investigated in parallel with
technological aspects in order to achieve the development and practical implementation of
truly human-centric solutions that are accepted and embraced by the worker.

4.2. Cognitive Ergonomics

From the analysis of the collected papers, it emerges that cardiac activity is the most
used parameter (ECG, HRV, HR), which is followed by eye activity (eye tracking, eye blink,
pupil size), electroencephalography (EEG) and skin conductance (EDA, GSR). In fewer
studies, the use of breathing factors, blood volume pressure (BVP) and fNIRS emerges. The
frequency of use of each considered parameter as emerged from the literature is represented
graphically in Figure 5. The prevalence of cardiac activity also emerges from studies aimed
at analyzing the cognitive load and stress in other applications different from industry,
suggesting its efficacy and ease of acquisition.

Figure 5. Graphical representation of the frequency of adoption of each of the physiological
parameters.

Considering RQ1, the distribution of the technologies adopted in the considered time
span is reported in Figure 6. The most widely adopted technology is represented by
wearable sensors, which are suitable for acquiring data in a non-invasive and cost-effective
manner without requiring too extensive training (Figure 7). On the other hand, a limitation
of these devices, particularly concerning cardiac activity, is the fact that their applicability
in the study of work stress and mental ergonomics in real working scenarios may be limited
to activities with low physical effort [84].
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Figure 6. Adoption of the different technologies to acquire physiological data in the time span
considered.

Figure 7. Graphical representation of the frequency of adoption of the data acquisition technologies.

The majority of the studies involve only one type of physiological parameter (Figure 8);
moreover, the studies in which more than one parameter is recorded do not lead to the
development of an effective multi-modal system of assessment of the cognitive load. From
this viewpoint, the study of multi-modal systems could allow for obtaining more effective
monitoring tools, where the application limitations of one parameter could be mitigated
by the effectiveness of others [84,100,101]. In this sense, in addition to studying the most
suitable physiological parameters in the industrial context, it would seem reasonable to
study their most effective combination. On the other hand, a number of studies would
be needed on the ergonomics of multi-modal systems in real-world industrial scenarios;
indeed, although a multi-modal system could potentially be more comprehensive, the pres-
ence of multiple sensors could lead to a reduction in the physical and mental ergonomics of
the operator. One further point that emerges is the paucity of studies in which the worker’s
well-being in the industrial context is considered simultaneously from the physical and cog-
nitive point of view [75,81]. The parallel study of these two aspects seems of fundamental
importance from the perspective of Industry 5.0.
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Figure 8. Graphical representation of the frequency of adoption of single vs. multiple physiological
measurements.

Concerning RQ2 and RQ3, the analyzed studies reveal a prevalence of the statistical
approach to cognitive ergonomics data analysis; in contrast, few studies use machine and
deep learning approaches (Figure 9). This suggests that research at present is primarily di-
rected at the detection of a state of cognitive overload and stress with a view to determining
the appropriateness of physiological measures and not yet at the construction of systems
for monitoring, classifying, predicting and correcting the state of the operator, which would
feature a greater involvement of AI.

Figure 9. Graphical representation of the frequency of adoption of statistical vs. machine/deep
learning approaches.

A further consideration is that many studies in the literature deal with mental/cognitive
load and stress, particularly in air traffic control and aviation [102,103], driving [65], soft-
ware development [104], office work [105–107], and marine training [108,109], but there are
few where the application is in industrial and production contexts. In the latter, they are
mostly considered standard activities and not real industrial production applications. This
reflection is closely linked to the lack of studies analyzing the actual applicability of the
proposed physiological measures in real industrial scenarios. In fact, although the mea-
sures proposed have proven validity in stress analysis, there is a lack of detailed analysis of
which of these measures, and to what extent, could actually be adopted in the industrial
context in order to achieve real human-centered workplace design. Furthermore, a lack
of studies emerges in which activities are carried out in industrial settings and integrated
with VR/AR technologies; this type of study would seem to be indicated considering
the growing interest in these technologies within Industry 5.0. Additionally, it would be
helpful to have a deeper knowledge of the effects on the cognitive load induced by these
technologies. In this sense, studies organized on different levels of difficulty of the tasks
would be needed to discriminate those situations in which VR/AR technologies could
cause a worsening of the state of the operator and those in which these technologies could
determine an improvement or at least match more traditional approaches [110].

