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Many molecular systems and physical phenomena are controlled by local fluctuations and microscopic dynamical rear-
rangements of the constitutive interacting units that are often difficult to detect. This is the case, for example, of phase
transitions, phase equilibria, nucleation events, and defect propagation, to mention a few. A detailed comprehension
of local atomic environments and of their dynamic rearrangements is essential to understand such phenomena, and
also to draw structure-property relationships useful to unveil how to control complex molecular systems. Considerable
progresses in the development of advanced structural descriptors (e.g., Smooth Overlap of Atomic Position (SOAP),
etc.) have certainly enhanced the representation of atomic-scale simulations data. However, despite such efforts, local
dynamic environment rearrangements remain still difficult to elucidate. Here, exploiting the structurally rich descrip-
tion of atomic environments of SOAP and building on the concept of time-dependent local variations, we developed a
SOAP-based descriptor, TimeSOAP (τSOAP), which essentially tracks the time variations in the local SOAP environ-
ments surrounding each molecule (i.e., each SOAP center) along ensemble trajectories. We demonstrate how analysis
of the time-series τSOAP data and of their time-derivatives allows to detect dynamics domains and track instantaneous
changes of local atomic arrangements (i.e., local fluctuations) in a variety of molecular systems. The approach is simple
and general, and we expect will help to shed light on a variety of complex dynamical phenomena.

I. INTRODUCTION

Structure-property relationships, at the heart of modern ma-
terials science, are hard to be elucidated in complex molecu-
lar systems. Multi-scale and many-body interactions among
all the atoms make it challenging, yet inspiring, to recon-
struct the macroscopic behavior of such systems from the un-
derlying atomic structure.1,2 Ranging from materials with an
intrinsically dynamic character such as soft supramolecular
architectures, to common crystal lattices, a thorough knowl-
edge of atomic arrangements, including their structural and
dynamic evolution, is required to increasingly unlock tan-
gled material responses and features.3–7 In crystalline solids,
for instance, material’s plasticity, viscosity, and microstruc-
ture’s evolution are dictated by the energy and kinetics of
defects8, or structural imperfections.9,10 Furthermore, atom-
ically disordered domains such as surfaces, grain boundaries,
and heterogeneous interfaces have been widely recognized
to be linked to transport, mechanical, electronic, and opti-
cal properties.11–14 Shedding light on the vital connection be-
tween the complex atomic arrangements and the material dy-
namic properties would clearly pave the way for novel de-
sign rules and optimization of molecular systems for tailored
behaviors.15,16 However, although desirable, such material de-
sign objective meets a number of practical and theoretical
challenges thus standing for the most ambitious goal in ma-
terial science.

In recent years, the advances in data availability and com-
putational power have enabled the development of valu-
able tools for gaining a deeper understanding into chemical-
physical phenomena occurring in materials17,18 In particular,
molecular dynamics (MD) simulations have been playing an

increasingly significant role in the exploration of materials,
providing a large source of potential information.19–27 The
use of MD simulations to elucidate structure-property rela-
tionships substantially embeds two-steps level protocol: (i)
the translation of MD trajectories into a numerical representa-
tion of atomic neighborhood environments, resulting in high-
detailed and high-dimensional data, known as fingerprints or
descriptors; (ii) the extrapolation of meaningful information
from the large volumes of generated data sets. Regarding the
latter step, Machine Learning (ML) algorithms have often re-
vealed promising advantages to handle the large and complex
set of data, thereby achieving increased interest.28–33 How-
ever, a low-dimensional representation facilitating the naviga-
tion and identification of hidden patterns and features would
be desirable.

Within this framework, methods for adequately charac-
terizing complex atomic arrangements from MD simula-
tions have received a remarkable expansion. Over the last
decades, many descriptors have been proposed relying on the
use of order parameters or mathematical quantities.1 Low-
dimensional descriptors based on the use of order parame-
ters often allow to gain very accurate information, though be-
ing dependent from a priori knowledge about systems’ fea-
tures. However, methods operating on structural environ-
ments (i.e., order parameters) such as the coordination analy-
sis, bond order analysis,34 bond angle analysis (BAA),35 com-
mon neighbor analysis, (CNA)36 adaptive CNA (A-CNA),37

and Voronoi analysis, generally struggle to identify differ-
ent local coordination environments when the geometric sym-
metry is lost or exhibits a short-range nature (e.g., in crys-
talline systems close to the melting temperature). On the
other hand, coupling more mathematically-sophisticated de-
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scriptors to ML approaches enables effective characterization
of systems by exploiting the rich and high-dimensional data
sets provided by MD simulations,38–40 also being less de-
pendent from a priori knowledge. Nevertheless, advanced
mathematical descriptors such as the Behler-Parrinello sym-
metry functions (BP),41 Chebyshev polynomial representa-
tions (CPR),42 adaptive generalizable neighborhood informed
features (AGNI),43,44 smooth overlap of atomic positions,
(SOAP)45 and atomic cluster expansion (ACE)46 generally
operate on atomic environments, that still represent local
properties and weakly capture global and dynamics pictures.

Among more mathematically related descriptors, SOAP
turned out to be very efficient in the characterization of a
wide plethora of systems47–50 including soft disordered and
complex assemblies.51–54 Despite being strongly connected
to the structural features of local environments, the SOAP
fingerprint coupled with unsupervised clustering approaches
and statistical analyses has been recently used also to re-
construct the dynamics of complex systems such as, e.g.,
metal surfaces,55 metal nanoparticles,56 soft supramolecular
polymers,51,57 self-assembled micelles52 and complex hierar-
chical superlattices, to cite a few.54,58 Since SOAP descriptors
are typically high-dimensional, both linear and non-linear di-
mensionality reduction (DR) approaches are often employed
for facilitating both analyses and data visualization.59–62

However, DR represents the fundamental roadblock because
it inherently leads to a loss of information, resulting in a chal-
lenging characterization of systems where ordered and disor-
dered domains coexist in dynamic exchange and equilibrium.
In addition, beyond some valuable techniques,63,64 the time
evolution of structural changes, including rare fluctuations,
still remains weakly explored by simply classifying datasets
with unsupervised and sophisticated ML tools.

Time-dependent descriptors offer a different approach. For
example, a recently developed descriptor - Local Environ-
ments and Neighbors Shuffling (LENS)65 - monitors how
much the microscopic surrounding of each molecular unit
changes over time in terms of neighbor individuals/identities
along an MD trajectory. LENS allows to identify dynamic
domains and detect local fluctuations in a variety of systems
tracking events of addition/subtraction of neighbors within a
certain cutoff over time. However, LENS does not contain
structural information on, e.g., the relative position or arrange-
ments of the neighbors inside the cutoff sphere. In this way,
it does not capture, e.g., local structural rearrangement, ad-
justment, or rattling. A time-dependent descriptor capable of
retaining rich structural information and of efficiently moni-
toring structural changes over time would be desirable.

