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Reinforcement Learning for charging scheduling in
a renewable powered Battery Swapping Station

Daniela Renga, Senior, IEEE, Felipe Spoturno and Michela Meo, Senior, IEEE

Abstract—Battery Swap (BS) technology represents a promis-
ing solution to overcome the main obstacles to a widespread
adoption of electric vehicles (EVs) in a urban environment,
like the limited range of EVs and the long battery charging
time. Furthermore, with respect to traditional charging stations,
it offers higher flexibility in dynamically managing the EV
electricity demand to prevent the risk of power grid overload.
Nevertheless, proper scheduling of the battery charge process
is crucial to offer effective e-mobility services, trading off cost,
Quality of Service and feasibility constraints. In this paper we
consider a renewable powered multi-socket Battery Swapping
Station (BSS) and design two algorithms based on Approximate
Dynamic Programming (ADP) and Reinforcement Learning (RL)
to dynamically adapt the scheduling of the battery charging
process to the stochastic nature of the system. Both approaches
are proved to be effective in remarkably enhancing the service
quality in terms of increased capability to satisfy the customer
demand for EV battery charging, at a lower cost with respect to
benchmark approaches, with RL outperforming ADP under any
budget constraint. In particular, under RL the probability of not
satisfying the EV demand can be decreased by up to more than
40% with respect to benchmark approaches, and a significant
cost reduction of almost 20% can be achieved, jointly with a
greener system operation. Furthermore, our results show that a
fine tuning of hyper-parameters is fundamental to properly trade
off cost and Quality of Service constraints according to varying
business needs. Finally, we analyse how the proposed strategies
may affect the battery health due to their impact on battery
degradation, hence influencing the BSS management cost.

Index Terms—Battery Swapping Stations, e-mobility, Renew-
able Energy, Dynamic Programming, Reinforcement Learning.

I. INTRODUCTION

Nowadays the transportation sector still relies mainly on
oil as its main energy source, capable to satisfy more than
90% of the overall demand so that road transportation alone
is responsible of the half the total oil consumption among all
sectors [1]. Interestingly, road transportation is the only sector
that has been characterized by a considerable growth of the
total final oil consumption in the past years. Indeed, achieving
an amount of 2000 Mtoe per year, this consumption has
become three-fold larger than five decades ago, determining a
raising trend that poses remarkable concerns in terms of sus-
tainability [1]. In addition, air pollution represents a relevant
critical issue related to traditional transportation, especially
in urban environments. In a similar scenario, the adoption of
Electric vehicles (EVs) is gradually emerging as a promising
solution to address all the discussed concerns raised by road
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transportation, as long as EV charging is provided by energy
supply systems which rely on Renewable Energy Sources
(RES) [2]. Nevertheless, several barriers still prevent a wider
diffusion of EVs. First, a more extensive penetration of EVs is
hindered by the lack of adequate charging infrastructure [3],
[4]. Second, the cost per kWh reduction is not yet sufficient
to guarantee a purchasing cost for an EV comparable to
that of Internal Combustion Engine (ICE) vehicles [5], [6].
Furthermore, the travel range per charge still results rather
limited with respect to ICE vehicles, hence leading drivers to
experience a significant range anxiety (fear that a vehicle has
insufficient range to reach the destination) [7], [8]. Finally, an
additional relevant drawback that slows down the diffusion of
EVs on a larger scale is represented by the long charging time
of EV batteries, since fast chargers represents only about 13%
of the newly installed chargers [2], also due to the huge and
unpredictable load that may pose on the electricity distribution
infrastructure [9], [10].
In this context, Battery Swap technology may play a key
role to overcome the highlighted obstacles and speed up a
widespread adoption of EVs [11]. Based on this technology,
EVs are equipped with energy storage units that can be easily
substituted, so that a drained out battery can be replaced at
a Battery Swapping Station (BSS) with a fully charged one
in a short time. Owned by independent companies, BSSs
operate in a similar way to a fuel filling station for ICE
vehicles, virtually making the time experienced by drivers to
obtain a fully charged battery negligible. The time for battery
swap becomes comparable with the time needed to refuel a
traditional car and the range anxiety is significantly mitigated.
New business model can be conveniently introduced. EVs can
be owned by private users or a car sharing company, whereas
batteries are owned and managed by a centralized provider,
which is in charge of all the operations and cost required
for battery maintenance. EV prices can hence be lowered and
users relieved by the need to cope with exhausted batteries.

Nevertheless, the full potential of BSS technology cannot
be effectively exploited without considering the fundamental
need for jointly pursuing possibly conflicting objectives that
coexist during the BSS operation: satisfying the EV user
demand, limiting the operational cost, preventing the electric
grid overload, and reducing the amount of energy drawn from
the grid, hence allowing to achieve sustainability goals. To
this aim, Battery Swap technology enables the application of
smart scheduling schemes for the battery charging process.
Since the requests for a fully charged battery and the battery
charge process can be decoupled in a BSS, the time constraint
on recharging is lessened, hence allowing to more flexibly
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and dynamically suspend and resume the charging process.
This allows, on the one hand, to better adapt the BSS energy
demand to the RES production and availability. On the other
hand, the BSS operator can enhance the interaction with
the Smart Grid (SG), scheduling the battery charging during
periods of low electricity prices, high RES availability, and
based on incentives offered by the SG to avoid peaks of
electricity load.

In this paper, we focus on urban e-mobility based on battery
swap technology, considering a renewable powered BSS. We
design different novel charging scheduling strategies based
on Dynamic Programming (DP) and Reinforcement Learning
(RL). We investigate the impact of these strategies on the
performance of the BSS operation, evaluating their potential
to trade off cost and Quality of Service (QoS) in terms of
capability to satisfy the customer demand for EV battery
charging. Furthermore, to demonstrate the superior perfor-
mance of the proposed strategies, the performance achieved
under the operation of the presented methods is compared
against benchmark charging scheduling approaches. The BSS
and the decision making process for the EV battery charge
scheduling is modeled as a Markovian Decision Problem. The
main contributions of the paper are the following:

• we design two adaptive algorithms, based on Approxi-
mate Dynamic Programming and Reinforcement Learn-
ing, respectively, to modulate and dynamically adapt the
scheduling of the EV battery charging process at a BSS to
the stochastic nature of the system. Charging scheduling
decisions are taken keeping into account the variability of
EV arrival rates, electricity prices, and renewable energy
production profiles;

• we extensively evaluate the performance of the proposed
charging scheduling algorithms via simulation, showing
that they can provide significantly better service (i.e., the
customers can more likely find a fully recharged battery
at the BSS upon arrival) at a lower cost with respect
to benchmark approaches, including a Heuristic control
algorithm and Exact Policy based strategies;

• we thoroughly investigate the effects on system perfor-
mance of varying the hyper-parameters settings of the
proposed algorithms. Varying these settings allows to
weight differently the energy costs and the probability of
missed service (i.e. an EV cannot find a ready battery
upon arrival at the BSS). We demonstrate that a fine
tuning of the hyper-parameters represents an effective tool
to find an operational point that properly trades off cost
and Quality of Service according to business needs;

• finally, we analyse how the proposed charging schedul-
ing strategies affect performance indicators that may
influence the battery health, showing that the designed
scheduling methods outperform benchmark approaches in
preserving EV batteries from degradation phenomena.

II. RELATED WORK

The emerging research interest on battery swap technology
is proved by several studies investigating its potential to foster
the penetration of EV technology [11], [12], [13], [14]. Fur-
thermore, several research efforts focus on deploying charging

scheduling strategies to provide optimal operation of BSS
systems [15], [16], [17]. The study in [15] proposes a dynamic
scheduling mechanism based on Rolling-Horizon optimization
to maximize the daily profit for a BSS serving different types
of EVs that exploit a heterogeneous battery stock. Further
charging and swapping scheduling approaches in the literature
rely on cuckoo search algorithms [16], [17] and particle swarm
optimization [16] to improve cost-effectiveness and enhance
the operation efficiency of charging facilities.
Only few studies exploit Dynamic Programming (DP) for
battery charge scheduling in traditional charging stations either
to manage the charging and discharging of EV batteries
integrated in a smart residential framework [18] or to schedule
a large-scale EV charging in a power distribution network
under stochastic renewable generation and electricity prices
[19]. Similarly, various studies exploit RL based methods to
properly schedule and manage the battery charging process.
Some works in the literature exploit deep RL methods to
properly schedule the charging of a single EV, based on Q-
learning [20], [21], [22] or safe deep RL approaches [23]. A
SAC method is proposed by [24], that focus on the individual
EV charging scheduling problem from the users’ perspective,
deploying a deep RL based approach to derive an optimal
charging control strategy, in order to trade off charging cost
and driver’s anxiety on the driving range and uncertain events.
Like in [19], more recent studies deploy RL based solutions
to address the charging management of multiple EVs [25],
[26], [27]. In [25] a bilevel graph RL method is proposed
for the jointed management of an EV fleet routing and
charging, with the twofold objective of reducing charging
cost and traveling time for drivers. Similarly, [26] proposes
a Deep RL methodology for constraint-based routing while
simultaneously considering EV charging policies. Authors in
[27] deploy a RL based method to perform optimal energy
management in a microgrid environment, that includes EV
charging stations and distributed energy resources.

Nevertheless, only a limited amount of studies consider
DP and RL to specifically address the charging scheduling
problem in battery swapping services in urban e-mobility [28],
[29], [30]. The study in [28] proposes a RL based charging
model that adapts to the incoming vehicle arrival rates to trade
off revenues deriving from swapping operations and the cost
for battery charging. In [29] a multi-agent deep RL algorithm
to tackle the optimization charging scheduling problem in a
scenario consisting of centralized battery charging stations
(BCSs) and distributed BSSs, where fully recharged batteries
are delivered from BCSs and made available to EVs. Authors
in [30] propose a model-free optimal dynamic operations
framework based on deep RL to minimize the operational
costs of a BSS by controlling the charging/discharging and
swapping actions. Considering the charging scheduling prob-
lem in renewable powered BSSs, the literature offers some
solutions based on heuristics and optimization methods based
on integer linear programming to address this issue [13], [31].
However, despite the research efforts devoted to deploy RL
based scheduling algorithms in BSS scenarios, the application
of similar scheduling approaches to operate renewable pow-
ered BSSs does not appear well investigated in the literature.
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Fig. 1: Renewable powered Battery Swapping Station.

Moreover, in the scenarios investigated in the available studies,
battery swap services are typically offered to fleets of electric
buses providing urban electric mobility [12], [14]. Conversely,
in our work we specifically consider a scenario where a
renewable powered multi-socket BSS provides battery charg-
ing and replacement service to EVs in a urban environment.
Furthermore, the small EVs considered in our work differ from
the electric buses used for public transportation, since our EVs
are characterized by a smaller battery capacity, entailing a
lower energy demand to fully recharge a battery unit, and by
less predictable routing dynamics. In addition, we design real-
time algorithms based on DP and RL to optimize the battery
charging scheduling, taking into account the variability of re-
newable energy production, electricity prices and EV demand.
Differently from the currently available literature, the proposed
scheduling strategies jointly trade off cost reduction and QoS,
in terms of capability of serving the EV demand. Furthermore
the performance analysis of the proposed scheduling methods
includes the evaluation of their impact on various performance
metrics that may affect battery health.

III. SUSTAINABLE URBAN MOBILITY SCENARIO

We investigate a scenario where a fleet of EVs owned by
a private company either offers goods delivery service or car
sharing service over a urban environment. A number of BSSs
are distributed in the city to provide battery charging service
to the fleet of EVs. As depicted in Fig. 1, we focus on a single
BSS featuring a number of sockets that is denoted by 𝑀 . The
main notations adopted in this work are reported in Table I.
EVs are equipped with a removable lithium-ion battery unit
that can be replaced as required by a fully recharged battery,
with a fast swap operation performed at the BSS. The dis-
charged battery is then plugged to a BSS socket to begin
the recharge process. When an EV arrives at the BSS and
no fully recharged battery (or anyway featuring a predefined
charge level) is currently available at the BSS, the EV cannot
be served by the considered BSS and another BSS must be
reached. We highlight that in a similar context the new concept
of Battery-as-a-Service is introduced. The pool of batteries that
can be plugged to the BSS sockets to complete the charging
process is owned by the BSS system operator, while EV
owners can subscribe the service offered by the BSS operator,
consisting in the possibility to replace an EV discharged

TABLE I: Notation.

