
18 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Hyperdimensional Computing With Local Binary Patterns: One-Shot Learning of Seizure Onset and Identification of
Ictogenic Brain Regions Using Short-Time iEEG Recordings / Burrello, Alessio; Schindler, Kaspar; Benini, Luca; Rahimi,
Abbas. - In: IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. - ISSN 0018-9294. - 67:2(2020), pp. 601-613.
[10.1109/TBME.2019.2919137]

Original

Hyperdimensional Computing With Local Binary Patterns: One-Shot Learning of Seizure Onset and
Identification of Ictogenic Brain Regions Using Short-Time iEEG Recordings

Publisher:

Published
DOI:10.1109/TBME.2019.2919137

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978552 since: 2023-05-16T15:01:59Z

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC



1

Hyperdimensional Computing with Local Binary
Patterns: One-shot Learning of Seizure Onset
and Identification of Ictogenic Brain Regions

using Short-time iEEG Recordings
Alessio Burrello, Kaspar Schindler, Luca Benini, Abbas Rahimi

F

Abstract—Objective: We develop a fast learning algorithm combining
symbolic dynamics and brain-inspired hyperdimensional computing for
both seizure onset detection and identification of ictogenic (seizure gen-
erating) brain regions from intracranial electroencephalography (iEEG).
Methods: Our algorithm first transforms iEEG time series from each
electrode into symbolic local binary pattern codes from which a holo-
graphic distributed representation of the brain state of interest is con-
structed across all the electrodes and over time in a hyperdimensional
space. The representation is used to quickly learn from few seizures,
detect their onset, and identify the spatial brain regions that generated
them. Results: We assess our algorithm on our dataset that contains
99 short-time iEEG recordings from 16 drug-resistant epilepsy patients
being implanted with 36 to 100 electrodes. For the majority of the
patients (10 out of 16), our algorithm quickly learns from one or two
seizures and perfectly (100%) generalizes on novel seizures using k-fold
cross-validation. For the remaining six patients, the algorithm requires
three to six seizures for learning. Our algorithm surpasses the state-
of-the-art including deep learning algorithms by achieving higher speci-
ficity (94.84% vs. 94.77%) and macroaveraging accuracy (95.42% vs.
94.96%), and 74× lower memory footprint, but slightly higher average
latency in detection (15.9 s vs. 14.7 s). Moreover, the algorithm can reli-
ably identify (with a p-value < 0.01) the relevant electrodes covering an
ictogenic brain region at two levels of granularity: cerebral hemispheres
and lobes. Conclusion and significance: Our algorithm provides: (1) a
unified method for both learning and classification tasks with end-to-
end binary operations; (2) one-shot learning from seizure examples; (3)
linear computational scalability for increasing number of electrodes; (4)
generation of transparent codes that enables post-translational support
for clinical decision making. Our source code and anonymized iEEG
dataset are freely available at http://ieeg-swez.ethz.ch.

Index Terms—iEEG, one-shot learning, local binary patterns, symbolic
dynamics, hyperdimensional computing, seizure detection, localization
of seizure onset zone
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1 INTRODUCTION
Epilepsy is a severe and prevalent chronic neurological

disorder affecting 1–2% of the world’s population [1]. One
third of epilepsy patients continue to suffer from seizures
despite best possible pharmacological treatment [2]. For
these patients with so-called drug-resistant epilepsy [3],
various algorithms based on intracranial electroencephalog-
raphy (iEEG) recording are proposed to detect the onset
of seizures [1]. Complementary to this approach, efficient
and robust algorithms are required to not only detect the
seizure onset but also to identify the ictogenic (i.e. seizure-
generating) brain regions for possible surgical removal [4],
[5]. Such detection and identification has to be extremely
accurate, based on relatively scarce data, as typically only
few seizures are recorded in the epilepsy monitoring unit
due to the limited duration of iEEG recordings (typically 1
to 3 weeks [6] to minimize patient’s discomfort).

The iEEG currently provides the best spatial resolution
and the highest signal-to-noise ratio (SNR) of electrical
brain activity recordings [1]. Recent studies have shown
successful application of machine learning methods [1], [7]–
[9] using iEEG signals to detect two distinct states of brain
activity in patients with epilepsy, i.e., interictal (= between
seizures) and ictal (= during seizures). These methods are
based on extracting useful features followed by traditional
supervised machine learning methods (such as random
forest [1], support vector machines [7], Bayesian analysis [9],
artificial neural networks [7]), and more recently deep learn-
ing algorithms [8]. These methods are however seriously
challenged by the need to reliably detect seizures from
a small number of examples. This is due to the patient-
specific nature of seizure dynamics (i.e. activity patterns at
onset, propagation and termination of seizures), and to the
inherent asymmetry in the iEEG recording, namely that the
ratio of interictal to ictal segments is typically very large.

