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Abstract
This paper compares out-of-plane stresses evaluated with Hooke’s Law and the stress recovery technique, focusing on the 
free edges of composite plates and shells. The Carrera Unified Formulation and the finite element method are adopted to 
derive the governing equations. Lagrange polynomials are implemented in the equivalent single-layer, layer-wise, and variable 
kinematics approaches. The latter is used to refine structural models locally and reduce computational overheads. Laminated 
plates and shells subjected to uniaxial tension are considered. The out-of-plane stresses are compared with references from 
the existing literature for most cases. The results demonstrate that the stress recovery technique effectively calculates stresses 
and improves the accuracy of equivalent single-layer models. Furthermore, layer-wise models are needed for accurate results 
near the free-edge zone. Finally, variable kinematics theories are helpful in accurately detecting local phenomena along the 
structure’s thickness.

Keywords Composite structures · Free edge · Layer-wise · Equivalent single layer · Variable kinematics · Plates · Shells · 
Stress recovery

1 Introduction

Laminated composite structures have been employed in 
several engineering fields, e.g., aerospace, naval, and auto-
motive industries. Even though they permit reducing the 
structural weight and optimizing performance, composite 
structures may induce complex structural phenomena due to 
the inhomogeneity of material properties. Among them, the 
free-edge effects arise at the interfaces between dissimilar 
layers near geometrical or mechanical discontinuities in the 
component and may lead to the onset of damage.

This paper adopts 2D structural models to analyze free-
edge effects. Thorough reviews on these models can be 
found in Reddy [1] and Carrera [2]. The Kirchhoff–Love the-
ory [3, 4] was the first 2D model. Classical Lamination The-
ory (CLT) is the extension of this theory for the laminated 
structures; see Reissner [5]. CLT has several drawbacks, as 
it neglects transverse shear and thickness stretching. The 

First-Order Shear Deformation Theory (FSDT), based on 
the papers of Reissner [6] and Mindlin [7], improves CLT by 
considering constant transverse shear deformations.

Several refined theories have been developed in recent 
decades to overcome the limitations of CLT and FSDT [8]. 
Carrera [2, 9–12] proposed models based on Reissner’s 
Mixed Variational Theorem (RMVT) and the Principle of 
Virtual Displacements (PVD) within the context of the Car-
rera Unified Formulation (CUF).

The Layer-Wise approach (LW) has emerged to improve 
the results of Equivalent Single-Layer methods (ESL). LW 
is particularly beneficial for detecting local phenomena and 
complex through-the-thickness distributions of transverse 
stresses [13–17]. A third approach is the Variable Kinemat-
ics (VK) one, where the structural theory can vary point-
wise. By employing this approach, computational costs can 
be significantly reduced [18–20]. Botshekanan Dehkordi 
et al. [21] proposed a VK approach to analyze sandwich 
plates. RMVT was adopted with the CUF to assess axial and 
transverse stress components. Furthermore, the grouping of 
plies approach has been previously introduced within the 
framework of CUF for 2D composite structures [22–24]. In 
the present paper, the VK approach is employed on plate and 
shell models, with the adoption of Lagrange polynomials.
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Seminal works on free-edge phenomena are those by 
Hayashi [25] and Puppo and Evensen [26]. Then, in 1970, 
Pipes and Pagano [27] provided the first approximation of 
the three-dimensional (3D) stress fields at the free edges. 
Mittelstedt and Becker [28] provided an excellent review. 
Several closed-form solutions were provided for the free-
edge analysis. For instance, Pipes and Pagano [29] proposed 
an approximate elasticity solution by employing a Fourier 
series to represent the displacements. Then, Pagano [30] 
studied normal stresses in symmetric composite laminates 
by adopting a modified version of the higher-order theory 
provided by Whitney and Sun [31].

