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Trapdoor proof of work
Vittorio Capocasale

Polytechnic Institute of Turin, Turin, Italy

ABSTRACT
Consensus algorithms play a crucial role in facilitating decision-making among a
group of entities. In certain scenarios, some entities may attempt to hinder the
consensus process, necessitating the use of Byzantine fault-tolerant consensus
algorithms. Conversely, in scenarios where entities trust each other, more efficient
crash fault-tolerant consensus algorithms can be employed. This study proposes an
efficient consensus algorithm for an intermediate scenario that is both frequent and
underexplored, involving a combination of non-trusting entities and a trusted entity.
In particular, this study introduces a novel mining algorithm, based on chameleon
hash functions, for the Nakamoto consensus. The resulting algorithm enables the
trusted entity to generate tens of thousands blocks per second even on devices with
low energy consumption, like personal laptops. This algorithm holds promise for use
in centralized systems that require temporary decentralization, such as the creation of
central bank digital currencies where service availability is of utmost importance.

Subjects Algorithms and Analysis of Algorithms, Cryptography, Distributed and Parallel
Computing, Cryptocurrency, Blockchain
Keywords Blockchain, Nakamoto consensus, Proof of work, Chameleon hash function

INTRODUCTION
Peer-to-peer protocols, such as the blockchain (Nakamoto, 2008) and the
interplanetary file system (Capocasale, Musso & Perboli, 2022), constitute the core
technologies of the Web 3.0 revolution (Alabdulwahhab, 2018). By leveraging
blockchain technology, a group of peers can manage a tamper-resistant and
decentralized ledger, ensuring transparent and secure data sharing (Hellani et al., 2021).
These properties are particularly valuable for decision-makers, as fairness and
optimality are common requirements in decision processes (Aringhieri et al., 2022;
Diglio et al., 2021; Sale et al., 2018), making blockchain applicable in various sectors
(Elia et al., 2022; Khan & Anjum, 2022; Hasan et al., 2022). However, according to the
scalability trilemma conjecture, a blockchain cannot simultaneously achieve security,
decentralization, and scalability (Perboli, Musso & Rosano, 2018). The intuitive reason
for such a constraint lies in the fact that each peer in a blockchain network does not
trust the others, keeps a full copy of the ledger, and autonomously verifies each
transaction. Thus, instead of distributing workloads, blockchain systems replicate them
on each peer.

Consensus algorithms play a fundamental role in blockchain systems by enabling the
replication of the ledger’s state across multiple peers (Antoniadis et al., 2018). Consensus
algorithms are one of the main causes of the scalability trilemma (Altarawneh et al., 2020),
as the replication process involves dealing with various variables, such as network delays
and the presence of selfish or malicious peers.
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In general, consensus algorithms can efficiently guarantee state synchronization in the
presence of crashing peers (Crash Fault-Tolerant (CFT) consensus algorithms). However,
when malicious peers need to be taken into account more resilient algorithms must be used
(Byzantine Fault-Tolerant (BFT) consensus algorithms). However, such algorithms
sacrifice efficiency for robustness (Du et al., 2017; Capocasale, Gotta & Perboli, 2023).
Consequently, in environments with high-efficiency requirements, only CFT algorithms
are viable (Gatteschi et al., 2018).

In a decentralized scenario, it is not possible to guarantee the absence of malicious peers.
As a result, numerous studies in the literature have attempted to improve the efficiency of
existing BFT consensus algorithms (Pass & Shi, 2017; Wu, Song & Wang, 2020; Xu et al.,
2019; Zhou, Hua & Jin, 2020; Abuidris et al., 2021; Liu, Tan & Zhuo, 2022).

However, in certain scenarios, systems consist of both honest parties and potentially
malicious peers. In such situations, CFT algorithms are unsuitable as they cannot tolerate
malicious peers. Conversely, BFT algorithms sacrifice efficiency unnecessarily by
protecting the system from honest parties. Therefore, even efficient BFT algorithms are
sub-optimal. We propose a CFT consensus algorithm that allows peers to delegate
decisions to honest parties and switches to BFT when honest parties crash. This dynamic
approach ensures efficiency is only sacrificed when necessary without compromising the
security of the system.

Given that the existing literature does not consider the possibility of an algorithm that
dynamically and automatically switches between CFT and BFT, and that hybrid
approaches between CFT and BFT algorithms have not been explored, we offer the
following contributions:

� We introduce Trapdoor Proof of Work (TPoW), which combines Proof of Work (PoW)
(Nakamoto, 2008) and chameleon hash functions (Ateniese et al., 2017). TPoW is a
mining algorithm that can replace PoW in Nakamoto consensus protocols, allowing a
group of entities to make decisions efficiently by relying on a trusted party: the trusted
party can quickly solve the TPoW challenge and exploit a trapdoor to minimize energy
waste. Moreover, when the trusted party cannot participate in the consensus, the
remaining entities can still make decisions by relying on a fully decentralized but less
efficient protocol.