In addition, these conventional methods face other im-
portant challenges including: (1) The outcome of their
learning is often a “black box” that is not transparent to
an expert neurologist, hence cannot be analyzed for better
diagnosis, e.g., precisely delineating the ictogenic brain re-
gions. (2) Their high computational complexity and memory

http://ieeg-swez.ethz.ch
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demands render them unsuitable for real-time detection
on resource-limited wearable or implantable devices. (3)
Their offline training and slow (iterative) training time pre-
vent them from online and incremental learning from new
seizure occurrences, hence they cannot be quickly adapted
to new dynamics. (4) They operate with few electrodes, e.g.
6 [9], 8 [10], and 16–72 [1] electrodes. However, a larger num-
ber of electrodes is mandatory to properly assess the spatio-
temporal evolution and spreading of epileptic seizures [5],
[11], [12] and to properly identify the borders of the seizure
onset zone for surgical resection [13]. Furthermore, recent
studies have demonstrated that iEEG recordings from out-
side the seizure onset zone provide important information
about seizure generalization [14] and thus might be helpful
to prevent its occurrence and thereby decrease the risk for
sudden unexpected death [15]. To address the aforemen-
tioned challenges, we present the following contributions:

(1) We propose a single algorithm for both learning
and classification tasks by jointly exploiting symbolic dy-
namics and brain-inspired vector-symbolic architectures.
The proposed algorithm combines methods from symbolic
dynamics [16]–[18] (Section 2.1) and brain-inspired comput-
ing [19] (Section 2.2) that supports one-shot or few-shot
learning, i.e. the ability to learn object categories from one or
few examples. Symbolic dynamics models a dynamical sys-
tem by a discrete space consisting of sequences of abstract
symbols, each of which corresponds to a state of the system.
At the heart of our algorithm is a brain-inspired vector-
symbolic computational theory called hyperdimensional
(HD) computing [19] that learns quickly by computing with
random vectors in a very high dimensionality, also referred
to as hypervectors. Our proposed algorithm consists of an-
alyzing the occurrence of symbols or patterns—that even
bears similarity to classical visual EEG interpretation [16]—
followed by one-/few-shot learning. First, as a symbolization
method, we exploit local binary patterns (LBP) [18] to map
a sequence of iEEG samples into a small bit string as a
symbol. Second, these symbols are projected into an HD
space that enables reliably combining them over time and
across electrodes to encode a compact representation (i.e.,
a prototype vector) for one-shot learning from the state of
interest. Further, we use the same algorithm for both learn-
ing and classification tasks: the algorithm initially learns
from few ictal or few interictal segments by writing the
corresponding prototype vector (ictal or interictal) into an
associative memory, and then classifies new segments based
on Hamming distance among these two learned prototype
vectors.

(2) Our algorithm is based on binary representations
and operators, and is computationally scalable: (i) For
every iEEG electrode, the LBP feature extractor directly
transforms the time series into symbols as bit strings with
limited length. (ii) HD computing then projects the symbols
to an HD space and computes a distributed long binary
vector that encodes occurrences of the symbols among all
electrodes (an approximation method to encode histograms
of symbols). (iii) The training and classification are per-
formed by simply bundling and comparing the binary vec-
tors. (iv) The classification decision is followed by a patient-
dependent voting to reduce the false alarms. Further, the
computational complexity of the algorithm linearly scales

for any number of input electrodes. This scalability provides
a universal interface to homogeneously cover all patients
with different numbers of implanted electrodes (e.g. 36
to 100) and seizure dynamics. The concurrent use of LBP
and HD computing enables end-to-end execution of our
algorithm with simple binary codes to avoid otherwise ex-
pensive operations such as costly floating-point arithmetic
(Section 4).