Finally, most of the analyzed studies do not seem to be conclusive; in fact, in several
cases, further studies are addressed as necessary.
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Based on these considerations, we can assert that (1) the literature on physiological
parameters, which generally allow the study of stress and cognitive load, is extensive;
less extensive is the literature investigating their application in industrial settings. In the
latter, as can be seen from the analysis of the articles considered, (2) there are several
parameters recognized as effective (HRV, EEG, EDA) and others whose effectiveness is
not unanimously agreed upon (e.g., HOG). Additionally, (3) devices for acquiring such
parameters are available at an affordable price, and (4) although they are wearable devices,
they are not particularly invasive. Another aspect that makes these solutions attractive is
(5) their truthfulness, which renders them more reliable than traditional questionnaires.
This latter strength becomes a potential limitation when considering the implications
related to (1) the sensitivity of the acquired data, and consequently, (2) the acceptability of
a type of monitoring that the worker may perceive as invasive. A clear statement of the
purpose of the acquisition of data from workers and compliance with specific regulations
on sensitive data are fundamental to the application of cognitive monitoring. Furthermore,
monitoring should be aimed at acquiring the necessary data to study ergonomic problems
and should be discontinued when the problems are solved.

As with physical monitoring, (3) the literature analyzed highlights the paucity of
studies evaluating the actual applicability of the proposed parameters in real industrial
scenarios. For instance, EEG emerges as a powerful measure in detecting stress and
cognitive load, but the acquisition devices could be poorly tolerated for prolonged periods,
thereby proving unsuitable. Similarly, HRV due to stress can easily be masked by HRV due
to prolonged or physically demanding work, as suggested by Mach et al. [84].

In addition to the suggestions this work aims to make based on previous literature,
further suggestions can be made based on the experience of the authors [111–113]. Con-
sidering the EEG, two types of devices have been explored in the authors’ experience,
namely a 14-channel saline headset (Emotiv Epoch X) and a 32-channel saline head cap
(Emotiv Epoch Flex). Concerning the first, the reduced number of channels makes the
positioning on the head of the subject easier, whilst the second provides greater granularity
of the acquired data but requires more time and experience for the effective positioning.

Further issues can be due to the fact that in industrial applications, personal protective
equipment (PPE) may be required. As an example, the headset is unsuitable when PPE
such as a safety helmet is worn; this aspect can be mitigated with the use of the head cap,
but both devices are not suitable when a PPE such as a coverall is worn for prolonged time,
making it impossible to rehydrate the saline sensors. An additional problem is represented
by the tolerability of the devices. In fact, if the flexibility of the head cap makes it tolerable
even for a prolonged time, the headset can be tolerated for not more than 30 min. On the
other hand, a more stable signal is obtained with the headset. Regardless of the type of
device, problems were encountered in data acquisition when performing tasks in which the
subject was required to move in space and to interact with real or virtual objects. Regarding
the other measurements suggested (EDA and cardiac activity), the authors experienced the
use of the Shimmer3 GSR+ device for GSR and photoplethysmogram (PPG). Concerning
GSR finger sensors, issues can be related to the use of PPE such as gloves, particularly tight
gloves, causing a deterioration of the signal. On the other hand, the optical pulse sensor
for PPG can be placed on a finger or on the ear lobe; the latter position allows to overcome
problems due to gloves and is compatible with PPE such as security helmets and coverall.

5. Conclusions

The integration of physical and cognitive monitoring methodologies in the industrial
scenario is an ambitious goal, as many limitations and implications have to be addressed,
but it appears necessary in order to realize an even more ambitious goal, namely the
realisation of the human-centric factory invoked by the Industry 5.0 paradigm. The knowl-
edge of the state-of-the-art methodologies for the physical and the cognitive monitoring
is necessary for an effective integration of the two and for a realistic adoption in the real
industrial environments. This study contributes significantly to the field by providing a
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comprehensive overview of the current state of the art in both physical and cognitive moni-
toring methodologies. It offers researchers and practitioners a clear path to bridge the gap
between these two domains. The findings presented emphasize the feasibility of integrating
these approaches and highlight their critical role in advancing the Industry 5.0 agenda.