� We conduct the first experimental validation of TPoW-based Nakamoto consensus.

� We describe potential applications of TPoW-based Nakamoto consensus.

The remaining part of this article is structured as follows: “Background” introduces the
main concepts related to blockchain, consensus algorithms, and chameleon hash
functions; “Trapdoor Proof of Work” describes TPoW; “Protocol Analysis” analyzes
TPoW; “Experimental Validation and Discussion” presents the experimental validation of
TPoW and the related discussion; “Conclusion” concludes the article.
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BACKGROUND
This section provides a brief overview of the main concepts relevant to this study.
Additionally, it introduces the problem under investigation and summarizes the key
solutions proposed in the literature.

Chameleon hash functions
A chameleon hash function is a cryptographic hash function that incorporates a trapdoor,
allowing for the discovery of arbitrary collisions (Krawczyk & Rabin, 1998). Without
knowledge of the trapdoor, chameleon hash functions are equivalent to regular
cryptographic hash functions (Khalili, Dakhilalian & Susilo, 2020). This study utilizes
private-coin chameleon hash functions (Ateniese et al., 2017). A private-coin chameleon
hash function consists of the following algorithms (Ateniese et al., 2017):

� ðhk; tkÞ  CHGenð1jÞ is a probabilistic algorithm that generates the hash key (hk) and
the trapdoor key (tk).

� ðh; nÞ  CHashðhk;m; rÞ is a probabilistic algorithm that hashes the message m using
private-coin randomness r 2 Rhash. CHASH produces the chameleon hash (h) and the
check value (n).

� d  CHVerðhk; h;m; nÞ is a deterministic algorithm that outputs true if the hash h
with the check value n is a valid chameleon hash for the messagem. CHVER returns false
otherwise.

� n0  CHColðtk; ðh;m; nÞ;m0Þ is a probabilistic algorithm that enables the discovery of
hash collisions. Specifically, given a message m0 and a valid tuple ðh;m; nÞ, CHCOL

outputs n0 such that ðh;m0; n0Þ remains a valid tuple. In other words,

CHVerðhk; h;m0; n0Þ returns true.

Blockchain
A blockchain is a distributed ledger managed by a group of peers, where data is organized
into blocks. Each block consists of a body that contains ledger entries (transactions) and a
header that contains metadata (Nakamoto, 2008). Notably, a block’s header includes the
hash of the previous block’s header.

In this study, the notation for blocks is as follows:

B :¼ ðsB; xB; hB; nBÞ;
where sB 2 0; 1j represents the cryptographic hash of the previous block, xB 2 0; 1�

denotes the list of transactions included in the current block (i.e., the body), and hB and nB
denote the chameleon hash of the block and its check value. Figure 1 visually illustrates the
blockchain structure employed in this study.

It is worth noting that, within the context of this study, the term centralized is the
opposite of decentralized, not distributed. A system is considered distributed if it consists of
physically separated modules, while it is deemed decentralized if it is managed by multiple
entities (Capocasale, Gotta & Perboli, 2023).
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Consensus algorithms
A consensus algorithm is a protocol that enables a set of nodes to reach a mutual
agreement on a decision, where all possible outcomes of the decision are equally beneficial.
In a typical scenario, the nodes are geographically dispersed and can only communicate
through message exchange. However, messages may experience delays, loss, or arrive out
of order. In extreme cases, certain nodes may even send misleading messages to hinder the
establishment of a common agreement. The objective of a consensus algorithm is to ensure
that the non-faulty nodes reach the same decision. Therefore, consensus algorithms must
consider a fault-tolerance model and a network model.

In terms of the fault-tolerance model, consensus algorithms that tolerate the failure of
some nodes are referred to as Crash Fault-Tolerant (CFT) algorithms. Those that can also
handle the presence of malicious nodes are known as Byzantine Fault-Tolerant (BFT)
algorithms (Baliga, 2017).

Regarding the network model, consensus algorithms assume the existence of an
invisible adversary who controls network delays, including message ordering.

� Synchronous model: Messages experience delays of at most a finite and known D.

� Asynchronous model: Messages experience delays of at most a finite but unknown D.

� Partially-synchronous model: The invisible adversary triggers a Global Stabilization
Time (GST) event at an unknown moment. The network operates asynchronously
before GST (during a transitory phase) and synchronously after GST (during the normal
phase).

