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ABSTRACT: We present the supersymmetric completion of the M-theory free differential
algebra resulting from a compactification to four dimensions on a twisted seven-torus with
4-form and 7-form fluxes turned on. The super-curvatures are given and the local su-
persymmetry transformations derived. Dual formulations of the theory are discussed in
connection with classes of gaugings corresponding to diverse choices of vacua. This also in-
cludes seven dimensional compactifications on more general spaces not described by group
manifolds.
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1. Introduction

Recently superstring and M-theory compactifications on manifolds admitting globally de-
fined spinors [ll-f] (for a recent review on string/M-theory flux-compactifications see
also [[(]), but with broken supersymmetry, have renewed considerable attention in as
much as they offer examples of theories with a low-energy effective lagrangian exhibit-
ing spontaneously broken local supersymmetry as well as Higgs phases of certain gauge
symmetries.

A popular example of this class of theories corresponds to the compactification on
twisted tori with form-fluxes turned on [[J—[[§]. These models [[9-Rq], depending on
the choice of fluxes, can give rise to no-scale supergravities [7] with partially broken
supersymmetry or other type of vacua. These solutions can have either Minkowski or AdS
geometry. In the case of M-theory it turns out that the 4-form flux on the internal space has
to be trivial. The solutions with AdS geometry are characterized by non trivial 7-form flux
and define eleven dimensional backgrounds of Freund-Rubin type [2§] with flat directions.
This has to be contrasted with the maximal N = 8 model when the internal space in S7
and no flat directions remain [29].

Twisted tori can be described as seven dimensional group manifolds whose isometries
are part of the gauge group of the theory [[1]. This seven dimensional gauge algebra,
which is always spontaneously broken for flat groups [[LT], enlarges to a bigger symmetry
when the vectors (or their dual) coming from the 3-form are also included, thus realizing
a non-trivial 28-dimensional subalgebra [BJ] of the maximal rigid symmetry E7¢7) [B1]. In
this context we show how a suitable choice of fluxes of M-theory, different from the torus
twist, gives rise to the N = 8 gauged SO(8) supergravity [R9], which is known to exhibit
an AdS vacuum with maximal unbroken supersymmetry. Other choices, which still have a
7-dimensional interpretation, are also possible and some examples are presented here.



The main issue discussed in this article (sections P and fJ) is the supersymmetric com-
pletion of the set of curvatures and gauge transformations which modify the free differential
algebra (FDA) of M-theory compactified to four dimensions with fluxes [B3—-B4, B0, B3, B
As a result we also give the spin 3/2 and spin 1/2 curvatures as well as the gauge trans-
formation laws of the fields and the local supersymmetry transformations. These results
allow to give the full structure of the super-FDA, with the curvatures turned on, as it is
in general the case if we consider configurations other than the vacuum, which, in many
cases, would not even exist. This is the case for instance of massive type-IIA supergravity
which does not admit a (zero curvature) vacuum solution.

In section | we discuss different classes of gaugings, using the embedding tensor
method, introduced and developed in [@f@], and retrieve some examples of M-theory
vacua discussed in the literature, which do not necessary fall on group manifold compacti-
fications.

2. Curvatures of the supersymmetric FDA

In this section we give the supersymmetric FDA in four dimensions as obtained by di-
mensional reduction of eleven dimensional supergravity [iJ on a twisted seven-torus with
4-form flux turned on [BF].

We shall denote by r,s,t =0,...,3 and by a,b,¢c = 4,...,10 the rigid four and seven
dimensional indices, and by p, v = 0,...,3 and I,J, M,N = 4,...,10 the curved ones
respectively. The eleven dimensional vielbein V@ (@ = 0,...,10) is chosen of the form:

Vr=eVT, V=V = ¢4l — Al), (2.1)

where o/ is the basis of 1-forms on the twisted torus, which satisfy the Maurer-Cartan
equations:

dO’I—{-%’TJKIO'J/\O'K =0. (2.2)
The vector fields AL are the Kaluza-Klein vectors. The internal metric G is given by:
Gry = ¢7¢Ja- (2.3)
The ansatz for the eleven dimensional 3-form is:
AB) = A®) L By AVI+ Ay AVIAV? 4+ Cryg VIAVI AVE, (2.4)

where A®) is a four-dimensional (non-propagating) 3-form, By, are seven four-dimensional
antisymmetric tensors, Ay, are 21 vector fields and Crx are 35 scalar fields.