Building on such a concept, here we report a time-
dependent descriptor, TimeSOAP (τSOAP), which essentially
exploits the structurally rich description of molecular/atomic
environments guaranteed by the SOAP vectors and measures
to what extent the SOAP power spectra of each unit within a
complex molecular system change over time. An ML-based
analysis of the time-series τSOAP data allows us to robustly
and efficiently detect, e.g., structural transitions, phase transi-
tions, and the coexistence of phases in a variety of systems
with rich and diverse intrinsic dynamics. Noteworthy, the

time derivative of τSOAP also provides sharp signals iden-
tifying local fluctuations, highlighting local and rare events
that may be overlooked with other approaches. The paper is
organized as follows. In Section II (Methods), we present
our τSOAP and τSOAP-based descriptors and the coupled
ML-based workflow. In Section III, we discuss the results
obtained by performing our τSOAP analysis on various sys-
tems characterized by solid/liquid coexisting phases, solid-
like and fluid-like behaviors, respectively. Our tests indicate
that τSOAP analyses are flexible and robust, and can shed
light on complex molecular/atomic systems with non-trivial
multilayered dynamics providing insights that are difficult to
attain with other approaches.

II. METHODS

A. SOAP as a descriptor of atomic environments

Recently, data-driven approaches capturing the structural
complexity of materials from equilibrium MD trajectories
have been proposed. A generic MD trajectory is represented
by an ordered list of N atomic coordinates R(t) in the 3D
space at each simulation time step, where N is the number
of particles in the system. In order to characterize complex
atomic arrangements, descriptors of atomic neighborhood en-
vironments have been widely employed. By associating a
feature vector to each R(t), the descriptors enable to pass
from the 3D coordinate space to an S-dimensional feature

space. Importantly, these representations are required (1) to
be permutationally, translationally and rotationally invariant,
in order for physically equivalent configurations to be recog-
nised as such, and (2) to smoothly vary with small changes
in atomic positions. Among many developed descriptors, we
adopt the Smooth Overlap of Atomic Position (SOAP) to ex-
amine our sample of materials ranging from crystalline to soft
and liquid states. SOAP is a state-of-art, high-dimensional
representation of atomic environments and it has recently
provided valuable insights on both properties and structural
features49,57,66,67.
The SOAP descriptor centers Gaussian density distributions
on each atom. For a given atom, a smooth representation of
the neighbor density is generated from the sum of Gaussians
centered on each surrounding atom, namely:

ρ i(r) = ∑
j

exp

[−|r− ri j|2
2σ2

]

frcut(|r− ri j|), (1)

where to each neighbor center j, located at a distance r= ri j

from the i-th center, a Gaussian function is associated. σ is the
distribution width of each Gaussian. The environment related
to each center i incorporates information up to a fixed cutoff,
rcut, where the function frcut smoothly goes to 0. Then, by
expanding the Eq. (1) in the basis of orthonormal radial func-
tions Rn(r) and spherical harmonics Yl,m(r̂), the correspond-
ing SOAP power-spectrum is calculated. For the i-th center, it

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
47

02
5



Accepted to J. Chem. Phys. 10.1063/5.0147025

3

can be expressed as:

γ i
nn′l ∝

1√
2l +1

+l

∑
m=−l

(ci
nlm)

∗
ci

n′lm, (2)

with ci
nlm representing the expansion coefficients of the

neighbor density associated to the i-th center. The parame-
ters n and n’ range from 1 to nmax, while l index runs from
1 to lmax. From the values of nmax and lmax it is possible to
derive the dimension S of the full SOAP feature vector, which
can be written as:

pi = {γ i
nn′l}, (3)

representing the SOAP descriptor associated to the i-th cen-
ter, which includes all the contributions from the Eq. (2).
Here, we used in-house code, SOAPify,68 to compute the
SOAP vectors, with nmax, lmax=8, and different rcut values
depending on the characteristics of the considered system (see
supplementary material, Table S1). From the 3D coordinate
vector corresponding to each MD simulation time, we calcu-
late the SOAP vector pi for a selected set {i} of centers (re-
ferred to as SOAP centers). In summary, we obtain a dataset
containing S-dimensional SOAP vectors describing the struc-
tural arrangements related to the {i} selected sites at each
sampled configuration. Since these SOAP vectors encode the
information about the atomic environments surrounding each
center, SOAP is referred to as a "local" descriptor.

In order to evaluate how similar are two environments cen-
tered in two sites, a similarity measure has been defined by
means of a linear kernel of their neighbor density representa-
tions:

KSOAP(i, j) = (qi ·q j). (4)

Since q = p
|p| , that is, the unit-normalized SOAP vector,

KSOAP(i, j) goes from 0 for no overlapping to 1 for completely
superimposed vectors. Furthermore, from Eq. (4), a metric re-
ferred to as "SOAP distance" between two environments can
be defined:

dSOAP(i, j) =
√

2−2 ·KSOAP(i, j) ∝
√

2−2pip j. (5)

Importantly, pi and p j describe the local environments re-
lated to two different SOAP centers. Besides the SOAP ker-
nel, this distance representation provides a bounded similar-
ity measure between two local environments, indicating how
their local densities match in the S-dimensional feature space.

B. Tracking dynamical SOAP variations with TimeSOAP

The output dataset containing the S-dimensional SOAP
vectors is typically high-dimensional, and although rich in in-
formation on the atomic/molecular arrangements, it requires
a crucial pre-processing to both facilitate the interpretation of
the results and effectively identify relevant molecular patterns.
For this reason, after estimating pi (Eq. (3)) for the whole set

of SOAP centers {i} at each sampled configuration of the MD
trajectory, a SOAP-based pattern recognition procedure typi-
cally relies on two successive key phases: (1) use of a dimen-
sionality reduction (DR) of SOAP spectra by means of, for
instance, Principal Component Analysis69,70 (PCA); (2) em-
ployment of unsupervised clustering techniques for the iden-
tification of molecular motifs. Despite providing some infor-
mation on a wide range of molecular systems, this approach
presents some key shortcomings: (i) since the time informa-
tion is not emphasized, insights on consequential transition
events as well as the temporal persistence of the individual
molecular configurations are not retained, thus hindering a
detailed comprehension of the rate of change of every indi-
vidual molecular configuration; (ii) on such low-dimensional
SOAP-based data set, some poorly-populated configurations
may remain undetected by (e.g., density-based) unsupervised
clustering approaches; (iii) low-dimensional embedding of
atom-density representations can fail in faithfully preserving
valuable information, such that a high number of principal
components would be desirable.71 This makes detecting lo-
cal fluctuations and rare events typically awkward with such
approaches.