Consensus algorithms possess two fundamental properties (Baliga, 2017).

� Safety: All (honest) participants reach the same decision.

� Liveness: A decision is reached within a finite amount of time.

Figure 1 Structure of a TPoW blockchain. Each block stores the cryptographic hash of its predecessor,
preserving immutability. However, the nodes utilize the chameleon hash of the block for mining.

Full-size DOI: 10.7717/peerj-cs.1815/fig-1
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Proof of Work (PoW) (Back, 2002) is a protocol designed to prevent denial-of-service
attacks. It was later adapted as a Sybil protection technique for Nakamoto consensus
(Nakamoto, 2008). PoW involves a computationally intensive challenge that can only be
solved through brute-force computation. In the context of blockchain, a block can be
added to the chain if the hash of its header falls within a predefined threshold. Specifically,
a valid block can be generated by iteratively modifying a portion of the header known as
the nonce.

When multiple peers solve the challenge almost simultaneously, they may add different
blocks to their respective chains. This situation leads to a fork, where multiple branches
coexist. As one branch grows longer than the others, peers switch to it. A branch can
outgrow others in the same period only if more peers support it. Thus, this protocol
incorporates a majority-based voting scheme, enabling peers to reach a consensus. This
consensus algorithm is known as Nakamoto consensus and combines PoW with the
longest chain rule. In the context of Nakamoto consensus, safety and liveness are defined
by the following properties (Pass, Seeman & Shelat, 2017).

� Consistency: The chains of two honest peers can differ only in the last T blocks with
overwhelming probability in T.

� Future self-consistence: At any two points r and s, the chains of any honest player at r
and s differ only within the last T blocks with overwhelming probability in T.

� g-chain growth: At any point in the execution, the chain of honest players grows by at
least T transactions in the last T

g rounds with overwhelming probability in T.

� l-chain quality: at least l of any T consecutive transactions in any chain held by some
honest player were submitted by honest players with overwhelming probability in T.

Erd}os–rényi random graphs
In the field of graph theory, a graph is considered connected if there exists a path between
any two nodes. An Erdős–Rényi random graph, denoted as Gðn; pÞ, is an undirected graph
with n nodes, where each edge has a probability p of being present. An Erdős–Rényi
random graph is said to be almost surely connected for some e. 0 if the following
condition holds (Erdős & Rényi, 1960):

p.
ð1þ eÞ ln n

n
: (1)

Problem statement
Currently, consensus algorithms can be used in the following scenarios: if there are no
malicious peers, both Crash Fault-Tolerant (CFT) and Byzantine Fault-Tolerant (BFT)
algorithms are applicable. However, CFT algorithms tend to be more efficient. If peers are
potentially malicious, only BFT algorithms can be used, but they sacrifice efficiency for
robustness.

Capocasale (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1815 5/20

http://dx.doi.org/10.7717/peerj-cs.1815
https://peerj.com/computer-science/


However, real-world applications may present scenarios that fall in between. These
scenarios involve a mix of trustworthy parties and potentially malicious peers within the
system. Therefore, the problem under consideration is finding consensus within a group of
nodes that includes both peers, which are nodes that may try to disrupt the consensus
process, and trusted parties, which we define as nodes that are guaranteed to follow the
consensus protocol’s rules and do not indulge in selfish, colluding, or disruptive behaviors.
For instance, parties with economic, regulatory, or reputation-driven interests might be
considered trustworthy. CFT algorithms are not suitable for solving this problem since
they cannot tolerate malicious peers. On the other hand, BFT algorithms sacrifice
efficiency unnecessarily because they protect the system from trusted parties that would
never behave maliciously. Therefore, even efficient BFT algorithms are suboptimal. To
address this, we have designed a CFT consensus algorithm that allows peers to delegate
decisions to trusted parties and automatically switches to a BFT algorithm when those
trusted parties are offline. This dynamic approach ensures efficiency is sacrificed only
when necessary, without compromising the security of the system. We believe such an
approach could find adoption in centralized systems that need to transition to a
decentralized state for short periods.

Related work
The main ideas behind this study draw from Proof of Work (PoW) (Back, 2002) and
private-coin chameleon hash functions (Ateniese et al., 2017). The combination of
blockchain and chameleon hash functions was proposed in Ref. (Ateniese et al., 2017) and
further explored in various studies (Ashritha, Sindhu & Lakshmy, 2019;Huang et al., 2020;
Precht & Marx Gómez, 2020; Wu, Ke & Du, 2021; Jia et al., 2022). However, the proposed
solution aimed to create a redactable blockchain rather than a consensus algorithm.

