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PROBA-V MULTI-TEMPORAL SUPER-RESOLUTION GUIDED BY SENTINEL-2

Gabriele Inzerillo1,2, Diego Valsesia1, Enrico Magli1, Fabrizio Niro2, Erminia De Grandis2

1Politecnico di Torino - Torino, Italy
2Serco c/o ESA/ESRIN - Frascati, Italy

ABSTRACT

Multi-image super-resolution (MISR) is a technique used to
increase the spatial resolution of images acquired by remote
sensing platforms by combining the images acquired through
multiple revisits. Supervised training of MISR models re-
quires collecting high-resolution images to be used as ground
truth. Except for a few special cases, this involves acquir-
ing images from a different satellite, resulting in a shift in the
optical and radiometric characteristics with respect to the sen-
sor to be super-resolved. In this paper, we explore the use of
Sentinel-2 images to train a MISR model for Proba-V images
and highlight the challenges of this pursuit.

Index Terms— Super-resolution, multitemporal, Proba-
V.

1. INTRODUCTION

Multi-image super-resolution (MISR) is a technique used to
increase the spatial resolution of images acquired by remote
sensing platforms by combining the images acquired through
multiple revisits. This can be useful for applications such as
mapping, land use analysis, and monitoring the Earth’s sur-
face, as it can enhance their accuracy by going beyond the
native resolution of the satellite instrument, which is often
constrained by the payload design as well as the downlink
channel. Compared to single-image super-resolution (SISR),
MISR is capable of greater super-resolving power in recov-
ering details hidden in aliased images. Recently, the Proba-
V super-resolution challenge [1] issued by ESA has spurred
several works on the topic, thanks to a curated dataset with
real high resolution (HR) and low resolution (LR) images ac-
quired by the same platform, at resolutions of 100 meters per
pixel and 300 meters per pixel, respectively. Thanks to the
availability of a HR ground truth, supervised learning algo-
rithms can be used to train effective models [2] for the task.
However, the Proba-V dataset is obtained from images of the
same platform, thus presenting a marginal domain gap be-
tween the LR and HR acquisitions. This is generally not the
case, as one needs to resort to use images from a different
satellite as HR ground truth for training. Only a few works
[3] have currently treated this topic, but issues related to the
different radiometric properties as well as spectral responses

of the two sensors emerge. This paper presents a case study
in which we use Sentinel-2 imagery to super-resolve Proba-V
data with a state-of-the-art neural network MISR model. Crit-
ically, this work has required the creation of a new dataset of
paired Sentinel-2 and Proba-V images. Thanks to the avail-
ability of both LR and HR for Proba-V as well as Sentinel-2
HR images, we are able to observe effects on the radiometry
of SR products as influenced by the training process of the
MISR network.

2. BACKGROUND

Image SR has been a topic of interest for several years, and
recently, there have been significant advancements in this
field due to deep learning methods. Previous studies [2] have
mainly focused on single-image SR (SISR) for both con-
ventional photographs and remote sensing images. These
approaches often use supervised training, which requires
high-resolution (HR) images at the target resolution, either
in a paired or unpaired manner. In the unpaired setting HR
images are available but not from the same scenes as LR im-
ages, which reduces the data requirement but does not solve
the fundamental problem of needing images at the target high
resolution. Except for a few specific instances, such as the
Proba-V satellite, where same platform can acquire images
at various resolutions, the supervised training process needs
to rely on data from multiple satellites or aerial images. For
example, Cornebise et al. [4] provide a dataset with paired
LR images from Sentinel 2 at m/pixel resolution and HR im-
ages from SPOT 6 at 6 m/pixel. In the context of multi-image
super-resolution, most of the works used the Proba-V dataset
[5, 6, 7, 8]. Thanks to the unique Proba-V setting, those
works did not focus on the aspects relating to domain gaps
between different sensors. The first work in this direction by
Razzak et al. [3] who studied multispectral MISR methods
using Sentinel 2 LR images and PlanetScope HR images.

