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Linköping University, SE-58183 Linköping, Sweden
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Symbol Meaning
n number of nodes in a graph.

G={V , E , A} undirected signed graph with node set V = {1, . . . , n}, edge set E = V × V ,
and symmetric adjacency matrix A = [aij] with aij ∈ {0,±1}.

p probability that an edge is included in the graph G.
m = pn2 expected number of edges in G.

q number of diagonal blocks of a weakly balanced graph G.
C1, . . . , Cq (disjoint) groups of nodes of dimension c1, . . . , cq; it holds that

∑q
i=1ci = n.

W = [wij] q× q weighted “condensed” adjacency matrix of a weakly balanced graph G.
1q q × 1 vector of ones.
ζ frustration of a signed graph G.
S signed diagonal matrix of ±1.

e(S) energy functional of the configuration state S.
{F+

best,F
−
best} optimal group partition obtained from the computation of ζ, with

cardinalities nF+
best

, nF−
best

.

ℓbest node excess in the best group bipartition.

rbest =
ℓbest
n/2

correction factor w.r.t. the best group bipartition.

F fractionalization index (a.k.a. Gini-Simpson index).
E effective number of groups (a.k.a. Laakso-Taagepera effective number of

parties, or inverse Simpson index).
H Simpson index (a.k.a. Herfindahl-Hirschman index).

Table S1: Notation used in the paper.
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1 Creating the “condensed” matrix W for the 3 appli-

cation datasets

To build the “condensed” signed weighted adjacency matrix W (introduced in Eq. (7) of the
paper) we adopted the following procedure:

• A parliamentary network is modeled as an Erdös-Rényi signed graph G, where every
node is an MP. MPs from the same party are connected by a positive edge with a
probability p, while MPs belonging to different parties are connected by a negative
edge also with a probability p. When i, j are connected, aij = +1 if MP i and MP j
belong to the same party and aij = −1 if MP i and MP j belong to different parties.
These and more details not included in the manuscript can be found in Ref. [33]. The
matrix W is obtained using Eq. (7) of the paper.

• An ethnolinguistic network is in principle modeled as a signed graph G, where every
node is an individual and each pair of individuals have a probability p of being con-
nected in G. If aij ̸= 0, it is assumed that aij = +1 if individuals i and j belong
to the same ethnolinguistic group and aij = −1 otherwise, for all i, j. The resulting
individual-level adjacency matrix A is of size up to a billion, but it is not required for
the analysis. Under a uniform connectivity assumption (Erdös-Rényi edge topology
with edge probability p), the condensed matrix W is obtained using Eq. (7) of the
paper.

• In the mobile network application, W is obtained using Eq. (7) where q is the number
of brands, ci represents the market fraction of brand i. It is assumed that different
brands are connected by a negative edge.

2 Comparison with other unbalance measures

To measure unbalance in a signed graph, several alternatives to the frustration index ζ have
been proposed in the literature, see [25] for a recent overview. Here we are interested only
in quantifying the “distance to strong balance”, as our signed graphs are already weakly
balanced. We consider three different alternative measures:

1. Benzi-Estrada measure [27]:

ζBE =
1−K

1 +K
,

where

K =

∑∞
k=1Tr

[
(P −N)k

]
/k!∑∞

k=1Tr [(P +N)k] /k!
,

and P and N represent resp. the positive and negative entries of the adjacency matrix
A:

Pij =

{
+1 if Aij = +1

0 otherwise
, Nij =

{
+1 if Aij = −1

0 otherwise.
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2. Kirkley-Cantwell-Newman measure [28]:

ζKCN =
1

4
log

det(zI − (P −N))

det(zI − (P +N))
,

where z = αλ∗ with λ∗ the leading (most positive) eigenvalue of P − N and P + N ,
and α is a parameter (chosen equal to 2, as in [28]).

3. Algebraic conflict [40]:
ζac = minλ(L),

where L is the normalized “opposing” signed Laplacian associated to A [49]: L =
I − D−1A where D = diag(|A|1) is the diagonal matrix having on the diagonal the
row sums of the absolute values of A. It is know that the least eigenvalue minλ(L) is
equal to 0 when the graph is strongly balanced, and that this eigenvalue grows with
the distance to strong balance, see [30].