The ansatz for the eleven dimensional gravitino TZJ reads:
P(@y) = (Va+naa V) @ (2.5)

where ,uA are spinors on the twisted torus. In these notations we will define na; = ¢ n4q-



Supersymmetric Free Differential Algebra

Let us introduce the four dimensional curvatures, written as forms on superspace and
expanded in the super-vielbein basis {V", W4} (rheonomic parametrization [13]):

D¢t = Drdt V" — iV (D) an
FI=qdA” + %TJKIAJ/\AK + %ﬁ;ﬁ" AURTYp ol
FLVS AV 4 i ¢loT 07" UaA AV, (2.6)
F® = q46) —B,AFf—g,JKLAIAAJAAKAAL—%eQGWAWAqJAAwAVS
= E VI AVSAVEAYY,
Hy = 9Br+2A5 ANF? +4g1560 AT NAK NAL 4290 40P 4" ANUTY 5 b0 AV,
= HygqiVIAVEAVE4 2T gy nar AV AV,
F? =945, - %TUK Bx —3Cryx F¥ — 691751 AKX N AP — %@ A5 TDubradn
= FQ VSNV 42T 40" v i g1a0%5 A Vi
FI(}])K = 9C1k — 110" Agy + 4 grxn AY = FS?IKVT + A gy dradrpl 4s

0 3 1_
F[(J)[(L = LKL~ 5 1M Crerynr — 2 Al 1B SKaSrT s (2.7)

where antisymmetrization in the above formulas involve only the internal space indices
I,J,.... In (B7) we have denoted by F! the following quantities:

1
FI = dAT + gq,Kf AT A AK (2.8)
The fermionic curvatures have the following parametrization:

1
pa =DV + 1 baDdur T) ap A Up
- Q@ { _
= Prs VIEAVE + 5 8r¢ 'Yrt Vt N4+ g 6a¢ NcaVrTch (Fab)ABVT ANV¥p+

) _ 1 _ . -
+i e ' Nar g 1w T AV + 5€ @ FL 1o T ap 157 VEA TR —

i

_ 1 _
) Tea1¥e) ¥y T ap A Vg — ) ca?Yp(T)en (T) ap A Vg —

1= { ~
—5 VB Ve[ pena — 57 €0 Fyply (D) apy g AV +

v =~ 1
T3 Fﬁz))c(rabc)AB <5§ T3 ’Yrs> YU AVE—

~ 1
—je Fr(sz()lb(rab)AB <7r5,f + 1 ’Yrst> UpAVE4+
4)

~ 1 ) ~
+1 672Q¢Hrsta(ra)AB <7rs53 + EVTStu> 75\1]3 ANV — % 673Q¢Fr(stur7718t \IIA % 9

1
pAa = Dnaa + 1 ¢£-@¢cl (PbC)ABWBa



- T _ . _
= Paas V' +5e “® 3, Drduyr(T°) aBY°Y VB +inas (i7" Vo) (I°) e +

i 1,
+Z(n0b7rnCa)757r(Fb)AB‘I’A - §(U0b7ch)757T(Fb)ABnBa +
1 _ ~ 1 ~(0 1
+Z e 2a¢¢IaFrIs,yrs U, — ng(CC%e |:Fbcd52 + gFbcdea] ;. 75\IJB _

~ 1
cieeo b, [reat e gt e
AB
_7/ e—2a¢ﬁ1(2)

1 i 5 1
rsbc |:Fb6§ + Zrbca] ’75’7TS\I’B - g e 3a¢Hr5tb |:52 + §Fba:| ,yrst\I,B _

AB AB

1 —4 ~ (4
_ ﬂ e ad)Fr(st)uErsmF
t

4

1
aABYB — Zwbc,a(FbC)AB\I’B -

ey ¥n(Te)en (D) aBnBa - (2.9)

In (.6), (2.7) and (£.9) we have denoted by F', H, j and 4 the components in superspace of
the curvatures along the space-time vielbeins. The supercovariant field strengths originate
by projecting these components on the dx* basis.