Nakamoto consensus has high energy consumption (Mardiansyah & Sari, 2021), which
pushed several authors to propose modifications to reduce it. Proof of Elapsed Time
(PoET) (Chen et al., 2017) utilizes hardware components to guarantee Byzantine fault
tolerance. However, the security of such components has been questioned (Schwarz,
Weiser & Gruss, 2019). Proof of Stake (PoS) algorithms (e.g., Ouroboros (Kiayias et al.,
2017)) assume that nodes are rational agents acting to maximize their economic return.
Therefore, PoS algorithms are not usable without a cryptocurrency with real economic
value. Some authors have proposed combining multiple mining algorithms. Proof of
Contribution (Xue et al., 2018) is an example of such an approach, which combines PoW
and PoS.

Modifications to the longest chain rule have also been explored. IOTA (Popov, 2018)
utilizes a directed acyclic graph (DAG) instead of a linear sequence of blocks to represent
the ledger. The Tangle 2.0 Leaderless Nakamoto Consensus (Müller et al., 2022) employs
the heaviest DAG rule and a stake- or reputation-based weight function to reach an
agreement.

Liu et al. (2016) introduces XPaxos, the first Cross Fault Tolerance (XFT) consensus
algorithm. XFT algorithms offer stronger consistency and availability guarantees than CFT
algorithms. Moreover, XFT algorithms provide stronger availability guarantees than BFT
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algorithms. However, XFT algorithms are applicable only when Byzantine nodes are not
coordinated.

Hybrid consensus algorithms, where existing BFT protocols are combined to offer
different compromises between efficiency and decentralization, have been explored in
many studies (Pass & Shi, 2017;Wu, Song &Wang, 2020; Xu et al., 2019; Zhou, Hua & Jin,
2020; Abuidris et al., 2021; Liu, Tan & Zhuo, 2022). However, none of these proposals
specifically focuses on a consensus algorithm that dynamically and automatically switches
between CFT and BFT protocols. This study addresses that gap by describing the general
idea and providing possible applications. Table 1 provides a summary of the literature.

TRAPDOOR PROOF OF WORK
This section provides an overview of Trapdoor Proof of Work (TPoW).

Protocol overview
TPoW is based on the original Proof of Work (PoW) implementation introduced by
Bitcoin (Lánskỳ, 2017). However, in TPoW, the pre-image challenge is built upon
chameleon hash functions instead of cryptographic hash functions.

Our protocol uses a cryptographic hash function to establish the linkage between each
block and its predecessor, while a chameleon hash function is employed for the PoW
computation (Fig. 1). The security and resilience of TPoW heavily rely on the strength of
the underlying chameleon hash functions. It’s important to note that certain
implementations of chameleon hash functions have encountered key-exposure issues
(Ateniese &Medeiros, 2004). However, for the purpose of this study, theoretical chameleon
hash functions are assumed to exist.

Table 1 Contextualization of this study within the existing literature.

Algorithm Key ideas Advantages Disadvantages

Proof of work
(Nakamoto)

Permissionless (no identities), eventual safety Secure, scalable Not efficient, energy-hungry

Proof of elapsed time
(Nakamoto)

Usage of trusted computing devices Low energy consumption Vulnerabilities in trusted computing
components

Proof of stake
(Nakamoto)

Game theory, rational agents Energy savings, improved
efficiency

Requires currency

Proof of contribution
(Nakamoto)

PoW + PoS Inherited from PoW and PoS Inherited from PoW and PoS

Leaderless Nakamoto
consensus

No leader election, optimisitc and concurrent
block creation

Extension to DAG Requires currency or reputation

xPaxos All-mighty adversaries are unlikely Consistency and availability
guarantees

Cannot tolerate all-mighty
adversaries

Hybrid algorithms Two BFT algorithms combined Compromises between the original
algorithms

Compromises between the original
algorithms

This study (Nakamoto) Trusted parties are common Enhanced efficiency, potential
energy savings

Trusted party needed to have
advantages
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In TPoW, a block is considered valid if its chameleon hash is sufficiently close to a
predetermined value, which corresponds to the chameleon hash of the genesis block. The
nodes within the network can approach the pre-image challenge through two methods
(Fig. 2): brute-force computation or by utilizing the trapdoor knowledge. The brute-force
method involves an inefficient trial-and-error approach, whereas the trapdoor method
enables an efficient and direct computation. Consequently, any node possessing the
trapdoor can effectively solve the TPoW challenge almost instantaneously. However, for
nodes without the trapdoor knowledge, the challenge remains as difficult as the original
PoW.

Algorithms 1–4 summarize the primary steps involved in the TPoW protocol.