In this work, we propose an alternative procedure allow-
ing to retain the time information from the high-dimensional
SOAP vectors. Building upon the SOAP distance dSOAP(i, j)
introduced above, we present a new SOAP-based fingerprint,
named "TimeSOAP (τSOAP)", which quantifies the local en-
vironment variation, over time, of each individual SOAP cen-
ter i. Indicating by λi the variable form of τSOAP, its instan-
taneous value is defined as:

λ t+∆t
i =

√

2−2 ·KSOAP(it , it+∆t)

∆t
∝

√

2−2pt
ip

t+∆t
i

∆t
. (6)

Differently than the Eq. (5), here both pt
i and pt+∆t

i describe
the local environments related to the same unit (i.e., the i-th
SOAP center) but at different simulation times, t and t +∆t,
respectively. Thus, λ t+∆t

i measures how similar the i-th SOAP
vector calculated at time t is to that calculated at the next
sampled timestep (t + ∆t). We analyze consecutive frames,
namely adjacent points, where ∆t represents the MD sampling
timestep (different for the various systems, see Molecular Dy-
namics Simulations for more details). As a result, τSOAP
evaluates how the i-th local environment changes, in terms of
SOAP descriptor, at every consecutive time interval ∆t. We
thus obtain λi(t), namely a τSOAP signal over time for each
individual in the selected set {i}, thereby allowing to track
the evolution of each SOAP constituent unit center along the
trajectory.

We can take a further step by estimating λ̇i, namely the first
time-derivative of τSOAP signal. Using the NumPy72 Python
package, we have:

λ̇ t+∆t
i =

λ t+∆t
i −λ t

i

∆t
. (7)

By computing it along the MD trajectory, we get λ̇i(t).
What λ̇i represents is the rate of local environment changes
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t = 63 nst = 59 ns t = 65 ns

c

d fe

a b

FIG. 1. Automatic detection of molecular motifs in ice/liquid water coexistence. (a) MD snapshot of ice/liquid water simulation box made
of 2048 TIP4P/ICE water molecules at T = 268 K. Color code: red for oxygen and white for hydrogen atoms. (b) Example of a typical
SOAP-based pattern recognition procedure. Left: PCA projection of the SOAP-based data-set estimated from the ice/liquid water system in
(a). Right: clustering analysis - on the same data-set - carried out with KMeans. The two main detected clusters, colored in green and gray, are
also visualized on the MD water snapshot (taken at 44 ns), showing the ice and water domains in gray and green, respectively. (c) On the left,
time-series of τSOAP signals, λi(t), shown for all the oxygen atoms in (a). The colored λi(t) profiles are related to three explicative oxygen
atoms, i.e. (i) black, (ii) cyan, and (iii) crimson, displayed on the right with the respective color code. The reported MD snapshots are around
t ∼ 60 ns. (d) τ SOAP-based analysis. λi(t) profiles and their KDE are carried out for all the oxygen atoms of all water molecules in the system
(a). The final k = 4 detected macro-clusters are shown as colored in gray, crimson, blue, and cyan. (e) Interconnection probability matrix of
the final k = 4 identified macro-clusters. (f) MD snapshot (taken at 44 ns) showing the four main clusters identified by τ SOAP-based analysis
(same color code of (d)): ice (in gray), solid/liquid interface (in crimson), liquid water (in blue), a distinct domain in the liquid phase (in cyan).

over time for the i-th SOAP center. This allows to highlight
the relevant dynamic phenomena occurring along the trajec-
tory, notably discriminating between local environments char-
acterized by a constant variation and those exhibiting an in-
creasing/decreasing variation.

To increase the signal-to-noise ratio (S/N), both λi(t)

and λ̇i(t) are pre-processed by employing the Savitzky-
Golay73 filter from the SciPy74 python package, thus obtain-
ing smoothed signals. A common polynomial order parameter
of p = 2 is used for each signal λi(t), while different time-
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windows are chosen depending on the analyzed system, in or-
der to reach a compromise between an acceptable S/N value
and a sufficiently smaller window compared to the length of
signal (see supplementary material, Fig. S1 for details). Cho-
sen the time-window for λi(t), to adequately smooth its first-
derivative λ̇i(t) we keep the same time-window and use two
applications of the filter (following a general rule: for the n-th
derivative, use at least n+1 applications of the filter).

C. Dynamics domains detection

After increasing S/N, an ML-based analysis is performed
on λi(t) data to detect relevant dynamics domains in each
system. As a clustering method, we opted to use the
KMeans algorithm from the Scipy python package,75,76 since
it was demonstrated robust and capable of providing a good
tradeoff between clustering quality and computational cost65.
Nonetheless, it is worth noting that the analysis approach
is versatile, and other clustering methods could be used.
KMeans requires to pre-determine the number K of clusters
to be created in the process. Here, with the aim of guaran-
teeing a wide variety of micro-clusters dynamics regardless of
the analysed system, we start anyway from K = 10 clusters.
On the basis of the exchange probability matrix and the den-
drogram associated to clusters interconnection, then we hier-
archically merged the K clusters a posteriori. The exchange
probability matrix contains, indeed, the percentage probabil-
ity of a unit i belonging to a given cluster to persist in that
cluster or to jump to another cluster in the sampling timestep
∆t; from this, by means of an "average" linkage method, we
built the associated dendrogram connecting the dynamics do-
mains which have a high probability of exchanging elements.
Ultimately, to establish the cut-off point of the dendrogram,
we used the Elbow Curve Method as an indicative guideline
for selecting the optimal number of clusters k (see supplemen-
tary material, Fig. S2). However, for completeness, all the
steps leading from the starting K = 10 clusters to the final k

clusters are reported in supplementary material, Fig. S3 and
Fig. S4.

On the other hand, the domain recognition on λ̇i(t) data
has been performed via a different approach. Obtained the
λ̇i distribution and the associated Kernel Density Estimate
(KDE) for each system, we divide the KDE in deciles and
consider the first and the tenth deciles to detect units signif-
icantly falling far from the mean local environment variation
rate. The first decile and the tenth decile capture units highly
decreasing and increasing, respectively, their local environ-
ment changes. This provides a clear distinction between do-
mains moving toward more dynamic and those moving toward
less dynamic configurations.