SOC State of charge of a battery
SOH State of health of a battery
𝐶𝑁 Nominal battery capacity of the EV battery
𝐶 Actual battery capacity of the EV battery under real

SOH conditions
𝐷𝑚𝑎𝑥 Maximum Depth of Discharge of the battery
L Fraction of the battery capacity 𝐶 corresponding to the

battery charge level of an EV battery upon arrival at the BSS
𝑎𝐵 Age of battery
𝐸0 Maximum energy demand required to fully recharge

an EV battery
𝐵𝑡ℎ Minimum charge level allowing to release a plugged battery

to replace the discharged battery of an EV upon arrival
𝑟𝑁 Nominal battery charging rate, assuming ideal SOH conditions

and SOC = 50%
𝑟𝐴 Actual battery charging rate under real SOC and SOH

operation conditions
M Number of sockets of a BSS
𝜆 Average EV arrival rate
𝑥𝑘 Amount of energy required at time step 𝑘 to fully charge

a plugged battery
𝑢𝑘 Amount of energy used to recharge a plugged battery

during time slot 𝑘
𝜔𝜆

𝑘
Bernoulli random variable that indicates whether
during time slot 𝑘 an EV arrival occurs (𝜔𝜆

𝑘
= 1)

or not (𝜔𝜆
𝑘
= 0)

𝑝𝜆
𝑘

Probability that an EV arrival occurs during time slot 𝑘
𝜔𝑃𝑉

𝑘
Amount of energy produced by the PV panel during time slot 𝑘

𝑎𝑘 Unitary cost for the energy taken from the grid at time step 𝑘

𝛽 Hyper-parameter to weight the trade-off between the cost
for the energy drawn from the grid and
the cost for missing an EV service demand

xk Column vector representing the state variable 𝑥𝑘
for each plugged battery in a multi-socket BSS

uk Column vector representing the control variable 𝑢𝑘
for each plugged battery in a multi-socket BSS

w𝜆
k Binary vector indicating the number of cars (from 0 to 𝑀)

arriving in the time slot 𝑘 at a multi-socket BSS
𝑐𝐸 Mean grid energy cost
ˆ𝑐𝐸 Normalized grid energy cost
𝑝𝐺 Mean service loss probability
𝑝𝐺 Normalized service loss probability
𝑔𝐸 Grid energy consumption
𝑐𝑆 Cost per service
𝑡𝑆 Mean time spent by a battery in the BSS
𝑛𝑆 Mean number of times that the charging of a battery

is suspended and resumed during the charging period
𝑟 Monetary reward for the locally produced extra renewable

energy that is injected and sold to the SG
𝐶𝑌 Yearly operational cost, including the battery replacement cost

storage unit with a battery recharged up to the desired level,
swapped at the BSS. In this way, EV owners are not burdened
by the remarkable cost required to directly purchase and
manage the EV battery. We assume battery units featuring
a capacity of 20 kWh, as suggested from the literature for a
typical electric city car [32]. The nonlinear charging power of
lithium-ion battery technology makes it difficult to accurately
predict the duration of the charging process for each storage
unit [11]. Slow charge rates are recommended to guarantee
slower battery aging and longer cycle life [33]. For an optimal
recharging process, the maximum nominal charging rate is
typically limited to 𝐶𝑁

2 per hour, where 𝐶𝑁 is the nominal
battery capacity [33]. In our scenario, a maximum charging
rate of 10 kW is hence assumed.
The charging rate of the EV battery is highly affected by the
battery state of charge (SOC), that represents the fraction of
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energy stored in a battery unit with respect to its full capacity.
The highest charging rate is observed under SOC between
25% and 80% [34], a range in which a constant current can
be assumed to quickly recharge the battery [35]. Conversely,
as the battery SOC gets closer to the extreme values, that
correspond to the battery depletion or to the full recharge, the
charging rate tends to progressively decrease [34].
In addition, the battery state of health (SOH) is impacted by
degradation phenomena, that mainly depend on the battery
age and temperature [36]. The SOH degradation, in its turn,
leads to a progressive reduction of the actual available battery
capacity over time with respect to the nominal one.
Let us denote by 𝑟𝑁 the nominal battery charging rate,
observed for a new battery under ideal SOH conditions and
for intermediate SOC, i.e., 50%. Let 𝐶 and 𝑟𝐴 represent the
actual battery capacity and the actual battery charging rate,
respectively, under real SOC and SOH operation conditions.
The actual battery charging rate is computed as follows:

𝑟𝐴 =
𝐶

2
· 𝑓𝑆𝑂𝐶 (1)

where 𝑓𝑆𝑂𝐶 is a scaling factor to take into account the impact
of the battery SOC on the charging rate. 𝐶 is derived as
𝐶𝑁 · 𝑓𝑆𝑂𝐻 , where 𝑓𝑆𝑂𝐻 is a scaling factor to take into account
the effect of the battery SOH on the actual available battery
capacity. Based on [34], the value of 𝑓𝑆𝑂𝐶 is defined as
follows:

𝑓𝑆𝑂𝐶 =


0.69 if 𝑆𝑂𝐶 ≤ 0.25
1 if 0.25 < 𝑆𝑂𝐶 < 0.80
0.69 if 𝑆𝑂𝐶 ≥ 0.80

A linear approximation of 𝑓𝑆𝑂𝐻 as a function of the battery
age at a given temperature is derived in [36] as:

𝑓𝑆𝑂𝐻 =

{
1− 𝑏 · 𝑎𝐵 if 𝑎𝐵 ≤ 80 𝑑𝑎𝑦𝑠

𝑐 · 𝑎𝐵 + 𝑑 if 𝑎𝐵 > 80 𝑑𝑎𝑦𝑠

where 𝑎𝐵 represents the battery age expressed in days, with
parameters 𝑏, 𝑐 and 𝑑 set as follows:

(𝑏, 𝑐, 𝑑) =
{
(9.9985 · 10−1, 3.0 · 10−5, 9.904 · 10−1 ) 𝑖 𝑓 𝑇 = 25°𝐶
(9.9970 · 10−1, 8.5 · 10−5, 9.828 · 10−1 ) 𝑖 𝑓 𝑇 = 40°𝐶

Besides the powering provided to the BSS by the electric
grid, a renewable energy (RE) supply, represented by a set
of photovoltaic (PV) panels, is envisioned to recharge the
battery units with locally produced solar energy, as shown
in Fig. 1. Assuming one of the most efficient crystalline
silicon technologies currently on the market, characterized
by 19% efficiency, the physical area occupancy required to
install PV modules is about 5 m2 per kWp of PV module
capacity [37]. Real traces for RE generation are derived from
the PVWatts tool [38] for a city in Northern Italy during the
typical meteorological year. To evaluate the BSS operational
cost, we consider real electricity prices derived from the Day-
Ahead Market, provided by Gestore dei Mercati Energetici
(GME), the Italian company responsible for the electricity
market management [39].

EVs are assumed to arrive at the BSS to replace their
discharged battery according to an inhomogeneous Poisson
process, characterized by average arrival rate 𝜆 varying with
the time of the day on an hourly basis, as typically done in
the the literature for scenarios envisioning traditional EVs [40],
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Fig. 2: Daily profile of EV arrival rates [13].

[41], [42]. The dynamics of the EV usage and of the battery
charging process at the BSS may be different with respect to
those observed in a scenario with traditional EVs and charging
stations, possibly leading to very different EV arrival patterns.
Therefore, the patterns based on real data about EV arrivals at
traditional charging stations may not be suitable to properly
represent the actual behavior of EV arrivals in a BSS system
[43]. We hence adopt the daily traffic profile reported in Fig. 2,
as in our previous work [13], that is derived taking inspiration
from typical models of EV arrival rates that are adopted in
the literature [43], [44], [41], but at the same time accounting
for a possibly different behavior in a BSS scenario, hence
obtaining a plausible pattern that reflects traffic variations
during the day, showing traffic peaks at the beginning of
the working day, during lunchtime, and in the evening. We
assume a maximum value of the Depth of Discharge of the
battery, 𝐷𝑚𝑎𝑥 , with respect to its actual capacity, 𝐶, in order
to limit the battery degradation and improve its lifetime [45].
The minimum allowed battery charge level is hence equal to
𝐶 ·𝐷𝑚𝑎𝑥 . Under this constraint, the risk of fully running out
of battery is avoided, allowing the EV to reach another BSS in
case no storage units are currently ready at the BSS to replace
the EV battery. The battery charge level of the EVs that arrive
at the BSS is denoted 𝐿 ·𝐶, and it is expressed as a fraction,
𝐿, of the battery capacity 𝐶. Finally, to reduce the probability
of service unavailability during peaks of EV demand, a battery
under charge at the BSS may be made available even if it is
not fully recharged yet. In particular, battery units may become
available for swapping as soon as they are recharged up to
a threshold level, denoted 𝐵𝑡ℎ, corresponding to a fraction
of the battery capacity 𝐶. EV users may exhibit different re-
quirements for the desired battery charge level after the storage
unit replacement. Nevertheless, to limit the system complexity,
we assume a constant value for 𝐵𝑡ℎ for any user during the
entire system operation, that reasonably reflects an average
threshold setting based on different user needs, and accounts
for the fact that short-medium range routes of EVs in urban
environment usually do not require a fully recharged battery.
On top of this, we assume that the charge of the battery units
plugged at the BSS may be temporarily postponed, in order
to both optimize the renewable energy utilization and take
advantage of lower electricity prices, still satisfying the EV
battery replacement demand. To this aim, different strategies
are implemented to dynamically schedule the battery charging
process, taking proper scheduling decisions that allow to trade
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off operational cost, RE utilization, QoS requirements, and
sustainability goals.

IV. MODELING BSS OPERATION

We now model the BSS operation and formalize the cost
minimization problem, considering both the case of a single-
socket BSS and the case of a multiple-socket BSS.