Safety and liveness
We provide simple proof of the safety and liveness of TPoW by leveraging well-known
PoW-related results. The following theorem is proven in a previous work (Pass, Seeman &
Shelat, 2017).
Theorem 1. “Assume q, 1

2. Then for every n, D, there exists some sufficiently small

p0 ¼ � 1
Dn

� �
such that Nakamoto’s protocol with mining parameter p � p0 satisfies

consistency, future self consistency, 1� q
1�q‒chain quality, and pn

2 ‒growth”.
In particular, let q represent the fraction of computational power controlled by

malicious nodes, n denote the total number of nodes, D be the time delay parameter
defining the network model, and p0 indicate the mining hardness parameter, which
represents the probability of finding a valid nonce in a single attempt.

Figure 2 A flowchart describing the generation of a block through the TPoW protocol.
Full-size DOI: 10.7717/peerj-cs.1815/fig-2
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From a practical perspective, the theorem establishes the consistency and liveness
properties of the Nakamoto consensus if the computational power controlled by malicious
nodes is less than half of the total computational power of the network.

We can prove the following corollary:
Corollary 1. Assuming q, 1

2 and the existence of a Nakamoto protocol with a mining
parameter p satisfying Theorem 1, there exists a TPoW-based Nakamoto protocol with a
mining parameter p satisfying Theorem 1.

Proof. We begin with a Nakamoto protocol that satisfies Theorem 1. We replace the
cryptographic hash function used in PoW with a chameleon hash function that has the
same mining parameter. The trapdoor knowledge is not provided to any of the peers.
Under these conditions, cryptographic hash functions and chameleon hash functions are
equivalent by definition (Khalili, Dakhilalian & Susilo, 2020). Therefore, the modified
protocol still satisfies Theorem 1. Next, we introduce a trusted party into the system and
provide the trapdoor knowledge exclusively to this trusted party. Since the trusted party is

Algorithm 1 Genesis generation algorithm.

1: function GENESISðj;DÞ ▹ GENESIS receives the security parameter (κ) and the difficulty paremeter (D)

2: ðhk; tkÞ  CHGEN(1κ) ▹Generation of the chameleon hash keys

3: sT  0 ▹ The hash of the previous block is zero by convention

4: xT  ðhk;D; jÞ▹ For simplicity, the TPoW difficulty (D), hk, and κ are published in the body of the
genesis

5: mT  HASH ðsT ; xTÞ ▹ HASH is a cryptographic hash function

6: rT  RNDEXTRACT() ▹ Private randomness rT is randomly extracted from its domain

7: ðhT ; nTÞ  CHASHðhk;mT ; rTÞ ▹ Generation of the chameleon hash and the check value of the
genesis

8: T  ðsT ; xT ; hT ; nTÞ ▹ Generation of the genesis block

9: return T

10: end function

Algorithm 2 Block validity verification algorithm.

1: function VERIFY(A, B, T) ▹ VERIFY receives the current chain head (A), the block to append to it (B), and the genesis (T)

2: mA  HASHðA:s;A:xÞ ▹ The cryptographic hash of the current chain head

3: mB  HASHðB:s;B:xÞ ▹ The cryptographic hash of the new block

4: p1  EQUALðB:s;mAÞ ▹ A valid block contains the cryptographic hash of its predecessor

5: p2  CHVERðhk;B:h;mB; B:nÞ ▹A valid block must have a valid chameleon hash

6: p3  DIFFðT:h;B:hÞ 2j , 2j
D▹ The chameleon hash of a valid block must be close enough to the chameleon hash of the genesis. Diff performs

the binary subtraction between T.h and B.h and converts the result into an integer. D and κ can be retrieved from the genesis block

7: return p1 AND p2 AND p3 ▹ A valid block satisfies all the previous conditions

8: end function
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honest by definition, we are only increasing the mining power of the honest peers. Thus,
the assumption q, 1

2 is not violated, and the protocol continues to satisfy Theorem 1.
Moreover, the protocol we have constructed is precisely a TPoW-based Nakamoto
consensus. Therefore, the thesis is proven by construction.

PROTOCOL ANALYSIS
The analysis of TPoW covers various aspects, taking into account a conservative uptime
ratio of 90% for the trusted party. It is worth noting that typical production systems
achieve even higher uptime ratios of 99% or more (Cérin et al., 2014). However, in markets
with high volatility or applications with critical missions, even brief periods of service
downtime can have severe consequences, as discussed in “Possible Applications”.

Algorithm 3 Slow block mining algorithm (it does not require knowledge of tk).