Numerical approaches have also been used to study free 
edges in composites; e.g., the finite difference method was 
used in Pipes, and Pagano [27] for symmetric laminates. 
Wang and Crossman [32] used three-node finite elements 
with a finer mesh near the free-edge zone. Whitcomb et al. 
[33] used eight-node elements to analyze stress singulari-
ties. Raju and Crews [34] adopted 3D solid elements. Rob-
bins and Reddy [35] used a higher-order LW plate element. 
Vidal et al. [36] used the proper generalized method where 
eight-node elements discretized the reference mid-plane, 
while a refined LW fourth-order expansion was adopted 
in the thickness direction. De Miguel et al. [37, 38] used 
advanced beam models in the framework of CUF for several 
loading conditions and failure evaluations near the free-edge 
zone. Stapleton et al. [39] used CUF for the stress analysis 
of adhesively bonded double-lap joints.

This work analyzes free-edge effects using two 
approaches to compute transverse stresses: Hooke’s law 
and the integration of the indefinite equilibrium equations 
of 3D elasticity [40]. The latter is commonly called the stress 
recovery technique and has been widely utilized in previ-
ous studies. For instance, Patni et al. [41] investigated shear 
stresses in the CUF framework using the beam formulation 

and Lagrange serendipity expansions over the cross-section. 
Carrera [2] compared Taylor-like and Legendre expansions 
with the stress recovery technique for plate and shell struc-
tures. Petrolo et al. [42] recently examined beams, plates, 
and shells within the CUF framework. Additionally, Park 
et al. [43] proposed a nonlinear predictor–corrector proce-
dure to accurately recover stresses in laminated plates.

This paper is organized as follows: Section 2 provides a 
brief introduction to the unified formulation within a finite 
element method framework. Section 3 explains the three 
modeling approaches adopted in this work. In Sect. 4, the 
three-dimensional indefinite equilibrium equations are 
introduced. Section 5 presents the results for plates and 
shells using several CUF-based models. Conclusions of 
this paper and the possible developments are drawn in 
Sect. 6.

2  Unified Formulation

Two generic laminated structures, namely a plate and a 
shell, are shown in Fig. 1.

In particular, the plate model uses the z coordinate for 
the thickness direction, and the plane x–y lays on the mid-
surface Ω0 . The shell adopts a curvilinear reference frame 
( � , � , z) to account for the curvatures, R � and R � , where 
� and � are the two in-plane directions. The displacement 
vectors for the multilayered plates and shells are intro-
duced as follows:

where the superscript (∙)k indicates a layer. The stress, �k , 
and strain, �k , components are indicated in the vectorial 
form:

(1)
uk(x, y, z) =

{

uk
x
uk
y
uk
z

}T
, uk(�, �, z) =

{

uk
�
uk
�
uk
z

}T

,

Fig. 1  Plate and shell models. 
A Cartesian reference system is 
used for the plate model (x, y, 
z), while a curvilinear system 
( � , � , z) is adopted for the shell 
model
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The displacement–strain relation is given in the following:

where b is the matrix of differential operators. The com-
ponents of this matrix change depending on whether plate 
or shell models are adopted. Further details are provided 
in [44]. In this work, linear elastic orthotropic materials 
are considered. Therefore, the constitutive relation can be 
expressed as follows:

where Ck is the material elastic matrix, whose explicit form 
can be found in [45, 46].

In the Carrera Unified Formulation (CUF), the 3D dis-
placement field of the plate (i.e., uk(x, y, z) ) and shell mod-
els (i.e., uk(�, �, z) ) can be expressed as a general expan-
sion of the primary unknowns, as shown in Table 1.

F� and F s are the expansion functions of the generalized 
displacements and variations, uk

�
 and �uk

s
 , respectively. The 

Einstein convention is applied with repeated indices � and 
s. M is the number of the expansion functions, and � indi-
cates the variations of the displacements [44].

This paper uses Lagrange expansions. The 3D dis-
placement field is obtained by interpolating the displace-
ments evaluated at the Lagrange Points (LP), see [47]. The 
cubic interpolation is given as an example. The four points  
are equally spaced. �1 = −1 , �2 = −1∕3 , �3 = +1∕3 and 
�4 = +1, and the following expansions can be obtained:

(2)

�
k =

{

�k
xx

�k
yy

�k
zz
�k
xz

�k
yz

�k
xy

}T
,

�
k =

{

�k
xx

�k
yy

�k
zz
�k
xz

�k
yz

�k
xy

}T

�
k =

{

�k
��

�k
��

�k
zz
�k
�z

�k
�z

�k
��

}T

,

�
k =

{

�k
��

�k
��

�k
zz
�k
�z

�k
�z

�k
��

}T

.