A. Single-socket BSS modeling

In this study, a Markovian Decision Process is used to
model the operation of a BSS with 𝑀 sockets and no waiting
queue, i.e., assuming that an EV arriving at the BSS picks
the battery under charge only if its charge level is higher
than the defined threshold 𝐵𝑡ℎ, otherwise it leaves the station
without replacing the battery. We first consider the single-
socket BSS case (𝑀=1). The system is represented through a
discrete-time and discrete state-space model, where each state
𝑥𝑘 corresponds to the energy demand that is required to fully
charge the plugged battery at time step 𝑘 , with state 𝑥𝑘 = 0
indicating a fully charged battery and 𝑥𝑘 = 𝐶 corresponding
to an empty battery. The control variable 𝑢𝑘 represents the
amount of energy that is used to recharge the battery during
time slot 𝑘 . A value of 𝑢𝑘 equal to 0 means that the charging
process of the considered battery is deactivated (OFF), whereas
under positive values of 𝑢𝑘 the charging process is activated
(ON). An EV arrives at the BSS at time slot 𝑘 with probability
𝑝𝜆
𝑘

that depends on the current value of 𝜆. We denote 𝜔𝜆
𝑘

the Bernoulli random variable used to indicate whether during
time slot 𝑘 at least an EV arrives or not, assuming 𝜔𝜆

𝑘
= 1

with probability 𝑝𝜆
𝑘

and 𝜔𝜆
𝑘
= 0 with probability 1− 𝑝𝜆

𝑘
. In

the unlikely event of more than 𝑀 electric vehicles arriving
during the same time slot (whose duration is set to 5 minutes),
we assume that the additional EVs cannot be served by
the BSS. These missed services, that are rather due to an
underdimensioned BSS infrastructure than to the management
of the EV battery charging scheduling, are neglected. Indeed,
our study focuses on the deployment of effective EV charging
scheduling strategies, whereas for a more specific focus on
the BSS dimensioning in terms of number of sockets, 𝑀 ,
with respect to the EV demand, the reader can refer to our
previous work [13]. A further random variable, denoted 𝜔𝑃𝑉

𝑘
,

represents the amount of energy produced by the photovoltaic
panel during time slot 𝑘 . The system evolves in time according
to the following state transitions:

𝑥𝑘+1 =

{
𝐶 if 𝜔𝜆

𝑘
= 1 and [𝑥𝑘 −𝑢𝑘]+ ≤ 𝐸0

[𝑥𝑘 −𝑢𝑘]+ otherwise
(2)

where 𝐸0 = 𝐶 · (𝐵𝑡ℎ − 𝐿𝑚𝑖𝑛), 𝑘 = 1,2, ... 𝑁 −1, with 𝑁 repre-
senting the state horizon of the system. Basically the state of
the system depends on the battery charging process, and an
empty battery is left on the system after an EV has replaced
its battery upon arrival. The state transitions from (2) can also
be written as:

𝑥𝑘+1

(
𝜔𝜆

𝑘 , 𝑢𝑘

)
= 𝜔𝜆

𝑘 · I
{
[𝑥𝑘 −𝑢𝑘]+ < 𝐸0

}
·𝐶

+
(
1−𝜔𝜆

𝑘 · I
{
[𝑥𝑘 −𝑢𝑘]+ ≤ 𝐸0

})
· [𝑥𝑘 −𝑢𝑘]+

(3)

where I {·} stands for the indicator function.

Considering the variability of renewable energy production
and of electricity prices, decisions about battery charging
scheduling are made at each time step in order to minimize
both the cost for the electricity bought from the grid and the
cost for a missed service in case an EV cannot replace its
empty battery. We first define the step cost function for the
analyzed system at time step 𝑘 as:

𝑔𝑘

(
𝑥𝑘 , 𝑢𝑘 ,𝜔

𝜆
𝑘 ,𝜔

𝑃𝑉
𝑘

)
= (1− 𝛽) · 𝑎𝑘 ·

[
𝑢𝑘 −𝜔𝑃𝑉

𝑘

]+
+𝛽 ·𝜔𝜆

𝑘 · I
{
[𝑥𝑘 −𝑢𝑘]+ > 𝐸0

} (4)

where 𝑎𝑘 is the deterministic unitary cost of the energy taken
from the grid at time 𝑘 , 𝛽 ∈ [0,1] is an hyper-parameter used
to weight the trade-off between the cost of the energy drawn
from the grid and the cost for not being able to serve an EV.
Low values of 𝛽 give priority to minimizing the energy cost,
whereas high values of 𝛽 weight more the reduction of missing
an EV service demand.

B. Multiple-socket BSS modeling

A multiple-socket BSS (𝑀 > 1) can be thought as a single-
socket station in which the state and the control variables of
the system are represented by column vectors xk and uk. It is
convenient to sort the elements of vector xk (i.e., xk

(𝑖) , with
0 ≤ 𝑖 ≤ 𝑀 −1) based on the increasing state of energy demand
of the batteries, so that the state of the system is actually
x′k = 𝑓 (xk), where 𝑓 is a permutation of the states. In this way
x′k

(𝑖) ≤ x′k
( 𝑗 ) for each 𝑖 ≤ 𝑗 . Note that the first element of the

vector, x′k
(0) , corresponds to the most charged battery, hence

the storage unit that is going to replace the empty battery of
the next arriving EV. As an extension of the case of a single
socket system, the random variable 𝜔𝜆

𝑘
becomes now a binary

vector w𝜆
k indicating the number of EVs (from 0 to 𝑀) arriving

during time slot 𝑘:

w𝜆
k
(𝑖)

=

{
1 (arrivals > 𝑖) with probability 𝑝

𝜆(𝑖)
𝑘

0 (arrivals ≤ 𝑖) with probability 1− 𝑝
𝜆(𝑖)
𝑘

(5)

As it will be further detailed in Equation 17 and Equation 18,
the value of 𝑝

𝜆(𝑖)
𝑘

corresponds to 1−𝐹 (𝑖), where 𝐹 (𝑖) is the
cumulative distribution function of the number of EV arrivals
in time slot 𝑘 .
The system hence evolves according to the following equation:

x′k+1 = 𝐶 · I
{
𝑓

( [
x′k −u′

k
]+)

< 𝐸0

}
◦w𝜆

k

+
[
1− I

{
𝑓

( [
x′k −u′

k
]+)

< 𝐸0

}
◦w𝜆

k

]𝑇
· 𝑓

( [
x′k −u′

k
]+) (6)

where ◦ stands for the element-wise product (or Hadamard
product), and I {·} is applied to a vector verifying the condition
for each component. The cost of each step becomes:

𝑔𝑘

(
x′k,u

′
k,w

𝜆
k ,𝜔

𝑃𝑉
𝑘

)
= (1− 𝛽) · 𝑎𝑘 ·

[∑︁
𝑖

u′
k
(𝑖) −𝜔𝑃𝑉

𝑘

]+
+𝛽 · I

{
𝑓

( [
x′k −u′

k
]+)

> 𝐸0

}𝑇
·w𝜆

k

(7)

V. DYNAMIC CHARGING SCHEDULING

We first introduce a Stochastic Dynamic Programming
based algorithm to dynamically schedule the charging of EV
batteries plugged at the sockets of a BSS. The algorithm aims
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at minimizing the BSS operational cost, by means of proac-
tively suspending and resuming the charging process when it
is more convenient, depending on EV demand, electricity cost
and RE availability. We then consider the application of this
scheduling approach both in the simple case of a single-socket
BSS and in the more challenging case of a multiple-socket
BSS. To tackle the feasibility issues raised in the multiple-
socket BSS scenario and reduce the computational complexity
of the DP based algorithm, we propose a set of strategies,
based on Approximate Dynamic Programming and Rein-
forcement Learning. Finally, besides introducing an Heuristic
scheduling strategy, we describe Exact policy solutions that
allow to analytically compute the optimal charging scheduling
policy operation, representing a benchmark against which the
performance of the other approaches can be compared.

A. Stochastic Dynamic Programming

The Stochastic DP based scheduling approach is here de-
scribed. We detail how it can be applied in the single socket
BSS scenario, considering first the Finite-Horizon DP and
motivating the need for introducing an Infinite-Horizon DP
approach. Furthermore, we introduce the limits of applying a
DP scheduling in a multiple socket BSS scenario, that require
the deployment of other types of scheduling algorithms.

1) Finite-Horizon DP Algorithm: A Stochastic DP ap-
proach is adopted to take proper scheduling decisions with the
purpose of minimizing the overall operation cost cumulated
over the entire time period of the system evolution, i.e., from
𝑘 = 0 to 𝑘 = 𝑁 . To this aim, we first define a cost function that
is additive over time:

𝐽 (𝑥0) =
𝑁−1∑︁
𝑘=0

𝑔𝑘 (𝑥𝑘 , 𝑢𝑘 ,𝜔𝑘) +𝑔𝑁 (𝑥𝑁 ) (8)

where 𝑔𝑘 (𝑥𝑘 , 𝑢𝑘 ,𝜔𝑘) is the step cost function, whereas
𝑔𝑁 (𝑥𝑁 ) is a terminal cost incurred at the end of the process,
thus it depends only on the final state 𝑁 . Due to the presence
of 𝜔𝑘 , the total cost is generally a random variable. We assume
a finite horizon of N time slots, covering the duration of an
entire day.

Let us denote a generic scheduling policy with 𝜋 =

{𝜇0, 𝜇1, . . . , 𝜇𝑁−1}, where 𝜇𝑘 maps states 𝑥𝑘 into controls
𝑢𝑘 = 𝜇𝑘 (𝑥𝑘) to determine the charging scheduling at each time
step. Under this policy, the evolution of the system becomes:

𝑥𝑘+1 = 𝑓𝑘 (𝑥𝑘 , 𝜇𝑘 (𝑥𝑘) ,𝜔𝑘) (9)
The associated expected value of the cumulative system cost
under the policy 𝜋 starting from a generic initial state 𝑥0, that
we denote 𝐽𝜋 (𝑥0), is defined as:

𝐽𝜋 (𝑥0) := E

[
𝑁−1∑︁
𝑘=0

𝑔𝑘 (𝑥𝑘 , 𝜇𝑘 (𝑥𝑘) ,𝜔𝑘) +𝑔𝑁 (𝑥𝑁 )
]

(10)

The DP objective is to identify an optimal policy 𝜋∗ minimiz-
ing 𝐽 over the set of all the possible policies Π, that is:

𝐽𝜋∗ (𝑥0) = min
𝜋∈Π

𝐽𝜋 (𝑥0) (11)

To achieve this objective, DP relies on the principle of
optimality [46]. Let 𝜋∗ =

{
𝜇∗0, 𝜇

∗
1, . . . , 𝜇

∗
𝑁−1

}
be an optimal

policy for the basic problem, and assume that, under policy

𝜋∗, a given state 𝑥𝑖 occurs at time 𝑖 with positive probability.
Consider the subproblem whereby the system is in state
𝑥𝑖 at time 𝑖 and we want to minimize the cost-to-go from
time 𝑖 to time 𝑁 , that we denote 𝐽𝜋 (𝑥𝑖), which represents
the cost incurred by the system in the considered time interval:

𝐽𝜋 (𝑥𝑖) = E
[
𝑁−1∑︁
𝑘=𝑖

𝑔𝑘 (𝑥𝑘 , 𝜇𝑘 (𝑥𝑘) ,𝜔𝑘) +𝑔𝑁 (𝑥𝑁 )
]

(12)

Clearly, for the considered subproblem, the truncated
policy

{
𝜇∗
𝑖
, 𝜇∗

𝑖+1, . . . , 𝜇
∗
𝑁−1

}
results optimal. The principle

of optimality suggests that an optimal policy can hence be
constructed by solving first the tail subproblem involving
the last stage 𝑥𝑁 , then extending stage by stage the tail
subproblem until an optimal policy is constructed for
the entire problem. This strategy of building the solution
backwards in time is known as the Dynamic Programming
Algorithm. More in detail, for any initial state 𝑥0, the optimal
cost 𝐽∗ (𝑥0) of the basic problem is equal to 𝐽0 (𝑥0), and it can
be derived from the last step of the following algorithm, which
computes 𝐽𝑘 (𝑥𝑘) proceeding recursively and backwards in
time starting from 𝑘 = 𝑁 −1 up to 𝑘 = 0:

𝐽𝑘 (𝑥𝑘) = min
𝑢𝑘 (𝑥𝑘 )

{
E
𝜔𝑘

[𝑔𝑘 (𝑥𝑘 , 𝑢𝑘 ,𝜔𝑘) + 𝐽𝑘+1 ( 𝑓𝑘 (𝑥𝑘 , 𝑢𝑘 ,𝜔𝑘))]
}

(13)
where 𝑔𝑘 (𝑥𝑘 , 𝑢𝑘 ,𝜔𝑘) represents the step cost function at time
𝑘 , while the term 𝐽𝑘+1 ( 𝑓𝑘 (𝑥𝑘 , 𝑢𝑘 ,𝜔𝑘)) corresponds to the
cost-to-go function [46]. We highlight that the control space
Uk (𝑥𝑘) = {0, 𝑢 (𝑥𝑘)} is influenced by the SOC of the battery
according to the following formula:

