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Laplacian Filtered Loop-Star Decompositions and
Quasi-Helmholtz Filters:

Definitions, Analysis, and Efficient Algorithms
Adrien Merlini, Member, IEEE, Clément Henry, Member, IEEE, Davide Consoli, Student Member, IEEE,

Lyes Rahmouni, Alexandre Dély, and Francesco P. Andriulli, Fellow, IEEE

Abstract—Quasi-Helmholtz decompositions are fundamental
tools in integral equation modeling of electromagnetic problems
because of their ability of rescaling solenoidal and non-solenoidal
components of solutions, operator matrices, and radiated fields.
These tools are however incapable, per se, of modifying the
refinement-dependent spectral behavior of the different operators
and often need to be combined with other preconditioning strate-
gies. This paper introduces the new concept of filtered quasi-
Helmholtz decompositions proposing them in two incarnations:
the filtered Loop-Star functions and the quasi-Helmholtz filters.
Because they are capable of manipulating large parts of the
operators’ spectra, new families of preconditioners and fast
solvers can be derived from these new tools. A first application
to the case of the frequency and h-refinement preconditioning
of the electric field integral equation is presented together with
numerical results showing the practical effectiveness of the newly
proposed decompositions.

Index Terms—Integral equations, quasi-Helmholtz decomposi-
tions, quasi-Helmholtz projectors, preconditioning, EFIE.

I. INTRODUCTION

INTEGRAL equation formulations are effective numerical
strategies for modeling radiation and scattering by perfectly

electrically conducting objects [1]–[3]. Their effectiveness
primarily derives from the fact that they only require the
scatterers’ surfaces to be discretized, automatically impose ra-
diation conditions and, thanks to the advent of fast algorithms
[4], give rise to linear-in-complexity approaches when solved
with iterative schemes—provided that the conditioning of the
linear system matrices resulting from their discretizations is
independent of the number of unknowns [5]. Among the well-
established formulations, the electric field integral equation
(EFIE) plays a crucial role, both in itself and within combined
field formulations [6]. The EFIE, lamentably, becomes ill-
conditioned when the frequency is low or the discretization
density high [7]. These phenomena—respectively known as
the low-frequency and h-refinement breakdowns—cause the
solution of the EFIE to become increasingly challenging to ob-
tain, as the number of iterations of the solution process grows
unbounded, which jeopardizes the possibility of achieving an
overall linear complexity.
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Traditional approaches to tackle the low-frequency break-
down rely on standard quasi-Helmholtz decompositions such
as Loop-Star/Tree bases [8]–[12] that, despite curing the low-
frequency behavior, worsen the h-refinement ill-conditioning
of the EFIE [11] because of the derivative nature of the
change of basis [12]. A way to circumvent the issue is the
use of hierarchical strategies both on structured [13], [14]
and unstructured meshes [15]–[18]. These schemes, when
designed properly, can solve both the low-frequency and
the h-refinement problems but still rely on the construction
on an explicit, basis-based, quasi-Helmholtz decomposition
that requires the cumbersome detection of topological loops
whenever handles are present in the geometry. A popular
alternative strategy leverages Calderón identities to form a
second kind integral equation out of the EFIE. Calderón
approaches concurrently solve the low-frequency and the h-
refinement breakdowns without calling for an explicit quasi-
Helmholtz decomposition [19]–[26]. In their standard incar-
nations they do, however, require the use of a dual dis-
cretization and global loop handling, because global loops
reside in the static null-space of the Calderón operator. The
introduction of implicit quasi-Helmholtz decompositions via
the so called quasi-Helmholtz projectors [27], when combined
with Calderón approaches, led to the design of several well-
conditioned formulations, free from static nullspaces (see [7],
[27]–[29] and references therein) and, in some incarnations,
free from the need of performing a barycentric refinement [30].
Quasi-Helmholtz projectors have shown to be an effective and
efficiently computable tool for performing quasi-Helmholtz
decompositions, but, by themselves, they can only tackle
the low-frequency breakdown and must be combined with
Calderón-like strategies that involve multiple operators, to
obtain h-refinement spectral preconditioning effects. A set of
tools as versatile as the projectors that could also manipulate
the operator spectra beyond a simple rescaling would thus be
desirable.

This paper introduces such a new family of tools. The con-
tribution of this work is in fact threefold: (i) we will introduce
the concept of Laplacian-filtered Loop-Star decompositions, a
new quasi-Helmholtz decomposition approach that will allow
for a finer tuning of the operator spectrum with respect to
their standard Loop-Star counterparts. (ii) Just like standard
Loop-Star bases give rise to the quasi-Helmholtz projectors, a
suitable choice of projections on the filtered Loop-Star spaces
will give rise to a new family of mathematical objects, the
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quasi-Helmholtz filters, that will not require handling basis
functions and explicit decompositions, while still providing
the spectral tuning properties of (i). (iii) We will obtain
new frequency and h-refinement preconditioners for the EFIE
based on (i) and (ii) that represent a natural first application
of the newly proposed techniques. We believe, however, that
the applicability of the new spectral filters will extend beyond
EFIE preconditioning in further investigations. The contribu-
tion will be further enriched by a section devoted to efficient
implementations of the newly defined tools that will be ob-
tained by leveraging strategies developed in the context of
polynomial preconditioning approaches and in graph wavelet
theory [31]–[34]. Numerical results will then corroborate and
confirm our theoretical considerations.

The paper is organized as follows: the background material
and the notation are presented in Section II, the new Laplacian
filtered Loop-Star decompositions and the quasi-Helmholtz
filters are presented in Section III and Section IV, respec-
tively, along with their main properties. Various strategies for
computing the filters, in practical scenarios, are detailed in
Section V. Preconditioners tackling simultaneously the low-
frequency and h-refinement breakdowns of the EFIE are then
derived in Section VI. Finer details relating to the implemen-
tation and computation of the filters and preconditioners are
then presented in Section VII. Illustrations of the effectiveness
of the schemes are provided in Section VIII, before concluding
in Section IX.

Preliminary results from this work were presented in the
conference contributions [35], [36].

II. NOTATION AND BACKGROUND

Let Γ be a smooth surface modeling the boundary of a per-
fectly electrically conducting (PEC), closed scatterer enclosed
in a homogeneous background medium with permittivity ϵ and
permeability µ. The boundary Γ can be multiply connected
and contain holes. We denote by n̂(r) the outward pointing
normal field at r. When illuminated by a time-harmonic
incident electric field Ei, a surface current density J is
induced on Γ that satisfies the electric field integral equation
(EFIE)

T J = T sJ + T hJ = −n̂×Ei , (1)

where

T sJ = n̂(r)× ik

∫
Γ

eik∥r−r′∥

4π∥r − r′∥
J(r′)dS(r′) , (2)

T hJ = −n̂(r)× 1

ik
∇
∫
Γ

eik∥r−r′∥

4π∥r − r′∥
∇′ · J(r′)dS(r′) ,

(3)

and k is the wavenumber of the electromagnetic wave in
the background medium. Equation (1) can be solved nu-
merically by approximating Γ with triangular elements of
average edge length h and by approximating the current
density as J ≈