3. PROPOSED METHOD

In this section, we present the main contributions of this pa-
per. They consist in i) a novel dataset of paired Proba-V and
Sentinel 2 images; ii) the setting of a comparative investiga-



Fig. 1. Example of a HR image from downsampled Sentinel-
2 and its corresponding binary quality map (while represents
clean pixels). The image was extracted from the RED band at
coordinates (38.21130, 13.31250) in May 2020.

tion on the performance of Proba-V MISR with Proba-V HR
ground truths and Sentinel 2 ground truths.

3.1. Dataset

In order to understand the impact of ground truth images from
a different satellite, namely Sentinel 2, in super-resolving
Proba-V images, we first need to create a new paired dataset
which allows to run existing MISR techniques and compare
the results.

The dataset was constructed using the following proce-
dure. First, we manually selected 636 regions of interest
(ROIs) from which to extract images; these images were cho-
sen so as to create as heterogeneous a dataset as possible,
with the presence of a wide variety of biomes and spatial
features, thus including coastal areas, urban settlements,
deserts, vegetation-rich areas, mountains and more. From
the coordinates of such ROIs, we extracted a minimum of 16
low-resolution images from Proba-V and one high-resolution
image from Sentinel-2 to be used as Ground Truth, spanning
a time interval not greater than two months to ensure good
temporal consistency. Inspired by the work of Märten et al.
[1], for each extracted image, whether high or low resolu-
tion, we produced a corresponding quality map, i.e., a binary
mask of the same size as the image with the goal of identi-
fying clean reliable pixels (not affected by clouds, artifacts,
...). All the data extracted, both from Proba-V and Sentinel-
2, consisted of radiometrically and geometrically corrected
Top-Of-Atmosphere (TOA) reflectances. Two processes of
reprojection to Plate-Carré and co-registration were carried
out in order to avoid as much pixel shifts as possible between
the Proba-V and Sentinel-2’s images.

In summary, the resulting dataset consists of 1272 image
sets, 636 each for the NIR and RED spectral bands; each im-
age set contains the following:

• at least 16 low-resolution images from Proba-V with
128× 128 pixels at 300 m/pixel. For each of them, the

Fig. 2. Mixed training with Proba-V LR images and Sentinel-
2 ground truth. The consistency loss tries to match a degraded
version of the SR output with the LR inputs to promote simi-
larity with the radiometry of Proba-V rather than Sentinel-2/

corresponding quality map was produced;

• one high-resolution from Sentinel-2 with 384×384 pix-
els image, downsampled to 100 m/pixel from the native
resolution. As for the LR images, a quality map was
produced;

• one high-resolution from Proba-V with 384×384 pixels
image at 100 m/pixel.

Fig. 1 shows an example of a high-resolution image and
its corresponding quality map.

3.2. Experimental methodology

Our experimental investigation seeks to analyze the per-
formance of a state-of-the-art MISR method when the HR
ground truth for supervision is from the same satellite or a
different satellite. Specifically, we used the paired Sentinel-2
and Proba-V dataset described in the previous section with
the PIUNet architecture [6] recently proposed for MISR. Su-
pervised training of PIUNet learns a function mapping a set
of T LR images into a single HR image of the scene. It is
reasonable to expect that, when a different satellite is used
as HR ground truth, the learned function will attempt to re-
produce the radiometric properties of the ground truth. In
essence, if we use Sentinel-2 as HR ground truth, we will
produce images that look like images from Sentinel-2 rather
than images from Proba-V. This is why in our investigation,
we also evaluate the introduction of a “consistency loss” to
the training process. Such consistency loss downsamples the
SR image produced by the neural network to match the input
low resolution. In formulas, the total loss function is

Ltot = LNLL + λLcon
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∑
i

(
δi + e−δi |xHR

i − µi|
)

Lcon =

∥∥∥∥∥(k⊛ µ)↓D − 1

T

T∑
t=1

xLR
t

∥∥∥∥∥
1



Table 1. Results (cPSNR) with Proba-V training
Proba-V HR ref. Sentinel-2 HR ref.