𝑢(𝑥𝑘) = 𝑓𝑆𝑂𝐶 ·𝑢𝑚𝑎𝑥 (14)
where 𝑢𝑚𝑎𝑥 represents the maximum amount of energy that
can be injected into a battery under charge during a time
slot, assuming the maximum allowed charging rate. Note that
𝑢𝑚𝑎𝑥 , in its turn, depends on the battery SOH, according to
the following equation:

𝑢𝑚𝑎𝑥 = 0.5𝐶𝐴 · △𝑡 (15)
where 𝐶𝐴 = 𝐶𝑁 ·E[ 𝑓𝑆𝑂𝐻 ]. Whereas the algorithm operation
takes into consideration the influence of the SOC variability
on the charging rate of an EV battery, as it appears evident
from (14), we remark that, in order to limit the complexity
of the proposed charging scheduling algorithms, a constant
value of 𝐶 is considered. As specified in (15), 𝐶 is computed
assuming a constant average value for 𝑓𝑆𝑂𝐻 , that is derived
based on [36] and according to the configuration settings of
the considered scenario, that are detailed in Section VII.
Note that 𝐽𝑁 (𝑥𝑁 ) = 𝑔𝑁 (𝑥𝑁 ). Furthermore, if 𝑢∗

𝑘
= 𝜇∗

𝑘
(𝑥𝑘)

minimizes the right side of Equation 13 for each possible 𝑥𝑘
and 𝑘 , the policy 𝜋∗ =

{
𝜇∗0, 𝜇

∗
1, . . . , 𝜇

∗
𝑁−1

}
is optimal. From

the application of the DP Algorithm to the single-socket BSS
system, based on Equation 4 and Equation 13 we obtain:

𝐽∗𝑘 (𝑥𝑘) = min
𝑢𝑘 (𝑥𝑘 )

{
E

𝜔𝜆
𝑘
,𝜔𝑃𝑉

𝑘

[
(1− 𝛽) · 𝑎𝑘 ·

[
𝑢𝑘 −𝜔𝑃𝑉

𝑘

]+
+𝜔𝜆

𝑘 · 𝛽 · I
{
[𝑥𝑘 −𝑢𝑘]+ > 𝐸0

}
+ 𝐽∗𝑘+1 (𝑥𝑘+1)

]} (16)
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TABLE II: Example of a control table after running the DP
Algorithm.

𝑘 = 0 𝑘 = 1 · · · 𝑘 = 𝑁

𝑥𝑘 = 0
(
𝑢∗0 (𝑥0) , 𝐽∗0 (𝑥0)

) (
𝑢∗1 (𝑥0) , 𝐽∗1 (𝑥0)

)
· · · 0

𝑥𝑘 = 1
(
𝑢∗0 (𝑥1) , 𝐽∗0 (𝑥1)

) (
𝑢∗1 (𝑥1) , 𝐽∗1 (𝑥1)

)
· · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

𝑥𝑘 = 𝐶

(
𝑢∗0 (𝐶) , 𝐽

∗
0 (𝐶)

) (
𝑢∗1 (𝐶) , 𝐽

∗
1 (𝐶)

)
· · · 0

Since 𝜔𝜆
𝑘

and 𝜔𝑃𝑉
𝑘

are independent random variables, we can
split the expected value. Furthermore, considering that 𝜔𝜆

𝑘
is a

Bernoulli variable, then E
[
𝜔𝜆

𝑘

]
= 𝑝

𝜆,𝑛

𝑘
at each time step, where

𝑝
𝜆,𝑛

𝑘
represents the probability that 𝑛 or more EVs arrive at

the BSS during the time window corresponding to time step
𝑘 given the average arrival rate 𝜆. It can be computed as:

𝑝
𝜆,𝑛

𝑘
= 1−

𝑛−1∑︁
𝑖=0

𝑝′𝑘
𝜆,𝑖 (17)

where 𝑝′
𝑘
𝜆,𝑖 represents the probability that 𝑖 EVs arrive at

the BSS during time step 𝑘 , given the arrival rate 𝜆. Since
interarrival times are exponentially distributed, the stochastic
counting process of arrivals can be proved to be a Poisson
variable, hence 𝑝′

𝑘
𝜆,𝑖 can be derived as follows:

𝑝′𝑘
𝜆,𝑖 =

(𝜆𝑘 ·Δ𝑡)𝑖 · 𝑒−𝜆𝑘 ·Δ𝑡

(𝑖)! (18)

Consequently, Equation 16 becomes:

𝐽∗𝑘 (𝑥𝑘) = min
𝑢𝑘 (𝑥𝑘 )

{
(1− 𝛽) · 𝑎𝑘 ·

[
𝑢𝑘 −E

(
𝜔𝑃𝑉

𝑘

)]+
+𝑝𝜆𝑘 · 𝛽 · I

{
[𝑥𝑘 −𝑢𝑘]+ > 𝐸0

}
+ E

𝜔𝜆
𝑘

[
𝐽∗𝑘+1 (𝑥𝑘+1)

] } (19)

Finally, from Equation 3 we derive the term E
𝜔𝜆

𝑘

[𝐽∗
𝑘+1 (𝑥𝑘+1)]:

E
𝜔𝜆

𝑘

[
𝐽∗𝑘+1 (𝑥𝑘+1)

]
= 𝑝𝜆

𝑘
· 𝐽∗𝑘+1 (𝑥𝑘+1 (1, 𝑢𝑘))

+(1− 𝑝𝜆

𝑘
) · 𝐽∗𝑘+1 (𝑥𝑘+1 (0, 𝑢𝑘))

(20)

Based on Equations 19-20, the algorithm can be recursively
run, to optimize the scheduling of the battery charging, know-
ing different time dependent system parameters: 𝑝𝜆

𝑘
, E

(
𝜔𝑃𝑉

𝑘

)
,

and 𝑎𝑘 . The optimal solution that is obtained off-line is hence
mapped into a lookup table that stores the pair

(
𝑢∗
𝑘
, 𝐽∗

𝑘

)
for each

discrete state 𝑥𝑘 , as shown in Table II. This table can then be
inspected on-line by the controller during the BSS operation to
find the optimal scheduling strategy to apply given the current
state of the system, hence determining whether in a given time
slot it is convenient to recharge the battery. The DP Algorithm
can be applied considering a Finite Horizon, i.e., the number
of stages is finite. In our case, the 𝑁−th time step corresponds
to the end of the day. We set 𝐽𝑁 (𝑥𝑁 ) = 0 so that every final
state is equally penalized at the end of the day.

2) Infinite-Horizon DP through Value Iteration: As shown
in Sec. VII-C, the application of a Finite Horizon DP algorithm
on a daily basis may cause some misbehavior of the system as
the end of the day approaches. The DP Algorithm solves the
optimization problem starting from 𝑘 = 𝑁 , that in our case

corresponds to the end of the day. The starting condition,
𝑔𝑁 (𝑥𝑘), is set equal to 0, assuming that no particular cost
is assigned for the state of the battery at the end of the day.
Since the final cost is zero and given the limit on the maximum
charging rate, as the end of the day approaches the current
charging level of some batteries may not allow to achieve a
full recharge by the end of the day. Hence, the DP algorithm
may lead to stop the charging process of some batteries close
to the end of the day, although this is unlikely in a realistic
scenario. To overcome this critical issue, an infinite number of
stages can be assumed and Infinite Horizon DP can be adopted,
as long as the system is stationary. Although the system is not
stationary on an hourly basis, it can be assumed approximately
stationary on a daily basis, since solar radiation, EV arrival
rates, and electricity prices may be similar from one day to the
next one, in the same season. Infinite-Horizon DP relies on the
concept of Value Iteration [46], that entails multiple iterations
to converge to the optimal cost-to-go function, solving the
Bellman equation and selecting a discount factor for the cost
function, denoted 𝛼, that represents a weighting factor for the
cost that will be accumulated in the future time steps. The
optimal cost can hence be derived as follows:

𝐽∗𝑘 (𝑥𝑘) = min
𝑢𝑘 (𝑥𝑘 )

{
E

𝜔𝜆
𝑘
,𝜔𝑃𝑉

𝑘

[
𝑔𝑘

(
𝑥𝑘 , 𝑢𝑘 ,𝜔

𝜆
𝑘 ,𝜔

𝑃𝑉
𝑘

)
+𝛼 · 𝐽∗𝑘+1 (𝑥𝑘+1)

]}
(21)

To properly implement Value Iteration on our system, the DP
Algorithm is iteratively performed on a daily basis, starting
from 𝑘 = 𝑁 . Once the beginning of the day is reached (𝑘 = 0),
the accumulated cost 𝐽∗0 (𝑥) is set as the initial condition for
a new DP Algorithm iteration, setting 𝐽∗

𝑁
(𝑥) := 𝐽∗0 (𝑥). After

the iteration is performed for a limited number of times, the
system is able to forget the very initial condition that was set
in Sec. V-A1, assuming 𝐽∗

𝑁
(𝑥) := 0.

3) DP in the multiple-socket BSS: We now consider the
application of DP in the multiple-socket BSS. In this case, to
find the optimal cost, the DP algorithm would perform a cost
minimization for each possible state, at each time step:

𝐽∗𝑘
(
x′k

)
= min

u′
k∈𝑈𝑘 (x′k)

{
E

w𝜆
k ,𝜔

𝑃𝑉
𝑘

[
𝑔𝑘

(
x′k,u

′
k,w

𝜆
k ,𝜔

𝑃𝑉
𝑘

)]
+E

w𝜆
k

[
𝐽∗𝑘+1

(
𝑓
(
x′k+1

) )]} (22)

However, this problem is computationally expensive, since
the number of solutions to explore for each time step is
exponential on 𝑀 , involving at least |x′ | · |𝑢 |𝑀 operations. The
space for x′ is composed by all the sorted combinations for
𝑥, which is:

|x′ | =
(
|𝑥 | +𝑀 −1

𝑀

)
(23)

For example, for |𝑥 | = 25, |𝑢 | = 2 (for an on/off controller)
and |𝑀 | = 20, this would imply at least ∼ 1.8 ·1018 operations
per time step for the construction of a Dynamic Programming
lookup table. In addition, a critical issue arises due to the
memory required to store all the actions to take for each
one of the states. Instead of solving the complete table
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Algorithm 1 Decoupled problem approximation.
1) At the beginning of the day compute 𝑀 lookup tables

running the DP algorithm, one per each socket.
Input: 𝑥𝑘 , 𝑢𝑘 , 𝜔𝜆

𝑘
, 𝜔𝑃𝑉

𝑘
for any time slot in a day.

Output: Control table and cost-to-go table per each
socket.

2) At each time slot 𝑘:
a) Re-order the states computing x′k = 𝑓 (xk)
b) For each socket 𝑖, look in the 𝑖𝑡ℎ DP lookup table the

optimal control u′ (𝑖)
k to apply knowing x′k

(𝑖)

c) Compute the controls to apply to each socket by
performing uk = 𝑓 −1 (

u′
k
)

Input: 𝑘 , xk for the current time slot 𝑘 .
Output: uk, i.e. ON/OFF control decisions to be applied
to each plugged battery during time slot 𝑘 .

produced by the DP Algorithm, which is clearly unfeasible,
the computational complexity of the optimization is reduced
by applying a set of strategies, based on Approximate Dynamic
Programming and Reinforcement Learning. These strategies
are detailed hereafter.

B. Approximate DP: Decoupled problem approximation

The principle at the basis of problem approximation allows
to simplify the original problem. To this aim, one of the
possible strategies is to decouple variables that may be coupled
in the original problem, in order to reduce the dimensionality
of the problem. For example, our 𝑀-socket BSS, can be
thought as a set of 𝑀 single-socket BSSs. In this case,
the algorithm produces, for each socket, a DP lookup table
following the classical DP algorithm. Furthermore, the cost is
also decoupled into a vector Jk

(
x′k

)
, and the DP algorithm for

each component becomes:

J∗(𝑖)k

(
x′k

(𝑖)
)
=

min
u′

k
(𝑖) ∈𝑈𝑘 (x′k (i) )

{
E

w𝜆
k
(𝑖)

,𝜔𝑃𝑉
𝑘

[
𝑔
(𝑖)
𝑘

(
x′k

(𝑖)
,u′

k
(𝑖)
,w𝜆

k
(𝑖)
,
𝜔𝑃𝑉

𝑘

𝑀

)
+J∗(𝑖)k+1

(
𝑓

( [
x′k −u′

k
]+) (𝑖) ) ]} (24)

Note that in our case the power derived from the PV panel is
simply distributed uniformly among all of the sockets, hence
excluding the possibility of further optimization through an
intelligent distribution of the produced renewable energy. The
workflow of the controller is detailed by Algorithm 1.