∑N
n=1[j ]nfn with the Rao-Wilton-Glisson

basis functions {fn}n [37], in which N is the number of

edges in the mesh, j is the vector of the coefficients of the
expansion, and fn is defined as

fn(r) =


r − r+n
2A+

n
if r ∈ c+n

−r − r−n
2A−

n
if r ∈ c−n ,

(4)

where the notation of Fig. 1 was employed and where A±
n is

the area of the cell c±n .
The final step to obtain the discretized EFIE is to test (1)

with the rotated RWG functions {n̂ × fn}, which results in
the linear system

Tj = (Ts +Th) j = v , (5)

in which [Ts]mn = ⟨n̂ × fm,T s(fn)⟩, [Th]mn = ⟨n̂ ×
fm,T h(fn)⟩, [v ]m = ⟨n̂ × fm,−n̂ × Ei⟩, and ⟨a, b⟩ =∫
Γ
a ·bds. The EFIE can also be discretized on the dual mesh

using dual functions defined on the barycentric refinement.
Both Buffa-Christiansen [38] and Chen-Wilton [39] elements
can be used for this dual discretization. For the sake of brevity,
we will omit the explicit definitions of the dual elements
that will be denoted by {gn}n in the following; the reader
can refer to [7] and references therein for a more detailed
treatment. We will also need the definition of the standard
and dual Gram matrices whose entries are [G]mn = ⟨fm,fn⟩
and [G]mn = ⟨gm, gn⟩. While they are not required for
the discretization of the EFIE itself, we introduce the patch
and pyramids scalar basis functions sets {pn} and {λn},
respectively composed of NS and NL functions, that will
be required for some of the following developments. These
functions are defined as

pm(r) =

{
A−1

m if r ∈ cm ,

0 otherwise,
(6)

and

λm(r) =


1 r = vm ,

0 r = vn , n ̸= m,

linear otherwise,
(7)

where {vn}n are the vertices of the mesh. The number of
these functions can be deduced from the mesh properties:
NS is the number of mesh triangles and NL is the number
of mesh vertices. The Gram matrices corresponding to these
bases are Gp for the patch functions and Gλ for the pyramids
with [Gp]mn = ⟨pm, pn⟩ and [Gλ]mn = ⟨λm, λn⟩. The dual
of these functions, living in the barycentric refinement of the
original mesh will also be required, and their definitions, omit-
ted here for conciseness, can be found in [30]. The NL dual
patches will be designated as {p̃n}n, the NS dual pyramids
as {λ̃n}n, and the corresponding Gram matrices as Gp̃ and
Gλ̃ with [Gp̃]mn = ⟨p̃m, p̃n⟩ and [Gλ̃]mn =

〈
λ̃m, λ̃n

〉
.

Because this contribution deals with discrete quasi-
Helmholtz decompositions we will recall some of their prop-
erties. The continuous solution J can be decomposed as

J = ∇× n̂λ+∇sϕ+ h , (8)

where λ and ϕ are the (scalar) potentials of the solenoidal
and irrotational components of J , respectively, while h is
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ei

v−
i

v+
i

r−ir+i c−ic+i

Fig. 1: Convention used for the RWGs: each function is
defined on the two triangles c+i and c−i that are formed
with their common edge ei and the vertices r+i and r−i ,
respectively.

the harmonic components of J which is present only on
non simply-connected manifolds. When J is discretized by
the approximate expansion in RWG functions, a discrete
counterpart of (8) holds for the coefficient vector j

j = Λl +Σσ +Hh , (9)

where l , σ, and h are vectors and Λ ∈ RN×NL and
Σ ∈ RN×NS are the Loop-to-RWG and Star-to-RWG trans-
formation matrices [9], [12], [40]–[42] defined, following the
convention of Fig. 1 and the definition of the RWG in (4), as

[Λ]mn =


1 if node n equals v+m ,

−1 if node n equals v−m ,

0 otherwise,
(10)

and

[Σ]mn =


1 if the cell n equals c+m ,

−1 if the cell n equals c−m ,

0 otherwise.
(11)

With these definitions ΛTΛ and ΣTΣ are respectively the
vertices- and the cells-based graph Laplacians [12]. The
explicit use of the change of basis matrix H will not be
required and we omit here its explicit definition, for the sake
of conciseness, which could however be found in [7] and
references therein.

With the definitions above, the standard quasi-Helmholtz
projectors [12], [27] are defined as

PΣ = Σ
(
ΣTΣ

)+
ΣT ,

PΛH = I−PΣ
(12)

for the primal ones,

PΛ = Λ
(
ΛTΛ

)+
ΛT ,

PΣH = I−PΛ
(13)

for the dual ones, and

PH
(
= PH

)
= I−PΣ −PΛ (14)

for the projector to quasi-harmonic subspace, where + denotes
the Moore-Penrose pseudo-inverse.

III. LAPLACIAN FILTERED LOOP-STAR DECOMPOSITIONS

In this section, we will extend the notion of Loop-Star bases
by introducing the concept of filtered (generating) functions.
We will first treat graph-based decompositions (a direct gen-
eralization of the standard case) and we will then move on
to their Gram matrix normalized counterparts that will be
more effective in treating problems involving inhomogeneous
meshes.

A. The Standard Case

Consider the singular value decomposition (SVD) [43] of a
matrix X ∈ RN×Nx

X = UXSXVT
X (15)

where X is a placeholder for either Σ or Λ, UX ∈ RN×N ,
VX ∈ RNx×Nx , and SX ∈ RN×Nx . The matrices UX and
VX are unitary and SX is a diagonal matrix with the singular
values σX,i of X as entries (in decreasing order). Clearly
the SVD of (XTX) is VXST

XSXVT
X, and, by defining the

diagonal matrix LX,n ∈ RNx×Nx , with 1 ≤ n ≤ Nx, such
that

[LX,n]ii =

{
σX,i if i > Nx − n ,

0 otherwise,
(16)

we define the filtered graph Laplacians

(XTX)n := VXL2
X,nV

T
X , (17)

from which we introduce the filtered Loop-to-RWG and fil-
tered Star-to-RWG matrices we propose in this work

Σn = Σ
(
ΣTΣ

)+ (
ΣTΣ

)
n
, (18)

Λn = Λ
(
ΛTΛ

)+ (
ΛTΛ

)
n
. (19)

These matrices contain the coefficients of sets of linearly
dependent filtered Loop-Star functions. The particular choice
of filtering index n will depend on the specific scheme the
filtered matrices are to be used for, as will be made clear in
the remainder of this contribution.

Properties: We now study some properties of the filtered
Loop-Star matrices. Because ΣTΛ = 0 [7], we have ∀n,m

ΣT
nΛm =

(
ΣTΣ

)
n

(
ΣTΣ

)+
ΣTΛ

(
ΛTΛ

)+ (
ΛTΛ

)
m

= 0 . (20)

Otherwise said, the new filtered Loop-Star functions are
coefficient-orthogonal (l2-orthogonal) like their non-filtered,
standard counterparts.

From the definition of LX,n in (16), it follows that
LX,nLX,m = L2

X,min{n,m}. Thus from (17)

(XTX)n(X
TX)m = VXLX,nV

T
XVXLX,mVT

X

= VXLX,nLX,mVT
X = VXLX,min{n,m}LX,min{n,m}V

T
X

= VXLX,min{n,m}V
T
XVXLX,min{n,m}V

T
X (21)

= (XTX)2min{n,m} .



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 4

We thus have

ΣT
mΣn =

(
ΣTΣ

)
m

(
ΣTΣ

)+
ΣTΣ

(
ΣTΣ

)+ (
ΣTΣ

)
n

=
(
ΣTΣ

)+ (
ΣTΣ

)
m

(
ΣTΣ

)
n

=
(
ΣTΣ

)+ (
ΣTΣ

)
min{n,m}

(
ΣTΣ

)
min{n,m} (22)

= ΣT
min{n,m}Σmin{n,m} .

