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Abstract
Recently, efficiently deploying deep learning solutions on the edge
has received increasing attention. New platforms are emerging to
support the increasing demand for flexibility and high performance.
In this work, we explore the efficient mapping of convolutional
layers on an open-hardware, low-power Coarse-Grain Reconfig-
urable Array (CGRA), namely OpenEdgeCGRA. We explore both
direct implementations of convolution and solutions that transform
it into a matrix multiplication through an Im2col transformation,
and experiment with various tensor parallelism axes. We show that
for this hardware target, direct convolution, coupled with weight
parallelism reaches the best latency and energy efficiency, outper-
forming a CPU implementation by 3.4× and 9.9× in terms of energy
and latency, respectively.

1 Introduction
The shifting paradigm from cloud to edge computing led to execut-
ing deep learningmodels into low-power andmemory-tight devices.
Among the plethora of models, Convolutional Neural Networks
(CNNs) have emerged as one of the most powerful tools for vari-
ous tasks, including image recognition, and natural language and
signal processing. However, their efficient execution on resource-
constrained edge devices remains a significant challenge given the
high memory footprint and the huge number of operations. To
cope with this challenge, various architectures have been proposed.
ASICs offer the highest performance and energy efficiency for spe-
cific applications due to their custom-tailored hardware design [1].
FPGAs, on the other hand, provide increased flexibility through
their fine-grained reconfigurable architecture, making them more
versatile than ASICs but generally less energy efficient [2]. In this
work, we explore the use of Coarse-Grain Reconfigurable Arrays
(CGRAs) as potential candidates to cover a different part of the
design space of edge computing systems (i.e., considering trade-offs
between performance, energy efficiency, area and versatility) to exe-
cute CNN applications [3]. CGRAs present programmable hardware
that can be customized to specific tasks, making them well-suited
for dynamic edge computing environments. Thus, they offer an
attractive meet-in-the-middle solution between performance, ef-
ficiency, and task-versatility. Nevertheless, the efficient mapping
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Figure 1: (Top) 2D convolution scheme. (Bottom) Direct con-
volution with weight parallelism. Nine PEs perform dot prod-
ucts between constant weights and sequentially loaded in-
puts. The other PEs load new inputs or sum partial outputs.

of convolutional layers onto CGRAs is essential to exploit their
potential benefits. Figure 1 shows an example of the mapping of a
convolution on our target CGRA.

Although several works have focused on mapping techniques for
high performance CGRAs [4] or specializing CGRAs for deep learn-
ing [3, 5], low-power (𝑚𝑊 -power), general-purpose CGRAs have
not been explored equally for tinyML [6]. To fill this gap, this work
addresses the problem of mapping convolutions, focusing on the
OpenEdgeCGRA architecture for edge computing applications [7].
Our goal is to outline efficient practices that allow to leverage this
accelerator, minimizing the impact of the overheads it imposes.
For this reason, we investigate various state-of-the-art computa-
tional and memory management strategies, aiming to uncover the
most efficient mapping technique that balances performance and re-
source constraints. Specifically, we present a two-fold contribution:
(i) we explore different implementation paradigms for convolution
and different tensor parallelism axes; (ii) we benchmark the results
of the different implementations, measuring energy, latency, per-
formance, and memory usage, and provide insights on the best
mapping technique for low-power CGRA. This analysis highlights
the predominance of direct convolution, coupled with weight par-
allelism, which reaches up to 3.4× and 9.9× in terms of energy and
latency, respectively, compared to a plain CPU implementation,
achieving an overall average performance of 0.6𝑀𝐴𝐶/𝑐𝑦𝑐𝑙𝑒.
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Figure 2: Architecture of the HEEPsilon platform used as a
test bench for this analysis, where the OpenEdgeCGRA is
instantiated along with X-HEEP.

2 Material and Methods
In this section, we first introduce our target CGRA. Then, we de-
scribe the different convolutional kernels mapping techniques ex-
plored to exploit its hardware resources maximally.
2.1 Hardware Platform

In this work we target the OpenEdgeCGRA architecture: a low-
power, general purpose, scalable, instruction-based CGRA. Although
designed to execute health applications in low area and power foot-
print, thus not ideal for running regular high intensity kernels
such as CNNs, this CGRA has been chosen for being open source,
validated in silicon, and already integrated into a RISC-V micro-
controller (X-HEEP) in the 𝐻EE𝑃𝑠𝑖𝑙𝑜𝑛 platform.All our work is
open-source1.