(3)�k = �
k
�
k
,

(4)�k = �
k
�
k

2.1  Finite Elements

The Finite Element Method (FEM) can be employed within 
the CUF framework as shown in Table 2.

N i  and N j are the shape functions, while the repeated 
subscripts i and j indicate summation. N n is the number of 
Finite Element (FE) nodes per element. Additionally, qk

�i
 and 

qk
sj
 are the vectors of FE nodal unknowns and variations:

Lagrange polynomials are used as the shape functions [45]. 
In the present paper, classical 2D nine-node bi-quadratic 
finite elements will be employed for both plate and shell 
formulations.

2.2  Governing Equations

The principle of virtual displacements is used,

where V k is the volume considered the integration domain, 
and the left-hand side of the equation represents the varia-
tion of the internal work. In contrast, the right-hand side is 
the variation of the external work. By substituting the geo-
metrical relations (Eq. (3)), the constitutive equation (Eq. 

(5)

F1 = −
9

16

(

� +
1

3

)(

� −
1

3

)

(� − 1),

F2 = +
27

16
(� + 1)

(

� −
1

3

)

(� − 1),

F3 = −
27

16
(� + 1)

(

� +
1

3

)

(� − 1),

F4 = +
9

16

(

� +
1

3

)(

� −
1

3

)

(� + 1).

(6)

qk
�i

=
{

qk
x�i

qk
y�i

qk
z�i

}T

, qk
�i

=
{

qk
��i

qk
��i

qk
z�i

}T

,

�qk
sj

=
{

�qk
xsj

�qk
ysj

�qk
zsj

}T

, �qk
sj

=
{

�qk
�sj

�qk
�sj

�qk
zsj

}T

.

(7)∫Vk

(��kT�k)dVk = �Le,

Table 1  CUF Expansions of the primary unknowns. � and s are 
repeated indexes with � = 1,2,....,M and s = 1,2,....,M, while M 
denotes the number of the expansion functions

Formulation 3D Fields Expansion

PLATE ∶ u
k(x, y, z) F� (z)u

k
�
(x, y)

�uk(x, y, z) Fs(z)�u
k
s
(x, y)

SHELL ∶ u
k(�, �, z) F� (z)u

k
�
(�, �)

�uk(�, �, z) Fs(z)�u
k
s
(�, �)

Table 2  FEM and CUF modeling of the primary unknowns. i and j 
are repeated indexes with i = 1,2,....,N

n
 and j = 1,2,....,N

n
 , N 

n
 is the 

number of the FE nodes per element

Formulation 3D Field FEM + CUF

PLATE ∶ u
k(x, y, z) Ni(x, y)F� (z)q

k
�i

�uk(x, y, z) Nj(x, y)Fs(z)�q
k
sj

SHELL ∶ u
k(�, �, z) Ni(�, �)F� (z)q

k
�i

�uk(�, �, z) Nj(�, �)Fs(z)�q
k
sj
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(4)), and applying the CUF and the FEM approximations 
(Table 2), the governing equations can be obtained:

where kk
ij�s

 represents a 3 × 3 matrix, called the Fundamental 
Nucleus (FN) of the mechanical stiffness matrix. The explicit 
form of the nine FN elements depends on the selected for-
mulation. The explicit expressions of the FN components 
can be found in [44]. FN is expanded with respect to the 
indexes � and s to obtain the stiffness matrix of each layer 
k. Subsequently, the matrices of each layer are assembled at 
the multi-layer level depending on the considered approach 
(ESL, LW, or VK). For a detailed discussion on the assembly 
of the FN, please refer to [44].