D. Molecular dynamics (MD) simulations

We test our τSOAP analysis on MD trajectories obtained
for different systems with non-trivial and different dynamics:

i.e., a water-ice interface system in correspondence of the tran-
sition temperature, a gold nanoparticle at 200 K, a copper sur-
face at 700 K, and DPPC lipid bilayer where liquid and gel
phases coexist at 293 K of temperature.

The atomistic ice/liquid water phase coexistence at the
solid/liquid transition temperature is obtained by employing
the direct coexistence technique77,78 using the GROMACS
software79. In order to model both the ice and the liquid water
phase, the TIP4P/ICE water model80 is used. The direct coex-
istence technique is based on the idea to put in contact two or
more phases (in this case, the phase of ice Ih and the liquid wa-
ter phase) in the same simulation box and at constant pressure.
Since the energy is constant at T = 268 K, while the system
melts at T = 269 K81, we set the temperature at T = 268 K
and keep it constant by means of the v-rescale thermostat with
a relaxation time of t = 0.2 ps.
To get the initial configuration of ice Ih the Genice tool
proposed by Matsumoto et al.82 is used, which generates a
hydrogen-disordered lattice with zero net polarization satisfy-
ing the Bernal-Fowler rules. The solid lattice is equilibrated
by performing a 10 ns-long anisotropic NPT simulation at am-
bient pressure (1 atm). The c-rescale barostat83 is used with
a time constant of t = 20 ps and compressibility of 9.1∗10−6

bar−1. On the other hand, the liquid phase is obtained from
the same initial configuration of ice Ih, but performing a NVT

simulation at T = 400 K in order to quickly melt the ice slab.
Then, a 10 ns long simulation at T = 268 K is performed to
equilibrate the liquid phase, using the c-rescale barostat in
semi-isotropic conditions and compressibility of 4.5 ∗ 10−5

bar−1. Since the initial ice slab is composed of 1024 wa-
ter molecules, both the solid and liquid phases have the same
number of molecules and box dimensions. The two phases
are put in contact and, then, the system is equilibrated for
t = 10 ns employing the c-rescale pressure coupling at ambi-
ent pressure with the water compressibility (4.5∗10−5 bar−1).
The production NPT is carried out in semi-isotropic condi-
tions, applying the pressure only in the direction perpendic-
ular to the ice/water interface, thus reproducing the strictly
correct ensemble for the liquid-solid equilibrium simulation
by the direct coexistence technique.84 Finally, a 100 ns-long
production run is performed, with a sampling time interval of
∆t = 0.1 ns.

The second case study analyzed in this work is an icosa-
hedral Gold nanoparticle (Au-NP) composed of 309 atoms.
The parameterization of the model is performed according
to the Gupta potential85. The Au-NP system is simulated
for t = 2 µs at T = 200 K sampling every ∆t = 0.1 ns us-
ing the LAMMPS software86. The details are described in
reference56.

The third system, the atomistic model of Copper FCC sur-
face Cu(210), is composed of 2304 Cu atoms and simulated at
T = 700 K. A Neural Network potential built by means of the
DeepMD platform87 is employed to perform Deep-potential
MD simulations of the Cu(210) surface with the LAMMPS
software86, as reported in reference55. The MD trajectory
is conducted for 150 ns, using a sampling time interval of
∆t = 0.3 ns.

Finally, the last case study is a DPPC lipid bilayer com-
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posed of 1152 lipids simulated at T = 293 K. As detailed in
reference53, DPPC lipids are simulated and parametrized in
explicit water by using the Martini2.288 Coarse-Grained (CG)
force field. The CG-MD simulation is performed for t = 1
µs and sampled every 0.1 ns with the GROMACS software79.
However, in our analysis, we use the last 500 ns of MD trajec-
tory.

III. RESULTS AND DISCUSSION

Herein, we use the descriptor τSOAP to elucidate the dy-
namics of atomic/molecular structural environments which
are often key determinants in global materials performances.
In order to show the whole picture of dynamic informa-
tion that can be extracted from τSOAP signals, we analyze
MD trajectories of different systems exhibiting various struc-
tures and non-trivial behaviors, thus indicating the transfer-
ability of such approach to a wide range of materials. In
particular, we first focus on ice/liquid water coexistence at
the solid/liquid transition temperature, where structural and
dynamic properties continuously alternate from solid-like to
liquid-like character89. We also carry out our analysis on sys-
tems revealing solid-like dynamics, such as metal nanoparti-
cles and surfaces well below the melting point. Ultimately, a
fluid-like soft system is included by testing our approach on a
lipid bilayer below the gel-to-liquid transition temperature.

A. Into the Dynamics of Ice/Liquid Water Phase
Coexistence via τSOAP Signal

We start testing τSOAP on a system where crystalline ice
and liquid water coexist at the solid/liquid transition tempera-
ture, while exhibiting a dynamic equilibrium between solid-
like and liquid-like regime. We analyze a simulation box,
in periodic boundary conditions, having 1024 hexagonal ice
(Ih) molecules in contact with 1024 liquid water molecules
(see Fig. 1a) at T = 268 K. We consider 1001 consecutive
frames sampled every ∆t = 0.1 ns along 100 ns of an MD
trajectory. As a first step, we compute the SOAP vectors for
the oxygen atoms of each water molecule (2048 TIP4P/ICE
water molecules) along all frames of the trajectory (see Meth-
ods section for details). Before illustrating τSOAP analysis,
we start by briefly discussing the results obtained via, e.g., a
SOAP + PCA pattern recognition procedure - widely used for
studying molecular systems - on such ice/liquid water system,
here presented as a first case study. Fig. 1b shows the results
of this analysis which detects, from the SOAP-based data set,
two main clusters, corresponding to the ice and liquid water
domain (in green and gray). It is worth noting that DR (via

PCA) to a 3-dimensional subspace allows already to capture
> 90% of the cumulative variance of the SOAP-based data set
in this case (see Fig. S5a). A systematic analysis on the effect
of increasing the dimensionality provided essentially the same
results, demonstrating how two main SOAP domains are de-
tected (ice and liquid water) independently on the number of
PCs used and of identified clusters (see also Fig. S5).