Figure 2 illustrates this platform, which includes a CPU and
memory allowing for real application evaluation [8]. The CPU
configures the CGRA and loads instructions into the CGRA’s mem-
ory before launching its first execution. The instruction set of the
CGRA includes 32-bit integer arithmetic and logical operations
and supports both conditional and unconditional jumps, allowing
the implementation of deep learning kernels. However, a Multiply-
and-Accumulate (MAC) instruction which could lead to higher
performance is not supported. In this work, we used an instance of
the OpenEdgeCGRA with a 4 × 4 matrix of Processing Elements
(PEs). Each PEs is composed of one Arithmetic-Logic Unit (ALU),
two multiplexed inputs, one output register, a four-element Register
File (RF), and a 32-word private program memory. The PEs are con-
nected to their neighbors through a torus interconnect, allowing for
reuse of neighbor data. Although columns in OpenEdgeCGRA have
their own independent Program Counter (PC), we always used the
four columns as part of a single application, which means that the
latency of execution of a single CGRA-instruction is determined
by the latency of the slowest operation among the 16 PEs. Each
column of the OpenEdgeCGRA has a port connected to a Direct
Memory Access (DMA) block, allowing them to access the memory
subsystem.
2.2 Convolution mapping strategies

Our work explores different optimization directions to map a
convolutional kernel onto the OpenEdgeCGRA. In particular, we

1Available on github.com/esl-epfl/HEEPsilon/tree/convolution_exploration

first explore the implementation paradigm, i.e., the data layout cou-
pled with its access order. Then, we investigate the computation’s
parallelization over the OpenEdgeCGRA’s PEs. For all our exper-
iments, we always consider convolutions with groups = 1, and a
filter of dimension 𝐹𝑋 × 𝐹𝑌 = 3 × 3 [9].

Convolution implementation: Image-to-Column (Im2col) vs
Direct Access

We consider two different implementations, i.e., the direct con-
volution and the so-called Im2col transformation. The direct con-
volution does not manipulate the input data. It directly fetches
data from memory, leading to non-sequential load operations of
the input image and, therefore, higher overhead in data addressing.
To minimize this overhead a Channel-Height-Width (CHW) data
layout is typically used [10]. On the other hand, the Im2col transfor-
mation is the most adopted implementation in CPU and GPU kernel
libraries, such as PULP-NN [11], Mxnet [12], or Tensorflow [13].
It transforms multi-channel 2D Convolutions into a vector-matrix
product by turning each input activations’ patch (originally a 3D
tensor) into a 1D vector of dimension input channels (C) × filter
rows (𝐹𝑋 ) × filter columns (𝐹𝑌 ), which is multiplied with the 2D
weights matrix, of dimension C×𝐹𝑋 × 𝐹𝑌× output channels (K);
note that this transformation simplifies the memory accesses, which
become sequential. On the other hand, it requires more memory
to store the buffer of reordered inputs and additional instructions
to create this buffer, which could be non-negligible. We argue that
Im2col transformation can leverage the loads with automatic in-
dex increment and parallel DMA ports of our target architecture.
In [10], the authors show that the Height-Width-Channel (HWC)
data layout is the most advantageous for the creation of the Im2col
reorder buffer. Hence, we select it for our implementation.

Parallelization Axis
Themain computation in a CNN involves six nested loops, which

can be swapped and parallelized without changing the final re-
sult [11]. These loops correspond to i) output channels (K), ii) input
channels (C), iii) output rows (𝑂𝑋 ), iv) output columns (𝑂𝑌 ), v) filter
rows (𝐹𝑋 ), and vi) filter columns (𝐹𝑌 ). We explore the parallelization
of the C, K, or 𝐹𝑋/𝑌 loops. Note that we do not explore paralleliza-
tion of 𝑂𝑋/𝑌 loops given that it would enable reuse of neither the
weights nor the inputs.

Weight Parallelism (WP): This method leverages the paralleliza-
tion of the filter loops, 𝐹𝑋 and 𝐹𝑌 . In this setup, each weight element
of a single input and output channel is assigned to a different PE.
For a 3×3 filter, this means that nine weight elements are distributed
across nine PEs. Once these weights are retrieved frommemory, the
system performs multiple MAC operations by updating the inputs
for each PE. The partial outputs generated by the PEs then move
through the spatial array of the CGRA. This procedure is illustrated
in Figure 1. In addition to the nine PEs engaged in computations,
the final row (comprising three PEs) is tasked with updating the
address to load the new input triplet (3×1), while the other 3×2
inputs can be efficiently reused by shifting them from the first two
rows of PEs when computing the next output pixel on the same
output image row. During this stage, the last column of PEs ag-
gregates the nine computed partial sums and, if necessary, adds
them to a previous partial sum when processing input channels
𝑐𝑖 > 0. The last PE is designated for storing the accumulated partial
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sum in memory. This cycle is repeated for the entire input spatial
position before a new set of weights is loaded to process the next
input channel. The outputs are sequentially generated starting from
𝑂𝑋 , 𝑂𝑌 , and, finally, 𝐾 . Importantly, this mapping scheme, which
benefits from a CHW input layout, would not benefit from using
the Im2col transformation.