The 7-form flux [4], which we shall denote by gasn PQRST = JEMNPQRST, transforms
in the 147 of GL(7,R) enters our discussion as an intregration constant which comes about
when integrating the eleven dimensional field equation [B:

1 _a 0
d(V; P) = —ZF}jK Fipg e/ TKPQRS | (2.10)
where
P = \/__gem.../m FY .. (2.11)

The fermion fields ¥4, na, yield the four dimensional gravitino 4 and dilatino a4
through the following combinations:

1 1 1
T;Z)A =€ 2a¢q’A+ §e2a¢7rw5(ra)ABnBa Vra
1
XAq = €2 ag NAa - (2.12)

The above redefinitions are needed in order for the resulting kinetic term in the four
dimensional lagrangian to be diagonal.

3. Local symmetries

Let us consider the eleven dimensional gauge transformation:

SAB) = g5(2) (3.1)
If we introduce the parameters £, 231)’ Eg?,) through the following expansion:
$5® = 5@ LW AV L s Ay AV (3.2)



I

and the gauge parameter w! associated with the Kaluza-Klein vectors A!, the lower di-

mensional theory is invariant under the following four dimensional tensor/vector-gauge
transformations [[[5]:

1
SA® = ax® 4 ) A Rl
0B = @E(l) +22§?]) F’ +wKTK[NBN — 129[JKLwJAK /\AL,
1
0Ar; = —T[JK 2(1) —{—.@E(O) — QWNTN[IK AJ}K + 129[JKL(.UK AL,

2
sAT = 90T,
0Crik = —E(A(}’[I i)™ + 3wt ™ Corn — 4 graxnw® (3.3)

We have denoted by & the covariant derivative with respect to the gauge group with

parameters wl:

DTy, = dTy, g, + (=1)* k AT TL(L Ky, IK - (3.4)

We shall use a different symbol D to denote the covariant derivative with respect to the
spin connection.

Under the gauge transformations (B.3) the field strengths in (R.6) and (R.7) transform
covariantly. In particular they are invariant under the transformations parametrized by
the Y-parameters, while transform covariantly under those parametrized by w!. The su-
persymmetry variation of the various fields are computed by contracting the correponding

curvatures by the supersymmetry parameter ¢ and keeping in mind that:

iap = Yp(et) = o4, (3.5)

except for the gravitino for which the supersymmetry transformation is computed as [{#3:

1 ,
0pa = Dea— 5 0, %on(T™)ap eV +icpa. (36)

As an example let us compute the variation of the Kaluza-Klein vectors keeping just the
two-fermion terms, using the parametrization of the corresponding field strength given

in (R.4) and taking into account (R.12):

. . _ 1
A}, = icFT = ie® ¢! "N aq vrea Vi —i€*%€ay” |dp, — ’75’75(Fb)BCXCbVi (T*) B, -

(3.7)

Let us now consider the local supersymmetry transformations as deduced from the rheo-
nomic parametrization of the four dimensional curvatures.

5Crix = e T™) aBXB[ras dor] » (3.8)
664 = —ixary es(I) 4B, (3.9)

1
OBr = €aYrsxArV" A VS — 26229 47, (B — 5%75(Pb)BCXCbVS (T apdra NV" +



+2i e Ary A QJKYAK Yrea V' —

. _ 1
—2ie®®Ary NEsnd [%3 — 5%75(Pb)BCXCb VS] T apdy , (3.10)

0Ars = 2%ear" 1 xB1105ja(T) a8 V" + € €atop (%) aB bradn +
+3i e Cryx 9" MXan ea V" —

. _ 1
—3ie*?Cryxeay’ [T,Z)B — 5%75(Fb)BCXCb Vs] (T Aok, (3.11)

(T apd} . (3.12)

. _ o 1
SAT = ie®® g™ prvrea VI — i e*%Esy [ws - 57575(Fb)30x0b Ve

1
SAB) = 63a¢EA7r5 [1/1,4 — —7575(Fb)ABXBb VS} AVTAVE +

2
+ie® Br A g™ X upr vrea V' —
. _ 1
—ie®® By Néay® [1/13 — 57575(Tb)BCXCb VS] (T apd? . (3.13)