After computing SOAP vectors, τSOAP signals are esti-
mated by capturing the variations of local SOAP environments
in ∆t = 0.1 ns (see Eq. 6). Fig. 1c reports, on the left, the re-
sulting λi(t) time-profiles related to each of the 2048 oxygen
atoms, while, on the right, it shows the ice/liquid water MD
snapshots at t = 59 ns, t = 63 ns, and t = 65 ns. Notably, three
distinct λi(t) profiles are highlighted in Fig. 1c, left: (i) the
black signal oscillating around λi = 0.2; (ii) the cyan signal
laying on the highest λi region; and (iii) the crimson signal
which rapidly passes, at t ∼ 60 ns, from low to high λi val-
ues. The oxygen atoms related to the latter three λi(t) profiles
are instead depicted on the MD snapshots in Fig. 1c, right,
with the respective color code, i.e., black, cyan, and crimson.
The visualization of these selected atoms clearly shows that
the black and cyan oxygen units belong to the ice and liq-
uid water phase, respectively, regardless of the displayed time
steps. On the other hand, the identified crimson oxygen repre-
sents an atom involved in the ice/liquid water transition occur-
ring at t ∼ 60 ns. By lightening the behavior of such atoms,
we attempt to emphasize the potential meaning provided by
τSOAP descriptor on the single unit dynamics: following the
time variation of atomic structural environments, τSOAP al-
lows both to distinguish atoms belonging to different phase
states and to capture those one undergoing phase transitions.

In order to systematically detect the complete scenario of
distinct dynamics behaviors in our water system, an ML-based
analysis is carried out on all τSOAP signals. The results of
the clustering investigation, performed via the KMeans algo-
rithm, are shown in Fig. 1d. The final four identified clus-
ters (gray, crimson blue, and cyan) are displayed both on the
time-series of the λi(t) data (Fig. 1d: left) and on the λi(t)
data distribution reported with the correlated KDE (Fig. 1d:
right). As already pointed out, such four different dynamics
domains identify those water molecules undergoing specific
transitions: i.e., instantaneously changing their local structural
environments. In particular, the gray domain is dominated
by oxygen units that are characterized by low λi values along
the complete trajectory, i.e., by a weak variability of their lo-
cal atomic environments. On the other hand, oxygen atoms
showcasing high changes of their structural atomic distribu-
tions, and hence high values of λi, belong to the blue cluster
or cyan domain. Oxygen units that, instead, tend to reveal
medium values of λi - because of their transition from one λi

regime to the other one - are classified into a distinct crim-
son cluster. It is interesting to note how, differently from the
SOAP + PCA pattern recognition procedure shown in Fig. 1b,
an analysis of the time-series τSOAP data reveals this third
dynamically different environment - i. e., the ice/liquid wa-
ter interface, which gets lost in SOAP + PCA-based analyses
due to its reduced (negligible) statistical weight (see supple-
mentary material, Fig. S5 for SOAP + PCA-based analyses
with increased number of clusters). Ultimately, the cyan do-
main is detected as a different cluster of units having higher
local environment changes. The graphical representation of
such clusters is shown in Fig. 1f through an MD snapshot
(see supplementary material, Movie S1). Not surprisingly, the
gray cluster, characterized by the lowest τSOAP signal, corre-
sponds to the ice phase; the blue domain, characterized by 0.4
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c
Defect detectionTowards melting dTowards freezing

...

ba

FIG. 2. First time-derivative of τSOAP signal for ice/liquid water system. (a) τSOAP (λ (t)) and its first time-derivative (λ̇ (t)) profiles
associated with the same oxygen atom are shown in gray and green, respectively. (b) λ̇i(t) signals and their KDE estimated for all the oxygen
atoms in Fig. 1a. Clustering color code: (i) blue for environments corresponding to the first decile; (ii) orange for those corresponding to the
tenth decile; (iii) white for λ̇i values in all the other deciles. (c) MD snapshots displaying blue, orange, and white domains. Left: local detail of
the orange cluster evolving toward melting (first and second snapshots). Right: local detail of blue cluster associated with a small disordered
region evolving toward freezing (third and fourth snapshots). (d) Orange local environments identify ice molecules moving out of hexagonal
ice configurations.

< λi≤ 0.54, is mainly correlated to the liquid phase; and the
crimson one, including oxygen atoms with 0.2 < λi < 0.4, is
instead located at the solid/liquid interface. Finally, the cyan
cluster (λi > 0.54), although sited in the same region of the
liquid phase (blue cluster), is identified as presenting a dif-
ferent dynamic behavior. In the considered ice/liquid water
system, the exchange probabilities among the final four clus-
ters are displayed in the matrix in Fig. 1e: although the oxy-
gen atoms exhibit a probability higher than ∼ 94% to persist
in a given cluster in the sampling timestep ∆t (probabilities
on the matrix diagonal), no negligible transient events occur
between red-blue and cyan-blue clusters, demonstrating that
a percentage of oxygen population is involved into instanta-
neous transitions among dynamics domains (out of diagonal
probabilities).

After detecting the main dynamics clusters based on
τSOAP signals, λi(t), we carry out a further domain recog-
nition analysis based on λ̇i(t), that is, the instantaneous rate

of local environment variations λi(t). The key information
which can be gathered from the time-derivative of λi(t) is
pointed out in Fig. 2a, where an explicative example is re-
ported. Here, both λi(t) and λ̇i(t) time-profiles are associ-
ated with the same oxygen atom i: in gray, λi(t) shows the
atom undergoing the phase transition at t ∼ 60 ns when the

time-signal significantly and rapidly passes from the low to
the high λi value region; in green, the first time-derivative of
the gray profile exhibits a peak in correspondence of the phase
transition, while fluctuating around zero in both the initial and
the final stages of the trajectory. Clearly, λ̇i(t) tracks a no-
table signal leading up to a substantial dynamic change in the
system. The first time-derivative, indeed, offers a neat dis-
crimination between small oscillations of λi(t) - which are in-
trinsic to the constituent units, independently from the proper
dynamics domain - and large fluctuations driving significant
changes in the atomic structure. Notably, λ̇i(t) also provides a
detailed comprehension of the directionality of the local envi-
ronment variations, i.e., on the evolution of the material struc-
tures. While the presence of a peak, i.e, of a large fluctuation
in λ̇i(t) profile, suggests that a relevant event is occurring in
that time interval, the sign of such fluctuation points out the
evolution of a structural environment: a positive sign indicates
that the atom is undergoing a local re-configuration toward
a more dynamic domain; a negative sign means that a local
environment re-configuration toward a more static domain is
occurring.