Similarly,

ΛT
mΛn = ΛT

min{n,m}Λmin{n,m}. (23)

Given integers such that m < n < p < q, the property

(Σm −Σn)
T
(Σp −Σq) =

ΣT
m (Σp −Σq)−ΣT

n (Σp −Σq) = 0 , (24)

holds and, similarly,

(Λm −Λn)
T
(Λp −Λq) = 0 . (25)

Properties (24) and (25) show that non-intersecting differences
of filtered Star or Loop bases are mutually orthogonal (and
thus generate linearly independent spaces), a property that will
be useful to build invertible changes of basis, as will be shown
in Section VI-A.

B. Generalization for Non-homogeneously Meshed Geome-
tries

When the filtered Loop-Star decompositions are to be used
on geometries with non-homogenous (non-uniform) discretiza-
tions, both the standard discretizations of the EFIE and the
graph Laplacian matrices may lead to suboptimal performance
and a proper normalization with Gram matrices must be
employed. In this context, we define the normalized EFIE
electromagnetic operator matrices

T̃ = G−1/2TG−1/2 , (26)

T̃s = G−1/2TsG
−1/2 , (27)

T̃h = G−1/2ThG
−1/2 , (28)

and the normalized Loop and Star matrices

Σ̃ = G−1/2ΣG1/2
p , (29)

Λ̃ = G1/2ΛG
−1/2
λ . (30)

Following the same strategy as in (18) and (19), the normalized
filtered Loop-Star matrices are consistently defined as

Σ̃n = Σ̃
(
Σ̃TΣ̃

)+ (
Σ̃TΣ̃

)
n
, (31)

Λ̃n = Λ̃
(
Λ̃TΛ̃

)+ (
Λ̃TΛ̃

)
n
. (32)

When dealing with dual Loop-Star decomposition matrices,
the normalization is different from that of the primal ones, and
the dually-normalized Loop and Star transformation matrices
are defined as

Σ̃ = G1/2ΣG
−1/2

λ̃
, (33)

Λ̃ = G−1/2ΛG
1/2
p̃ , (34)

and the associated filtered decomposition matrices as

Σ̃n = Σ̃
(
Σ̃

T
Σ̃
)+ (

Σ̃
T
Σ̃
)
n
, (35)

Λ̃n = Λ̃
(
Λ̃

T
Λ̃
)+ (

Λ̃
T
Λ̃
)
n
. (36)

Properties: The primal and dual normalized Loop-Star
bases keep satisfying the orthogonality properties

Λ̃TΣ̃ = G
−1/2
λ ΛTG1/2G−1/2ΣG1/2

p = 0 , (37)

Σ̃
T
Λ̃ = G

1/2
p̃ ΣTG−1/2G1/2ΛG

−1/2

λ̃
= 0 , (38)

because ΣTΛ = 0. Moreover, because (21) holds, we obtain,
similarly to Section III-A, that

Σ̃T
mΣ̃n = Σ̃T

min{n,m}Σ̃min{n,m} , (39)

Λ̃T
mΛ̃n = Λ̃T

min{n,m}Λ̃min{n,m} , (40)

Λ̃
T

mΛ̃n = Λ̃
T

min{n,m}Λ̃min{n,m} , (41)

Σ̃
T

mΣ̃n = Σ̃
T

min{n,m}Σ̃min{n,m} . (42)

Using these properties and the same reasoning as previously,
the counterparts of the properties of the non-normalized fil-
tered Loop-Star matrices can be obtained. In particular the
counterparts of (24) and (25) can be obtained by replacing
each matrix with its normalized (“tilde”) counterpart.

IV. QUASI-HELMHOLTZ FILTERS

Although explicit quasi-Helmholtz decomposition bases are
useful in applications in which a direct access to the Helmholtz
components of the current is required, oftentimes, especially
when the main target is preconditioning and regularization,
implicit Helmholtz decompositions can be more efficient. An
implicit Helmholtz decomposition was obtained in [27], where
the concept of quasi-Helmholtz projector was introduced.
Following a similar philosophy, and leveraging the filtered
Loop-Star functions introduced above, we can now define
quasi-Helmholtz filters.

A. The Standard Case

The idea behind the projectors was to obtain a basis-
free quasi-Helmholtz decomposition that would not worsen
the conditioning of the original equation. If we follow the
definitions (12) and (13) by replacing the standard Star basis
with the new filtered sets, we obtain

Σn

(
ΣT

nΣn

)+
ΣT

n = Σ
(
ΣTΣ

)+ (
ΣTΣ

)
n((

ΣTΣ
)
n

(
ΣTΣ

)+
ΣTΣ

(
ΣTΣ

)+ (
ΣTΣ

)
n

)+

(
ΣTΣ

)
n

(
ΣTΣ

)+
ΣT = Σ

(
ΣTΣ

)+
n
ΣT , (43)

and, similarly,

Λn

(
ΛT

nΛn

)+
ΛT

n = Λ
(
ΛTΛ

)+
n
ΛT . (44)

This justifies the following definitions of the new primal filters

PΣ
n = Σ

(
ΣTΣ

)+
n
ΣT , (45)

PΛH
n = Λ

(
ΛTΛ

)+
n
ΛT + I−PΣ −PΛ (46)
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and dual filters

PΛ
n = Λ

(
ΛTΛ

)+
n
ΛT , (47)

PΣH
n = Σ

(
ΣTΣ

)+
n
ΣT + I−PΛ −PΣ , (48)

in which the reader should note that all harmonic projections
I − PΣ − PΛ and I − PΛ − PΣ are obtained from non-
filtered entities. The reader should note that, in the special
case of simply connected geometries PΛH

n = Λ
(
ΛTΛ

)+
n
ΛT

and PΣH
n = Σ

(
ΣTΣ

)+
n
ΣT since PΛ +PΣ = I. Moreover,

by construction,

PΣ
NS

= PΣ , (49)

PΛ
NL

= PΛ , (50)

and thus

PΛH
NL

= PΛ + I−PΣ −PΛ = PΛH , (51)

PΣH
NS

= PΣ + I−PΛ −PΣ = PΣH , (52)

which means that, with these definitions, the quasi-Helmholtz
filters converge to the standard quasi-Helmholtz projectors
when the Laplacian is unfiltered (n = NX).

Properties: From these definitions, a few useful properties
of the quasi-Helmholtz filters can be derived and will be
summarized here. First, the filters still behave as projectors
since

PΣ
n P

Σ
n = Σ

(
ΣTΣ

)+
n
ΣTΣ

(
ΣTΣ

)+
n
ΣT

= Σ
(
ΣTΣ

)+
n
ΣT = PΣ

n ,
(53)

PΛ
nP

Λ
n = Λ

(
ΛTΛ

)+
n
ΛTΛ

(
ΛTΛ

)+
n
ΛT

= Λ
(
ΛTΛ

)+
n
ΛT = PΛ

n ,
(54)

and, similarly,

PΛH
n PΛH

n = PΛH
n , (55)

PΣH
n PΣH

n = PΣH
n . (56)

Moreover, ∀m,n

PΣ
mPΛH

n = Σ
(
ΣTΣ

)+
n
ΣTΛ

(
ΛTΛ

)+
n
ΛT

+Σ
(
ΣTΣ

)+
n
ΣT

(
I−PΣ −PΛ

)
= 0 , (57)

where the properties ΣTΛ = 0 and ΣT
(
I−PΣ −PΛ

)
= 0

have been used. A similar property and proof hold for the dual
projectors

PΛ
mPΣH

n = 0 , ∀m,n . (58)

For integers m < n < p < q, we have the following
orthogonality property(

PΣ
m −PΣ

n

) (
PΣ

p −PΣ
q

)
=

(
Σ
(
ΣTΣ

)+
m
ΣT −Σ

(
ΣTΣ

)+
n
ΣT

)
(
Σ
(
ΣTΣ

)+
p
ΣT −Σ

(
ΣTΣ

)+
q
ΣT

)
= Σ

(
ΣTΣ

)+
m
ΣT −Σ

(
ΣTΣ

)+
m
ΣT

+Σ
(
ΣTΣ

)+
n
ΣT −Σ

(
ΣTΣ

)+
n
ΣT = 0 ,

(59)

where (21) has been used. In a similar way, one can prove
that (

PΛ
m −PΛ

n

)(
PΛ

p −PΛ
q

)
= 0 . (60)

Moreover, given that PΛH
n −PΛH

m = PΛ
n −PΛ

m and PΣH
n −

PΣH
m = PΣ

n −PΣ
m ∀n,m—which can be deduced from (46)

and (48)—the remaining properties(
PΛH

m −PΛH
n

) (
PΛH

p −PΛH
q

)
= 0 , (61)(

PΣH
m −PΣH

n

)(
PΣH

p −PΣH
q

)
= 0 (62)

follow. All the properties listed above, will be useful when
building invertible transforms, similarly to their basis-based
counterpart (24).