In the above formulas ¢;* are the metric moduli of the internal manifold and span the
coset manifold GL(7,R)/SO(7). the scalar ¢ is related to the volume V7 of the torus:

Vi = det(V5) = e 229, (3.14)

The value of « is tipically fixed to 7/3 in order for the bosonic fields to have the standard
grading with respect to the O(1,1) rescaling of Vz:

¢—9—p0. (3.15)

The grading of the various fields, for & = 7/3, can be computed to be:

9 3 12 0|2 2
Al [——a = —3] ;o Arg [—?a = —1} ;. Br [—704 = —4] Ny [?a = —] ;

7 3
1

v [—%a = —3} N [—a = —%] ; e [%a = +3} i JIJKL [éa = +5} ;

1 7 1 7
\I} —_—— = —— . —_ = — . . .

A |: 2(1 6:| ) NAa |:2(X 6:| ) wA[O]ﬂ XAa[O]a
7

ekad [—ka =—3 k} . (3.16)

As far as the spinor fields are concerned, their supersymmetry transformation rules, up to

three fermion terms, are:

1 1 _
0pa = PDes+ 1 L Drpr (D) apep V" — 3¢ @ FL ¢ra (T apY57y" 'V ep —

1 1

16 ead) éggd(I ade)AB’YT’ ! reB 2 (5127’( abc)ABVE) | reB

3 _ T _

2 e ag Fégzs (Fab) ,yrst ‘fte 1 e ag Fégzs (Fab) ’YT Ve

i _ i 4
_5 € 20 Harst(ra)ABV5’7TStu Viep + Z € 3a¢FT§st)u7mt Vs —



1
—3 € Wap (TT) aBy57, Ve .

1 1 _
0XAa = §¢{a-@r¢b)l(rb)ABVS’7TEB +7e @R praylea —

1 1 1
_ 2 o Fb(c(ge bed 5 + _Fbcdea 7563 +Z-Fb(clgr I«bc(;g + _Fbcda Nep —
3 8 AB 6 AB

. 1 T 1
—te ad)Fb(c%")s [besfz + Zrbca} vy Sep + 3¢ 290 Flpt [52 + §Fba] e —
AB AB
1 4
—— e 3a¢FT§8t)u€rstuPa|ABEB _
24
1
_Z €a¢ wbc’a (FbC)AB €B, (3.17)

where we have defined:
Wab,c = da,bc + db,ca - dc,ab

1 T
dape = 5 Toea + 5 € *XapV’XBeLajan 3 Toea = OoO] draT1s™ . (3.18)

In the transformation rules (B.17) we used the components of the ordinary field strengths
F, H in place of the components of the corresponding supercovariant field strengths F, H
since the final expressions would differ by three fermion terms.

4. The embedding tensor description applied to different classes of gaug-
ings

In standard four dimensional maximal supergravity the electric e, and magnetic m?

charges, where A = 1,...,28, transform together in the 56 of E;) and the most gen-

eral gauging can be described in terms of an embedding tensor B[] 6,7 = {047, 627}

(n=1,...,56 and 0 = 1,...,133), which expresses the generators X,, of the gauge algebra

g in terms of E7(7) generators ¢,:

X, = 0,7, (4.1)

In this notation consistency of the gauging requires the rank of 8, as a 56 x 133 matrix, not
to be greater than 28 since no more that 28 gauge vectors can take part to the minimal
couplings. Supersymmetry and closure of the gauge algebra inside E7(7) require a linear
and a quadratic condition in # respectively [B7, BJ:

§ € 912 C 56 x 133, (4.2)
oMo 9 = 0. (4.3)

The above constraints are all E7(7) covariant. The last condition ensures that there always
exists a symplectic rotation acting on the index A (electric and magnetic) as a consequence
of which all the vectors associated with the generators X, are electric (or all magnetic).