C. Reinforcement Learning: One step-lookahead + Multi-
agent policy iteration + Decoupled problem approximation

Under Approximate DP, lookup tables are computed for
each socket at the beginning of the day, to support at any time
step the decision process about whether the battery plugged
to a given socket should be charged or not. Conversely, under
the RL approach the charge scheduling decision at each time
step is taken not only based on the socket specific control

Algorithm 2 One step-lookahead + Decoupled problem ap-
proximation.

1) At the beginning of the day, for each socket compute 𝑀

lookup tables running the DP algorithm.
Input: 𝑝𝑘 , 𝜔𝜆

𝑘
, 𝜔𝑃𝑉

𝑘
, 𝑎𝑘 for any time slot in a day.

Output: Control table and cost-to-go table per each
socket.

2) At each time step 𝑘:
a) Re-order the states computing x′k = 𝑓 (xk)
b) Find u′

k minimizing the cost in Equation (25) by brute-
force (this step may take some time to finish)

c) Compute the controls to apply to each socket by
performing uk = 𝑓 −1 (

u′
k
)

Input: 𝑘 , 𝑥𝑘 , 𝑝𝑘 , 𝜔𝜆
𝑘
, 𝜔𝑃𝑉

𝑘
, 𝑎𝑘 for the current time slot

𝑘 .
Output: uk, i.e. ON/OFF control decisions to be applied
to each plugged battery during time slot 𝑘 .

tables generated at the beginning of the day, but also based on
additional optimization procedures that are performed at each
time step.
One step lookahead strategies are halfway between simple
problem approximation and solving the complete problem.
Since solving the complete problem is infeasible due to its
dimensionality, these strategies first perform an on-line cost
optimization over all the possible controls to apply, given
the current state of the system, and then an approximation
is performed for the cost-to-go function, potentially through
problem approximation.
At each time step the algorithm computes the following:

u′
k
∗ (

x′k
)
= argmin

u′
k∈𝑈𝑘 (x′k)

{
E

w𝜆
k ,𝜔

𝑃𝑉
𝑘

[
𝑔𝑘

(
x′k,u

′
k,w

𝜆
k ,𝜔

𝑃𝑉
𝑘

)]
+ 𝐽𝑘

(
x′k+1

)}
(25)

where 𝐽𝑘
(
x′k+1

)
represents the cost-to-go approximation, that

can be computed exploiting the cost-to-go tables obtained by
running the Dynamic Programming at the beginning of the day
for the decoupled system and summing the associated cost for
each socket as shown in the following equation:

𝐽𝑘
(
x′k+1

)
=

∑︁
𝑖

E
w𝜆

k
(𝑖)

[
J∗(𝑖)k+1

(
𝑓

( [
x′k −u′

k
]+) (𝑖) )] (26)

In this way an approximated overall cost-to-go of the system
is obtained, after applying a control u′

k. At each time step,
all the possible actions are evaluated starting from the actual
state of the system, which are |𝑢 |𝑀 possible controls. These
kind of algorithms enable a collaboration between the agents,
since for at least one of the time steps the complete problem
is considered.
Summarizing, the algorithm combining the One step-
lookahead approach and the Decoupled problem approxima-
tion would work as reported in Algorithm 2. Considering the
previously introduced scenario, featuring |𝑢 | = 2 and |𝑀 | = 20,
at least ∼ 106 operations are needed for each time step, which
are much fewer than those required to solve the complete
problem through Dynamic Programming. Nevertheless, the
process is still extremely complex and time consuming. In
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Algorithm 3 One step-lookahead + Multi-agent policy itera-
tion + Decoupled problem approximation.

1) Compute 𝑀 lookup tables running the DP algorithm for
each one of the sockets at the beginning of the day
Input: 𝑝𝑘 , 𝜔𝜆

𝑘
, 𝜔𝑃𝑉

𝑘
, 𝑎𝑘 for any time slot in a day.

Output: Control table and cost-to-go table per each
socket.

2) At each time step 𝑘:
a) Re-order the states computing x′k = 𝑓 (xk)
b) Initialize the optimal control as u′

k
∗ := 0

c) For a number of iterations 𝑁𝐼𝑇 or until convergence:
i) For each socket 𝑖:

A) Find a new u′
k
∗(𝑖) by minimizing the cost in

Equation (27), where the rest of the components
are kept fixed to u′

k
∗.

B) Update the component 𝑖 of the optimal control
u′

k
∗

d) Compute the controls to apply to each socket by
performing uk

∗ = 𝑓 −1 (
u′

k
∗)

Input: 𝑘 , 𝑥𝑘 , 𝑝𝑘 , 𝜔𝜆
𝑘
, 𝜔𝑃𝑉

𝑘
, 𝑎𝑘 for the current time slot

𝑘 .
Output: u∗

k, i.e. ON/OFF control decisions to be applied
to each plugged battery during time slot 𝑘 .

similar problems where the control variable is a vector that
can be thought as 𝑀-agents, each operating on its own socket,
the control can be evaluated one agent at a time to further
reduce the search space for the optimal control. In this case,
to reduce the cost, the algorithm first starts with a base policy,
for example applying u′

k = 0, and, subsequently, it minimizes
the cost one-agent-at-a-time instead of all-agents-at-once:

u′
k
∗ (

x′k
)
= seq. argmin

u′
k∈𝑈𝑘 (x′k)

{
E

w𝜆
k ,𝜔

𝑃𝑉
𝑘

[
𝑔𝑘

(
x′k,u

′
k,w

𝜆
k ,𝜔

𝑃𝑉
𝑘

)]
+
∑︁
𝑖

E
w𝜆

k
(𝑖)

[
J∗(𝑖)k+1

(
𝑓

( [
x′k −u′

k
]+) (𝑖) )] } (27)

where seq. stands for sequentially, to indicate the fact that the
minimization is performed one component of u′

k at a time.
Under this approach the complexity is reduced to |𝑢 | · |𝑀 | = 40
operations, for each iteration of the algorithm, which hence
becomes linear on |𝑢 |.
The complete Reinforcement Learning based approach, based
on One step-lookahead, Multi-agent policy iteration and De-
coupled problem approximation, is detailed in Algorithm 3.

D. Heuristic control algorithm

We now introduce a heuristic based algorithm that im-
plements a charging scheduling strategy. This algorithm is
adopted as a baseline reference, against which the perfor-
mance of the charge scheduling algorithms based on Dynamic
Programming and Reinforcement Learning is compared. The
heuristic control algorithm, derived from our previous work
[13], relies on battery charging postponement to reduce cost.
Besides minimizing cost, the algorithm aims at favoring the
utilization of the locally produced renewable energy. Based on

this approach, the charge of some batteries at the BSS can be
postponed by up to 𝑇𝑚𝑎𝑥 if the cost for the energy drawn from
the grid is expected to be more convenient in the next future.
In particular, when (i) no RE is currently produced and (ii) a
new EV arrives at the BSS or one of the batteries under charge
at the BSS achieves the target charging level, an algorithm is
triggered to select up to 𝐹 batteries at the BSS, whose charge
is postponed by a period 𝑡𝑟 , with 𝑡𝑟 ≤ 𝑇𝑚𝑎𝑥 , as long as the
following conditions hold:

𝑐𝐺 (𝑡 + 𝑡𝑟 ) = min
∀𝑖∈ (0,𝑇𝑚𝑎𝑥 ]

𝑐𝐺 (𝑡 + 𝑖) (28)

𝑐𝐺 (𝑡) > 𝑐𝐺 (𝑡 + 𝑡𝑟 ) (29)

where 𝑡 + 𝑡𝑟 corresponds to the time between 𝑡 and 𝑡 +𝑇𝑚𝑎𝑥

at which the battery charge, once suspended at time 𝑡, must
be resumed to observe the minimum value of the cost for the
energy drawn from the grid that is required to recharge the
considered battery to the desired level, based on the available
charging rate, that in turn depends on the current SOC and
SOH of the battery. The value of 𝑐𝐺 (𝑡) depends on the initial
charge level of the battery, on the RE that is produced during
the period in which the battery remains under charge, and on
the time-varying electricity prices.

E. Exact policy solutions

Exact policy solutions represent an additional benchmark
against which the performance of the proposed DP and RL
approaches can be compared. These solutions yield the best
performance in terms of either cost saving or capability of
accomplishing the EV demand. The 𝑀-socket BSS problem
can be represented as a Discounted cost problem, a particular
subset of infinite horizon Dynamic Programming problems in
which the cost-per-stage is bounded [46], even in case the
number of stages tends to infinite. The discounted cost model
achieves this aim by rapidly decreasing the contribution of
costs in future stages.

The 𝑀-socket BSS problem can be exactly solved for the
cases in which 𝛽 = 0 or 𝛽 = 1. Indeed, under 𝛽 = 0, i.e.,
when priority is given to energy cost minimization, only
the electrical cost is considered and accumulated in the cost
function. Hence, according to [46], the discounted cost can be
computed as:

𝐽 (𝑥𝑘)𝛽=0 = lim
𝑁→∞

𝑁−1∑︁
𝑘=0

𝛼𝑘 · 𝑎𝑘 ·
[∑︁

𝑖

u′
k
(𝑖) −E

[
𝜔𝑃𝑉

𝑘

] ]+
(30)

where 𝛼 ∈ (0,1) denotes a discount factor such that, as 𝑘

increases, the cost contribution corresponding to stage 𝑘 is
progressively decreased. Notice that the cost corresponding to
the last stage, 𝑘 = 𝑁 , does not appear in the equation, since the
system is assumed to never reach a final stage, and the cost-
per-stage decays exponentially with a factor 𝛼. In order to
ensure the convergence of this equation, a sufficient condition
is to have a bounded cost-per-stage function 𝑔𝑘 (·) < 𝑀 , so that
the discounted cost is bounded by the decreasing geometric
progression

{
𝛼𝑘𝑀

}
[46]. The sequence inside the sum is

always positive, and can be minimized if u′
k
∗ = 0, leading

to a system in which batteries would never be charged. No
other algorithm can yield a better performance in terms of
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electricity consumption than u′
k
∗ = 0, that we name the Always

OFF Algorithm.
Conversely, considering 𝛽 = 1, i.e., giving priority to mini-

mizing EV service losses, the sum becomes:

𝐽 (𝑥𝑘)𝛽=1 = lim
𝑁→∞

𝑁−1∑︁
𝑘=0

𝛼𝑘 · I
{
𝑓

( [
x′k −u′

k
]+)

> 𝐸0

}𝑇
·p𝜆

k (31)

In this case the sequence inside the sum can be minimized if
the condition 𝑓

( [
x′k −u′

k
]+) ≤ 𝐸0 is satisfied. To satisfy this

condition for as many time slots as possible, the maximum
possible charge rate, leading to u′

k
∗ = umax, must be applied.

In an ON/OFF control framework, this means that all the
batteries would always be charging. In this case, the system
evolves according to Equation (6), but under u′

k
∗ = umax only

the cost for the following state can be reduced. Hence, no
other algorithm performs better in terms of EV service losses
than the one based on u′

k
∗ = umax, that we call the Always ON

Algorithm.