3  Modeling Approaches

This work compares Equivalent Single-Layer (ESL), Layer-
Wise (LW), and Variable Kinematics (VK) approaches. In 
this section, a brief overview of the three approaches is pro-
vided. See Pagani et al. [47] for details on the assembly 
procedure for each approach.

In ESL models, the kinematic assumptions are uniform 
throughout the structure’s thickness. The variables are 
independent of the number of layers; see Fig. 2(a). In this 
approach, the stiffness matrices of each layer are homog-
enized by summing the contributions from all the layers.

In the case of LW models, different sets of variables 
are assumed for each layer, and the continuity of displace-
ments is imposed at the layer interfaces. The LW approach 
allows for accurately capturing the discontinuous behavior 
of the derivatives of the primary unknowns, as illustrated 
in Fig. 2(b).

VK involves using different sets of expansion functions to 
develop combined ESL/LW models. Figure 2(c) illustrates 
how this method can effectively incorporate a non-local LW 
approach.

(8)�qkT
sj

∶ kk
ij�s

qk
�i
= pk

sj
,

4  Integration of the 3D Indefinite 
Equilibrium Equations

The approach is based on integrating the in-plane stresses 
derived from the constitutive laws in the thickness directions. 
Figure 3 shows a schematic representation of the numerical 
integration along a four-layer structure.

Plate In the static case, assuming no volume forces, the 
equilibrium equations of 3D elasticity for a plate can be 
expressed as follows:

By integrating the equilibrium equations from zi−1 to zi for 
each layer the equations can be written as:

(9)

�ux ∶ �xx,x + �xy,y + �xz,z = 0,

�uy ∶ �yx,x + �yy,y + �yz,z = 0,

�uz ∶ �zx,x + �zy,y + �zz,z = 0.

Fig. 2  Equivalent single-layer (a), layer-wise (b) and variable kinematics (c) modeling of the displacement field along the thickness of a struc-
ture

Fig. 3  Pattern of points for the integration of 3D equilibrium equa-
tions in a four-layer structure
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Shell In the static case, the indefinite equilibrium equa-
tions of 3D elasticity for shell structures can be expressed 
as follows:

with

If only cylindrical shells are considered, where the curvature 
in the � direction (i.e., R � ) tends to infinity, the equilibrium 
equations can be modified:

with

Due to the left-hand side of the previous equations, a numer-
ical method is necessary to solve them. In this paper, the 
trapezoidal rule is used for the integration. Therefore, the 
integrals can be written as follows,

(10)

�i
xz
= �i−1

xz
− ∫

i

i−1

(

�xx,x + �xy,y
)

dz,

�i
yz
= �i−1

yz
− ∫

i

i−1

(

�yx,x + �yy,y
)

dz,

�i
zz
= �i−1

zz
− ∫

i

i−1

(

�zx,x + �zy,y
)

dz.

(11)

�u� ∶
���z

�z
+ ��z

(

2

R� H�

+
1

R� H�

)

+
1

H�

����

��
+

1

H�

����

��
= 0,

�u� ∶
���z

�z
+ ��z

(

1

R� H�

+
2

R� H�

)

+
1

H�

����

��
+

1

H�

����

��
= 0,

(12)H� = 1 +
z

R�

, H� = 1 +
z

R�

.

(13)
�u� ∶

���z

�z
+ ��z

(

1

R� H�

)

= −
����

��
−

1

H�

����

��
,

�u� ∶
���z

�z
+ ��z

(

2

R� H�

)

= −
1

H�

����

��
−

����

��
,

(14)H� =1, H� = 1 +
z

R�

.

(15)

�i�z =
(

�i−1�z

(

1 + zi − zi−1
2H�R�

)

+∫

i

i−1

(

−
����
��

− 1
H�

����
��

)

dz
)

∕
(

1 + zi − zi−1
2H�R�

)

�i�z =
(

�i−1�z

(

1 + zi − zi−1
H�R�

)

+∫

i

i−1

(

− 1
H�

����
��

−
����
��

)

dz
)

∕
(

1 + zi − zi−1
H�R�

)

.

