Abstract

The energy transition toward a decarbonized civilization has to be driven by renewable
energy sources (RESs). Their installed capacity is anticipated to expand significantly to
solve the issues of the depletion of fossil fuels and the mitigation of greenhouse gas
emissions. However, the fluctuating behaviour of variable RESs makes it difficult to
integrate them into electrical networks. Electrical energy storage hence becomes essential to
address the RES-related difficulties. Hz is becoming one of the most prominent choices for
energy storage. Consequently, green H> production using water electrolysis has become the
subject of many recent researches. Studies are mainly focused on cost reduction via
performance improvement and degradation limitation.

In the current work an experimental test rig was built at Environmental Park of Turin.
It aims at the characterization of electrochemical devices for the production of hydrogen.
This electrochemical test station is designed to enable testing of low temperature electrolytic
devices (up to 150°C and 30 bar) both with anionic and cationic electrolyte cells and from
individual electrolytic cells to small-assembled cells called stacks.

To be able to deeply study the degradation phenomena starting from the technology
level in each P2P system component, accelerated experimental degradation tests were
designed and series of tests have been arranged on low-T PEM cells. In order to have all the
necessary information about the cells, commercial MEA with acidic chemistry were chosen
and assembled in the laboratory using the separated anode and cathode side. Industry
standard Nafion membranes (Nafion 115 and 117) and gas diffusion layers were used. The
5X5cm single cells were put under test inside a housing connected to the electrochemical test
bench which can control the relevant test variables such as temperatures, mass flow rates and
pressures. Cells were characterized by the resultant voltage-current polarization curves and
electrochemical impedance spectroscopy (EIS).

A 0D MATLAB model has also been developed that fits the voltage-current curves
very well and it can predict the behaviour of the cell in different conditions as well as giving
the possibility to study the effect of various electrochemical and physical variables -such as
T, P, current densities at anode and cathode i.e. 10,anode I0,cathode, etc- on the cell
performance. At the same time the hydrogen production rate was also investigated, and the
experimental production rate was found to be within 99.5% of theoretical production.

Furthermore, using the COMSOL Multiphysics® environment 2-D and 3D Multi-
Phase Multiphysics Model (Bubbly Flow, k-m) of the PEM electrolytic cell was developed to
simulate the main involved physics with special consideration on biphasic anodic mixture
interactions within the system. The effect of different variables such as temperature gradient



at anode and cathode, bubbles overpotential and oxygen and hydrogen concentration at
electrode interface on the system were modelled.

Since the designed electrochemical test bench has the possibility to send liquid to both
anode and cathode electrodes, an array of open versus closed cathode experiments were done
to compare the difference between the performance in these cases. The improvements in the
performance in open vs closed cathode case can be related to the more homogeneous
temperature distribution inside the housing and better hydration of the MEA and gas removal
from the reaction sites. Besides, EIS tests have also been performed in these experiments to
investigate the trend of changes in each cell characteristics such as ohmic resistance (Ronm)
or charge transfer resistance (R¢) of the cell. To study these results in depth, they are
modelled with equivalent electrical circuits (EEC) in which each element represents an
electrical contribution related to a physical phenomenon. A comparison of the results in open
vs closed cathode experiment presents the approximately constant ohmic resistance and a
decreasing trend of the charge transfer resistance while increasing temperature.

Lastly a series of accelerated degradation tests have been performed on the cells. These
tests give insights on the comparison of constant current working with respect to profiles
with frequent variations and shutdowns. Meanwhile during the experiments, the circuit water
(demineralized water) was analysed for its thermal conductivity continuously and for
fluoride ion quantities by sampling at specific time steps. After the degradation tests on the
mentioned cells, they undergo post-mortem analysis using SEM, and XRD methods too.
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