VI. KEY PERFORMANCE INDICATORS

The following metrics are considered to evaluate the perfor-
mance of the charging scheduling algorithms and their impact
on the battery health:
• Mean grid energy cost - 𝑐𝐸 : mean daily cost for the energy

drawn from the electric grid to charge EV batteries at the
BSS.

• Mean missed service probability - 𝑝𝐺: mean daily proba-
bility that an EV cannot be served upon arrival at the BSS
due to the lack of batteries with a sufficient charge level to
replace the empty EV battery.

• Normalized grid energy cost - ˆ𝑐𝐸 : the mean grid energy cost
is normalized as:

ˆ𝑐𝐸 =
𝑐𝐸 − 𝑐𝑂𝐹𝐹

𝐸

𝑐𝑂𝑁
𝐸

− 𝑐𝑂𝐹𝐹
𝐸

where 𝑐𝑂𝑁
𝐸

and 𝑐𝑂𝐹𝐹
𝐸

correspond to the mean grid energy
cost under the Always-ON and Always-OFF algorithms,
respectively.

• Normalized missed service probability - 𝑝𝐺: the mean
service loss probability is normalized as:

𝑝𝐺 =
𝑝𝐺 − 𝑝𝑂𝑁

𝐺

𝑝𝑂𝐹𝐹
𝐺

− 𝑝𝑂𝑁
𝐺

where 𝑝𝑂𝑁
𝐺

and 𝑝𝑂𝐹𝐹
𝐺

represent the values of 𝑝𝐺 under
the Always-ON and Always-OFF algorithms, respectively.
From this metric, we derive a Quality of Service indicator,
denoted by 𝑄𝐺 , that is defined as 1− 𝑝𝐺 .

• Grid energy consumption - 𝑔𝐸 : mean daily energy amount
drawn from the grid by the BSS to recharge all the batteries
plugged to the BSS sockets.

• Mean battery stay time - 𝑡𝑆: mean time spent by a battery
in the BSS.

• Mean switching occurrences - 𝑛𝑆: mean number of times
that the charging of a battery is suspended and resumed
during the period in which the battery remains plugged to a
BSS socket until complete recharge.

• Renewable energy reward - 𝑟: monetary reward received by
the BSS operator for the locally produced extra renewable

energy that is injected and sold to the SG during the
observation period, assuming that it is bought by the SG
operator at half the electricity selling price, as proposed in
the literature [47].

• Cost per service - 𝑐𝑆: mean cost required to recharge a
battery plugged to a BSS socket, computed as 𝑐𝑆 =

𝑐𝐸
𝑣

,
where 𝑣 is the number of EVs arriving at the BSS and
successfully receiving a fully recharged battery during the
observation period.

• Overall Yearly Cost - 𝐶𝑌 : it is the system cost per year
incurred by the BSS service provider. This cost includes
both the operational cost (OPEX) due to the energy bought
from the power grid during the BSS operation and the OPEX
due to the management cost for replacing the batteries at the
end of their lifetime, and it takes into account the monetary
revenues received from the amounts of renewable energy
that are sold back to the Smart Grid. Note that the cost
for battery replacement is included in the computation of
𝐶𝑌 , since the considered scenario is based on the paradigm
of Battery-as-a-Service. Indeed, the BSS system operator is
the owner of the batteries, and the management cost for the
replacement of a battery unit at the end of its lifetime is
paid by the BSS operator. This cost is computed as follows:

𝐶𝑌 =

(
𝐶𝐵 ·𝐶𝑁

𝑇𝐵

)
·𝑁𝐵 +𝐶𝑂 − 𝑟 (32)

where 𝐶𝐵 is the cost per 1 kWh of battery capacity, 𝑇𝐵

corresponds to the expected lifetime of each battery, 𝑁𝐵

is the average number of battery units -corresponding to a
subset of the pool of batteries owned by the service provider-
that are served daily by each BSS belonging to the system
operator, whereas 𝐶𝑂 is the yearly operational cost for the
energy demand from the grid, and 𝑟 is the yearly renewable
energy reward.

VII. PERFORMANCE ANALYSIS

For the performance analysis we consider a BSS with
𝑀 = 20 sockets, aiming at a system dimensioning suitable
to satisfy the swap demand during peak periods, according
to [13]. We assume a local RE supply consisting of a set of
photovoltaic panels with capacity 500 kWp, based on [13].
100 possible states are assumed for 𝑥𝑘 , i.e., the discrete
variable that represents the energy required to fully recharge
each battery based on the current charge level, with 𝑥100
corresponding to the full battery capacity 𝐶. Batteries can be
released from the BSS and made available for an arriving EV
as soon as their charge level achieves 𝐵𝑡ℎ ·𝐶. Considering
that short-medium range routes in a urban scenario may not
necessarily require a fully recharged battery, 𝐵𝑡ℎ is set to
0.9, representing a reasonable threshold to limit the periods
of slower battery charging observed under SOC higher than
80%, hence reducing the probability of service unavailability
during peak demand [34]. Furthermore, 𝐷𝑚𝑎𝑥 is reasonably
set to 0.8 to preserve battery lifetime [45]. EVs are assumed
to arrive at the BSS with a random battery charge level 𝐿

uniformly distributed as U(0.2,0.4). Furthermore, the age of
an EV battery upon arrival at the BSS is extracted randomly
from a uniform distribution, 𝑎𝐵 = U(0, 𝑎𝐵𝑚𝑎𝑥

), with 𝑎𝐵𝑚𝑎𝑥
.
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We set 𝑎𝐵𝑚𝑎𝑥
to 680 days to account for a relatively recent

pool of batteries, in accordance to [36], that we adopt to derive
𝑓𝑆𝑂𝐻 . The battery temperature is either T=25°C or T=40°C
with equal probability, i.e., 𝑝 = 0.5. We assume a battery cost,
𝐶𝐵, of 98.5 C/kWh [48], and a conservative value of battery
lifetime, 𝑇𝐵, of 8 years [49]. Finally, 𝑁𝐵 is set equal to the
average daily number of EVs arriving at the BSS for battery
replacement, i.e., 140, under the assumption that a battery
undergoes a swapping operation no more than once a day.
This value represents an intentionally conservative setting for
𝑁𝐵, that might lead to overestimate the battery replacement
cost. The time step duration is set to Δ𝑡 = 5 minutes. Our
results are obtained simulating the BSS operation during the
first two weeks of the year, unless differently specified.

A. Dynamic Programming control tables

We first analyze the output of the Finite-Horizon DP Algo-
rithm, that is obtained based on the input information about the
EV arrival rate, the expected solar energy production, and the
price for the energy drawn from the grid. The output consists
in the control table and the cost-to-go table. The first table
indicates the optimal control to apply 𝑢∗

𝑘
(𝑥𝑘) at a given time

and at a given state (𝑘, 𝑥𝑘), whereas the latter indicates, for
the same state variable, the cost-to-go function value 𝐽∗

𝑘
(𝑥𝑘).

Figure 3a shows the control table derived for the fifth most
charged battery in the BSS, under 𝛼 = 0.9 and 𝛽 = 0.9. Based
on this table, at each time step 𝑘 and depending on the deple-
tion level of the considered battery, i.e. depending on 𝑥𝑘 , the
decision of activating (ON, represented by either red squares
or orange squares, to indicate whether the activation decision
entails a higher or lower charging rate, respectively, depending
on the battery SOC) or deactivating (OFF, gray squares) the
charging process during the current time step is taken. At the
beginning of the day, the charging process is rarely activated,
since other fully charged batteries are likely available at the
BSS and the EV battery swapping demand is low. For 𝑘

between 50 and 100, the separation boundary between the
areas representing the ON and OFF states, respectively, shows
a less steeper profile under values of 𝑥𝑘 higher than 75,
corresponding to lower SOC of the battery. This behavior is
clearly related to the lower charging rate observed when SOC
is lower than 25% and to the higher energy demand entailed by
high values of 𝑥𝑘 , hence making less convenient the activation
of the charging process when the RE production is still low,
and slowing down the reaching of states 𝑥𝑘 corresponding to
higher levels of battery charge. A rather complex behavior of
the scheduling can be evinced from the irregular shapes of the
gray, orange and red areas in the control table. The profile of
the EV arrival rate in Fig. 2 shows that the highest values of
EV arrival rate are observed during three main periods of the
day. These peaks determine corresponding raises of the cost-
to-go function values, especially for low levels of charge, as
can be observed from Fig. 3b that reports the cost-to-go for
all the possible combinations of (𝑘, 𝑥𝑘). Consistently, from the
control table it can be observed that a battery at low charge
level starts its charging process at around 𝑘 = 50 in order to
be ready for the first arrival rate peak at 𝑘 = 100.

B. Effects of parameter configuration

The hyper-parameter 𝛼, as shown in Equation (30), regulates
the ’visibility’ of the Finite-Horizon DP algorithm. As 𝛼 gets
closer to 1, the step cost-function values for future time steps
are weighted more heavily by the algorithm. Fig. 4 depicts
the values of the cost-to-go (the color palette from yellow
to purple is used to represent higher to lower values) for
different combinations of 𝑘 (x-axis) and 𝑥𝑘 (y-axis), setting
𝛽 = 0.9, and under 𝛼 = 0.95 (Fig. 4a) and 𝛼 = 0.50 (Fig. 4b).
The cost-to-go function tends to raise around the traffic peaks.
However, under higher setting of 𝛼, the raise of the cost-to-
go function starts earlier, i.e., at lower values of time step 𝑘 ,
with respect to the case of smaller 𝛼. Furthermore, the period
by which the raise of the cost-to-go function is anticipated
under higher 𝛼 tends to progressively become longer as the
value of 𝑥𝑘 increases, hence leading to a more scattered
distribution of gradually varying cost-to-go values around the
peak periods. Conversely, under smaller 𝛼, the visibility of the
algorithm rapidly decreases and the cost-to-go function tends
to assume more concentrated values. In this work, 𝛼 is set
to 0.9. Assuming that once 𝛼𝑘 < 0.1 can be neglected, this
setting of 𝛼 entails a visibility for the algorithm of about:

𝑘𝐻 = log𝛼 (0.1) ≈ 22 (33)
Considering a time step of Δ𝑡 = 5 min, the algorithm features

a visibility of about Δ𝑡 · 𝑘𝐻 = 109 min, amounting up to nearly
2 hours of visibility, which corresponds to the recharging time
of an empty battery.

The hyper-parameter 𝛽 regulates the trade-off between the
need for purchasing the electrical energy from the grid and the
likelihood of failing to accomplish the EV battery replacement
demand. Fig. 5 reports the control tables obtained through
Finite-Horizon DP Algorithm for different values of 𝛽, i.e.,
𝛽 = 0.9 (Fig. 5a) and 𝛽 = 0.2 (Fig. 5b). As 𝛽 gets closer to 1, the
probability of not being able to serve an EV becomes larger in
the cost function, hence the algorithm tends to more frequently
activate the battery charge process. Almost at any time step
𝑘 , we observe at least a state 𝑥𝑘 that triggers the activation
of the battery charge process. Conversely, as 𝛽 reduces, the
algorithm prioritizes not buying energy from the grid, so that
the socket is activated to charge the battery only when solar
energy is available.

C. Problems with Finite-Horizon DP

The DP Algorithm solves the optimization problem starting
at 𝑘 = 𝑁 , that in our case represents the end of the day. In
order to run the algorithm, the starting condition, 𝑔𝑁 (𝑥𝑘),
must be known for each possible final state 𝑥𝑘 . In our system,
this condition is set to 𝑔𝑁 (𝑥𝑘) = 0, since no particular cost is
assigned to the state of the battery by the end of the day, as it
can be observed from the cost-to-go table depicted in Fig. 6a.
However, under this settings, as the end of the day approaches
the charge of some batteries is deactivated, depending on the
value of 𝑥𝑘 , since the charging rate would be not sufficient to
fully satisfy the demand 𝐸0 during the remaining time slots
until the end of the day. This can be clearly evinced from
Fig. 6b that reports the control table obtained for one of the
BSS sockets assuming 𝛽 = 1, that corresponds to the Always
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Fig. 3: Control table (a) and Cost-to-go values table (b) obtained under Finite-Horizon DP Algorithm for the fifth most charged
battery (𝛼 = 0.9, 𝛽 = 0.9).
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Fig. 4: Cost-to-go tables obtained through Finite-Horizon DP
Algorithm for different values of 𝛼.
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(b) 𝛽 = 0.2

Fig. 5: Control tables obtained through Finite-Horizon DP
Algorithm for different values of 𝛽.
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Fig. 6: Cost-to-go and control table obtained through Finite-
Horizon DP Algorithm under 𝛼 = 0.9 and 𝛽 = 1.