The graph represented in Figure 3 illustrates an upward trajectory in the number of sur-
veyed papers over time, indicating a growing scholarly interest in the subject. From 2016 to
2017, there was a consistent increase in the number of publications with a significant surge
in the 2020 to 2021 period. This peak likely corresponds to an intensified focus on Industry
5.0 concepts, especially during the rapid evolution of the industry due to digital transfor-
mation and the need to improve worker well-being. The subsequent period (2022–2023)
exhibited a slight decline, yet the number of publications remained considerable, indicating
the research field’s continued relevance to academic and industrial communities.

From a physical ergonomics perspective, designing workspaces, tools, and equipment
that prioritize human well-being, comfort, and safety is crucial. As Industry 4.0 introduces
more collaborative robots and automation, it becomes imperative to ensure that the physical
environment is optimized for seamless human–robot interaction, enhanced productivity
and safe working conditions.

Simultaneously, cognitive ergonomics takes center stage in Industry 5.0, where com-
plex decision making, problem solving, and human–machine interactions become integral
components. Designing interfaces and systems that align with human cognitive processes,
reduce cognitive load, and promote effective information processing are core.

Moreover, the integration of artificial intelligence and machine learning in the factory
requires a careful consideration of how humans interact with and trust these technolo-
gies. In this sense, training programs and user interfaces must be designed to enhance
cognitive compatibility and facilitate a smooth transition to advanced technologies. It is
recommended that future research concentrate on the improvement of these algorithms
with a view to a more effective integration of physical and cognitive data. This would
facilitate the implementation of real-time feedback mechanisms that support dynamic and
adaptive workplace environments.

From the technological perspective (RQ1), this literature review observed that wear-
able IMUs were predominantly employed to track the operator’s state, offering an alter-
native to occlusion issues. However, optical systems like RGB and RGB-D cameras offer
more freedom and are less intrusive. Furthermore, depth cameras are more commonly
used in human–robot collaboration scenarios, which may pose challenges in real-time com-
munication. From the viewpoint of work stress and mental ergonomics assessment, cardiac
activity is the most adopted physiological parameter, with wearable sensors being the most
adopted technology for data collection and monitoring. However, these conclusions must
be considered in relation to the type of activity performed by the operator, as measuring
cardiac activity as an indicator of work-related stress loses validity in the presence of
physical exertion. A multi-modal holistic approach could provide advantages, but further
studies are needed to identify the best combination of parameters and quantify discomfort
due to multiple wearable sensors. The technological insights provided by this review are
useful for the guidance of future advancements in ergonomic monitoring. By identifying
the strengths and limitations of current technologies, this study aims to contribute to the
foundation for the development of more integrated and user-friendly solutions that can
adapt to the specific needs of different industrial contexts.

Regarding RQ2, OpenPose and MediaPipe are popular deep learning algorithms
used in physical monitoring data processing. CNN is the most commonly used algorithm,
offering, as is well known, state-of-the-art performance, allowing for learning from raw
sensor data without data preparation or dimensionality reduction. On the other hand,
classical machine learning requires less sensor data, resulting in reduced training time,
memory usage, and computational costs. Quite the opposite, statistical analysis is the
most commonly used solution for analyzing cognitive monitoring data. This leaves the
way open to the study of solutions in which the involvement of artificial intelligence can
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facilitate the integration of mental ergonomics into systems for assessing the overall state of
the worker as an effective tool to support the development of the factory of the future, also
considering the wide adoption of artificial intelligence in gestural and postural analysis.
Further research could integrate data pertaining to both physical and cognitive aspects,
thus creating more adaptive systems that are capable of responding in real time to the
ever-changing conditions that are characteristic of the modern workplace.

Upon investigating RQ3, concerning the aims and benefits of evaluating the operator’s
state, its implications can be used for ergonomic analyses, identifying unsafe postures
and movements that could harm an employee’s physical health, quality of life, safety, and
productivity. Maintaining correct body posture, especially during physically demanding
tasks, can reduce the risk of WMSD, decrease absenteeism, and improve work productivity
and safety. Risk assessment tools for industrial production lines provide quantitative
information on workstation exposure. It is not negligible that the safety, well-being and
performance of the worker are also affected by their mental state. Therefore, the efficient
monitoring of physiological parameters is crucial for developing solutions to enhance
working activities and environments in industrial production, minimizing work-related
stress and discomfort. In this light, the review’s findings offer a starting point for future
research aimed at developing integrated systems that not only monitor but also actively
enhance both physical and mental well-being in the workplace.