B. Generalization for Non-homogeneously Meshed Geome-
tries

The definitions of the normalized Loop and Star matrices
in (29) and (30) suggest the following definition for the
associated normalized quasi-Helmholtz projectors

P̃Σ = Σ̃
(
Σ̃TΣ̃

)+

Σ̃T , (63)

P̃Λ = Λ̃
(
Λ̃TΛ̃

)+

Λ̃T . (64)

Moreover, as is proved in Appendix A, the complementarity
property

P̃Σ = I− P̃Λ (65)

holds on simply connected geometries; on general geometries
and together with definitions (31) and (32), this justifies the
following definition for the normalized quasi-Helmholtz filters

P̃Σ
n = Σ̃

(
Σ̃TΣ̃

)+

n
Σ̃T , (66)

P̃ΛH
n = Λ̃

(
Λ̃TΛ̃

)+

n
Λ̃T + I− P̃Σ − P̃Λ . (67)

By analogy, we can define the normalized dual quasi-
Helmholtz projectors as

P̃
Λ
= Λ̃

(
Λ̃

T
Λ̃
)+

Λ̃
T
, (68)

P̃
Σ
= Σ̃

(
Σ̃

T
Σ̃
)+

Σ̃
T
, (69)

with the property
P̃

Λ
= I− P̃

Σ
(70)

holding on simply connected geometries (see Appendix A for
the proof). Thus, dually to the primal case, we define, on
general geometries,

P̃
Λ

n = Λ̃
(
Λ̃

T
Λ̃
)+

n
Λ̃

T
, (71)

P̃
ΣH

n = Σ̃
(
Σ̃

T
Σ̃
)+

n
Σ̃

T
+ I− P̃

Λ − P̃
Σ
. (72)

Properties: Since the primal and dual normalized Loop-Star
bases still satisfy the orthogonality properties (37) and (38) and
because of the properties (39)-(42), the same reasoning yields
all counterparts of the properties (53)-(62), after replacing each
matrix with its normalized (“tilde”) counterpart.
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V. EFFICIENT FILTERING ALGORITHMS

The definitions of the filtered Loop and Star functions
and of the quasi-Helmholtz filters in Sections III and IV
involve an SVD which, while ensuring a clear and compact
theoretical treatment, is in general computationally inefficient.
This section will be devoted to presenting algorithms allowing
for SVD-free matrix-vector products for the filtered graph
Laplacians

(
ΣTΣ

)
n

and
(
ΛTΛ

)
n

, which are the two key
operations on both approaches presented in the previous
section. Moreover, while our treatment will deal with the
graph matrices Σ and Λ, it is intended that substantially
the same strategies can be applied when replacing those
matrices with their normalized counterparts Σ̃ and Λ̃ with
minor modifications. In fact the additional products with the
inverse square roots of (well-conditioned) Gram matrices can
be obtained efficiently by using matrix function strategies [44].

A. Power Method Filtering

For filters with a filtering index that is independent of the
total number of degrees of freedom, preconditioned inverse
power methods [43] yield the last singular vectors and singular
values of the ΣTΣ and ΛTΛ matrices at the price of a
constant number of matrix-vector products. Given that the
matrices involved are sparse, the resulting method is linear in
complexity and the quasi-Helmholtz filters can be efficiently
obtained. These schemes are well known and we do not
provide extensive details here for the sake of brevity. We just
mention that special care should be taken when using this
scheme in the presence of degenerate spectra (arising from
symmetries for example); under these conditions, the scheme
presented in the following section should rather be preferred.

B. Butterworth Matrix Filters

An alternative strategy for the previous scenario, i.e. when a
filter is needed that has filtering index which is independent of
the total number of degrees of freedom, is provided by a matrix
function and filtering approach. Given a scalar (squared)
Butterworth filter of positive order m and cutoff parameter
xc > 0, characterized by

fm,xc
(x) = (1 + (x/xc)

m)
−1

, x ≥ 0 , (73)

the spectrum of a symmetSric positive matrix A ∈ RN×N

composed of the set of singular values {σi(A)}i can be filtered
by generalizing fm,xc

to matrix arguments and applying it to
A, yielding the filtered matrix

Afilt := fm,xc
(A) = (I + (A/xc)

m)
−1

, (74)

with singular values {fm,xc
(σi(A))}i. The filtered matrix(

ΣTΣ
)
n

can now be expressed as(
ΣTΣ

)
n
= (ΣTΣ) lim

m→∞
fm,σn(ΣTΣ)

(
ΣTΣ

)
. (75)

The presence of high exponents in (75) may render its com-
putation unstable. Hence we propose to use the following
factorization formula that leverages the roots of unity(

ΣTΣ
)
n
=

(
ΣTΣ

)
lim

m→∞

m∏
k=1

(
ΣTΣ

σn(ΣTΣ)
− e(2k+1)iπ/mI

)−1

. (76)

For practical purposes the infinite products in this expression
can be truncated at the desired precision. Regarding the value
of σn(Σ

TΣ), an approximation can be obtained either with
ad-hoc heuristics or by the approximation σn(Σ

TΣ) ≈ (Ns−
n)/∥

(
ΣTΣ

)+ ∥. Finally, when the filtering point is a constant
with respect to the number of unknowns, a multigrid approach
is effective in providing the inverse required by (76).

C. Filter Approximation via Chebyshev Polynomials

When the filtering index is proportional to the number of
unknowns, the computational burden of the two methods above
can become high. In this regime we can leverage the ideas
of polynomial preconditioning and graph wavelets [31]–[34]
and adopt a method based on a polynomial expansion of the
spectral filter.

Because we are interested in cases in which the filtering
index is proportional to the number of degrees of freedom
(for instance, n = NS/2) we can leverage a polynomial
approximation of fm,xc

on the interval [0, σNS
(ΣTΣ)]; a

natural basis for this approximation is that of the Chebyshev
polynomials {Tn(x)}n, defined by the recurrence relation

Tn(x) =


1 if n = 0

x if n = 1

2xTn−1(x)− Tn−2(x) otherwise.
(77)

The approximated filtered matrix now reads

(
ΣTΣ

)
n
≈ −c0

2
I +

nc∑
k=1

ckTk

(
ΣTΣ

σn(ΣTΣ)

)
, (78)

where the cn are the expansion coefficients of fm,σn(ΣTΣ) in
the basis of the first nc+1 Chebyshev polynomials. Algorithms
for their computation can be found, among others, in [45].
Because the cutoff frequency of this filter is proportional
to the number of unknowns and so is the domain size, the
order of the polynomial that is required to obtain a given
approximation of the Butterworth filter, will not need to be
changed with increasing discretizations. In other words, the fil-
ters obtained by following this approach will require the same
number of sparse matrix-vector multiplication for increasing
discretization when the filtering index will be proportional
to the number of degrees of freedom. It should be noted
that in the transition region between the filters described in
the previous two sections (constant filtering index) and the
scenario described here (filtering index will be proportional to
the number of degrees of freedom) the Chebyshev approach
decreases in efficiency and further treatments may be required
[34].
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VI. A FIRST APPLICATION CASE SCENARIO: LAPLACIAN
FILTER BASED PRECONDITIONING

As a first application case scenario of the new filters
introduced here, we will develop two families of precon-
ditioners for the EFIE in (5). This equation is known to
suffer from ill-conditioning both for decreasing frequency
and average mesh length h (phenomena known as the low-
frequency and h-refinement breakdowns, respectively, see [7]
and references therein). In the following we will cure both
breakdowns by developing preconditioners based both on fil-
tered functions decompositions and on quasi-Helmholtz filters.
The dense discretization preconditioning effect of the proposed
preconditioners might improve the condition number of the
EFIE system matrices beyond the low-frequency scenarios, for
medium-frequency problems. However, because a combined
field approach is out of the scope of this work, spurious
resonances might adversely affect the overall conditioning.