5  Numerical Results

In this section, the evaluation of out-of-plane stresses is car-
ried out for two study cases and considers the presence of 
free-edge phenomena. The first case focuses on composite 
plates, where two symmetric stacking sequences are inves-
tigated. The second case involves the analysis of a shell 
composite structure consisting of four layers. Results from 
the open literature are taken as reference solutions when 
available. If no literature results exist, the LW models are 
the reference solutions.

The theories adopted will be displayed using the follow-
ing notation: LN is the Lagrange expansion with N points 
used. For instance, L7 stands for a seven-node expansion; H 
indicates the use of Hooke’s law, and I stands for the stress 
recovery method.

5.1  Composite Plates

A composite symmetric plate is analyzed as the first exam-
ple. Two different stacking sequences are considered. The 
surface of the plate is rectangular with sides L=40 mm, 
b=20 mm, and the height is h=5 mm. The material proper-
ties are defined as follows: E 1 = 137.9 GPa, E 2 = E 3 = 14.5 
GPa, �12 = �13 = �23 = 0.21, G 12 = G 13 = G 23 = 5.9 GPa. Pagano 
[48] originally proposed the analysis. A uniform axial strain 
�0 is applied along the x-axis by prescribing an end-displace-
ment u x = ∓ 1 mm at x = ± L/2. The uniform traction load 
induces a constant strain state along the x-axis in the cen-
tral region of the plate, provided the length L is sufficiently 
larger than the perturbed regions next to the pulled edges. 
Transverse normal, �zz , and shear, �xz , stresses are evaluated. 
The results are reported in a scaled form as follows:

The FEM is employed for the discretization, using a non-
uniform mesh with a size of 16× 18 elements, as depicted 
in Fig. 4. The mesh is finer near the free edge to capture the 
localized effects accurately. Although a convergence analysis 
has been conducted, the details are not presented for brevity.

5.1.1  Four‑Layer Plate

In the first configuration, a four-layer plate is analyzed. Fig-
ure 5 describes the geometric and loading conditions. The 
stacking sequence is [45◦/-45◦]s . Results are compared with 
several literature models. Wang and Crossman [32] used a 
finite element model for generalized plane strain; D’Ottavio 
et al. [49] adopted the RMVT with fourth-order Legendre 
polynomials.

(16)�zz =
�zz

�0
, �xz =

�xz

�0
.
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A preliminary convergence analysis is conducted for 
choosing the LW theories. Figure 6 illustrates the discre-
tization in the y-z plane for the LW case; along z, one LW 
expansion per layer is used. In Fig. 7, shear stresses, �xz , 
via Hooke’s Law are evaluated. In Fig. 7 (a), the stresses 
are calculated at the interface between the 45◦ and -45◦ lay-
ers (z=-h/4) along the y-axis and x=0. Figure 7 (b) shows 
the stress along the thickness evaluated at x=0 and near the 
free edge (y/b=0.998). The seven-node Lagrange expansion 
provides the best results.

Fig. 8 shows the theories adopted and the related Degrees 
of Freedom (DOF). Seven-node Lagrange expansions are 

always used along the thickness. Case A adopts the LW 
approach, Case B uses the ESL approach, whereas Case C 
and Case D are VK models in which two and three sets of 
L7 expansions are used, respectively.

Shear stress, �xz , is evaluated along the y-axis in Fig. 9 
via Hooke’s law (H) and the integration (I). Through-the-
thickness distributions at x=0 are shown in Figs. 10 and 11, 
at y/b=0.998 and y/b=0.78, respectively. Table 3 shows 
shear stresses in [0,y/b=0.78,-h/4] and [0,y/b=0.998,-h/4].

The results suggest the following:

• When stresses are calculated along the y-axis, Case 
A and Case D are close to the literature solution. The 
Hooke’s Law and stress recovery method yield similar 
results.

• Considering the stresses at the free edge, the a posteriori 
integration of the stresses improves the results for Cases 
B, C, and D. At the same time, Case A-H and Case A-I 
yield similar results. The ESL model, namely Case B, is 
the least refined theory and is far from the reference solu-
tions. Table 3 shows significant differences in the peaks 
between the two techniques.