1: function MINE _SLOW(A, T) ▹ MINE _SLOW receives the current chain head (A) and the genesis (T)

2: xB  FILL_TRANSACTIONS() ▹ FILL_TRANSACTION() includes some transactions in the block

3: mA  HASHðA:s;A:xÞ ▹ The cryptographic hash of A

4: mB  HASHðmA; xBÞ ▹ The cryptographic hash of B

5: repeat

6: rB  RNDEXTRACTðÞ ▹ The private randomness rB is randomly extracted from its domain

7: ðhB; nBÞ  CHASHðhk;mB; rBÞ ▹ The chameleon hash is computed with the current
randomness

8: B ðmA; xB; hB; nBÞ ▹ The candidate block B is
generated}

9: until VERIFYðA; B;TÞ ▹The validity of B must be checked

10: return B

11: end Function

Algorithm 4 Fast block mining algorithm (it requires knowledge of tk)

1: functionMINE _FAST(A, T, tk) ▹ MINE _FAST receives the current chain head (A), the genesis (T), and
tk

2: xB  FILL_TRANSACTIONS () ▹ FILL_TRANSACTION includes some transactions in the block

3: mA  HASHðA:s;A:xÞ ▹ The cryptographic hash of A

4: mB  HASHðmA; xBÞ ▹ The cryptographic hash of B

5: mT  HASHðT:s;T:xÞ ▹ The cryptographic hash of T

6: nB  CHCOLðtk; ðT:h;mT ;T:nÞ;mBÞ ▹ Hash collision: ðT:h;mT ;T:nÞ and ðT:h;mB; nBÞ are both
valid tuples

7: B ðmA; xB;T:h; nBÞ ▹ A valid block is
generated

8: return B

9: end function

Capocasale (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1815 10/20

http://dx.doi.org/10.7717/peerj-cs.1815
https://peerj.com/computer-science/


Immutability
As depicted in Fig. 1, TPoW blocks are linked using a cryptographic hash function.
Therefore, past blocks cannot be modified without altering all subsequent blocks.
However, the chameleon hash and the check value can be changed as long as Algorithm 2
returns true. This flexibility is not problematic because the chameleon hash and the check
value do not impact the ledger’s state or the chain of hashes. Nonetheless, storing the
chameleon hash and the check value in the following block can prevent their alteration.

Finality
Even though the chain is immutable, forks can still occur. When the trusted party is online,
transaction consolidation is guaranteed after a single block if the difficulty parameter is
appropriately configured. In fact, the trusted party can publish blocks faster than the
combined peers and should have no incentive to fork the system. When the trusted party is
offline, the TPoW-based Nakamoto consensus has the same level of finality as the PoW-
based consensus. The blocks generated by the trusted party are identifiable since they have
the same chameleon hash as the genesis block. Thus, peers are aware of the number of
block confirmations necessary to finalize a given transaction.

Message complexity
If the identity of the trusted party is public, each peer can directly query the trusted party to
obtain the latest block. In the absence of the trusted party, each peer should query other
peers and rely on the longest chain among the responses received. If the network is
connected, querying a single honest peer is sufficient to receive the longest chain since such
a chain is formed by the honest majority. Hence, we model the network as an Erdős Rényi
random graph Gðn; pÞwhere each node queries k other peers. Additionally, we assume that
q out of the n nodes are faulty. Only edges connecting honest peers need to be considered
since faulty nodes may never respond to queries. Thus, G is almost surely connected if:

k
n

n� q
n

� �2
.
ð1þ eÞ ln n

n
: (2)

For instance, if n ¼ 106 and q ¼ n
3, the honest nodes should randomly query k ¼ 32

other peers to obtain the longest chain.
Therefore, the message complexity of the TPoW-based Nakamoto consensus is OðknÞ.

Specifically, k ¼ 1 when peers query the trusted party directly, and k ¼ 32 when peers
query each other. Taking into account the assumed uptime ratio of the trusted party, the
average value for k is 4. By comparison, under normal conditions, the message complexity
is OðnÞ for Raft (Ongaro & Ousterhout, 2019), Oðn2Þ for PBFT (Castro & Liskov, 1999),
OðknÞwith k ¼ 32 for PoW-based Nakamoto consensus (as per the previous analysis), and
OðknÞ for Avalanche (where k ¼ 20 is currently used) (Rocket et al., 2019).

Energy efficiency
TPoW could result in energy savings since the trusted party generates most of the blocks
most of the time. For example, finding a 256-bit hash collision on a personal laptop takes
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about 165� 5 microseconds1. In contrast, the thousands of miners in the Bitcoin network
require approximately 10 minutes to find a 46-bits hash collision, according to current
statistics (Blockchain.Com, 2022). Therefore, attempting to solve the TPoW challenge is
not advantageous for peers when the trusted party is online. Instead, the optimal strategy
for peers is to wait for some time before addressing the TPoW challenge. This waiting
period can be estimated based on the average chain growth rate. As a result, energy is only
wasted when the trusted party is offline, potentially leading to energy savings.