The reader should note that in this Section and in the
subsequent ones, we will study the singular value spectrum
of potentially singular matrices. When dealing with such
matrices, the condition number will be defined as cond(A) =
∥A∥∥A+∥. Moreover, inverse powers of singular matrices in
the following will always denote the corresponding positive
power of the pseudoinverse of the matrix.

A. Filtered Bases Approach

The primal and dual Laplacians can be used to precondition
the single layer and the hypersingular operator [1], [18], [46],
[47], thus VΛ, and VΣ followed by a diagonal precondition-
ing are valid bases for regularizing the vector and scalar poten-
tial parts of the EFIE. In particular, for Th, this results from
the fact that an operator spectrally equivalent to the single layer
can be obtained from Th. In fact, noticing that Th = ΣRΣT

[48], where R is the patch-function discretization of the single
layer operator, i.e. [R]mn = ⟨pm,Spn⟩ with

(Sp) (r) :=
∫
Γ

eik∥r−r′∥

4π∥r − r′∥
p(r′)dS(r′) , (79)

and defining R̃ := G
−1/2
p RG

−1/2
p , we obtain T̃h = Σ̃R̃Σ̃T.

The equivalence between
(
Σ̃TΣ̃

)+

Σ̃TT̃hΣ̃
(
Σ̃TΣ̃

)+

and

R̃ thus follows. To conclude the reasoning, we note that,
because(

Σ̃TΣ̃
)1/4

R̃
(
Σ̃TΣ̃

)1/4

= ṼΣ̃

(
S̃T
Σ̃
S̃Σ̃

)1/4

ṼT
Σ̃
R̃ṼΣ̃

(
S̃T
Σ̃
S̃Σ̃

)1/4

ṼT
Σ̃
, (80)

is well conditioned for increasing discretization—as a conse-
quence of the results proven in [47], since Σ̃TΣ̃ is a valid
discretization of a Laplacian matrix [49]—we have

cond

(
ṼΣ̃

(
S̃T
Σ̃
S̃Σ̃

)1/4

ṼT
Σ̃

(
Σ̃TΣ̃

)+

Σ̃TT̃h

Σ̃
(
Σ̃TΣ̃

)+

ṼΣ̃

(
S̃T
Σ̃
S̃Σ̃

)1/4

ṼT
Σ̃

)
= O(1) , h → 0 . (81)

Here and in the following we consider non-resonant frequen-
cies, since we are dealing with a non-combined field approach.
The reader should note that, since ṼΣ̃ is unitary, we also have

cond

(
ṼΣ̃

(
S̃T
Σ̃
S̃Σ̃

)1/4

ṼT
Σ̃

(
Σ̃TΣ̃

)+

Σ̃TT̃h

Σ̃
(
Σ̃TΣ̃

)+

ṼΣ̃

(
S̃T
Σ̃
S̃Σ̃

)1/4

ṼT
Σ̃

)
=

cond

((
S̃T
Σ̃
S̃Σ̃

)1/4

ṼT
Σ̃

(
Σ̃TΣ̃

)+

Σ̃TT̃h

Σ̃
(
Σ̃TΣ̃

)+

ṼΣ̃

(
S̃T
Σ̃
S̃Σ̃

)1/4
)

. (82)

Such an approach would require the computation of the matrix
ṼΣ̃ and S̃Σ̃ which are prohibitively expensive to obtain. A key
observation, however, is that we do not need to use the entire
diagonal of S̃Σ̃, but a logarithmic sampling of it will suffice.
In other words, define DΣ̃ the vector containing the entries of
the diagonal of S̃T

Σ̃
S̃Σ̃ and define the block diagonal matrix

D̃Σ̃,α = diag
([
DΣ̃

]
NS−NS,α+1

INrem
S,α

,[
DΣ̃

]
NS−

NS,α
α +1

INS,α
α

, . . . ,
[
DΣ̃

]
NS

I1

)
, (83)

where NS,α = α⌊logα(NS)⌋, N rem
S,α = NS −

(1−NS,α) (1− α)
−1, and In is the identity matrix of

size n, or, more programmatically,[
D̃Σ̃,α

]
ii
=

[
DΣ̃

]
fΣ̃(i)

, (84)

with fΣ̃(i) = NS − α⌊logα(NS−i+1)⌋ + 1. Note that the
construction of this matrix only requires explicit knowledge
of logα(NS) terms of DΣ̃. The property

cond

(
D̃

1/4

Σ̃,α
ṼT

Σ̃

(
Σ̃TΣ̃

)+

Σ̃TT̃hΣ̃
(
Σ̃TΣ̃

)+

ṼΣ̃D̃
1/4

Σ̃,α

)
= O(α) = O(1) , h → 0 , (85)

for which we omit the straightforward proof, is reminiscent of
hierarchical strategies (see [7] and references therein). Because
ṼΣ̃ is unitary, we obtain equivalently

cond

(
ṼΣ̃D̃

1/4

Σ̃,α
ṼT

Σ̃

(
Σ̃TΣ̃

)+

Σ̃TT̃h

Σ̃
(
Σ̃TΣ̃

)+

ṼΣ̃D̃
1/4

Σ̃,α
ṼT

Σ̃

)
= O(α) = O(1) . (86)

This preconditioning strategy can be slightly altered to
leverage the filtered basis presented in Section III by introduc-
ing an additional Laplacian in (81) and adjusting the exponent
of S̃T

Σ̃
S̃Σ̃ accordingly. In particular, we have

Σ̃
(
Σ̃TΣ̃

)+

ṼΣ̃

(
S̃T
Σ̃
S̃Σ̃

)1/4

ṼT
Σ̃
=

Σ̃
(
Σ̃TΣ̃

)+ (
Σ̃TΣ̃

)
ṼΣ̃

(
S̃T
Σ̃
S̃Σ̃

)−3/4

ṼT
Σ̃
, (87)

which, following the reasoning detailed above, means that

B̃Σ̃ := Σ̃
(
Σ̃TΣ̃

)+ (
Σ̃TΣ̃

)
ṼΣ̃D̃

−3/4

Σ̃,α
ṼT

Σ̃
(88)
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is a valid left and right symmetric preconditioner for T̃h.
Finally, thanks to the properties introduced in Section III, we
have

Σ̃
(
Σ̃TΣ̃

)+ (
Σ̃TΣ̃

)
ṼΣ̃D̃

−3/4

Σ̃,α
ṼT

Σ̃
=

NS,α∑
l=2

(
Σ̃αl−1 − Σ̃αl−1−1

) [
DΣ̃

]−3/4

NS−αl−1+1

+
(
Σ̃− Σ̃αNS,α−1

) [
DΣ̃

]−3/4

NS−NS,α+1
=: Σ̃p,α (89)

and thus from (87) and (89) it follows that

cond
(
Σ̃T

p,αT̃hΣ̃p,α

)
= O(1) , h → 0 . (90)