• When shear stresses are calculated at y/b=0.78, the ESL 
model and Case C approach the LW model. For instance, 
the difference with Case A-H is 5.51 % for the Case C-H, 
whereas for Case C-I is 2.22 %.

• VK theories can detect the local phenomena, where an 
LW-like description is adopted. In particular, Case D is 
as accurate as Case A for the two layers at the bottom, 
whereas it is similar to Case C for the other two layers.

5.1.2  Eight‑Layer Plate

The geometric and loading conditions of the second configu-
ration are shown in Fig. 12. The stacking sequence is [90◦/0◦

/45◦/-45◦]s . Results are compared with two reference solu-
tions; Gaudenzi et al. [50] used a model with the displace-
ments variables expanded in power series, and D’Ottavio 
et al. [49] adopted the same approach introduced for the 
first case above.

A convergence analysis for the choice of the LW theory is 
performed. Figure 13 shows the discretization employed in 
the y–z plane for the LW case; along z, one LW expansion 

Fig. 4  Finite element mesh over the x–y plane for the composite 
plates

Fig. 5  Geometry and loads of the four-layer composite plate

Fig. 6  Mesh over the y–z plane 
for the four-layer composite 
plates. LW approach
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Fig. 7  Convergence analysis for the [45◦/-45◦]
s
 plate. Evaluation of the shear stresses with the Hooke’s law

Fig. 8  Theories adopted for the 
four-layer composite plate
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per layer is used. Figure  14 presents the convergence 
analysis and considers transverse axial and shear stresses 
at y/b=0.998 and x=0. For this case, four-node Lagrange 

expansions are chosen for the LW approach. Figure 15 shows 
the models adopted and their DOF. Case A adopts the LW 
approach with an L4 for each layer. Case B uses the ESL 

Fig. 9  Shear stresses along y for the [45◦/-45◦]
s
 plate, z =-h/4

Fig. 10  Shear stresses along z for the [45◦/-45◦]
s
 plate, y/b=0.998
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approach with an L7 for the entire thickness. Cases C and D 
are VK models with local L4 and L7 expansions. L7 expan-
sions were used as in the ESL case; higher-order models are 
needed to detect the complex stress distribution.

Transverse axial stress, �zz , is shown in Fig.  16, y/
b=0.998, and Fig. 17, y/b=0.78. Similarly, shear stresses, 
�xz , are shown in Figs. 18 and 19. Table 4 shows shear stress 
values at [0,y/b=0.78,-h/8] and [0,y/b=0.998,-h/8].

The results suggest that

• The LW model results match those from the literature.
• Both stress evaluation approaches provide similar results 

when LW is used. Differences are larger in the other 
cases and when peak values are considered.

• When stresses are evaluated far from the free edge, all 
models are closer to LW.

• The local use of LW in a VK approach effectively 
improves accuracy. In other words, where LW is used, 
the accuracy improves significantly independent of the 
model used elsewhere.

5.2  Composite Shell

A composite symmetric cylindrical shell is considered with 
stacking sequence [45◦/-45◦]s . The geometry and load-
ing conditions are described in Fig. 20 with the following 
dimensions: L=40 mm, R �=20 mm, b=2�R�

6
 and h=5 mm. 

Fig. 11  Shear stresses along z for the [45◦/-45◦]
s
 plate, y/b=0.78

Table 3  [45◦/-45◦]s plate. Shear stresses, �
xz

 , with Hooke’s Law, H, 
and the stress recovery method, I, evaluated in [0,b,-h/4]

Model y/b=0.78  y/b=0.998 DOF

H I H I

Case A −1.125 −1.164 −14.42 −12.77 91575
Case B −1.195 −1.117 −6.234 −5.891 25641
Case C −1.187 −1.150 −7.770 −7.608 47619
Case D −1.123 −1.164 −14.42 −12.67 69597

Fig. 12  Geometry and loads for the eight-layer composite plate
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The material properties and loads are the same as in the 
previous sections. Shear stresses are scaled according as 
follows:

The same, non-uniform, 16 × 18 mesh is used as in the pre-
vious cases. Figure 21 shows the theories adopted and their 
DOF.

