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Abstract—Robot assistants are emerging as high-tech solutions
to support people in everyday life. Following and assisting
the user in the domestic environment requires flexible mobil-
ity to safely move in cluttered spaces. We introduce a new
approach to person following for assistance and monitoring.
Our methodology exploits an omnidirectional robotic platform
to detach the computation of linear and angular velocities and
navigate within the domestic environment without losing track
of the assisted person. While linear velocities are managed by a
conventional Dynamic Window Approach (DWA) local planner,
we trained a Deep Reinforcement Learning (DRL) agent to
predict optimized angular velocities commands and maintain
the orientation of the robot towards the user. We evaluate our
navigation system on a real omnidirectional platform in various
indoor scenarios, demonstrating the competitive advantage of our
solution compared to a standard differential steering following.

Index Terms—Person Following, Robot Assistant, Deep Rein-
forcement Learning, Human-Centered Navigation

I. INTRODUCTION

In recent years, population ageing and pandemics have been
demonstrated to cause isolation of older adults in their houses,
generating the need for a reliable assistive figure. Service
robotics recently emerged as high-tech support to the problem,
providing a series of aid functionality to satisfy daily indoor
assistance. Robotic solutions take care of interactive social
aspects [1] or monitoring the health status of the user [2],
[3].

Domestic environments are often very demanding for au-
tonomous navigation systems due to the variety of complex
and dynamic obstacles they can feature. To this end, the robot
platform shall provide extreme flexibility and effective mobil-
ity to handle narrow passages thought for humans. Moreover,
in order to properly assist the user, the platform should be able
to follow them within this environment. Person following [4],
[5] is the first step to enable any visual or vocal interaction
with the user while monitoring its condition to intervene
earlier in the case of anomalous events. Person following
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Field of view

Fig. 1: Our person following solution exploits DWA planner to
control linear velocities [vx, vy] while the DRL agent controls
the angular velocity ω to minimize the angle ∆θ and maintain
the user within the camera’s field of view. This approach
allows the rover to keep monitoring the person while avoiding
obstacles on a safe trajectory.

systems are often based on naive visual-control strategy,
directly coupling the generation of heuristic commands for
the robot with the person coordinate in the image [6]. Deep
Reinforcement Learning (DRL) agents recently demonstrated
significant autonomy and flexibility boost in robotic solutions.
Most works focus on training an end-to-end visual-control
agent, which decides which velocity command actuates to
follow the person recognized in the received color image (
[7], [8]). Nonetheless, person following with omnidirectional
mobile robot has been seldom investigated, and the attempts
presented in literature are poorly correlated with rigorous
methodologies and experimentations [9], [10]. This solution
reduces the necessity for a dramatically precise visual tracking



algorithm, and it results in being more cost-efficient compared
to the adoption of an omnidirectional camera for a 360◦

Field-Of-View (FOV), [11] or also a rotating camera such as
gimbal systems, typical of Unmanned Aerial Vehicles (UAVs)
following [12].

A. Contribution

In this work, we focus our research on developing a human-
centered autonomous navigation system for a robotic assistant,
which aims to fulfill the user monitoring requirement. We
chose a tiny-size omnidirectional robotic base platform to fully
exploit its kinematic advantages and propose an optimized per-
son following methodology, always guaranteeing collision-free
trajectory planning combined with continuous visual tracking
of the user. We first set up a real-time perception pipeline
based on PoseNet [13] to identify the person and track their
pose. Then, we train a Deep Reinforcement Learning (DRL)
agent in a realistic 3D simulated environment, presented in
[14], to follow a dynamic goal. The agent learns to optimize
the yaw angular velocity ω to maintain the rover’s orientation
towards the goal (Figure 1). We integrated the DRL agent with
a Dynamic Window Approach (DWA) local planner, which
separately provides linear velocities (vx, vy) to follow the
person on a safe trajectory.