Input-Channel Parallelism (IP): This method involves performing
MAC operations relative to various input channels in parallel. It
utilizes the Im2col technique to enable sequential access to the
input and filter data. Note that using direct convolution for this
parallelism strategy would be suboptimal given that the latency to
access the data from each single PE would strongly increase given
their storage position. In this mapping strategy, for each iteration
of the most external loops (K, 𝑂𝑋 , 𝑂𝑌 ), every PE handles a distinct
set of input channels (C/16 per PE) for the same output channel
and spatial position. In the end, the partial sums computed by each
PE are aggregated, and the next element is computed.

Output-Channel Parallelism (OP): This mapping aims to produce
results simultaneously for different output channels. Its rationale
is to minimize the latency for reading and writing partial sums by
keeping them in the RF of each PE [14]. A different output channel
is then assigned to each different PE, which stores a different set of
weights, and the same input elements are broadcast to all PEs, to
produce 16 output channels at the same spatial location in parallel.
For this implementation, both the Im2col approach and the direct
convolution implementations are considered.

Figure 3 shows the distribution of the operations in the inner-
most loop of each mapping strategy, over the CGRA’s PEs. Note that
while WP differs significantly, the other three mappings are identi-
cal: in the first two instructions, 16 inputs and weights are loaded
(corresponding to 16 input or output channels). Next, the mul and
sum operations are executed by all PEs. Then, in the last 5 instruc-
tions, the input and weight addresses and the iteration counter are
updated, followed by the loop’s branch instruction. Most PEs exe-
cute a nop during the last three instructions because only one to two
PEs are in charge of updating the iteration counter and branching
for the whole CGRA. Because of this bottleneck, the innermost loop
reaches an overall PE utilization of 69%. For all three mapping strate-
gies, this loop is repeated 𝐹𝑋 × 𝐹𝑌 ×𝑂𝑋 ×𝑂𝑌 ×𝐶 × 𝐾/16 times.

Conversely, the WP mapping is composed of a main internal
loop and a border internal loop. The main loop is composed of
only 4 instructions that allow the execution of the nine multiplica-
tions, the sum reduction, the load of a new input triplet, and the

Figure 3: Operation distribution of different convolution
mapping strategies. Other includes index updates, branch
operations, and index manipulation.

Figure 4: Energy vs. Latency comparison.

final store. However, as mentioned above, once a new output row
has to be processed, also the other 6 inputs (2×3) should change,
necessitating 5 additional instructions (border loop) to load the
additional data and update indexes, as shown in the graph. In this
case, the main loop is executed 𝑂𝑋 × 𝑂𝑌 × 𝐶 × 𝐾 times with an
utilization of 78%, while the border one is executed only once per
row, i.e., 𝑂𝑌 ×𝐶 × 𝐾 times.
2.3 Evaluation Metrics

We compare our convolution mapping strategies in terms of the
following metrics to provide a complete overview of the utilization
and efficiency of the platform:

Latency: the time required to perform a complete convolution,
comprising both the Im2col creation (if needed) and the kernel
execution. The time required to load the instructions before the
first iteration is neglected.

Energy: we consider the power consumption of a complete
minimal system, including CGRA, CPU and memory subsystems.
This allows for a fair comparison between different strategies but
should not be used as a benchmark to compare the platform’s
efficiency, as this was not optimized. In the Im2col case, the MCU
performs data reordering during the CGRA execution. At all other
times the MCU enters a busy loop waiting for the CGRA interrupt.

Memory usage: to assess the scalability of each strategy, we
characterize its memory footprint as the space required to store the
input and output samples and the weight filters.

MAC/cycle: to compare the obtained execution speed with other
state-of-the-art implementations, we compute the performance in
terms of MAC operations per clock cycle (𝑀𝐴𝐶/𝑐𝑦𝑐𝑙𝑒).

Behavioral simulation of each approach was performed using the
OpenEdgeCGRA simulator2. Latency measurements were obtained
from the FPGA implementation of𝐻EE𝑃𝑠𝑖𝑙𝑜𝑛 and validated against
pre-synthesis simulation. The average power was obtained from
post-synthesis simulation on a TSMC 65 nm technology process,
where the CGRA required an area of ∼ 0.4mm2.