Shear stresses, ��z , are evaluated at the interface 
between the 45◦ and -45◦ layers (z=-h/4) along the �-
axis, � =0, see Fig. 22. ��z are calculated along the thick-
ness of the structure, � =0. Figures 23 and 24 show the 
results near the free edge ( �/b=0.998) and at �/b=0.78, 

(17)��z =
��z

�0
.

respectively. Table 5 shows shear stresses at [0,�/b=0.78,-
h/4] and [0,�/b=0.998,-h/4].

The results suggest that:

• Considering the stresses evaluated along the y-axis, 
Hooke’s Law and stress recovery method results do 
not present significant differences.

• As in previous cases, using LW and the stress recovery 
technique may improve the accuracy near the free edge.

• When shear stresses are calculated far from the free 
edge, less refined models are sufficient, as illustrated in 
Table 5.

• VK theories can calculate the stresses accurately where 
a local refinement is adopted.

Fig. 13  Mesh over the y–z plane 
for the eight-layer composite 
plates. LW approach

Fig. 14  Convergence analysis for the [90◦/0◦/45◦/-45◦]
s
 plate. Evaluation of the transverse axial (a) and shear (b) stresses along z at y/b=0.998 

with the Hooke’s Law
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Fig. 15  Theories adopted for 
the eight-layer composite plate

Fig. 16  Transverse axial stresses along z for the [90◦/0◦/45◦/-45◦]
s
 plate at y/b=0.998
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Fig. 17  Transverse axial stresses along z for the [90◦/0◦/45◦/-45◦]
s
 plate at y/b=0.78

Fig. 18  Shear stresses along z for the [90◦/0◦/45◦/-45◦]
s
 plate at y/b=0.998
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6  Conclusions

This paper presents results concerning free-edge effects in 
composite plates and shells. Lagrange-based polynomials 
are used along the thickness in the Carrera Unified Formula-
tion (CUF) framework. Three modeling approaches are used: 
the equivalent single layer, the layer-wise, and the variable 
kinematics approach. The latter leads to local refinement of 
the structural theory to reduce the computational costs. Fur-
thermore, the constitutive equations and the stress recovery 
method evaluate the out-of-plane stresses. The results are 
compared with literature solutions whenever available. The 
following final remarks can be made:

• The stresses calculated at the free edge are well evaluated 
only if LW models are adopted.

• The stress recovery technique can improve the accuracy 
of stresses from equivalent single-layer models.

• The local use of VK leads to an accuracy comparable 
to full LW models. In other words, independent of the 
modeling approach used elsewhere, VK improves the 
accuracy locally with significantly reduced computa-
tional costs.

In future works, beam and doubly curved shells could be 
considered. Furthermore, geometrical and material nonlinear 
applications could be investigated.

Fig. 19  Shear stresses along z for the [90◦/0◦/45◦/-45◦]
s
 plate at y/b=0.78

Table 4  [90◦/0◦/45◦/-45◦]s plate. Shear stresses, �
xz

 , with Hooke’s 
Law, H, and the stress recovery method, I, evaluated at [0,b,-h/8]

Model y/b=0.78 y/b=0.998 DOF

H I H I

Case A 1.572 1.587 14.81 12.30 91575
Case B 0.8494 1.556 5.051 6.266 25641
Case C 1.264 1.581 8.336 7.513 47619
Case D 1.579 1.591 15.30 12.56 69597

Fig. 20  Geometry and loads for the four-layer composite shell
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Fig. 21  Theories adopted for 
the four-layer composite shell

Fig. 22  Shear stresses along y for the [45◦/-45◦]
s
 shell at z=-h/4
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Fig. 23  Shear stresses along z for the [45◦/-45◦]
s
 shell at �/b=0.998

Fig. 24  Shear stresses along z for the [45◦/-45◦]
s
 shell at �/b=0.78
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