Once 6 is fixed, as a solution of (£.2) and ([.d), the structure of the gauge algebra is
also fixed. Indeed if we introduce the following Er(7)-tensor:

anp = ama (ta)npa (44)



the gauge algebra has the following structure:
(X, Xn] = —X;mn? Xp . (4.5)

In terms of X,,,,P, the 912 in the decomposition of 56 x 133 is singled out by requiring the
constraint X (,,,,,) = 0 (the indices in the 56 are raised and lowered by using the symplectic
invariant matrix), which can be taken as an equivalent formulation of condition (.9).

In the standard formulation of gauged supergravity, the definition of the gauged la-
grangian is always referred to the symplectic frame (the electric frame) in which the com-
ponents of 6 are all electric (namely in which §2? = 0) so that only the electric vector fields
Aﬁ are involved in the gauging. Given a generic solution 827, 6,7 of eqs. (.3) and (E.3), the
electric frame is reached by means of a symplectic rotation whose existence, as previously
stressed, is guaranteed by eq. (fl.3), and which maps:

0,7 = {0,7, 027} — 0.7 = {0),°, 0} . (4.6)

In this frame the gauge connection will have the form €, = Ai} 0\° t,. In a recent work [[]]
a novel formulation of gauged supergravity was proposed in which the lagrangian can be
written in a generic symplectic frame, as function of both electric (,7) and magnetic (§27)
charges, coupled in a symplectic-invariant way to (non-abelian) electric (Aﬁ) and magnetic
A, gauge fields. The new gauge connection now reads:

Qu = A} X + A XN (4.7)

This formulation requires the introduction of 133 tensor fields B, in the adjoint of Ez7)
which enter the lagrangian only in the combination with the magnetic charges: #A¢ Buvo.
The advantage of this formulation is that the Ez-covariance of the field equations and
Bianchi identities is still manifest (provided € is transformad together with all the other
fields). The new fields By, and A, are described in such a way as not to introduce any
new propagating degree of freedom. This is reflected by the fact that the corresponding
field equations (namely the equations obtained by varying the lagrangian with respect to
the two type of fields) are non-dynamical. In addition to this we have vector and tensor-
gauge invariance of the lagrangian, which allow us, by performing various kind of gauge
fixing, to distribute the 128 propagating bosonic degrees of freedom among all the bosonic
fields of the theory. We refer the reader to [[t] for the explicit form of the field equations
and the gauge transformation laws.

A particular case in which the non-dynamical field equations are easily solvable is the
case in which the magnetic components of the embedding tensor contract only isometries
t; of the scalar manifold which act as translations on a set of corresponding scalar fields ':

t;: o=t 4. (4.8)

The index A naturally splits in the couple of indices A = Z, U, so that %% is a non-singular

square matrix. In this basis we have:
07 =0, o #1i; V7 =0, Vo,
67l o7l = 0, (4.9)



and therefore only the tensors B,,; enter the lagrangian. Let us consider two ways of gauge
fixing the vector/tensor gauge invariance which are relevant to our analysis. We can use
the gauge invariance of Az, to eliminate the scalar fields ¢!, recalling that the covariant
derivative on these scalar fields read:

Dyt = 00" + 0 Ayr + ..., (4.10)

where the ellipses refer to the electric minimal coupings which are not relevant to our
discussion. Then we use one of the non-dynamical equations of motion to eliminate A,z
in favor of B,,;. The resulting gauge-fixed action will describe the tensors B,,; instead of
the scalars ¢ and the electric vectors Aﬁ = {Ag ) Ag} In these models the original second
order constraint ([£.J) becomes eq. (.9) which has the form of the e x m = 0 constraint
found in the literature when dealing with supergravity theories coupled to antisymmetric
tensor fields [£5—[J).

On the other hand we could start by fixing the tensor-gauge invariance by eliminating
the electric fields Aﬁ through their coupling terms with the tensors B,,;:

1 .
ng/ + 5 HIZ B,uz/i . (4.11)

Then we can use one of the non-dynamical field equations to eliminate B,,,; in favor of the
remaining gauge fields. The resulting theory will describe 70 scalar fields, no antisymmetric
tensor field and the new electric vectors Az, Ag. This procedure has thus automatically

produced the symplectic transformation which brought our original 6 to the electric frame.