A similar reasoning for T̃s, following from the precondi-
tioning of the hypersingular operator, leads to

cond

((
S̃T
Λ̃
S̃Λ̃

)−1/4

ṼT
Λ̃
Λ̃TT̃sΛ̃ṼΛ̃

(
S̃T
Λ̃
S̃Λ̃

)−1/4
)

= O(1)

(91)
and

cond

(
ṼΛ̃

(
S̃T
Λ̃
S̃Λ̃

)−1/4

ṼT
Λ̃
Λ̃TT̃s

Λ̃ṼΛ̃

(
S̃T
Λ̃
S̃Λ̃

)−1/4

ṼT
Λ̃

)
= O(1) , h → 0 . (92)

From this, following a dual reasoning as the one of the
previous section, we obtain

cond
(
Λ̃T

p,αT̃sΛ̃p,α

)
= O(1) , h → 0 . (93)

where

Λ̃
(
Λ̃TΛ̃

)+ (
Λ̃TΛ̃

)
ṼΛ̃D̃

−1/4

Λ̃,α
ṼT

Λ̃
=

NL,α∑
l=2

(
Λ̃αl−1 − Λ̃αl−1−1

) [
DΛ̃

]−1/4

NL−αl−1+1

+
(
Λ̃− Λ̃αNL,α−1

) [
DΛ̃

]−1/4

NL−NL,α+1
=: Λ̃p,α , (94)

and

D̃Λ̃,α = diag
([
DΛ̃

]
NL−NL,α+1

INrem
L,α

,[
DΛ̃

]
NL−

NL,α
α +1

INL,α
α

, . . . ,
[
DΛ̃

]
NL

I1

)
, (95)

with N rem
L,α = NL − (1−NL,α) (1− α)

−1, DΛ̃ the vector
containing the elements of the diagonal of S̃T

Λ̃
S̃Λ̃, and NL,α =

α⌊logα(NL)⌋.
The previous preconditioners can then be combined to

obtain a complete regularization of the EFIE system, for both
low-frequency and h-refinement breakdowns, that reads

W̃TT̃W̃j̃ = W̃Tṽ , (96)

where ṽ = G−1/2v , j = G−1/2W̃j̃ , W̃ =[√
cΛ̃Λ̃p,α

√
cΣ̃Σ̃p,α

]
, cΣ̃ = ∥Σ̃T

p,αT̃hΣ̃p,α∥−1, cΛ̃ =

∥Λ̃T
p,αT̃sΛ̃p,α∥−1, and where we assume that the appropriate

number of columns have been removed from Σ̃p,α and Λ̃p,α

(e.g. 1 column must be removed from each for a simply con-
nected, closed scatterer) to account for the linear dependence

in the underlying Loop and Star bases [8], as is done in stan-
dard Loop-Star preconditioning. The reader should note that,
as in the case of standard Loop-Star functions, this operation
will create a small number of isolated singular values, that
however will not impact the convergence properties of the
preconditioned equation. This effect will not be present in
the scheme of next Section. The h-refinement regularization
effect of this preconditioner can be deduced from the previous
derivations for each of the potentials [50]. The low frequency
regularization, can be demonstrated following the same rea-
soning as for standard Loop-Star approaches [7], since the
new filtered bases retain the crucial properties that made Loop-
Star so widely adapted for low-frequency regularization in the
first place—Λ̃T

p,αT̃h = 0, T̃hΛ̃p,α = 0, and Λ̃T
p,αΣ̃p,α = 0.

Finally, we have

cond
(
W̃TT̃W̃

)
= O(1) , when h → 0 , k → 0 . (97)

B. Quasi-Helmholtz Filters Approach

In several application scenarios, an explicit quasi-Helmholtz
decomposition, such as the Loop-Star decomposition, is not
necessary, and quasi-Helmholtz projectors [7] could be used
instead. Similarly, instead of using filtered Loop-Star precondi-
tioning approaches, basis-free approaches, based on the quasi-
Helmholtz filters, will often be more effective. This section
will explore this approach that, as an additional advantage,
will also avoid the burden of global-loop detection for multiply
connected scatterers.

Following the same philosophy as in Section VI-A, we will
form preconditioners for the solenoidal part of T̃s and for T̃h

that will then be combined into a full EFIE preconditioner. We
can transition from a basis-based Helmholtz decomposition
to a projector based Helmholtz decomposition by leveraging
the correspondences between Σ̃ and Λ̃ and their respective
projectors P̃Σ and P̃Λ. In particular, because B̃Σ̃ was a valid
preconditioner for T̃h (equations (89) and (90)),

[
B̃Σ̃ 0

]
,

once applied left and right to T̃h will yield a block diag-
onal matrix which is well conditioned away from its large
nullspace. This, in turns, means that

[
C̃Σ̃ 0

]
, with C̃Σ̃ =

Σ̃
(
Σ̃TΣ̃

)+ (
Σ̃TΣ̃

)
ṼΣ̃D̃

−5/4

Σ̃
ṼT

Σ̃
ṼΣ̃D̃

1/2

Σ̃
, will also yield

a well-conditioned (up to its nullspace) matrix. Finally, be-
cause multiplications by unitary matrices do not compromise
conditioning properties, we can form the preconditioner

Σ̃
(
Σ̃TΣ̃

)+ (
Σ̃TΣ̃

)
ṼΣ̃D̃

−5/4

Σ̃
ṼT

Σ̃
ṼΣ̃

[
D̃

1/2

Σ̃
0
]
ŨT

Σ̃
=

Σ̃
(
Σ̃TΣ̃

)+

ṼΣ̃D̃
−1/4

Σ̃
ṼT

Σ̃
Σ̃T . (98)

This allows us to form the preconditioner Q̃Σ̃
p,α, of additive

Schwarz type, based on quasi-Helmholtz filters

Σ̃
(
Σ̃TΣ̃

)+

ṼΣ̃D̃
−1/4

Σ̃
ṼT

Σ̃
Σ̃T =

NS,α∑
l=2

(
P̃Σ̃

αl−1 − P̃Σ̃
αl−1−1

) [
DΣ̃

]−1/4

NS−αl−1+1

+
(
P̃Σ̃ − P̃Σ̃

αNS,α−1

) [
DΣ̃

]−1/4

NS−NS,α+1
=: Q̃Σ̃

p,α (99)
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for which

cond
(
Q̃Σ̃

p,αT̃hQ̃
Σ̃
p,α

)
= O(1) , h → 0 . (100)

Similarly, a preconditioner for the solenoidal part of T̃s is

Q̃Λ̃
p,α :=

NL,α∑
l=2

(
P̃Λ̃

αl−1 − P̃Λ̃
αl−1−1

) [
DΛ̃

]1/4
NL−αl−1+1

+
(
P̃Λ̃ − P̃Λ̃

αNL,α−1

) [
DΛ̃

]1/4
NL−NL,α+1

(101)

for which

cond
(
Q̃Λ̃

p,αT̃sQ̃
Λ̃
p,α

)
= O(1) , h → 0 . (102)

The full EFIE preconditioner is then an appropriate linear
combination of the solenoidal and non-solenoidal precondi-
tioners above to cure also the low-frequency breakdown. In
particular we define

Q̃ =
√
bΛ̃Q̃

Λ̃
p,α + i

√
bΣ̃Q̃

Σ̃
p,α +

√
bH̃P̃H , (103)

where P̃H = I− P̃Σ − P̃Λ and

bΛ̃ = ∥Q̃Λ̃
p,αT̃sQ̃

Λ̃
p,α∥−1 , (104)

bΣ̃ = ∥Q̃Σ̃
p,αT̃hQ̃

Σ̃
p,α∥−1 , (105)

bH̃ = ∥P̃H̃T̃sP̃
H∥−1 , (106)

account for the frequency-scaling of the operators and the
diameter of Γ . The preconditioned EFIE system is

Q̃T̃Q̃j̃qH = Q̃ṽ , (107)

with j = G−1/2Q̃j̃qH.