A numerical comparison of the four measures ζ, ζKCN, ζBE and ζac is shown in Fig. S20
for networks of size n = 1000, with varying number q = 2, . . . , 20 of groups of uniform size,
100 instances for each q. As already observed in e.g. [29], the measure ζBE saturates very
quickly to the “completely unbalanced” value of 1. In Fig. S20A, ζBE ∼ 1 ∀ q ≥ 3, which
makes it useless for our purposes. The metric ζKCN is not monotonically increasing in q, on
the contrary, after an unclear transient it appears to decline with growing q. This is rather
counterintuitive in our setting, as the “disorder” encoded in the signed graph grows with
the number of groups q. The eigenvalue-based metric ζac instead behaves similarly to ζ, as
expected from the literature [25, 33]. In fact, the correlation between ζ and ζac is always
> 0.9, see Fig. S20B.

3 Frustration on weakly balanced signed graphs: the-

oretical results

The following theorem collects 7 different expressions for the frustration ζ of a weakly bal-
anced signed graph of Erdös-Rényi type. Some of the conditions were already obtained in
[33], but only for fully connected graphs.

Theorem 1 Consider a Erdös-Rényi signed graph G = (V , E , A) with edge probability p.
Assume G is weakly balanced, with adjacency matrix A, of entries Aij = {0, ±1}, having
nonnegative diagonal blocks of dimension c1, . . . , cq,

∑q
i=1 = n, and nonpositive off-diagonal

blocks. Let C1, . . . , Cq be the associated groups of nodes, F+, F− a bipartition of such groups,
and S a diagonal signature matrix, S = diag{s1, . . . , sn}, si = ±1. Then the following
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expressions for the frustration are all identical:

ζ =
1

2m
min

si,sj=±1

∑
(i,j)∈E

(1− Aijsisj) (S1)

=
1

2m
min

S=diag{s1,...,sn}
si=±1

1T (|A| − SAS)1 (S2)

=
1

2m
min

si,sj=±1
si=sj if

i,j∈Ck, k=1,...,q

∑
(i,j)∈E

(1− Aijsisj) (S3)

=
p

2m
min

Sq=diag{s1,...,sq}
si=±1

1T
q (|W | − SqWSq)1q (S4)

=
p

m
min
F+

 ∑
i,j∈F+

i ̸=j

cicj +
∑

i,j∈F−

i ̸=j

cicj

 (S5)

= F − 2

n2
max
F+

(nF+(n− nF+)) (S6)

= F − 1

2
+

1

2
r2best (S7)

where W is given in Eq. (7) of the paper, m = pn2, Sq = diag{s1, . . . , sq} is a q × q
diagonal signature matrix (one si for each cluster), nF+ (resp. nF−) is the size of F+ (resp.
F−), rbest =

ℓbest
n/2

, and ℓbest is the least node excess with respect to n/2 among all possible

bipartitions {F+, F−} of C1, . . . , Cq.

Proof. Since |Aij| ∈ {0, ±1} and 1T (|A|)1 = m = pn2, (S2) is the matrix version of (S1).
The equality (S1) ⇐⇒ (S3) means that the optimum occurs exactly in correspondence of
a splitting of the groups. To show it, assume without loss of generality that the minimum
energy block-wise splitting of the clusters is F+ = {C1, . . . , Cr} and F− = {Cr+1, . . . , Cq}.
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We then have:

|A| − SAS =



{0} {0, 2} . . . {0, 2}
{0, 2} {0} . . .

...
...

. . . . . . {0, 2}
{0, 2} . . . {0, 2} {0}

{0}

{0}

{0} {0, 2} . . . {0, 2}
{0, 2} {0} . . .

...
...

. . . . . .

{0, 2}
{0, 2} . . . {0, 2} {0}


(S8)

︸ ︷︷ ︸
F+

︸ ︷︷ ︸
F−

where {0} means a block of size ci × cj (or nF+ × nF− for the large off-diagonal blocks) of
entries all equal to 0, while {0, 2} means an equally sized block of entries 0 or 2. Denote

ζ1 =
1

2m
min

si,sj=±1

∑
(i,j)∈E

(1− Aijsisj)

and

ζ2 =
1

2m
min

si,sj=±1
si=sj if

i,j∈Ck, k=1,...,q

∑
(i,j)∈E

(1− Aijsisj).