Fig. 2b shows, on the left, the time-profiles of λ̇i(t) related
to each of the 2048 oxygen atoms, while, on the right, the
KDE of the λ̇i data distribution. We color in blue and orange
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the domains corresponding to the first and the tenth decile,
respectively, while we merge all the other deciles in a single
white cluster. It is worth noting that the KDE distribution has
a peak approximately in correspondence of λ̇i = 0, indicating
that the local environment variations -λi(t)- are, on average,
constant. On the other hand, atoms that significantly increase
or decrease, frame by frame, their local environment changes
are captured by positive (in the orange region) or negative
peaks (in the blue region), respectively. In Fig. 2c, we vi-
sualize these three different domains (blue, orange and white)
on some snapshots along the MD trajectory, thereby showing
that the positive and negative peaks allow characterizing melt-
ing and freezing phenomena occurring within small solid-like
and liquid-like regions. In the first snapshot of Fig. 2c, we
represent a small portion of oxygen solid-like atoms (in or-
ange) located at the ice/liquid water interface and exhibiting
positive τSOAP (λi) variations (i.e., undergoing rearrange-
ments toward more dynamic configurations). Accordingly, in
the second snapshot those rings appear as broken, thus prov-
ing a melting-type process. In the third snapshot of Fig. 2c,
we report, instead, example of oxygen units presenting neg-
ative τSOAP (λi) variations (blue cluster), thus evolving to-
ward more static configurations at the solid-liquid interface.
Indeed, as shown in the fourth snapshot, an ordered ring struc-
ture forms, thus reproducing a typical freezing phenomenon.
Ultimately, Fig. 2d shows a further detail potentially revealed
by our analysis. In particular, water molecules exhibiting a
high positive rate of change of their local SOAP environment
(high λ̇i) turned out to be also associated with ice molecules
that, at the interface with liquid water, undergo transitions out
of the typical hexagonal packing: i.e., forming interface ice
defects (Fig. 2d)90. In summary, besides capturing the lo-
cal atomic re-arrangements and characterizing their evolution,
λ̇i(t) seems to be also promising for defect detection purposes.

The previous results suggest how τSOAP descriptor and
its first time-derivative are possible strategies to unveil some
microscopic phenomena occurring at the ice/water interface
in a dynamic equilibrium. In particular, by reliably detect-
ing local fluctuations along with rearrangements and their
evolution, the time-variations of structural atomic environ-
ments show considerable potential for tracking crystallization
or melting processes from MD trajectories. In order to out-
line the main features of τSOAP and the differences respect
to other analysis approaches often used to study the dynam-
ics, we also compared τSOAP with a time-lagged Indepen-
dent Component Analysis (tICA),91,92 a DR approach used
to process high-dimensional input data by retaining valuable
temporal information (see supplementary material, Fig. S6).
Concerning the study case of ice-liquid water transition, we
projected the high-dimensional SOAP space on its highest-
autocorrelation linear tICA subspace. The results in Figure
S6 demonstrate how tICA essentially finds two main environ-
ments, corresponding to the ice and water domains. However,
similar to a classical SOAP+PCA analysis (see Fig. 1b), such
SOAP+tICA DR does not recognize the ice/water interface as
a separate environment, nor does it capture the local individ-
ual transitions as done by τSOAP (Figs. 1, 2). This shows
how such standard pattern-recognition approaches (e.g., PCA

or tICA coupled with clustering analyses) can effectively de-
tect dynamic domains with dominant statistical weight, while
sparse and local fluctuations get typically lost due to their neg-
ligible statistical occurrence. In this sense, τSOAP has the
advantage to preserve any changes of local structural environ-
ments, from the slowest to the fastest visited along the stud-
ied trajectories, and thereby avoiding a specific screening of
structural variations.

B. Application to discrete solid-like dynamics

As completely different test cases, we test our approach on
systems revealing solid-like dynamics. We discuss the results
of our analysis applied on MD trajectories of (i) a 309-atoms
icosahedral Gold nanoparticle, denoted as Au-NP, at 200 K
(Fig. 3a), and (ii) a Copper Cu(210) FCC surface at 700 K of
temperature (Fig. 4a).

Regarding the case (i), we analyse 20000 consecutive
frames of a 2-µs long MD trajectory sampled every ∆t = 0.1
ns at T = 200 K. It is well known that metal nanoparticles may
exhibit a not-trivial dynamics at room and at even sufficiently
lower temperatures. Although the reduced atomic motion and,
accordingly, the more stabilized ideal icosahedron architec-
ture, some local fluctuations and atomic rearrangements can
be observed in a Au-NP even at T = 200 K. τSOAP signals
in Fig.3b, indeed, present a sudden increase after ∼ 0.1 µs,
demonstrating that some atoms are experiencing intense in-
stantaneous local environment variations. Our cluster anal-
ysis on λi(t) recognises five main dynamics domains whose
transition probabilities are reported in Fig. 3c. This transition
matrix proves a negligible attitude of the gold atoms to trans-
fer from/toward diverse dynamics domains, while preferring
to remain in their own cluster with probabilities higher than
98.4 %. The MD snapshots in Fig. 3d show that these clusters
well identify distinct dynamics behaviors and structural do-
mains (see also supplementary material, Movie S2). First, the
cluster analysis is able to accurately distinguish the inner core
of the Au-NP (in gray), namely a more static region charac-
terised - not surprisingly - by low λi(t) values along the whole
simulation, from an interface region (in crimson) between the
inner core and the outermost layer. Second, such clustering
approach sharply separates the surface of the Au-NP in two
coexisting regions (pink and blue) related to different char-
acteristic λi(t). While the pink face turned out to be more
static, the blue domain reliably detects the portion of the sur-
face where a fracture formation may occur, breaking down the
symmetry (Fig. 3d, second MD snapshots on the right). Inter-
estingly, τSOAP also identifies some local events such as the
formation of concave "rosettes" (a vertex, having five neigh-
bors in an ideal icosahedron, penetrates inside the NP surface,
thus passing to six neighbors). In Fig. 3d (third snapshot on
the right), two rosettes can be observed as belonging to a more
dynamic cluster - highly varying their local environments - (in
blue), while the associated vertices are identified as more sta-
ble (in crimson).

Furthermore, the estimation of λ̇i (Fig. 3e) provides inter-
esting details on the dynamic evolution of the system. A quite
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FIG. 3. τ SOAP-based analysis on 309-atoms icosahedral Gold nanoparticle (Au-NP). (a) MD snapshots of ideal Au-NP (top), and equilibrated
one at T = 200 K (bottom). (b) λi(t) profiles and the related KDE for the Au atoms in the system (a). The final k = 5 macro-clusters identified
by KMeans are shown in gray, crimson, pink, blue, and cyan. (c) Exchange probability matrix of the final k = 5 detected macro-clusters. (d)
MD snapshots with the five main clusters identified in (b): inner core in gray, interface region between the inner core and the outermost layer
in crimson, more static surface face in pink, more dynamic surface face in blue, atoms undergoing the highest local environments changes in
cyan. (e) Domain detection based on λ̇ (t) profiles and their KDE: blue domain is associated with the first decile, the orange domain is linked
to the tenth decile, and the white domain includes λ̇ (t) in all the other deciles. (f) MD snapshots displaying the emergence of blue, orange, and
white domains along the MD trajectory. On the left, the predominance of the orange cluster before (first snapshot) and during the symmetry
breakdown (second snapshot). The central snapshot exhibits a prevalence of white domain, together with a balance between orange e blue
ones. On the right, a prevalence of the blue domain can be observed (fourth snapshot) before the formation of a more static configuration
(white cluster: fifth snapshot). (g) Blue, orange, and white domains associated with the rearrangement, over time, of a local configuration from
"vertex" to "rosette".