VII. IMPLEMENTATION RELATED DETAILS AND FURTHER
IMPROVEMENTS

In addition to the efficient filtering algorithms presented in
Section V, obtaining a fast and efficient implementation of the
proposed preconditioning scheme based on quasi-Helmholtz
filters requires that particular attention be given to parts of
their implementation. First, all the terms of the form ThQ

Λ
p,α,

QΛ
p,αTh, PHTh, or ThP

H must be explicitly set to 0 to
avoid numerical instabilities. Further treatments on the right
hand side and on the solution vector, are required to ensure
that the solution of the system remains accurate until arbi-
trarily low frequencies. These treatments are straightforward
generalization of those required for standard quasi-Helmholtz
preconditioning techniques that can be found in [7].

The condition numbers obtained when employing the
schemes introduced in Section VI-A and Section VI-B, while
stable, can be further brought down by slightly modifying
the preconditioners. The diagonal preconditioning based on
the theoretical Laplacian eigenvalues can be altered to instead
employ matrix norms; the new preconditioners then become

QΣ
p,α =

NS,α∑
l=2

(
PΣ

αl−1 −PΣ
αl−1−1

)
bl+(

PΣ −PΣ
αNS,α−1

)
bNS,α+1 , (108)

where

bl =
∥∥∥(PΣ

αl−1 −PΣ
αl−1−1

)T
Th

(
PΣ

αl−1 −PΣ
αl−1−1

)∥∥∥−1/2

,

2 ≤ l ≤ NS,α ,
(109)

bNS,α+1 =

∥∥∥∥(PΣ −PΣ
αNS,α−1

)T

Th

(
PΣ −PΣ

αNS,α−1

)∥∥∥∥−1/2

.

(110)

The same modification can be performed for QΛ
p,α that be-

comes

QΛ
p,α =

NL,α∑
l=2

(
PΛ

αl−1 −PΛ
αl−1−1

)
dl+(

PΛ −PΛ
αNL,α−1

)
dNS,α+1 , (111)

with

dl =
∥∥∥(PΛ

αl−1 −PΛ
αl−1−1

)T
Ts

(
PΛ

αl−1 −PΛ
αl−1−1

)∥∥∥−1/2

,

2 ≤ l ≤ NL,α ,
(112)

dNS,α+1 =

∥∥∥∥(PΛ −PΛ
αNL,α−1

)T

Ts

(
PΛ −PΛ

αNL,α−1

)∥∥∥∥−1/2

.

(113)

To ensure that the overall complexity of the algorithm is not
increased, the values of {bl}l and {dl}l can be efficiently
computed using, for example, power methods. The reader
should note that the preconditioning approach delineated above
requires filter profiles with support both proportional to and
independent from the number of unknowns, which can be
efficiently obtained with the approaches described in Sec-
tion V. As said in the previous Section, filters in the transition
region could be less efficient to obtain, as the Chebyshev
approach decreases in efficiency away from the middle of
the spectrum [34]. All preconditioning real case scenarios
presented here, however, are not impacted by this fact as
shown in Section VIII.

VIII. NUMERICAL RESULTS

All numerical results presented in this section have been
obtained with non-normalized matrices (Λ, Σ) to illustrate that
graph matrices are often enough for practical cases. Equally
good or superior performance, however, can be obtained by
using normalized matrices (Λ̃, Σ̃) instead. In the first set
of examples we have leveraged perfect filters obtained by
SVD before presenting results based on SVD-free approaches.
The filtered Loop-Star preconditioning approach presented
in Section VI-A leverages the spectral equivalences between
the appropriately scaled filtered bases and Ts and Th. To
numerically illustrate these equivalences, the spectra of these
operators and their preconditioned counterparts are illustrated
in Figures 2 and 3. These spectra correspond to a smoothly
deformed sphere (see Fig. 2 and 3), and the ordering of the
singular values is obtained by projection against the graph
Laplacians’ eigenvectors. The original spectrum of Ts and
Th show the expected ξ−1/2 and ξ1/2—with ξ the spectral
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Fig. 2: Spectrum of the solenoidal part of the vector potential,
its preconditioner, and its preconditioned counterpart. These
spectra have been obtained for a smoothly-deformed sphere
with a maximum diameter of 7.17m (see insert), a frequency
of 1 × 106 Hz, and for two different average edge lengths
0.31m and 0.20m. The spectra have been normalized so that
their first singular value is one, for readability. Perfect filters
built out of SVD have been used in these results.
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Fig. 3: Spectrum of the non-solenoidal part of the scalar po-
tential, its preconditioner, and its preconditioned counterpart.
These spectra have been obtained for a smoothly-deformed
sphere with a maximum diameter of 7.17m (see insert), a
frequency of 1 × 106 Hz, and for two different average edge
lengths 0.31m and 0.20m. The spectra have been normalized
so that their first singular value is one, for readability. Perfect
filters built out of SVD have been used in these results.

index—behaviors, predicted by pseudo-differential operator
theory. Given the construction of the preconditioners, it is
then not surprising that the preconditioned operators show a
spectrum bounded (and away from zero) with the expected
variations in the spectrum.

To illustrate that the preconditioning schemes based on
filtered bases do regularize the EFIE, the condition number of
the original and preconditioned schemes will be compared for
varying frequencies and discretizations. First, the conditioning
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Fig. 4: Condition number of the EFIE (5), Loop-Star EFIE, and
filtered Loop-Star EFIE (96) as a function of discretization for
several frequencies. The condition number has been obtained
after eliminating the isolated singular values, which have
minimal impact on the convergence, arising from the deletion
of one column from each of the preconditioning matrices. The
solid lines correspond to a simulating frequency of 1×106 Hz
and the dotted lines to a frequency of 1×104 Hz. The simulated
structure is the NASA almond re-scaled to be enclosed in a
bounding box of diameter 1.09m. Perfect filters built out of
SVD have been used in these results.

of a filtered Loop-Star preconditioned EFIE for the NASA
almond [51] is reported in Figure 4. The low frequency and
dense discretization breakdowns of the original equations are
apparent, while the preconditioned equation (corresponding to
(96)) shows a constant conditioning. This is in contrast with
the standard Loop-Star approach that does regularize the low
frequency conditioning breakdown, but actually worsens the
dense discretization behavior of the equation.

A similar study has been performed with the quasi-
Helmholtz filters schemes. In Figures 5 and 6 the spectra of
the dominant solenoidal and non-solenoidal parts of the EFIE
operators are displayed alongside their preconditioners. The
preconditioning performance on the overall EFIE system is
illustrated in Figure 7 for a torus. The approach yields satis-
factory conditioning that remains stable in both low frequency
and dense discretization, which in turns shows that the scheme
can also handle multiply-connected geometries.