The contributions of this work are manifold:
• We study novel advantages of adopting an omnidirec-

tional robot assistant for the person following task
• We design and train a Deep Reinforcement Learning

agent to constantly re-orient the omnidirectional platform
towards the moving person

• We effectively integrate the DRL agent with a navigation
algorithmic stack to separately handle trajectory gener-
ation for obstacle avoidance and orientation control for
person monitoring

• We set up a simple real-time perception pipeline to extract
the coordinate of the person and visually track its pose

Nonetheless, compared to most previous works, we carried
out extensive experimentations with the robot. To this end,
we set up an innovative experimental framework based on an
Ultra-Wideband (UWB) anchors system to localize both the
person and the robot while moving and measure their relative
distance and orientation. Our results validate the performance
of our solution and show the competitive advantage and
robustness it can provide in visually monitoring the user while
avoiding obstacles in a cluttered indoor environment such as
a domestic one.

II. METHODOLOGY

In order to efficiently follow and monitor the user, the
autonomous platform should always be aware of the subject’s
position during its navigation, which means keeping its orien-
tation towards the person and maintaining them in the camera’s
field of view. This task might raise some serious difficulties in
the case of conventional differential drive platforms, which do
not have the possibility to describe a curved motion without a
change in orientation. This limitation often leads differential

drive robots to lose the human target while avoiding obstacles
or following an occluded path. Therefore, it is clear that
maintenance of a certain desired orientation and collision-free
navigation towards a precise destination results in conflicting
objectives. On this basis, we propose a novel system to handle
person following and monitoring in cluttered and unstructured
environments, using an omnidirectional robotic platform.

A. Perception and Tracking

An essential requirement to visually monitor a person within
the environment is the development of a real-time detection
and tracking system. In this work, we developed a deep
learning perception pipeline that allows the robot to track the
person visually. A RealSense D435i Camera, mounted on the
rover at a human height, is used to collect color and depth
images of the environment. In a first step, the presence of
the person is detected through PoseNet [13], a lightweight
deep neural network that estimates the pose of humans in
images and videos. For each person in the scene, the network
outputs the position of 17 key joints (like elbows, shoulders,
or feet). In our implementation, PoseNet runs on the Google
Coral Edge TPU device1 at 30 frame-per-second (FPS), which
corresponds to the maximum frame rate supported by the
RealSense D435i camera. The key points predicted by PoseNet
are then translated into a bounding box that localizes the
person within the image. The resulting bounding box is tracked
with SORT [15]. The central point C is computed as the
average of shoulders or hip joints. This structure guarantees
reliable esteem of the person’s position in the environment to
be fully usable by the robot navigation system, avoiding the
risk of inaccurate motion planning. The distance of the person
from the robot dC is then extracted from the depth frame as the
value corresponding to the point C. The complete information
contained in the resulting array (xC , yC , dC) can be easily
translated into the person position within the environment,
(xP , yP ), with basic reference frame transformations.

B. Deep Reinforcement Learning Agent for Person-focused
Orientation Control

As introduced before, we model the angular velocity control
according to a reinforcement learning framework. Therefore,
the problem is formulated as a Markov Decision Process
(MDP) described by the tuple (S,A,P, R, γ) [16]. An agent
starts its interaction with the environment in an initial state s0,
drawn from a pre-fixed distribution p(s0) and then cyclically
select an action at ∈ A from a generic state st ∈ S to
move into a new state st+1 with the transition probability
P(st+1|st,at), receiving a reward rt = R(st,at).

A reinforcement learning process aims to optimize a para-
metric policy πθ, which defines the agent behavior once
trained. In the context of autonomous navigation, we model
the MDP with an episodic structure with maximum time steps
T . Hence, the agent is trained to maximize the cumulative
expected reward Eτ∼π

∑T
t=0 γ

trt over each episode, where

1https://coral.ai



γ ∈ [0, 1) is the discount factor. More in detail, we use a
stochastic agent policy in an entropy-regularized reinforce-
ment learning setting, in which the optimal policy π∗

θ with
parameters θ is obtained maximizing a modified discounted
term:

π∗
θ = argmax

π
Eτ∼π

T∑
t=0

γt[rt + αH(π(·|st))] (1)

Where H(π(·|st)) is the entropy term that increases robustness
to noise through exploration, and α is the temperature param-
eter that regulates the trade-off between reward optimization
and policy stochasticity.