large percentage of Au atoms is characterized by a constant
variations of their surrounding environment (λi(t) = const,
and λ̇i ∼ 0). Rare and sharp fluctuations are anyhow remark-
able. To qualitatively illustrate some of these λ̇ peaks, five
MD snapshots presenting different predominant domains are
shown Fig. 3f. In the first and second snapshots, the do-
main characterized by positive λ̇i (in orange) prevails, sug-
gesting that the atoms belonging to that cluster are collec-
tively involved in a significant increase of the instantaneous
local environment variations. Indeed, this predicts the sym-
metry breaking shown in the second snapshot. However, the
prevalence of λ̇i ∼ 0 represented by the white domain, along
with a balance between positive (orange) and negative (blue)
peaks, establishes a dynamic equilibrium leading to no rele-
vant events along several trajectory frames (one example is
presented in the third snapshot). In the last two snapshots,
instead, a significant collective decrease of the instantaneous

local variations (negative λ̇i) emerges (prevalence of blue do-
main in the fourth snapshot), thus predicting the evolution of
the associated atoms toward more static environments (shown
in the final snapshot). Ultimately, the information on the di-
rectionality of local rearrangements is also highlighted in Fig.
3g: while positive λ̇i values (in orange) mark a vertex evolv-
ing toward a less stable configuration where a missing atom
appears, negative λ̇i (in blue) predict the rearrangement of the
structure toward a stable rosette-like configuration.

For case (ii), we use 502 consecutive frames of 150 ns long
MD simulation of a Cu(210) surface composed of 2304 Cu
atoms (Fig. 4a) sampled every ∆t = 0.3 ns at T = 700 K. Al-
though metals tend to be traditionally considered as hard mat-
ter, it is now well known that their constituent surface atoms
may exhibit a non-trivial dynamics, undergoing rearrange-
ments well below the melting temperature.55,93 Our clustering
procedure applied on τSOAP profiles identifies three main do-
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92.7 ns
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25.8 ns

29.1 ns

t = 26.1 ns t = 26.4 ns

t = 29.4 ns t = 29.7 ns

b

FIG. 4. τSOAP based analysis on a Copper FCC surface, Cu(210), composed of 2304 atoms. (a) MD snapshots of ideal Cu(210) surface (top),
and equilibrated one at T = 700 K (bottom). (b) λi(t) signals and the related KDE for Cu atoms of system in (a). The final k = 3 macro-clusters
identified by KMeans are shown in gray, crimson, and cyan. (c) Exchange probability matrix of the final k = 3 detected macro-clusters. (d)
MD snapshots showing the three main clusters identified in b): crystalline bulk in gray, sub-surface region in crimson, more dynamic surface
atoms in cyan. (e) Domain detection based on λ̇ (t) profiles and the related KDE: the blue domain is associated to the first decile, the orange
cluster is linked to the tenth decile, the white domain is related to all the other deciles. (f) MD snapshots of blue, orange and white domains
(in transparency) related to two different frames. Top: at t = 25.8 ns, the circled portion of the surface exhibits a prevalence of blue domain,
thus predicting stable reconfigurations in the two successive frames (green atoms). Bottom: at t = 29.1 ns, the same circled portion exhibits a
predominance of orange cluster, thus predicting dyanmic reconfigurations in the two successive frames (green atoms).

mains related to Cu atoms exhibiting very competing behav-
iors (Fig. 4b): one dense and more static cluster in gray along
with two less populated but more dynamic domains in red and
cyan. The exchange probability matrix in Fig. 4c points out
that the transient events among diverse domains mainly en-
gage Cu atoms belonging to the red and cyan clusters. Fig. 4d
graphically represents the identified clusters at two explica-
tive time steps, t = 85.8 ns and t = 92.7 ns: not surprisingly,
the gray domain corresponds to the crystalline bulk of the
Cu(210) surface, reasonably detected by our analysis as the
most static with small local environment variations (low λi(t)
values); on the other hand, the surface atoms are identified
as more dynamic clusters, thereby including all λi(t) > 0.07.
However, two sub-surface regions are recognized by KMeans:
in crimson, a domain characterized by 0.07< λi(t)≤0.16, and
in cyan, a cluster with the highest local environment varia-
tions. The two MD snapshots in Fig. 4d show the significant
correspondence between that more static surface region (crim-
son) and more stable surface atomic arrangements with in-
creased coordination (see also supplementary material, Movie

S3).
The Cu(210) domain characterization based on λ̇i confirms

the effectiveness of this analysis in providing some key infor-
mation on the time evolution of the material structure. Fig. 4e
highlights, also in this case, that the average rate of the lo-
cal environment variations is null, i.e., most of the Cu atoms
in Cu(210) show a steady-state behavior of λi(t). In addi-
tion, the cluster representation in Fig. 4f suggests that the
domain with λ̇i ∼ 0 essentially corresponds to the ice crys-
talline bulk (in white). On the other hand, most of the surface
atoms are highly dynamic, and consequentially a balance be-
tween domains with positive (orange) or negative (blue) λ̇i

is established over time. Consistent with the test cases dis-
cussed above, this dynamic balance indicates that any substan-
tial reconfiguration toward more stable/dynamic arrangements
is not occurring. Nevertheless, some cluster details are inter-
esting to be noticed in Fig. 4f: the snapshot on the top, corre-
sponding to t = 25.8 ns, exhibits a portion of the surface with
a clear predominance of atoms evolving toward more static
configurations (in blue); the zoom onto that portion clarifies
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FIG. 5. τ SOAP-based analysis on a lipid bilayer composed of 1152 DPPC lipids at T = 293 K. (a) MD snapshots of DPPC lipid bilayer
(top and lateral views). (b) λi(t) signals and the related KDE for all the phosphate atoms of all lipid molecules in the DPPC bilayer (a), along
the last 500 ns of the MD trajectory. KMeans clustering identifies k = 2 final macro-clusters shown with crimson and cyan. (c) Exchange
probability matrix of the final k = 2 macro-clusters. (d) MD snapshot of the two detected domains (same color code as (b)): gel phase in
crimson, and liquid phase in cyan. (e) Domain detection based on λ̇ (t) profiles and the related KDE: the blue domain is associated to the first
decile; the orange cluster is linked to the tenth decile; the white domain is related to all the other deciles. (f) MD snapshots of blue, orange,
and white domains related to different frames along the trajectory.

its stability in the two successive sampled times (t = 26.1 and
t = 26.4). On the contrary, when the same surface region is
characterized, after some frames, by a prevalence of positive
λ̇i (in orange in the snapshot on the bottom at t = 29.1 ns),
the associated atoms experience an evident rearrangement as
highlighted by the green atoms onto the zoom. Again on this
system, λ̇i was revealed to be useful in predicting the evolu-
tion toward more static/more dynamic configurations.