ON algorithm. Similarly to Fig. 3a and Fig. 5, we observe
that the activation of the charging process starts to become
less convenient much earlier if the SOC is lower than 25%,
due to the slower battery charging rate.

To overcome the boundary conditions effect of Finite-
Horizon DP, a value iteration based approach is considered to
implement an Infinite-Horizon DP algorithm. Indeed, a finite
horizon limited to one day is not reasonable, considering that
the BSS system is under operation all through the year. We
adopt the value iteration approach, assuming that input curves
are interpreted as stationary at the beginning of each day. The
cost-to-go table reported for this case in Fig. 7 shows that
cost-to-go values are all non-zero, unlike the Finite-Horizon
DP case depicted in Fig. 6a in which the cost-to-go is set to
zero for 𝑘 = 𝑁 , i.e., at the end of the day. Furthermore, cost-to-
go values at 𝑘 = 0 are the same observed at 𝑘 = 𝑁 . Finally, the
control table shown in Fig. 7b does not present the boundary
effect highlighted in Fig. 6 for Finite-Horizon DP, resulting in
the same control policy both at the beginning of the day and
at the end of the day.
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Fig. 7: Cost-to-go and control table obtained through Infinite-
Horizon DP Algorithm (through value iteration) for different
values for 𝛼 = 0.9 and 𝛽 = 1.

VIII. PARAMETER TUNING TO TRADE OFF COST AND QOS

The tuning of hyper-parameter 𝛽 allows to trade off cost
and Quality of Service, either assigning a higher weight to
the cost for the energy drawn from the grid or to the missed
service probability, i.e., the probability that the empty battery
of an EV arriving at the BSS cannot be replaced with a fully
charged battery. Fig. 8a shows the normalized values of the
mean grid energy cost, ˆ𝑐𝐸 (blue curve), and of the Quality
of Service, in terms of 𝑄𝐺 (orange curve), for increasing
values of 𝛽 under ADP algorithm. Under 𝛽 = 0, only the
electricity cost is taken into account, corresponding to the
strategy based on the Always OFF algorithm, that minimizes
the grid energy cost at the price of a huge missed service
probability, that results maximized. Conversely, setting 𝛽 = 1,
an Always ON algorithm is applied maximizing grid costs and
QoS, entailing a service loss probability of 0.013. By only
slightly decreasing 𝛽 to 0.99, a sharp reduction of the cost of
about 11% is observed, at the price of a limited impairment of
QoS, of just 3% (corresponding to 𝑝𝐺 = 0.042). As 𝛽 is further
reduced, the cost tends to reduce more and more gradually, in
parallel with a progressively slower degradation of the QoS.
This trend leaves margin to accurately select the value of 𝛽

corresponding to the proper working point, depending on the
desired performance targets.
To better compare the system performance under different
scheduling algorithms, Fig. 8b reports the Quality of Service,
in terms of 𝑄𝐺 , versus the normalized grid energy cost,
ˆ𝑐𝐸 , under several algorithms (including the benchmark algo-

rithms), considering different values of 𝛽 (varying between 0
and 1), that are represented by the different points within a
given algorithm (with increasing values of 𝛽 from the left to
the right side of the plot).

Although 𝛽 can be set to any value from 0 to 1, the

TABLE III: Battery statistics

Algorithm E (𝑡𝑆 ) [min] max (𝑡𝑆 ) [min] E (𝑛𝑆 ) max (𝑛𝑆 )
Heuristics 209 1145 1.40 3

DP 137 916 1.48 7
RL 135 845 1.89 8

most interesting working zone is actually close to the Always
ON performance (𝛽=1). Indeed, the BSS operator is likely
interested in limiting cost savings to favor the satisfaction
of the customer demand, rather than highly reducing costs
at the price of dissatisfied customers, hence selecting 𝛽 ∼ 1.
Fig. 8c shows a zoomed version of Fig. 8b, focusing on
the working zone of interest, i.e., close to the Always ON
performance. The best fitting line passing through (1,1) is
traced for the Heuristic algorithm, whose performance is
considered as baseline reference. An equally clear linear trend
cannot be observed under RL and DP, likely reflecting a
deeper influence yielded by the non-linear behavior of the
BSS system on the overall performance of these algorithms.
Results show that both RL and DP significantly outperform
Heuristics in providing better QoS at a lower cost, under any
setting of 𝛽. In general, RL features the best performance in
terms of both energy cost and QoS, hence guaranteeing the
lowest missed service probability under any budget constraint.
However, under high values of 𝛽, DP performs slightly better
than RL, although the difference is almost negligible.

IX. BEYOND SYSTEM PERFORMANCE INDICATORS

We now investigate how the proposed scheduling algorithms
affect some metrics that may result relevant for the battery
health. Two case studies are presented to evaluate the RL
performance over a long period of time covering one year
of BSS operation.

a) Battery health: We compare how the different algo-
rithms affect the average time spent by a battery in the BSS
before completing its charge, 𝑡𝑆 , and the average number of
times that the charging process of a battery that is under charge
at a socket of the BSS is deactivated and resumed, 𝑛𝑆 .

Since ADP and RL algorithms operate sorting batteries
according to the state of charge to take charging scheduling de-
cisions, some batteries might remain in the BSS for extremely
long times. Fig. 9a shows the Probability Density Function
(PDF) of the time spent in the system by a battery for each
algorithm. DP Algorithm features the shortest tail, followed
by the Heuristics and the DP Algorithm. As confirmed by
the results shown in Table III, that reports the average and
maximum values of 𝑡𝑆 and 𝑛𝑆 obtained from simulations under
the various algorithms, while both DP and RL guarantee an
average time spent in the system that is more than 35% lower
than under the Heuristic, RL provides the best performance
even in the worst case, yielding the shortest period of time
spent in the BSS, that amounts to about 14 hours. Conversely,
up to more than 15 and 19 hours are required to fully recharge
a battery under DP and the Heuristic algorithm, respectively.
The low values of average and maximum time spent in the
system by a battery guaranteed by RL represent a significant
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Fig. 8: Performance in terms of cost and Quality of Service for varying 𝛽, under Infinite Horizon DP (a) and under different
algorithms (b-c), with (c) representing a zoomed area of (b).
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advantage for the BSS operator, since fully recharged batteries
are more frequently available to satisfy EV demand.

Frequently interrupting and resuming the battery charging
process may significantly affect battery deterioration, impair-
ing its lifetime [50]. Furthermore, the quality of power deliv-
ered to grid-connected customers may be reduced by frequent
switching, especially in case of wide-spread implementation
[50]. To investigate this aspect, we hence evaluate the average
number of times that charging is suspended and resumed
during the permanence of a battery in the BSS, 𝑛𝑆 , whose PDF
is reported in Fig. 9b. The Heuristics algorithm represents the
most conservative case, featuring lower frequency of battery
charge resuming, as confirmed by the statistics reported in
Table III for the various algorithms. Conversely, RL yields the
highest switching frequency, with a charging process that can
be interrupted and resumed up to 8 times during the battery
permanence at the BSS, which is almost three-fold higher
than the maximum value provided by the Heuristic algorithm.
The higher reactivity of RL algorithm is coupled with the
shorter time spent by the battery under charge in a BSS, as
shown in Table III. Overall, although RL may lead to relatively
faster battery degradation, this downside is compensated by
the advantages offered by a dynamic scheduling algorithm in

terms of cost and Quality of Service.
Clearly, given its complexity, RL is characterized by a

huge computational time, amounting up to almost 190 ms,
far larger than for the DP. Nevertheless, the RL execution
time is by significantly lower than Δ𝑡 = 5 min, that represents
the discrete time period within which real time charging
scheduling decisions are taken. Hence, despite being the most
complex algorithm, RL can be feasibly adopted in a real time
scenario.

b) Case studies: Finally, in order to better compare the
performance improvement introduced by the Reinforcement
Learning algorithm with respect to the Heuristics one, we
report two case studies in which a one year-long simulation
is performed.

1) Comparing algorithms under similar grid energy de-
mand: In the first case study, for the Heuristics algorithm,
𝐹𝑚𝑎𝑥 is set to 17 and 𝑇𝑚𝑎𝑥 = 40 hours. Under RL, hyper-
parameters are tuned to 𝛼 = 0.9 and 𝛽 = 0.99. The setting
of 𝛽 = 0.99 allows to match the same level of electricity
consumption from the grid observed under the Heuristic al-
gorithm. Table IV highlights the main performance metrics
obtained under the two tested algorithms. All the metrics are
improved under RL. Although under both the Heuristic and



15

TABLE IV: Performance metrics under different algorithms,
with configuration settings yielding the same energy demand.

Control algorithm ImprovementMetric Heuristic RL
𝑝𝐺 0.084 0.048 -42.9%
𝑐𝑆 [C] 0.249 0.226 -9.34%
𝑔𝐸 [Wh] 7.77 ·105 7.75 ·105 -0.25%
𝑟 [kC] 5.778 6.096 +5.50%
𝐶𝑌 [kC] 42.910 41.417 -3.48%

RL algorithms the missed service probability is below 0.09,
more than 40% additional EVs can be successfully served
under RL. Furthermore, despite a negligible reduction of the
energy drawn from the grid, RL provides more than 9% cost
per service decrease with respect to the Heuristic approach,
showing that the RL algorithm allows to utilize the electrical
energy bought from the SG in a smarter and more efficient way
and to slightly increase the reward for the amount of energy
that can be sold to the SG. Finally, we highlight that even
including the battery management expenditures, the yearly cost
incurred by the service provider, 𝐶𝑌 , is reduced by about 3.5%.

2) Comparing algorithms under the same QoS target:
In the latter case study, we change the configuration of the
Heuristic algorithm to achieve the same QoS of RL, under
the constraint of 𝑝𝐺 ≤ 0.05. 𝐹𝑚𝑎𝑥 is set to 17 and 𝑇𝑚𝑎𝑥 =
36.8 hours. The corresponding performance metrics reported
in Table V show that RL reduces the energy demand from
the grid by almost 8%, hence entailing a relevant reduction
of the carbon footprint due to the lower consumption of non
renewable energy. Furthermore, on the one hand RL reduces
the cost per service by more than 18% (about twice the
reduction obtained in the first case study), still providing the
same QoS level. On the other hand, the revenues derived from
the energy sold to the Smart Grid are only slightly reduced
under RL, and the yearly cost incurred by the service provider,
𝐶𝑌 , which includes the battery management cost, is decreased
by almost 7%.

The presented case studies clearly show that RL signifi-
cantly outperforms Heuristic algorithm in reducing operational
cost, also due to timely and more effective scheduling deci-
sions that take advantage of the periods of lower electricity
prices, and in providing a greener operation of the BSS
system, still guaranteeing the satisfaction of the desired QoS
requirements.

X. CONCLUSION

In this paper we address the EV battery charging scheduling
problem in a renewable powered BSS, designing two adaptive
algorithms based on Approximate DP and RL, that aim at
modulating and dynamically adapting the scheduling of the
battery charging process to the stochastic nature of the system.
Our results show that both approaches are effective and signifi-
cantly improve Quality of Service at a lower cost with respect
to benchmark approaches. However, the RL based approach
achieves the best level of Quality of Service under any budget
constraint, allowing to decrease the probability of not satisfy-
ing the EV demand by up to more than 40% with respect to

TABLE V: Performance metrics under different algorithms,
under the same QoS target.