Horizontal scaling
Since no single peer is likely to solve the PoW challenge two or more times consecutively,
PoW does not allow for parallel block production. In contrast, TPoW enables horizontal
scaling as the trusted party can optimistically create blocks in parallel and chain them
afterward. The only limitation lies in the possible read/write conflicts among different
transactions. Transactions can declare their read/write sets to overcome these limitations,
and a parallel scheduler can order them. Hyperledger Sawtooth (Olson et al., 2018) adopts
this approach.

Properties
Based on the previous discussion, the TPoW protocol possesses several features:

� It does not rely on public key infrastructure or assumptions regarding clock
synchronization.

� It is efficient since the trusted party can leverage the trapdoor to quickly solve the TPoW
challenge without wasting energy.

� It is resilient as it does not depend on the active participation of the trusted party. The
TPoW challenge remains solvable even without knowledge of the trapdoor. In such
cases, TPoW behaves like a standard PoW.

� It is dynamic and automatic, with each node operating independently of others. The
presence of the trusted party does not need to be notified to peers to take advantage of
improved efficiency, and no action is required when the trusted party ceases to
participate in the protocol. The transition between BFT and CFT is automatic,
unnoticeable, and does not introduce additional risks.

� The trusted party has complete control over the blockchain. The trusted party can solve
the TPoW challenge faster than all other parties combined. Consequently, the trusted
party can fork the system at any time by producing a branch longer than the currently
active one (similar to a 51% attack). However, the trusted party is honest by definition
and should only fork the system in exceptional situations such as stolen assets. To
prevent deep forks, finality gadgets could be added to the TPoW protocol (Buterin &
Griffith, 2017).

EXPERIMENTAL VALIDATION AND DISCUSSION
This section describes and discusses the experimental tests performed to validate some of
the theoretical results obtained in “Protocol Analysis”.

1 Laptop model: Acer Nitro AN515-44.
The test was performed using the
implementation provided in Ref.
(Willems, 2020).
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Test description
We created a TPoW simulation based on the implementation of chameleon hash functions
provided in Ref. (Willems, 2020). We measured the number of blocks mined by a varying
number of processes in two minutes. All processes pushed the blocks to a shared data
structure protected by a mutex. A process could be a peer or a trusted party. The difference
between the two lies in the fact that peers are not aware of the trapdoor and cannot
efficiently find collisions, whereas trusted parties can. We examined the behavior of TPoW
both when a trusted party was online and when it was not. We also examined the behavior
of TPoW for different values of the difficulty parameter. We conducted the tests on an
Acer Nitro AN515-44 laptop and used the Go programming language version 1.16.

Discussion
The results of the tests are summarized in Fig. 3 and confirm the theoretical analysis of
TPoW. Figure 3A shows the behavior of TPoW when no trusted party is online. As
expected, increasing the number of peers also increases the number of mined blocks if the
difficulty is kept constant, in conformity with PoW. Moreover, when the difficulty
parameter increases from 28 to 216 and the number of peers is kept constant, the number of
mined blocks decreases by approximately a factor of 28. This indicates that when no
trusted party is online, TPoW behaves similarly to PoW, and the difficulty parameter can
be adjusted to suit the network size, for example, to meet a target block period, as in the
case of Bitcoin.

Conversely, when the trusted party is online (Fig. 3B), the difficulty parameter does not
affect the mining process. The lines representing the number of mined blocks by the

(a) No trusted party. (b) Trusted party.

(c) Lower difficulty. (d) Higher difficulty.

Figure 3 Performance evaluation of the TPoW-based Nakamoto consensus.
Full-size DOI: 10.7717/peerj-cs.1815/fig-3
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trusted party with different difficulties overlap almost perfectly, suggesting that the trusted
party can mine blocks at a high rate regardless of the difficulty. This result confirms that
TPoW is energy-efficient when the trusted party is online, and the trusted party can
generate more blocks than all the combined peers (as depicted in Figs. 3C and 3D).

An unexpected finding during the tests was that the number of mined blocks decreased
as the number of peers increased. This behavior was attributed to the current testing
strategy, which involves a shared data structure protected by a mutex. The acquisition of
the mutex likely becomes more time-consuming as the number of contenders increases,
causing a slowdown for the trusted party. Thus, improving the testing strategy could lead
to obtaining the expected behavior.