C. Phases coexistence in soft dynamical systems

As a final test case, we apply our τSOAP-based dynam-
ics domain recognition on a soft system characterized by a
two-phase coexistence, i.e., gel and liquid. Specifically, we
analyze the last 500 ns of 1 µs-long CG-MD simulation of a
DPPC lipid bilayer composed of 1152 self-assembled DPPC
lipids (see Fig. 5a) at T = 293 K, thus considering the last
5001 consecutive frames (∆t = 0.1 ns). Although the gel-to-
liquid transition temperature of a DPPC membrane is at ∼ 315
K, here we investigate the dynamics of the lipid bilayer at a

slightly lower temperature, thereby avoiding addressing the
critical dynamics issues occurring at the transition tempera-
ture.

Our clustering analysis, displayed in Fig. 5b on λi(t) pro-
files and on the related KDE, identifies two main dynamics
domains: one colored in crimson including λi < 2.8; and the
other one in cyan, containing the highest values of τSOAP fin-
gerprints. Fig. 5c reports, instead, the interconversion matrix
between the two clusters. Beyond a small probability ( 3.6 %)
to transient from cyan to red cluster, the lipids manifest rela-
tively high stability to preserve, along the complete trajectory,
a specific local environment variation (λi), typical of each in-
dividual dynamics cluster. The graphical representation of
the lipid bilayer in Fig. 5d suggests a close link between the
dynamics domains and the phase states: the crimson cluster
characterized by small λi is indeed associated to a more static
- gel - phase; while the cyan domain, with higher local envi-
ronment variations, is connected to a more dynamic - liquid -
phase. Although the ability of SOAP to distinguish environ-
ments characterized by diverse structural features is known
53,57, this case demonstrates how τSOAP is able to clearly
detect the nucleation and emergence of distinct dynamic do-
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mains in intrinsically disordered systems, in a very agile and
efficient way. This offers an additional proof of the versatility
and robustness of this descriptor.

The further analysis on λ̇i(t), reported in Fig. 5e, detects a
predominance of λ̇i ∼ 0 (white cluster) along with a balance
between positive (orange) and negative (blue) peaks over time.
We recall indeed that a null time-derivative of λi(t) represents
the behavior of those units exhibiting a constant variation of
their local environment, with some statistical oscillations clas-
sified in the orange and blue domain. Within such a result-
ing scenario, the proposed analysis predicts gel-liquid phases
coexistence in a dynamic equilibrium, as shown in the MD
snapshots in Fig. 5f. In other words, the lipids are not evolv-
ing toward a more static/dynamic configuration, whereas each
remains in its proper dynamics domain.

IV. CONCLUSIONS

Investigating the dynamics of individual units in many
atomic/molecular systems is essential to understand the be-
havior of complex molecular systems, their physical and
chemical properties, collective transitions, as well as to design
next-generation materials and molecular systems with desir-
able dynamical behaviors94. However, because of the com-
plexity of local structural environments along with their dy-
namics in such systems, a general approach is still lacking.
Although faithful representations of atomic neighborhood en-
vironments - such as the SOAP descriptor - are available and
widely employed, here we want to draw attention to the time
evolution of these structures, which is typically overlooked in
molecular motif recognition procedures.

In this work, we propose an alternative perspective allow-
ing us to track the dynamical changes in atomic structural en-
vironments of the interacting sub-units, thus enhancing the
detection of dynamics domains and emerging phenomena.
Building upon the SOAP descriptor, we implement τSOAP,
a new fingerprint that quantifies the variations of local SOAP
environments surrounding each constituent unit along its MD
trajectory. τSOAP, indeed, retains the time information from
the high-dimensional SOAP vectors, thereby aiming at em-
phasizing the importance of consequential events for recon-
structing dynamics and detecting rare fluctuations. Coupled
to an ML-based analysis, we demonstrate the potentiality of
such an approach to identify domains with different struc-
tural and dynamical behaviors. Ranging from an ice/liquid
water system where solid-like and fluid-like domains coex-
ist in a dynamic equilibrium, to solid-like materials, and soft
matter presenting gel and liquid coexisting phases, we prove
that our analysis reliably addresses phase transitions, rare dy-
namic events, and coexisting phases. Moreover, by estimat-
ing the first time derivative of τSOAP signal, we gain further
information on the direction of the local structural changes.
Indeed, besides detecting local rearrangements, the first time-
derivative of τSOAP enables the characterization of their evo-
lution toward either highly or weakly dynamic environments.
Finally, we can envisage that descriptors like τSOAP, and its
first time derivative, may be also interesting in enhanced sam-

pling methods, where they can offer degrees of freedom along
which accelerating systems’ variations/transitions.

Nonetheless, τSOAP-based investigation presents some
limitations. Although τSOAP signal tracks the evolution of
each constituent unit along the whole MD trajectory, thus pro-
viding time history data, the coupled ML-based approach re-
lies on the instantaneous values of local environment changes,
without performing a time-series clustering for identifying
dynamics domains. Importantly, time-series clustering and
classification based on the frequency/duration of local envi-
ronment variations could have a striking advantage in dis-
criminating fluctuations leading up to significant structural
changes in the system. Notably, by including in our ML-based
framework the first time derivative of τSOAP we start provid-
ing some further insights on predicting the evolution of local
changes, and specifically how selected environments recon-
struct or evolve in time. In summary, our approach turned
out to be robust and versatile to capture fluctuating environ-
ments from SOAP spectra in a variety of systems by means of
a completely agnostic and data-driven analysis.

SUPPLEMENTARY MATERIAL

The supplementary material contains details about: the
length of MD simulation trajectories and SOAP vectors pa-
rameters; the Elbow Curve Method profiles for the identifica-
tion of the optimal number of final clusters; KMeans cluster-
ing analysis on the τSOAP data starting from K = 10 clus-
ters with their relative transition probabilities and the asso-
ciated dendrograms; SOAP+PCA based analyses related to
TIP4P/ICE ice/liquid water system; SOAP+tICA based anal-
yses related to TIP4P/ICE ice/liquid water system.
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