A conditioning study of the NASA almond, showing that
the proposed methods exhibit some resilience to the loss of
smoothness of the scatterer—even though no general con-
clusions should be inferred from this specific example—
is reported in Figure 8. These results have been obtained
using Chebyshev-interpolated filters (78) corresponding to
Butterworth filters of order 100, expanded into 200 Chebyshev
polynomials. The coefficients of the filters are obtained via
the norm estimates detailed in (108) and (111) and the cutting
point of the filters is determined using the approximate Lapla-
cian spectrum described below (76). The excellent stability
of preconditioned scheme for a structure such as the NASA
almond showcases the effectiveness of the scheme when using
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Fig. 5: Spectrum of the solenoidal part of the vector potential,
its preconditioner, and its preconditioned counterpart. These
spectra have been obtained for a smoothly-deformed sphere
with a maximum diameter of 7.17m (see insert), a frequency
of 1 × 106 Hz, and for two different average edge lengths
0.31m and 0.20m. The spectra have been normalized so that
their first singular value is one, for readability. Perfect filters
built out of SVD have been used in these results.
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Fig. 6: Spectrum of the non-solenoidal part of the scalar po-
tential, its preconditioner, and its preconditioned counterpart.
These spectra have been obtained for a smoothly-deformed
sphere with a maximum diameter of 7.17m (see insert), a
frequency of 1 × 106 Hz, and for two different average edge
lengths 0.31m and 0.20m. The spectra have been normalized
so that their first singular value is one, for readability. Perfect
filters built out of SVD have been used in these results.
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Fig. 7: Condition number of the EFIE (5), quasi-Helmholtz
(qH) projector EFIE, and filtered qH projector EFIE (107) as
a function of discretization for several frequencies. The solid
lines correspond to a simulating frequency of 1× 106 Hz and
the dotted lines to a frequency of 1 × 104 Hz. The simulated
structure is a torus with inner radius 0.9m and outer radius
1.1m. Perfect filters built out of SVD have been used in these
results.

101.3 101.4 101.5 101.6 101.7
100

104

108

1012

h−1
[
m−1

]

C
on

di
tio

n
nu

m
be

r

EFIE 104 Hz qH EFIE 104 Hz fqH EFIE 104 Hz

Fig. 8: Condition number of the EFIE (5), quasi-Helmholtz
(qH) projector EFIE, and filtered qH projector EFIE (107) as
a function of discretization for several frequencies. The simu-
lated structure is the NASA almond re-scaled to be enclosed
in a bounding box of diameter 1.09m. The preconditioner
is built without using SVDs, but by leveraging Chebyshev-
interpolated filters (78) corresponding to Butterworth filters of
order 100, expanded into 200 Chebyshev polynomials.

the fast techniques presented in this paper.
Finally, to showcase the benefits of the new preconditioning

scheme, we have compared, for increasingly large problems,
the time and number of iterations required to solve the standard
EFIE (5), the EFIE regularized in frequency using standard
quasi-Helmholtz projectors [7], and the new quasi-Helmholtz
filter-based EFIE (107). The results are summarized in Tables I
and II and were obtained for a sphere of radius 1m, excited
by a plane wave oscillating at 1 × 106 Hz using the CGS
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TABLE I: Iterative solver run time for the different EFIE
formulations at f = 1 × 106 Hz for a sphere of radius 1m
excited by a plane wave and a target accuracy of 1× 10−8.

N RWG EFIE [s] qH-EFIE [s] Prec. EFIE [s]
1080.00 0.66 1.88 3.58
1920.00 2.45 5.98 11.81
4320.00 11.30 23.11 27.70
8670.00 31.07 76.17 64.74

15 870.00 126.40 282.92 120.56
32 670.00 460.75 6237.59 331.24
66 270.00 1278.37 12 977.59 786.11

130 680.00 3782.04 28 334.13 1336.67

TABLE II: Number of iterations for the different EFIE formu-
lations at f = 1 × 106 Hz for a sphere of radius 1m excited
by a plane wave and a target accuracy of 1× 10−8.

N RWG EFIE qH-EFIE Prec. EFIE

1080 175 63 7
1920 304 97 11
4320 481 135 9
8670 632 204 9

15 870 1150 387 8
32 670 1852 655 10
66 270 2237 468 11

130 680 3124 868 8

iterative solver [52] with a target precision of 1 × 10−8. As
expected, the number of iterations for the quasi-Helmholtz
filter based EFIE formulation remains stable around 10, while
the other two formulations exhibit a significant increase in the
number of iterations as the discretization density increases.
This advantage of the new formulation directly translates into
significant savings in computation time, which shows that the
added expense of applying the new filter-based preconditioner
is very rapidly offset by the considerably reduced number of
iterations. In these numerical tests, the quasi-Helmholtz filters
were computed as Chebyshev-interpolated Butterworth filters
(78) of order 50, expanded into 100 Chebyshev polynomials.
The electromagnetic operators have been compressed using
multi-level adaptive cross approximations [53] and the graph
Laplacian were inverted using algebraic multigrid [54], [55].

IX. CONCLUSION

A new family of strategies has been introduced for perform-
ing filtered quasi-Helmholtz decompositions of electromag-
netic integral equations: the filtered Loop-Star decompositions
and the quasi-Helmholtz filters. These new tools are capable of
manipulating large parts of the operators’ spectra to obtain new
families of preconditioners and fast solvers. A first application
to the case of frequency and h-refinement preconditioning
of the electric field integral equation has been presented and
numerical results have shown the practical effectiveness of the
newly proposed tools.

APPENDIX A
COMPLEMENTARITY OF THE PROJECTORS

In this appendix, we show that the properties P̃Λ+ P̃Σ = I

and P̃
Λ
+ P̃

Σ
= I hold true on simply connected geometries.

To this end, we first prove that the normalized coefficients
j̃ of the RWG functions can be decomposed with Λ̃ and Σ̃,

similarly as in (9) where we assume that the proper number of
columns from the matrices have been removed as is standard
to ensure a full column rank, such that

j̃ = G− 1
2 j = Λ̃l̃ + Σ̃s̃ (114)

in which l̃ and s̃ are the coefficient vectors of the normalized
Loop and Star parts in this decomposition. Since G, Gp, and
Gλ are invertible matrices, we have rank(Σ̃) = rank(Σ) and
rank(Λ̃) = rank(Λ). Moreover, since Λ̃TΣ̃ = 0, we also
obtain that Λ̃ and Σ̃ have their column linearly independent,
which yields rank([Λ̃ Σ̃]) = rank(Λ̃) + rank(Σ̃) = N , from
which the existence and (unicity) of (114) follows.

Subsequently, using (114), we can form a new set of
normalized projectors to retrieve Λ̃l̃ and Σ̃s̃ separately. The
first step is to apply Λ̃T and Σ̃T to (114) to express j̃ in the
two different bases

Λ̃T j̃ = Λ̃TΛ̃l̃ , (115)

Σ̃T j̃ = Σ̃TΣ̃s̃ , (116)

since Λ̃TΣ̃ = 0 and Σ̃TΛ̃ = 0, given (20). Subsequently, we
express the coefficients of the normalized Loop and Star bases
as a function of j̃

l̃ =
(
Λ̃TΛ̃

)+

Λ̃T j̃ , (117)

s̃ =
(
Σ̃TΣ̃

)+

Σ̃T j̃ . (118)

Finally, we express Λ̃l̃ and Σ̃s̃ in terms of j̃ by applying Λ̃
and Σ̃ to (117) and (118)

Λ̃l̃ = Λ̃
(
Λ̃TΛ̃

)+

Λ̃T j̃ = P̃Λ j̃ , (119)

Σ̃s̃ = Σ̃
(
Σ̃TΣ̃

)+

Σ̃T j̃ = P̃Σ j̃ , (120)

and we obtain that P̃Λ + P̃Σ = I by leveraging (119), (120),
and (114). Following the same procedure, except that now Λ̃
and Σ̃ are employed in the initial decomposition, we can show
that the property P̃

Λ
+ P̃

Σ
= I also holds true.
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