The answers to the three RQs proposed in this survey aim to provide fundamental
information to consciously address the integration of ergonomics aspects related to the
worker as an individual immersed in the intelligent, connected and collaborative factory.
Indeed, such integration, to be effective, cannot be separated from an exploration of the
strengths and limitations of current approaches. The results of this study demonstrate
the need for an integration of physical and cognitive ergonomics to develop more com-
prehensive systems that can better support worker well-being in increasingly complex
industrial environments. From the results of this survey, it is possible to formulate sugges-
tions for future developments; in this sense, this work provides a series of considerations
and information in a synthetic form (tables and charts) to guide researchers in developing
integrated systems based on informed choices on instrumentation and methods of analysis.
In fact, from all the considerations made, there emerges the need to integrate the two
strands, the physical and the cognitive, of the study of worker well-being in the workplace
into a single solution capable of uniting and harmonizing the best of the two. These insights
provide a foundation for future research aimed at optimizing these integrated approaches
and highlight the practical applications of these findings in designing safer and more
efficient workplaces. Nevertheless, it is necessary to state that this survey has limitations;
in fact, suggestions on the technology to adopt for well-being assessment of the worker
are based mainly on the consideration of the most adopted technologies in the proposed
studies. The lack of analysis on the actual suitability of these solutions (from several points
of view, as highlighted in the Discussion), in terms of devices and methodologies, in the
continuous monitoring of worker well-being in industrial workplaces leaves open questions
on the best integration strategies of the two branches of ergonomics considered here. In
this sense, further studies are needed in which the solutions found to be most widespread
and applied in the two contexts are combined and (1) the accuracy of the response, (2)
the integrability of the acquisition systems, and (3) the tolerability by the worker in a real
industrial scenario are thoroughly assessed. To mitigate this limitation, the authors of this
work shared and discussed their direct experience, particularly concerning the acquisition
of physiological parameters.

Indeed, even if critical, the human-centric concept of Industry 5.0 cannot disregard
the implementation of integrated solutions for physical and cognitive evaluation of the
workers’ well-being in the workplace. An example of a fitting application to the context
of Industry 5.0 is the integration of the two analyses in the field of HRC, where a system
of physical monitoring of the operator via RGB or RGB-D cameras could integrate well
with the monitoring of cardiac activity via wearable sensors; the analysis of the data
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and the extrapolation of indices and parameters via artificial intelligence algorithms, ML
and DL, would bring the invaluable advantage of real-time, or at least near real-time,
processing of the acquired data, which would guarantee prompt feedback to harmonize
the human–robot interaction.

Consequently, the integration of physical and cognitive monitoring appears to be
a valid way of taking into account and overcoming the limitations introduced by the
two, paving the way for a multi-modal monitoring approach that is truly capable of
putting humans at the center of factory design. By doing so, industries can create a future
where technology complements human abilities, resulting in a harmonious and productive
coexistence between humans and machines in the industrial landscape.

Author Contributions: Conceptualization, F.G.A., E.C.O. and S.M.; Methodology, F.G.A., E.C.O.
and S.M.; Validation, S.M. and F.M.; Formal Analysis, F.G.A., E.C.O. and I.A.C.J.; Investigation,
F.G.A. and E.C.O.; Resources, S.M. and E.V.; Data Curation, F.G.A., E.C.O. and I.A.C.J.; Writing—
Original Draft Preparation, F.G.A. and E.C.O.; Writing—Review and Editing, S.M., F.M., E.V. and B.E.;
Visualization, F.G.A. and E.C.O.; Supervision, S.M., E.V. and F.M.; Project Administration, S.M. and
E.V.; Funding Acquisition, S.M. and E.V. All authors have read and agreed to the published version
of the manuscript.