NIR 69.66 dB 45.71 dB
RED 69.43 dB 47.03 dB

Table 2. Results (cPSNR) with Sentinel-2 training (no con-
sistency loss)

Proba-V HR ref. Sentinel-2 HR ref.
NIR 47.03 dB 48.18 dB
RED 47.68 dB 50.58 dB

where LNLL is the negative log-likelihood loss from PIUNet
[6] being µ the SR image and δ the estimate of aleatoric un-
certainty; ⊛ denotes convolution with a degradation kernel k
and ↓ D decimation by a factor D. The purpose of the consis-
tency loss is to match the features of the SR image with those
of the LR images, thus serving as a counterbalance to overfit-
ting the features of a different satellite when that is used for
xHR. A schematic depiction of this is shown in Fig. 2.

4. EXPERIMENTAL RESULTS

In the following we present results on the new Proba-V and
Sentinel-2 dataset under various testing conditions and an-
alyze them quantitatively in terms of quality of the super-
resolved images as well as in terms of their histograms.

4.1. Experimental setting

The results were obtained from the experiments performed on
the standard PIUnet architecture, trained with the new dataset
including images from both Proba-V (LR) and Sentinel-2
(HR). Experiments were performed on the NIR and RED
bands to have matching spectral bands in both Proba-V and
Sentinel-2 images. The standard setting with T = 9 LR input
images was followed. The neural network was trained for
about 400 epochs, enough to reach a performance plateau.
Training used an Nvidia Quadro P6000 GPU, and required
approximately 19GB of GPU memory. Performance evalu-
ation follows established metrics such as cPSNR [1, 5], i.e.,
PSNR corrected to be invariant to absolute brightness values
and small image shifts. When the consistency loss is adopted,
we use spatial averaging as degradation operator. Notice
that this is a suboptimal choice which could be improved by
choosing a degradation kernel more similar to the Proba-V
point spread function.

4.2. Results

In our first experiment we establish a baseline by training and
on Proba-V data and testing with respect to both Proba-V and

Table 3. Results (cPSNR) with Sentinel-2 training (with con-
sistency loss)

Proba-V HR ref. Sentinel-2 HR ref.
NIR 48.26 dB 50.53 dB
RED 48.48 dB 52.25 dB

Sentinel-2 HR data. Table 1 reports the results of this exper-
iment. Then we train using Sentinel-2 HR images under two
different settings: with or without the consistency loss. These
results are presented in Table 2 and Table 3. It can be im-
mediately noticed that, compared to the baseline training on
Proba-V, cPSNR increases when measured with respect to the
Sentinel-2 HR images but decreases with respect to Proba-V,
suggesting that the training process is learning to replicate the
Sentinel-2 radiometric features more faithfully. Moreover, the
introduction of the consistency loss shows improved cPSNR
both with respect to Proba-V and with respect to Sentinel-2
ground truth images. This suggest that the consistency loss
has a regularizing effect on training by introducing a kind of
constraint on fidelity with respect to the original LR observa-
tions. However, it remains unclear if it improves faithfulness
with respect to the Proba-V statistics rather than Sentinel-2
ones, as we see improvements with respect to both references.
However, by observing the image histograms shown in Fig. 3,
we see that the pixels values in the Proba-V HR match fairly
well the SR pixel values, except for a scaling factor.

Finally, in Fig. 4 we show a visual result of a super-
resolved image compared with one of the LR inputs and the
associated uncertainty map produced by the network.

5. CONCLUSIONS

In this paper, we have conducted a preliminary investigation
on the effects of training MISR methods with a mismatch be-
tween the source of LR images and the source of HR ground
truths. This was made possible by a novel dataset comprised
of paired Proba-V and Sentinel-2 images. We have indeed
verified that training with a mismatch satellite as ground truth
affects the generated images by making them more similar to
those of the ground truth satellite. We have also shown that
a consistency loss can limit this effect and improve overall
quality. Further research needs to be performed on this topic
by further analyzing the radiometry of generated images, as
mismatched training has great practical importance due to the
impossibility of having HR and LR images from the same
platform. Simultaneously, it is clear that this issue could be
entirely avoided by studying unsupervised MISR techniques
[9].



Fig. 3. Histograms of pixel values.

Fig. 4. Qualitative results.
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