We train the agent’s policy neural network with the Soft
Actor-Critic (SAC) algorithm presented in [17], allowing a
continuous action space. In particular, we instantiate a stochas-
tic Gaussian policy for the actor and two Q-networks for the
critics.
Input features The input features of the policy network em-
bed the necessary information about the dynamic goal:
1) dt: the distance of the goal from the rover
2) ∆θt: the angular difference between the orientation of the
rover and the orientation of the vector connecting the rover’s
center of rotation with the goal (Figure 1)
3) ωt−1: yaw velocity command assigned to the platform at
the previous time instant
Reward Reward shaping is the typical process that leads
researchers to analytically specify the desired behavior to the
agent thanks to a dense reward signal assigned at each time
step. To this end, we define a reward rh as the arithmetic sum
of two distinct contributions:

ryaw =

(
1− 2

√∣∣∣∣∆θt
π

∣∣∣∣
)

(2)

rsmooth = −|ωt−1 − ωt| (3)

The first contribute ryaw teaches the agent to maintain its
orientation towards the goal, while the second contribute
rsmooth is used to obtain a smooth transition between the
current agent’s yaw velocity output and that at the next time
instant.
Action The DRL agent computes the angular velocity ω at any
time instant. The two velocities provided by the DWA planner
are merged in a unique velocity command V = [vx, vy, ω]t,
and executed by the robotic platform.
Neural network architecture The simple neural network
used for the orientation control policy comprises three dense
layers, respectively with 512, 256, and 256 units each.

C. Omnidirectional Motion Planner and Obstacle Avoidance

We develop an autonomous navigation solution that handles
the generation of collision-free trajectories and the control of
the platform orientation separately. This allows the rover to
reach various destinations in a domestic, cluttered space while
continuously monitoring the subject of interest.

In order to compute an obstacle-free trajectory towards a
goal, the system needs to acquire the rover’s pose (position and

orientation) with respect to a fixed reference frame and per-
ceive obstacles around it. In our implementation, we exploited
a RealSense T265 Tracking Camera to obtain information
about the rover’s pose and an RPLiDAR A1 LiDAR to retrieve
2D laserscan distance measurements of the obstacles around
the robot.

We developed our navigation system tailoring the Naviga-
tion2 navigation stack2 for the specific use case of person
following and monitoring.

The resulting navigation system consists of a DWA local
planner and controller, which receives the coordinate of the
navigation goal within the environment (xG, yG) (correspond-
ing to the person’s position), and computes the linear velocity
commands [vx, vy] for the omnidirectional platform to follow
the predicted collision-free trajectory. At any time instant,
these velocities are merged with the angular yaw velocity
provided by the DRL agent, and the whole velocity command
[vx, vy, ω] is passed and executed by the robotic platform.
Moreover, a plugin specifically developed for this study is
added to truncate the navigation path shortly before the goal.
This ensures a secure distance from the user at any time.

III. EXPERIMENTS AND RESULTS

A. Agent Training Setting

Our model is obtained from the customization of a SAC
agent from the TF2RL library 3. Actor and critic networks
present respectively 218, 114 and 218, 369 parameters and are
trained with Adam optimizer and a learning rate of 2 · 10−4.
The ϵ-greedy exploration policy is defined by the starting value
ϵ0 = 1.0, the decay γϵ = 0.992 and a minimum value for
random action sampling of ϵmin = 0.05. The agent is trained
for 3300 episodes composed of T = 300 maximum steps. The
robot’s starting pose is changed every 20 episodes to guarantee
a good level of exploration and resulting generalization.

In order to merge all the software components and tech-
nologies needed to perceive and navigate the environment,
we decided to adopt the Robot Operating System 2 (ROS2)
Foxy and the open-source simulator Gazebo for training the
agent. The simulation environment is composed of a domestic
scenario with several spaces and obstacles. A Gazebo plugin
simulates the dynamic goal the agent has to follow.

B. Navigation Settings

For our experimentation, we used the Marvin omnidirec-
tional robotic platform shown in Figure 2, described in detail
in [18]. Moreover, the robot features a vertical controllable
shaft useful to raise the RGB RealSense camera over obstacles
height. Its small footprint and the mobility given by the
configuration of its wheels are optimal for navigating in
cluttered, narrow environments.

C. Results

Tests are performed in four different scenarios. The person
moves for the whole extent of the test, and the rover has to

2https://navigation.ros.org/
3https://github.com/keiohta/tf2rl



Fig. 2: The omnidirectional platform we set up for experimen-
tation and validation of our novel methodology.