Funding: Funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA
E RESILIENZA (PNRR)—MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3—D.D. 1551.11-10-
2022, PE00000004)

Data Availability Statement: Data sharing is not applicable.

Acknowledgments: This study was carried out within the MICS (Made in Italy—Circular and Sus-
tainable) Extended Partnership and received funding from the European Union Next-GenerationEU
(PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)—MISSIONE 4 COMPONENTE 2, IN-
VESTIMENTO 1.3—D.D. 1551.11-10-2022, PE00000004). This manuscript reflects only the authors’
views and opinions; neither the European Union nor the European Commission can be considered
responsible for them.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript.

Abbreviations Description
3DMPPE 3D multiperson pose estimation
ANN Artificial Neural Network
APM Action Perception Module
BVP Blood Volume Pulse
CMU Carnegie Mellon University
CNN Convolutional Neural Network
CPM convolutional pose machine
DHM Digital Human Model
DL Deep Learning
DT Decision Tree
EAWS Ergonomic Assessment Worksheet
ECG electrocardiography
EDA Electrodermal Activity
EEG Electroencephalography
EIM Ergonomics Improvement Module
EOG Electro-oculography
fNIRS Functional Near-Infrared Spectroscopy
GCN Graph Convolutional Networks
GMM Gaussian Mixture Models
GMR Gaussian Mixture Regression
GP Gaussian Process
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GSR Galvanic Skin Response
HAR Human Activity Recognition
HMC Human Machine Collaboration
HMM Hidden Markov Model
HRV Heart Rate Variability
IMA Industrial Maintenance and Assembly
IMU Inertial Measurement Units
kNN K-Nearest Neighbors
KPI Key Performance Indicator
LPM Learning and Programming Module
LRCN Long-term Recurrent Convolutional Network
LSTM Long Short-Term Memory
MoCap Motion Capture
OCRA Occupational Repetitive Actions
oMoCap Optical Motion Capture
OWAS Ovako Working Posture Analysis System
PNN Probabilistic Neural Network
QDA Quadratic Discriminant Analysis
REBA Rapid Entire Body Assessment
RF Random Forest
RMS Root Mean Square
RULA Rapid Upper Limb Assessment
sEMG Surface Electromyography
SHM Stacked Hourglass Model
SS State-Space
SSD Single Shot Detector
StaDNet Static and Dynamic Gestures Network
STN Spatial Transformer Networks
SVM Support Vector Machine
tCNN Temporal Convolutional Neural Network
TPS Thin-Plate Splines
VAE Variational Autoencoder
VR Virtual Reality
WMSD Work-Related Musculoskeletal Disorders
XGBoost eXtreme Gradient Boosting
YOLO You Only Look Once

Appendix A

Table A1. Summary of the different technologies adopted for the motion acquisition.

Authors Year Technology

Álvarez et al. [41] 2016 Wearable IMUs

Pławiak et al. [21] 2016 Wearable IMUs

Grzeszick et al. [22] 2017 Wearable IMUs

Fletcher et al. [42] 2018 Wearable IMUs

Golabchi et al. [43] 2018 RGB camera

Luo et al. [23] 2018 Optical IR marker-based motion capture system

Moya Rueda et al. [24] 2018 Wearable IMUs

Nath et al. [44] 2018 Smartphone IMUs

Maurice et al. [46] 2019 Wearable IMUs

Maurice et al. [46] 2019 Optical IR marker-based motion capture system

Maurice et al. [46] 2019 Force sensors

Maurice et al. [46] 2019 RGB camera
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Table A1. Cont.

Authors Year Technology

Urgo et al. [25] 2019 RGB camera

Chen et al. [26] 2020 RGB camera

Conforti et al. [47] 2020 Wearable IMUs

Jiao et al. [27] 2020 RGB camera

Manitsaris et al. [28] 2020 RGB camera

Manitsaris et al. [28] 2020 RGB-D camera

Massiris Fernández et al. [48] 2020 RGB camera

Peruzzini et al. [49] 2020 Multi-parametric wearable sensor for real-time vital
parameters monitoring