3 Experimental results
In this section, we present results concerning the latency and energy
efficiency of the kernels described in Section 2, with a final analysis
of their robustness to hyper-parameters variations. All kernels use
32-bit integer data.
3.1 Energy and latency evaluation

We run a baseline convolution with C=K=𝑂𝑋 =𝑂𝑌 =16, and a 3×3
filter. For each mapping method, we measure execution latency and
energy consumption of the three main blocks involved: CGRA, CPU,

2Available on github.com/esl-epfl/ESL-CGRA-simulator
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Figure 5: Impact on memory and performance of different hyperparameters. Pareto-optimal results are highlighted with a
greater color intensity. The experiments of Section 3.1 are highlighted by black circles.

and memory. In Figure 4 results are compared against a CPU-only
implementation. The WP approach reaches energy and latency
improvements of 3.4× and 9.9×, respectively, at an average power
of 2.5mW, the highest among the CGRA-approaches. Its main ad-
vantage over the other strategies lies in the high data reuse rate
of the weight stationary strategy, which brings two-fold benefits.
First, the reduced number of memory accesses and their distribu-
tion over time avoids collisions between PEs, hence decreasing the
latency of the whole computation. Secondly, the lower number of
memory accesses also reduces the dynamic energy consumed by
the memory subsystem. Figure 4 highlights that the latter is the
largest energy-wise discriminative factor between methods -which
would have been overlooked by an isolated analysis of the CGRA
performance-. For example, the higher energy consumption of the
Im2col-OP approach is not associated with the CPU involvement
(which includes the implementation of Im2col) but with the more
frequent load instructions. In this case, the CPU contribution is
negligible and allows marginal improvements in both energy and
latency with respect to the Conv-OP approach. In contrast, the
Im2col-IP method requires frequent computation of the Im2col,
leading to a higher CPU activity and doubling memory consump-
tion. This situation also increases latency due to the overhead of
launching each iteration. In this method, every call of the Im2col
function creates one output position at a time and, additionally,
each Im2col input organization has to be repeated for every output
channel. Instead, Im2col-OP operates in parallel across output chan-
nels, allowing it to generate 16 output positions simultaneously
with just one Im2col setup.
3.2 Robustness evaluation

We evaluate the performance deviation from the baseline case
explored in the previous section by swiping the layer hyperparame-
ters. We vary𝑂𝑋 and𝑂𝑌 in [16, 64], C and K in [16, 144], increasing
by 1 the dimension of each parameter until 32, and then in steps of
16 given the similar scalability. We limit our search to the maximum
memory available in the system (512 kiB from 𝐻EE𝑃𝑠𝑖𝑙𝑜𝑛’s RAM
banks). The results, illustrated in Figure 5, show that WP has the
greatest robustness to hyperparameter changes, with increasing
layer dimensions always leading to improved performance. WP
remains the best approach for any hyperparameter combination,
reaching up to 0.665𝑀𝐴𝐶/𝑐𝑦𝑐𝑙𝑒 with C =16, K =16, and 𝑂𝑋 = 𝑂𝑌

= 64. It is noteworthy that increasing 𝑂𝑋 and 𝑂𝑌 translates into

an improvement in performance for the WP case thanks to two
different contributions: first, the larger the input size, the higher the
reuse of the loaded weights; second, a larger feature map reduces
the occurrence of row changes while swiping the input activations,
thus, the associated overhead of border loop (cf. Section 2.2).

On the other hand, all the other approaches see a drop in perfor-
mance every time their parallelization dimensions are not a multiple
of the number of PEs (i.e., 16), reaching their lowest performance
(∼ 0.1𝑀𝐴𝐶/𝑐𝑦𝑐𝑙𝑒) when the parallelization dimension is equal to 17
due to the strong imbalance in the workload distribution. In this
case, the Im2col-OP results the least robust with a performance
reduction of 3.62× when compared to its best case.

4 Conclusions
This work has thoroughly analyzed the impact of different con-
volution mapping techniques, typical in CNN applications, on the
OpenEdgeCGRA. Latency, energy, memory usage, and performance
were evaluated to conclude that the WP approach is the best per-
forming one, with a peak of 0.665𝑀𝐴𝐶/𝑐𝑦𝑐𝑙𝑒. Energy and latency
improvements compared to the CPU-only implementation reach
3.4× and 9.9×, respectively. While specialized architectures in the
state of the art reach 23.3× higher performance [11], this work
shows how to leverage the existing trade-offs between performance,
smaller area (0.4mm2) and low-power (< 2.5mW) on CGRAs. Thus,
we underscore how such platforms are viable architectural options
for heterogeneous edge AI accelerators to complement ultra-low-
power microcontrollers.
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