Control algorithm ImprovementMetric Heuristic RL
𝑝𝐺 0.048 0.048 0%
𝑐𝑆 [C] 0.277 0.226 -18.45%
𝑔𝐸 [Wh] 8.38 ·105 7.75 ·105 -7.56%
𝑟 [kC] 5.877 6.096 +3.73%
𝐶𝑌 [kC] 44.243 41.417 -6.82%

Heuristic approaches, and to yield a significant cost reduction
of almost 20%. and a fine tuning of the scheduling algorithm
hyper-parameters is fundamental to properly trade off cost
and Quality of Service requirements according to business
needs, and to provide a greener operation of the BSS system.
Clearly, the optimal deployment of BSS charging scheduling
techniques cannot overlook their effects on the battery health,
that may accelerate the process of battery degradation and
impair the BSS management cost. Future work is required to
integrate additional performance and sustainability goals in the
deployment of complex multi-objective charging scheduling
techniques, that trade off possible conflicting business needs,
SG operator requirements and feasibility constraints, so as to
facilitate a wider penetration of BSS technology for urban e-
mobility.

REFERENCES

[1] IEA, “Key World Energy Statistics 2020,” Tech. Rep., 08 2020.
[2] “Global EV Outlook 2023, IEA, Paris,” 2023. [Online]. Available:

https://www.iea.org/reports/global-ev-outlook-
2023

[3] P. Chakraborty, R. N. Dizon-Paradis, and S. Bhunia, “Savior: A sustain-
able network of vehicles with near-perpetual mobility,” IEEE Internet
of Things Magazine, vol. 6, no. 2, pp. 108–114, 2023.

[4] M. Straka, P. De Falco, G. Ferruzzi, D. Proto, G. Van Der Poel,
S. Khormali, and L. Buzna, “Predicting popularity of electric vehicle
charging infrastructure in urban context,” IEEE Access, vol. 8, pp.
11 315–11 327, 2020.

[5] “FOTW #1272 (January 9, 2023).” Vehicle Technologies Office
(U.S. Department of Energy), 2023, www.energy.gov/eere/vehicles/
articles/fotw-1272-january-9-2023-electric-vehicle- battery-pack-costs-
2022-are-nearly [Accessed: 2023.06.13].

[6] J. Deng, C. Bae, A. Denlinger, and T. Miller, “Electric vehicles batteries:
Requirements and challenges,” Joule, vol. 4, no. 3, pp. 511–515, 2020.

[7] S. Rivera, S. M. Goetz, S. Kouro, P. W. Lehn, M. Pathmanathan,
P. Bauer, and R. A. Mastromauro, “Charging infrastructure and grid
integration for electromobility,” Proceedings of the IEEE, vol. 111, no. 4,
pp. 371–396, 2023.

[8] X. Chen, K. Xing, F. Ni, Y. Wu, and Y. Xia, “An electric vehicle battery-
swapping system: Concept, architectures, and implementations,” IEEE
Intelligent Transportation Systems Magazine, vol. 14, no. 5, pp. 175–
194, 2022.

[9] M. A. H. Rafi and J. Bauman, “A comprehensive review of dc fast-
charging stations with energy storage: Architectures, power converters,
and analysis,” IEEE Transactions on Transportation Electrification,
vol. 7, no. 2, pp. 345–368, 2021.

[10] S. S. Sayed and A. M. Massoud, “Review on state-of-the-art unidirec-
tional non-isolated power factor correction converters for short-/long-
distance electric vehicles,” IEEE Access, vol. 10, pp. 11 308–11 340,
2022.

[11] H. Wu, “A survey of battery swapping stations for electric vehicles: Op-
eration modes and decision scenarios,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 8, pp. 10 163–10 185, 2022.

[12] T. Zhang, X. Chen, Z. Yu, X. Zhu, and D. Shi, “A monte carlo
simulation approach to evaluate service capacities of ev charging and
battery swapping stations,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 9, pp. 3914–3923, 2018.



16

[13] D. Renga, G. Centonze, and M. Meo, “Renewable powered battery swap-
ping stations for sustainable urban mobility,” in 2022 IEEE International
Smart Cities Conference (ISC2), 2022, pp. 1–7.

[14] T. Zhang, X. Chen, B. Wu, M. Dedeoglu, J. Zhang, and L. Trajkovic,
“Stochastic modeling and analysis of public electric vehicle fleet charg-
ing station operations,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 7, pp. 9252–9265, 2022.

[15] A. A. Shalaby, M. F. Shaaban, M. Mokhtar, H. H. Zeineldin, and
E. F. El-Saadany, “A dynamic optimal battery swapping mechanism for
electric vehicles using an lstm-based rolling horizon approach,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp.
15 218–15 232, 2022.

[16] S. Rajkumar, P. Nagaveni, A. Amudha, M. Siva Ramkumar,
G. Emayavaramban, and T. Selvaganapathy, “Optimizing ev charging in
battery swapping stations with cso-pso hybrid algorithm,” in 2023 8th
International Conference on Communication and Electronics Systems
(ICCES), 2023, pp. 1566–1571.

[17] J. Zheng, T. Xie, F. Liu, W. Wang, P. Du, and Y. Han, “Electric
vehicle battery swapping station coordinated charging dispatch method
based on cs algorithm,” in 2017 IEEE 3rd Information Technology and
Mechatronics Engineering Conference (ITOEC), 2017, pp. 150–154.

[18] J. Xue, C. Yan, D. Wang, J. Wang, J. Wu, and Z. Liao, “Adaptive
dynamic programming method for optimal battery management of
battery electric vehicle,” in 2020 IEEE 9th Data Driven Control and
Learning Systems Conference (DDCLS), 2020, pp. 65–68.

[19] J. Jin and Y. Xu, “Optimal policy characterization enhanced actor-critic
approach for electric vehicle charging scheduling in a power distribution
network,” IEEE Trans. on Smart Grid, vol. 12, no. 2, pp. 1416–1428,
2021.

[20] Z. Wan, H. Li, H. He, and D. Prokhorov, “Model-free real-time
ev charging scheduling based on deep reinforcement learning,” IEEE
Transactions on Smart Grid, vol. 10, no. 5, pp. 5246–5257, 2019.

[21] F. L. D. Silva, C. E. H. Nishida, D. M. Roijers, and A. H. R.
Costa, “Coordination of electric vehicle charging through multiagent
reinforcement learning,” IEEE Transactions on Smart Grid, vol. 11,
no. 3, pp. 2347–2356, 2020.

[22] Y. Chu, Z. Wei, X. Fang, S. Chen, and Y. Zhou, “A multiagent
federated reinforcement learning approach for plug-in electric vehicle
fleet charging coordination in a residential community,” IEEE Access,
vol. 10, pp. 98 535–98 548, 2022.

[23] H. Li, Z. Wan, and H. He, “Constrained ev charging scheduling based
on safe deep reinforcement learning,” IEEE Transactions on Smart Grid,
vol. 11, no. 3, pp. 2427–2439, 2020.

[24] L. Yan, X. Chen, J. Zhou, Y. Chen, and J. Wen, “Deep reinforcement
learning for continuous electric vehicles charging control with dynamic
user behaviors,” IEEE Transactions on Smart Grid, vol. 12, no. 6, pp.
5124–5134, 2021.

[25] Q. Xing, Y. Xu, and Z. Chen, “A bilevel graph reinforcement learning
method for electric vehicle fleet charging guidance,” IEEE Transactions
on Smart Grid, vol. 14, no. 4, pp. 3309–3312, 2023.

[26] Y. Zhang, M. Li, Y. Chen, Y.-Y. Chiang, and Y. Hua, “A constraint-
based routing and charging methodology for battery electric vehicles
with deep reinforcement learning,” IEEE Trans. on Smart Grid, vol. 14,
no. 3, pp. 2446–2459, 2023.

[27] K. Preusser and A. Schmeink, “Energy scheduling for a der and ev
charging station connected microgrid with energy storage,” IEEE Access,
vol. 11, pp. 73 435–73 447, 2023.

[28] V. Murali, A. Banerjee, and V. G. Venkoparao, “Optimal battery
swapping operations using reinforcement learning,” in 2019 Fifteenth
International Conference on Information Processing (ICINPRO), 2019,
pp. 1–6.

[29] Y. Liang, Z. Ding, T. Zhao, and W.-J. Lee, “Real-time operation
management for battery swapping-charging system via multi-agent deep
reinforcement learning,” IEEE Transactions on Smart Grid, vol. 14,
no. 1, pp. 559–571, 2023.

[30] J. Jin, S. Mao, and Y. Xu, “Optimal priority rule-enhanced deep
reinforcement learning for charging scheduling in an electric vehicle
battery swapping station,” IEEE Transactions on Smart Grid, vol. 14,
no. 6, pp. 4581–4593, 2023.

[31] X. Yu, F. Wang, and H. Wang, “Optimal battery swapping and charg-
ing strategy considering on-site solar generation,” in 2023 IEEE/IAS
Industrial and Commercial Power System Asia (ICPS Asia), 2023, pp.
1082–1087.

[32] M. Emre, A. Stevens, and D. Naberezhnykh, “Modelling range extension
of electric vehicles using dynamic wireless power transfer,” 04 2018.

[33] V. M. B. Pereira, J. O. De Sousa, G. C. Fonseca, and R. N. Santos, “An
automated framework for lithium battery state of health (soh) analysis,”

in 2023 IEEE 8th Southern Power Electronics Conference and 17th
Brazilian Power Electronics Conference (SPEC/COBEP), 2023, pp. 1–
8.

[34] J. Mies, J. Helmus, and R. van den Hoed, “Estimating the charging pro-
file of individual charge sessions of electric vehicles in the netherlands,”
World Electric Vehicle Journal, vol. 9, p. 17, 06 2018.

[35] H. Wu, G. K. H. Pang, and X. Li, “A realistic and non-linear charging
process model for parking lot’s decision on electric vehicles recharging
schedule,” in 2020 IEEE Transportation Electrification Conference Expo
(ITEC), 2020, pp. 2–7.

[36] P. Keil, “Aging of lithium-ion batteries in electric vehicles,” Ph.D.
dissertation, Technische Universität München, 2017, https://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20170711-1355829-
1-5 [Accessed: 2024.01.26].

[37] M. Dalmasso, M. Meo, and D. Renga, “Radio resource management
for improving energy self-sufficiency of green mobile networks,” in
Performance Evaluation Review, vol. 44, no. 2, Sept 2016, pp. 82–87.

[38] A. P. Dobos, PVWatts Version 5 Manual, Sep 2014.
[39] “Gestore Mercati Energetici,” https://www.mercatoelettrico.org/

En/download/DatiStorici.aspx, [Online; accessed 22 September 2021].
[40] T. G. Alghamdi, D. Said, and H. T. Mouftah, “Profit maximization

for evses-based renewable energy sources in smart cities with different
arrival rate scenarios,” IEEE Access, vol. 9, pp. 58 740–58 754, 2021.

[41] O. Hafez and K. Bhattacharya, “Modeling of pev charging load using
queuing analysis and its impact on distribution system operation,” in
2015 IEEE Power Energy Society General Meeting, 2015, pp. 1–5.

[42] S. Kabir, A. Shufian, R. Islam, M. M. Islam, M. A. Islam, and M. S. R.
Mahin, “Impact of grid-tied battery to grid (b2g) technology for electric
vehicles battery swapping station,” in 2023 10th IEEE International
Conference on Power Systems (ICPS), 2023, pp. 1–6.

[43] Z. Wang, P. Jochem, and W. Fichtner, “A scenario-based stochastic
optimization model for charging scheduling of electric vehicles under
uncertainties of vehicle availability and charging demand,” Journal of
Cleaner Production, vol. 254, p. 119886, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0959652619347560
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