Clearly it is ζ1 ≤ ζ2 as the min in ζ2 is more constrained than in ζ1. By contradiction, let
us assume that ζ1 < ζ2. Hence there must be at least a node that is misassigned in the
calculation of ζ2. Assume without loss of generality it to be the first node of the first cluster
(denote it 1 ∈ C1). If node i is a first neighbor of node 1 (i.e., if (1, i) ∈ E), we have A1i = +1
for i ∈ C1 and A1i = −1 for i /∈ C1, which in the “true” optimal assignment leads to

(1− A1is1si) =


0 if i ∈ C1
2 if i ∈ {C2, . . . , Cr}
0 if i ∈ {Cr+1, . . . , Cq}.

In the “reassignement” induced by the contrarian assumption, all signs in the first row and
column are instead switched (i.e., s1 is flipped):

(1− A1is1si) =


2 if i ∈ C1
0 if i ∈ {C2, . . . , Cr}
2 if i ∈ {Cr+1, . . . , Cq}.
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Counting the contribution of node 1 to the energy functional, it is equal to 2p(c2+ . . .+cr) in
the first case and 2p(c1−1+cr+1+ . . .+cq) in the second case. (Recall that the minimization
leads to a splitting {C1, . . . , Cr} and {Cr+1, . . . , Cq} s.t. the sums c1+. . .+cr and cr+1+. . .+cq
are as equal as possible.) If (again by contradiction) it is ζ1 < ζ2 then it must be c2+. . .+cr >
c1− 1+ cr+1+ . . .+ cq. But then the same consideration is true for all nodes in C1. Consider
for instance node 2 ∈ C1, and assume that A12 > 0 (the reasoning is analogue if A12 = 0).
Since now node 1 no longer is assigned to the faction of C1 (i.e., to F+), it is s1 = −1. In
the “true” assignment, s2 = +1, and the contribution of node 2 to the energy functional is
2p(1+c2+ . . .+cr) , while in the reassignment (s2 = −1) it is 2p(c1−2+cr+1+ . . .+cq). The
contradictory hypothesis (which yields c2+ . . .+cr > c1−1+cr+1+ . . .+cq) also implies that
1+ c2 + . . .+ cr > c1 − 2+ cr+1 + . . .+ cq, hence also node 2 should be reassigned to the F−

faction. Iterating the reasoning for all nodes of C1, this is equivalent to say that the partition
{C1, . . . , Cr} and {Cr+1, . . . , Cq} is not an optimal one, and it should be instead {C2, . . . , Cr}
and {C1, Cr+1, . . . , Cq}, which is a contradiction. In other words, whenever flipping signs to a
node improves the energy function, flipping sign to an entire group also does so, hence the
minimum is always obtained in correspondence of a group partition. Therefore (S1) ⇐⇒
(S3).

The optimization problem can then be formulated as choosing equal spin assignment to
all nodes of a group. By dimension counting, the expression in (S2) can be reexpressed in
terms of the weight matrix W of Eq. (7) of the paper, as in (S4):

ζ =
1

2m
min

S=diag{s1,...,sn}
si=±1

1T (|A| − SAS)1

=
p

2m
min

Sq=diag{s1,...,sq}
si=±1

1T
q (|W | − SqWSq)1q.

Choosing Sq = diag{s1, . . . , sq} means choosing a partition {F+, F−} of the clusters, which,
similarly to (S8), leads to

|W | − SqWSq =

p



0 2c1c2 . . . 2c1cr

2c1c2 0
. . .

...
...

. . .
. . . 2cr−1cr

2c1cr . . . 2cr−1cr 0

0

0

0 2cr+1cr+2 . . . 2cr+1cq

2cr+1cr+2 0
. . .

...
...

. . .
. . .