First example: M-theory compactification on twisted tori with flux

If we are considering toroidal compactifications of eleven dimensional supergravity to four
dimensions, the higher dimensional origin of the four dimensional fields is specified by
branching the relevant E;(7)-representations with respect to the GL(7,R) subgroup associ-
ated with the metric moduli of the seven-torus:

56 — 7_3+21_1+21,1+ 7.3, (4.12)
133 - 7 4+ T4 +35_2+35,2+48)+ 19, (4.13)
912 - 1 7+ 1,7+35 5+35,5+ (140 +7) 3+ (140 +T7)y3+21 1 + 21,1 +

+28 1 +28,1+224 | +224,. (4.14)

In the branching of the 56 the 7_3 and 21_; define A{“ Ayrg respectively while 73 and
21, their magnetic duals. In the branching of the adjoint representation of E7) we de-
note by tp/, t""NP tp the generators in the 48)+1¢, 35,9 and 74 respectively (with an
abuse of notation we characterize each generator by the representation of the corresponding
parameter, this allows a simpler interpretation of the table below). In the solvable Lie alge-
bra representation of the scalar manifold, the metric moduli ¢¢ parametrize the generators
t;? with I > J, while the scalars Crjx and gzgl (dual to By, ) are parameters of the gen-
erators tM NP and t)s repsectively. The 912 is the representation of the embeddig matrix,
which encodes all possible deformations (minimal couplings, mass terms) of the ungauged



N = 8 theory. It is natural therefore to identify the background quantities 77,5, g7k, §
with components of the embedding tensor. Indeed each component representation on the
right hand side of (J.14) defines a consistent gauged supergravity. Some of them have an
immediate interpretation in terms of background fluxes, like 35,5 which represents the
4-form flux g7y, or parameters related to the geometry of the internal space, like the
140, 3, which defines the twist-tensor 7a;n". The structure of the gauge algebra implied
by each of these representations is best understood from table:

| [ 214 21, 7 3
T4 1 35 140 + 7 28 +21
359 35 140 21+ 224 21 + 224
48) || 140+7 |21+28+224 | 21+28+224 | 140+ 7
1 7 21 21 7
35 5 || 21+ 224 21 + 224 140 35
74 || 28+21 140+ 7 35 1

The first row and column contain the representations in the branchings of 56 and the 133
respectively, while the bulk contains representations in the branching of 912. The table
specifies the origin of the latter representations in the branching of the product 56 x 133
and it should be read as “first row times first column gives bulk”. The grading of each
entry of the table has been suppressed for the sake of simplicity, since it coincides with the
sum of the gradings of the corresponding elements in the first row and column.

The gauged supergravity models describing the class of compactifications we are con-
sidering are thus obtained by restricting @ to the representations 140, 3 + 35,5 + 1,7. If
we define on the 56 representation the following symplectic product:

VOW™Crp = VMW — Vg WM 4 Vi WM v NM 7 (4.15)
the relevant components of the tensor X,,,” read:
Xun"9r = Xunp'? = —TMN[P(S]C%}
1
XMN,PQR _ XMNRPQ =3 55 ¢QIMNN1N2N3Ns IN1 NaNs Na
N
XMN o = XMV o = 3T[PQ[M5R]] ,
XMN,RS,LT _ xMN,LT,RS _ 3 TPQ[M (NIPQRSLT
Xu'ts = —Xus™ = 1us”,
s
X pg = —Xupg"™® = 27'M[P[R5Q]] ;
Xm.pQ.r = —XMR.PQ = gMPQR
Xy PORS = X BSPQ = g MiMaMsPQRS.
- P
XuP9y = Xy nF9=—gole . (4.16)

One can verify that X(,,,,p) = 0, consistently with the 912 condition. If we apply to this
model the construction outlined above, we can write a consistent theory (with manifest
E7(7) global on-shell covariance) which describes among the other fields the tensors By, nr
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and their dual scalar fields ™ at the same time. Since in this case the magnetic components
of 6 are just OprnT = —(3/2) TarnT, if we denote by 7 the rank of this 21 x 7 matrix, the
only tensor fields entering the lagrangian will be r out of the tensors B, p. The gauge

connection has the form:
Q“ = AnyXMN—FA“MNXMN—{—AyXM, (4.17)

and involves also the magnetic vector fields AlZ)/IN . To obtain the model describing the
tensor fields By, in place of their dual scalar fields, namely the model discussed in the
first sections of the present paper, we can fix the gauge invariance associated with zzlﬁ/[ N to
eliminate (5M , through the magnetic minimal coupling:

D“gZ;M = M(JEM + TPQM AﬁQ + ..., (4.18)

where the ellipses denote the electric minimal couplings. Then we can use one of the
non-dynamical field equations, which reads:

TPQM e"P? (0yBpon + -..) o< GRrs TPQR (TNLS AN D, (4.19)

to eliminate flﬂ/[ N'in favor of B,sn in the lagrangian. The ellipses on the left hand side
of (f.19) denote topological terms involving the electric vector fields, while the ellipses on
the right hand side stand for electric minimal couplings.

We could have proceeded differently by first fixing the tensor gauge invariance associ-
ated with B,y in order to eliminate r of the A,y fields and then expressing the tensor
fields in terms of the remaining vector fields through one of the non-dynamical field equa-
tions. This procedure would have yield the gauged N = 8 supergravity with no tensor
field and 70 scalar fields considered in [B{]. This clarifies the relation between the dual
descriptions of M-theory compactification on twisted tori with fluxes studied in the liter-
ature, namely the model with tensor fields in which the local symmetries are encoded in
a (supersymmetric) free differential algebra, and the dual model without tensor fields in
which the local symmetries of the lagrangian is described by an ordinary Lie algebra.

Second example: the CSO(p,q,r) gauging as an M-theory compactification.

From the branching of the 912 with respect to GL(7, R), we may consider the gauged
model arising from the components:

OunN = 0Ny € 2815 ™ € T43; gelyr, (4.20)

g being the 7-form flux. These entries of the embedding tensor can be re-arranged in a
single 8 x 8 symmetric tensor 045 (A,B = 1,...,8 = 1, M) transforming in the 36 of
SL(8, R), maximal subgroup of Ery:

Oup = ( g ™ ) . (4.21)

™ OuN

Indeed with respect to GL(7,R) the following branching holds:

36 — 28_1 + 7+3 + 1+7 . (422)
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The corresponding gauge algebra generators have the form X4p = {X;, X7} and are
gauged by the vectors A;:‘B = {AL, fl{ﬂ} in the 28’ of SL(8,R). They close the following
algebra:

(Xap, Xep) = fapcop®™ Xpr (4.23)
fas.ep®F = 2000507 - (4.24)

These are the well known CSO(p, ¢, ) gaugings originally constructed in [5(], where p, g,
(p+q+r = 8) represent the number of positive, negative and null eigenvalues of 6 45 . For
p=8,q=0,r =0 we have the SO(8) gauging constructed by de Wit and Nicolai 9. This
gauging is realized by setting 045 = dap namely 077 = 6775, 77 = 0, § = 1. In general the
group CSO(p, ¢q,r) describes the isometries of the following seven dimensional hypersurface
embedded in R® [B1]-F3):

Oap 2" 25 = R?. (4.25)

and which can be written locally as the product 77 xR", 5P being a (p+¢q)-dimensional
hyperboloid. The Maurer-Cartan equations for this manifold have the form:

dVi+ o0 ANVE — ;v AVE =0, (4.26)
dw" + w0k A + 205 e AV —gVIAVT =0, (4.27)

V1 and w!’ being the vielbein and the connection of the manifold.
Together with the components (4.20) we may switch on also the flux grjx in the
35,5. The connection of the gauge algebra now becomes:

Qﬂ:ALX[—{—A{LJX[J—'—A[JﬂXIJ. (4.28)
Let us consider the following basis of Er(7) generators:
{tMNa tMNP) tMNPa tP, tP} . (429)

We refer the reader to the appendix for the complete commutation relations among the
above generators. With respect to the basis (.29) the gauge generators have the following

expression:
Xun = —Opnptny” — Trtag
1 1
Xy = 3 Gt + vt +0untY) + 2g9unpo tN T + 11 TMmt,
XMN = 3gpopg e @RSMNT 1, (4.30)

where we have denoted by ¢ the O(1,1) generator ¢3,M. For this gauging the second order
condition () read:

Orv 9pQrs) = 0; TN 9pQrs) = 0, (4.31)

- 12 —



which imply that the XM generators satisfy the following constraints:
OunXN =0; XN =0. (4.32)

Conditions ({.3]) guarantee that the generators in (f£.30) close an algebra, which can be
found to have the following structure:

[(Xmn, Xpgl = Omip Xoiv — Onip Xqur s

[Xun, Xp] = 0pinv X — 78y Xonpp
1.
(X, Xp] = 71p Xpp) — §9XMP + gupng X9,

3
[XM, XNP] — 39P1P2P3P4 6NPP1P2P3P45 XSM _ ﬂ v XNP ) (433)

Third example: Scherk-Schwarz gauging

As a second example let us consider the model originally studied by Cremmer, Scherk
and Schwarz [p4], which describes a generalized dimensional reduction of maximal D =
5 supergravity to D = 4, in which the Scherk-Schwarz twist is chosen in Eg), global
symmetry group of the five dimensional theory. The resulting gauged supergravity [RJ is
defined by an embedding tensor transforming in the 783 [B7] with respect to the Eg(6) x
O(1,1) subgroup of E7(7). In the basis of the 56 in which the 28 electric vector fields are
Aﬁ = {4}, Ag}, where A}, u=1,...,27 are the dimensionally reduced five- dimensional
vectors in the 27 1 of Eg) x O(1,1) and Ag is the Kaluza-Klein vector in the 1_3 of the
same group, the embedding tensor has just electric components 6 and the gauge generators
read:
X, = {Xo = 00" 1" ’
Xy =6,"t,
Ho,uv =60,"=M," € E6(6) . (4.34)

where M," is the twist matrix depending in general on 78 parameters, ¢,"” are the Egq)
generators, and t,, are E7(7) generators in the 27 .9, according to the following branching
of the Er(7) generators with respect to Eg) x O(1,1):

133 — 78y + 1o + 2_7+2 + 27 5. (435)
In this case the relevant components of the gauge generators are:

XOuv = - uOv = _XOUu = XuUO = _Muva
Xuvw - Muz dsz 5 (436)

where dyq,, denotes the three times symmetric invariant tensor of the 27 of EG(G). To
obtain egs. (.3G) we have used the properties (£,”)", = —(t,%)," = 0007 — (1/27) 6% 5y,
(ty)"0 = —(ty)0®™ = 0% and (ty)pw = duvw- The gauge algebra has the following structure:

[X07 Xu] = Muv XU7 (437)

all other commutators vanishing.
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If M is non-compact the corresponding theory depends effectively only on six param-
eters and the potential is of run-away type, namely there is no vacuum solution. If on
the other hand M is compact, the theory has Minkowski vacua and depends effectively on
four mass parameters, which determine the amount of residual supersymmetry on these
solutions.
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A. The E;(7y generators in the GL(7, R) basis

We give below the commutation relations among the Er(7) generators in the basis (E29):

= 0Nty @ — 0% 1P

-3 5][\1;1 tP2P3]N + g 5% PP Ps

[tMN tp

)

[ tP1P2P3
N N 3 N
|: ,tP :6PtM+?5MtPa

“]
]
[tNlNgNg tPngPgi _ 6N1N2N3P1P2P3Q tQ
]
t"]
]

5)
[ tP1P2P3 = 35[]1\21 thPg}M - ? 5]\]\2 LP PyPs 5

[tar N 4P

= ol N — - o
[ENyNoNgs £ PoPs] = €Ny NaNs PP Py £
[N, ta] = tMN+;6ﬁt

] _L mNiNaNsPPoPy

[tM tNlNgNg

6 P1P>Ps3 5
1
[tar, tNyNoNs) = —G EMNiINaN3 Py PPy Pk
N1N3N3] _ [N1 V. N NiNoN.
[tarnntg, VN ] = 18610 0 gy N — 7 L sm Tl ¢, (A1)

where t =t M
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