Peruzzini et al. [49] 2020 RGB camera

Peruzzini et al. [49] 2020 Optical IR marker-based motion capture system

Phan et al. [29] 2020 Instrumented tool with force/torque sensors

Phan et al. [29] 2020 Wearable sEMG sensors

Dimitropoulos et al. [50] 2021 RGB-D camera

Luipers et al. [31] 2021 RGB-D camera

Manns et al. [32] 2021 Wearable IMUs

Mazhar et al. [51] 2021 RGB-D camera

Mudiyanselage et al. [52] 2021 Wearable sEMG sensors

Niemann et al. [33] 2021 Optical IR marker-based motion capture system

Papanagiotou et al. [34] 2021 RGB camera

Papanagiotou et al. [34] 2021 RGB-D camera

Al-Amin et al. [35] 2022 Wearable IMUs

Choi et al. [36] 2022 RGB-D camera

Ciccarelli et al. [53] 2022 Wearable IMUs

De Feudis et al. [37] 2022 RGB-D camera

Generosi et al. [54] 2022 RGB camera

Guo et al. [55] 2022 Optical IR marker-based motion capture system

Kačerová [56] 2022 Wearable IMUs

Lima et al. [38] 2022 RGB-D camera

Lin et al. [57] 2022 RGB camera

Lin et al. [57] 2022 Optical IR marker-based motion capture system

Lorenzini et al. [58] 2022 Wearable IMUs

Lorenzini et al. [58] 2022 Force sensors

Lorenzini et al. [58] 2022 Wearable sEMG sensors

Mendes [39] 2022 Wearable sEMG sensors

Nunes et al. [59] 2022 Wearable IMUs

Panariello et al. [60] 2022 Optical IR marker-based motion capture system

Panariello et al. [60] 2022 Force sensors

Panariello et al. [60] 2022 Wearable sEMG sensors

Paudel et al. [61] 2022 RGB camera

Vianello et al. [62] 2022 Wearable IMUs

Orsag et al. [40] 2023 Wearable IMUs
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Table A2. Link between the device and the monitored activity.

Device Gesture
Recognition Pose Estimation Action

Recognition
Hand/Tool
Tracking

Hand State
Classification

Human Motion
Prediction

Joint Stiffness
Estimation

Human Activity
Recognition

Digital Design
Modelling

w IMUs X X X X X X

RGB-D MDPI: X X X X X X

oMoCap X X X

RGB X X X

w sEMG X X

Smartph. IMUs X

w IMUs, oMoCap, Flex./Force sens.,
RGB X

Multi-par. w sensor, RGB, oMoCa p X

Force/Torque sens. X

w IMUs, Force sens., w sEMG X

oMoCap, Force sens. W sEMG X
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Table A3. Link between the device and the monitored activity.

ML DL

Author Year ANN Decision
Tree GMM GP HMM kNN

Meta
Learn-

ing
Random
Forest SVM 3D

MPPE ArUco AKBT
DL

Mod.
CMU

CNN GCN LRCN LSTM SHM STN VAE YOLO

Pławiak et al. [21] 2016 X

Grzeszick et al. [22] 2017 X

Golabchi et al. [43] 2018 X

Luo et al. [23] 2018 X

Moya Rueda et al. [24] 2018 X

Nath et al. [44] 2018 X

Maurice et al. [46] 2019 X X

Urgo et al. [25] 2019 X X

Chen et al. [26] 2020 X X

Conforti et al. [47] 2020 X

Jiao et al. [27] 2020 X X X X X

Manitsaris et al. [28] 2020 X

Massiris Fernández et al. [48] 2020 X

Xiong et al. [30] 2020 X

Dimitropoulos et al. [50] 2021 X

Luipers et al. [31] 2021 X X X

Manns et al. [32] 2021 X

Mazhar et al. [51] 2021 X

Mudiyanselage et al. [52] 2021 X X X X

Niemann et al. [33] 2021 X

Papanagiotou et al. [34] 2021 X

Al-Amin et al. [35] 2022 X

Choi et al. [36] 2022 X

Ciccarelli et al. [53] 2022 X

De Feudis et al. [37] 2022 X X X X

Generosi et al. [54] 2022 X X

Lima et al. [54] 2022 X

Lin et al. [57] 2022 X

Mendes [39] 2022 X X

Paudel et al. [39] 2022 X X

Vianello et al. [62] 2022 X

Orsag et al. [40] 2023 X
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