2cq−1cq
2cr+1cq . . . 2cq−1cq 0


. (S9)

︸ ︷︷ ︸
F+

︸ ︷︷ ︸
F−

7



Summing over rows and columns of (S9),

1T
q (|W | − SqWSq)1q = 2p

 ∑
i,j∈F+

i ̸=j

cicj +
∑

i,j∈F−

i ̸=j

cicj

 ,

hence (S5) follows from (S4). Adding and subtracting diagonal terms to (S9), replacing p
m

with 1
n2 , and performing easy calculations we get:

ζ =
p

m
min
F+

 ∑
i,j∈F+

cicj +
∑

i,j∈F−

cicj −
q∑

i=1

c2i


=

1

n2
min
F+

(
n2
F+ + (n− nF+)2 −

q∑
i=1

c2i

)

=
1

n2

(
min
F+

(
2n2

F+ − 2nnF+

)
+ n2 −

q∑
i=1

c2i

)

=
2

n2
min
F+

(
n2
F+ − nnF+

)
+ 1−

∑q
i=1 c

2
i

n2︸ ︷︷ ︸
=F

=F − 2

n2
max
F+

(nF+(n− nF+))

which is (S6). The maximum is obtained when both nF+ and n−nF+ approach n/2. Denoting
F+

best, F
−
best the best possible partition for the given groups, and denoting ℓbest = nF+

best
− n

2
the

least “distance to equibipartition” (assuming without loss of generality that nF+
best

≥ nF−
best

),
then

ζ = F− 2

n2

(
nF+

best
(n− nF+

best
)
)
= F− 2

n2

(n
2
+ ℓbest

)(
n− n

2
− ℓbest

)
= F− 2

n2

(
n2

4
− ℓ2best

)
from which (S7) is obtained.

4 Different probabilities for positive and negative edges

In this section we generalize the results to the case in which we still have a weakly balance
signed graph, but the probabilities of existence of positive and negative edges are different.
In the following theorem we use the same notation as in Theorem 1.

Theorem 2 Consider a weakly balanced signed graph G = (V , E , A) in which the probability
of a positive edge is p1 and that of a negative edge is p2. Let

m = p1

q∑
i=1

c2i + p2

q∑
i,j=1
i ̸=j

cicj (S10)
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be the total (expected – omitted thereafter) number of edges of G. Define H (resp. F ) as the
fraction of positive (resp. negative) edges of G,

H =
p1
∑q

i=1 c
2
i

m
, F =

p2
∑q

i,j=1
i ̸=j

cicj

m
, (S11)

and ζ as in Eq. (S1) (i.e., Eq. (3) of the main paper). Then F = 1−H, and all expressions
(S2)-(S5) for ζ still hold provided p is replaced by p2, while in place of (S6) we have

ζ = F − 2p2
m

max
F+

(nF+(n− nF+)) .

The closed-form relationship between ζ and F of Eq. (S7) (i.e., Eq. (5) of the main paper)
is replaced by

ζ =
p2
p1
F −

(
p2
p1

− p2
m

n2

2

)
+

2p2
m

ℓ2best. (S12)

Proof.
Denote the number of positive edges m+ = p1

∑q
i=1 c

2
i and that of negative edges m− =

p2
∑q

i,j=1
i ̸=j

cicj. Then

H =
m+

m
=

m−m−

m
= 1− F.

As can be deduced from the proof of Theorem 1 (see e.g., (S8)), only negative edges contribute
to ζ, hence the difference between p1 and p2 is irrelevant when computing ζ, provided that
p is replaced with p2. The expressions (S2)-(S5) follow consequently from this observation.
From (S5), adding and subtracting elements and performing calculations similar to those in
the proof of Theorem 1,

ζ =
p2
m

 ∑
i,j∈F+

i ̸=j

cicj +
∑

i,j∈F−

i ̸=j

cicj

± p2
m

q∑
i=1

c2i

=
p2
m

min
F+

(
n2
F+ + (n− nF+)2 −

q∑
i=1

c2i

)

from which we can observe that the minimization problem is the same as in Theorem 1,
hence we get (again, adding and subtracting terms),

ζ =− 2p2
m

(
n2

4
− ℓ2best

)
+

p2n
2

m
− p2

p1

p1
∑q

i=1 c
2
i

m︸ ︷︷ ︸
=H

±p2
p1

=− 2p2
m

(
n2

4
− ℓ2best

)
+

p2n
2

m
− p2

p1
+

p2
p1

(1−H)︸ ︷︷ ︸
=F
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from which (S12) follows.