TABLE I: Results obtained from the person following test
in four different scenarios. Our omnidirectional planning and
control system clearly demonstrates a performance gap in
keeping the tracking of the person while following its motion:
the ∆θ error is drastically reduced in comparison with a
differential drive navigation.

Scenario ∆θ Mean Std.Dev. RMSE MAE

1 Omnidir. 3.36 10.45 10.71 8.57

Differential 16.00 63.41 68.31 57.20

2 Omnidir. −4.35 8.71 9.45 8.08

Differential −15.67 53.99 58.48 50.11

3 Omnidir. 0.35 8.26 8.33 6.61

Differential 12.34 42.19 45.05 37.38

4 Omnidir. 4.56 11.28 13.13 10.58

Differential 27.66 20.95 35.07 29.19

follow them, using the position (xP , yP ) extracted from the
visual perception pipeline as a dynamic goal of the navigation.
For this reason, to ensure an accurate ground truth data
collection, we set up a localization system based on four ultra-
wideband anchors placed in the testing area. One additional
anchor is placed upon the rover, and the followed person holds
a second one. The rover’s orientation is also aligned with the
one used by the ultra-wideband system. In such a way, it
is possible to know the actual relative position between the
rover and the followed person. This allows us to correctly
compute the angular difference ∆θ at any time instant. To
our knowledge, this experimental setting is the first attempt in
the literature to quantitatively measure the quality of a person
following system performance, going beyond the typical quali-
tative evaluation. Our extensive experimentation with the ultra-
wideband localization system provides significant proof of the
robustness of our navigation solution for person following.

For each scenario, tests are performed with the robot in
Figure 2 comparing a standard differential drive configuration,

hence without using velocity vy , with our RL-DWA novel
navigation methodology.

Seven validation runs are performed for every rover config-
uration and scenario. Considered metrics for each test are the
average error ∆θ with its standard deviation, the root mean
square error (RMSE), and the mean absolute error (MAE)
maintained along the whole path. Table I reports the average
value computed for each scenario and metric over all the
different tests.

Furthermore, in Figure 3, for each scenario and configu-
ration, a visualization of the performed test is reported. The
gridmaps reported in the figure are directly obtained from the
rover during the navigation, while rover and person poses are
obtained from the ultra-wideband system. As can be seen,
our methodology proves to robustly track the followed person
more effectively than a traditional differential drive naviga-
tion in all the considered scenarios. In the omnidirectional
configuration (Figure 3a, 3c, 3e, 3g) the rover manages to
always maintain the user within the camera’s view, contrary
to the differential drive case, where the visual contact is instead
lost several times. This generally leads to higher performance
in following the user, with the rover planning more opti-
mal collision-free trajectories, fully satisfying also the person
monitoring requirement. The obtained values of ∆θ clearly
show the performance gap in all scenarios, demonstrating the
successful behavior in monitoring the person provided by our
solution. Also in the fourth scenario (Figure 3g, 3h), where
after the curve the wall obstructs the rover’s view of the user,
it appears clear that the ability to remain facing the dynamic
human goal is beneficial for a more accurate re-acquisition of
tracking as soon as the obstacle is passed.

IV. CONCLUSIONS

In this work, we propose a novel, cost-effective approach
for autonomous person following in the context of domestic
robotic assistance. Differently from previous works, we aim at
keeping the robot oriented toward the human during the whole
navigation avoiding costly sensors for continuous tracking. We
first set up a real-time visual perception pipeline to identify
the person and estimate their pose. Then, we train a DRL
agent in a realistic 3D simulated environment to compute
optimized yaw angular velocity ω to maintain the rover’s
orientation towards the person. We merge this velocity contri-
bution with a DWA omnidirectional controller and propose a
system that treats orientation control and dynamic trajectory
planning separately. This allows the system to fulfill both the
monitoring and the obstacle avoidance objectives of the robotic
assistive task. We conduct extensive experimentation, adopting
an Ultra-Wide Band localization system as ground truth,
and demonstrate how our solution outclasses conventional
differential drive platforms. To our knowledge, this is the first
study combining omnidirectional motion planning and DRL
to enable a robust person following.
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