Figure 4 shows a comparison of the blocks mined by a single node, either a TPoW peer,
a TPoW trusted party, or a PoW peer. Depending on the difficulty, the TPoW trusted party
can outperform a PoW peer by several orders of magnitude. Upon comparing the two
types of peers, it is evident that the TPoW peer produces fewer blocks, possibly due to the
complexity of computing chameleon hashes. However, in real-world scenarios, this does
not translate to a performance loss but rather to the use of simpler challenges. In fact, the
difficulty parameter is usually tuned to obtain a target block period, which must be as short
as possible but also much longer than the block propagation time to guarantee safety (Pass,
Seeman & Shelat, 2017). This restriction does not apply to the trusted party, which is
assumed to be honest and should produce blocks at the highest rate possible. The results of
this test further confirm that TPoW behaves like PoW when the trusted party is offline.

Possible applications
TPoW could simplify network management in certain use cases. We believe that TPoW
could find adoption in systems that need to become decentralized for short periods. We
propose two scenarios: enhanced availability and gradual decentralization. However, other
scenarios are likely to emerge in the future.

Service availability is a key factor in mission-critical or financial applications. For
example, periods of market volatility are characterized by the sudden generation of high

Figure 4 Comparison between TPoW and PoW. Full-size DOI: 10.7717/peerj-cs.1815/fig-4

Capocasale (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1815 14/20

http://dx.doi.org/10.7717/peerj-cs.1815/fig-4
http://dx.doi.org/10.7717/peerj-cs.1815
https://peerj.com/computer-science/


volumes of transactions, particularly when investors use automated trading tools
(Attanasio et al., 2019). However, centralized exchanges cannot process such a high
volume of transactions as they usually handle much lower volumes, leading to their
services going offline. Consequently, investors are unable to submit transactions when they
need to. One such situation occurred in May 2021, with investors losing millions of U.S.
dollars in a cryptocurrency market crash (Kowsmann & Ostroff, 2021).

If a user relies on the services of a centralized exchange, they must trust the company
managing it. Thus, TPoW could be exploited by centralized exchanges to decentralize their
architecture when their systems are overwhelmed by users’ requests. Such an approach
would safeguard the availability of their services. Similarly, TPoW could enable the
development of resilient central bank digital currencies (CBDCs) (Benedetti et al., 2022):
users would be able to transact even when the trusted central bank is offline.

In recent years, smart contracts (Capocasale & Perboli, 2022) have created the
opportunity to transform centralized services into decentralized ones (Hribernik et al.,
2020; Serrano, 2022). However, such transformations are often experimental, as
decentralized paradigms are not yet well-established. To mitigate decentralization
uncertainty, projects like Olympus DAO (decentralized autonomous organization) (Chitra
et al., 2022) are defined as futuristic or as Ponzi schemes (Thurman, 2021). In response to
this, the Polkadot (Burdges et al., 2020) ecosystem launched Kusama (Burdges et al., 2020).
Kusama is an experimental network with real economic incentives and a current market
capitalization of around 300 million V. IOTA (Popov, 2018) was launched in 2016 as a
temporary centralized protocol but has not yet switched to a decentralized one, as many
features are still under development.

The aforementioned real-world examples demonstrate the importance and difficulties
of migrating from well-established centralized solutions to experimental and decentralized
ones. TPoW would allow for a smooth transition from a centralized to a decentralized
system through a gradual approach: the system’s managers could monitor the impact of
the decentralized features by not participating in the consensus and could regain control of
the system in case any issues arise by leveraging their trapdoor knowledge.

CONCLUSION
This article introduced Trapdoor Proof of Work (TPoW), a mining algorithm that
combines Proof of Work (PoW) and chameleon hash functions. By leveraging the
knowledge of the trapdoor, trustworthy peers can efficiently generate blocks. From the
perspective of potentially malicious peers, TPoW is as hard as the original PoW. Thus,
TPoW enables fast probabilistic finality, low message complexity, horizontal scaling, and
energy savings when the trusted party is online.

TPoW is applicable in systems composed of a trustworthy party and potentially
malicious peers. TPoW-based consensus dynamically and automatically adapts to the
evolving state of the system: decisions are delegated to the trustworthy party while it is
online, whereas Byzantine fault tolerance is guaranteed when no trustworthy party is
online. This behavior can be exploited to enhance service availability or facilitate the
transition from a centralized to a decentralized protocol.
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The main limitation of this study lies in its lack of testing in real-world scenarios with
thousands of geographically distributed peers and real workloads. Future developments
will aim to conduct additional tests to analyze TPoW’s performance in a more realistic
environment, potentially through integration into Bitcoin’s codebase. Furthermore, a
quantitative comparison of the energy wasted by PoW and TPoW could extend the
analysis conducted in this study. Research efforts could also explore application-specific
consensus algorithms or propose protocols for achieving consensus under alternative
assumptions.
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