The expression (S12) has the same structure as Eq. (S7). In fact, it reduces to (S7) when
p1 = p2.

Figure S1: Number of groups (i.e., q) for the parliamentary networks dataset. Color code and
marker shape is the same as in Fig. 4A of the main paper.
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Figure S2: Number of groups (i.e., q) in a country for the ethnolinguistic networks dataset (overall
and subdivided by continents). Color code is the same as in Fig. 4B of the main paper. Mean and
linear regression line are also reported in bold.

Figure S3: Number of groups (i.e., q) for the smartphone market shares dataset. Color code and
marker shape is the same as in Fig. 4C of the main paper.
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Figure S4: Group size distribution for the parliamentary networks dataset. Continuous lines identify
points in neighboring bins on the same year.
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Figure S5: Group size distribution for the ethnolinguistic dataset (1/6). Continuous lines identify
points in neighboring bins on the same year.
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Figure S6: Group size distribution for the ethnolinguistic dataset (2/6). Continuous lines identify
points in neighboring bins on the same year.
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Figure S7: Group size distribution for the ethnolinguistic dataset (3/6). Continuous lines identify
points in neighboring bins on the same year.
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Figure S8: Group size distribution for the ethnolinguistic dataset (4/6). Continuous lines identify
points in neighboring bins on the same year.
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Figure S9: Group size distribution for the ethnolinguistic dataset (5/6). Continuous lines identify
points in neighboring bins on the same year.
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Figure S10: Group size distribution for the ethnolinguistic dataset (6/6). Continuous lines identify
points in neighboring bins on the same year.
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Figure S11: Group size distribution for the smartphone market share dataset. Continuous lines
identify points in neighboring bins on the same year.

19



Figure S12: Frustration, fractionalization, and rbest per country, for the parliamentary networks
dataset. R = corr(ζ, F ).
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Figure S13: Frustration, fractionalization, and rbest per country, for the smartphone market shares
dataset. R = corr(ζ, F ).
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Figure S14: Frustration, fractionalization, and rbest per country, for the ethnolinguistic networks
database (1/6). R = corr(ζ, F ). R = NaN occurs when a country has at most two ethnical groups,
meaning that its signed graph is strongly balanced (and ζ = 0).
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Figure S15: Frustration, fractionalization, and rbest per country, for the ethnolinguistic networks
database (2/6). R = corr(ζ, F ). R = NaN occurs when a country has at most two ethnical groups,
meaning that its signed graph is strongly balanced (and ζ = 0).
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Figure S16: Frustration, fractionalization, and rbest per country, for the ethnolinguistic networks
database (3/6). R = corr(ζ, F ). R = NaN occurs when a country has at most two ethnical groups,
meaning that its signed graph is strongly balanced (and ζ = 0).
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Figure S17: Frustration, fractionalization, and rbest per country, for the ethnolinguistic networks
database (4/6). R = corr(ζ, F ). R = NaN occurs when a country has at most two ethnical groups,
meaning that its signed graph is strongly balanced (and ζ = 0).
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Figure S18: Frustration, fractionalization, and rbest per country, for the ethnolinguistic networks
database (5/6). R = corr(ζ, F ). R = NaN occurs when a country has at most two ethnical groups,
meaning that its signed graph is strongly balanced (and ζ = 0).
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Figure S19: Frustration, fractionalization, and rbest per country, for the ethnolinguistic networks
database (6/6). R = corr(ζ, F ).
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B

Figure S20: Frustration and other measures of unbalance: a comparison. Four measures of “distance
to strong balance” are compared: ζ, ζKCN, ζBE, and ζac. (A): First row: values of the 4 measures
on 100 samples of weakly balanced signed graphs with q = 2, . . . , 20 groups. The color code follows
the group size (as in Fig. 2 of the main paper). The grey diamonds represent the average over 100
instances. Second and third rows: scatter plots of the 4 measures vs F and E. (B): Correlation
between ζ and ζKCN, ζBE, and ζac.
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