(3) One-shot learning, comparison, code and dataset re-
lease. We provide a dataset from 16 drug-resistant epilepsy
patients that contains 99 iEEG recordings, each one consist-
ing of a 3 minutes interictal (i.e. immediately pre-ictal) seg-
ment and the ictal segment followed by a 3 minutes postictal
segment (Section 3). Using this dataset, we compare our
algorithm with the state-of-the-art methods in [1], [7], [8]
(Section 5). Our algorithm quickly learns from one seizure
(for eight patients), or two seizures (for two more patients),
and perfectly (100%) generalizes on detecting novel seizures
with k-fold cross-validation. For the remaining six patients,
the algorithm requires 3–6 seizure examples for learning.
Overall, our algorithm surpasses all the state-of-the-art
methods: e.g., compared to [8], it achieves higher specificity
(94.84% vs. 94.77%) and macroaveraging accuracy (95.42%
vs. 94.96%), and a 74× lower memory footprint. Our algo-
rithm has slightly higher average latency in detection (15.9 s
vs. 14.7 s), but it can raise an alarm in the first 8% of the ictal
window. We also provide free access to our source code and
anonymized iEEG dataset at http://ieeg-swez.ethz.ch.

(4) Our algorithm produces transparent codes for iden-
tifying seizure-generating brain regions. Due to the well-
defined set of arithmetic operations with inverses in HD
computing, the learned prototype vectors—i.e. the binary
codes derived from the iEEG recordings during the ictal and
interictal brain states—are transparent and analyzable with
interpretable features. Our algorithm identifies the ictogenic
brain regions by measuring the relative distances between
the learned prototypes that are produced from different elec-
trodes (Section 6). Such identification is done at two levels
of spatial resolution, the cerebral hemispheres and lobes,
with p-value < 0.01 (Section 7). This takes the application
of our algorithm beyond the traditional scope of seizure
onset detection by automatically identifying ictogenic brain
regions that can provide more accurate data to better tar-
get surgical resection and thus potentially improve post-
surgical seizure control. It enables post-translational support
for clinical decision making and is in sharp contrast to those
machine learning methods that produce “black boxes.”

In the rest of this paper, we first provide a background
(Section 2) in symbolization and brain-inspired hyperdi-
mensional (HD) computing. We then provide more infor-
mation about our iEEG dataset in Section 3. We describe
in detail how to develop an HD-based algorithm to detect
seizures from iEEG signals (Part I: Sections 4 and 5), and to
identify ictogenic brain regions (Part II: Sections 6 and 7). A
preliminary version of Part I has been reported in [20].

2 BACKGROUND
2.1 Symbolization using Local Binary Patterns (LBP)

A class of data-analysis methods is referred to as sym-
bolization, which describes the process of transforming

http://ieeg-swez.ethz.ch
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Fig. 1: A) iEEG signals before (interictal) and after (ictal) seizure onset. The blue dotted line marks seizure onset as
determined by the visual inspection of an expert (K.S.). B) Zoomed in iEEG signals: (1) during the interictal state: the LBP
codes are well distributed over almost all the possible codes; (2) during the ictal state, the strongly time-irreversible signals
have a predominant portion of a single LBP code; examples of their LBP codes of l=6 are drawn. C) The corresponding
histograms of the LBP codes inside the 0.5 s windows in B.

raw experimental measurements into a series of discrete
symbols. Symbolization is particularly interesting for EEG
analysis, because as recent experience has clearly demon-
strated, it faithfully preserves dominant dynamical signal
characteristics while significantly increasing the efficiency
of detecting and quantifying information contained in real-
world time series [21]. Symbolization may be efficiently
achieved by mapping a sequence of iEEG samples into a bit
string, i.e. a one-dimensional local binary pattern (LBP) [18],
[22]. A LBP code reflects the relational aspects between
consecutive values of the iEEG signals, i.e., whether their
amplitudes increase or decrease. We observe that LBP codes
are more efficient than other closer symbolization methods,
e.g., directed horizontal graphs [23] that assign an integer
input and output degree to each time point.

Computing a LBP code is straightforward: (1) The iEEG
signal samples are converted into a bit string depending
on the sign of the temporal difference of adjacent samples.
If the difference is positive, we assign a 1 to the sampling
point, otherwise a 0. (2) A LBP code of length l is associated
with every sampling point by concatenating its bit with the
successive l − 1 bits. Fig. 1B shows the examples of LBP
code with l=6. Fig. 1C illustrates how histograms of LBP
codes differ between interictal and ictal states. During the

interictal state the LBP codes are well distributed over al-
most all the possible codes. In contrast the ictal window has
a predominant portion of a single LBP code and many LBP
codes are missing due to the typically slow and asymmetric
oscillations evolving during seizures [17], [23].

2.2 Hyperdimensional (HD) Computing
Inspired by the very size of the brain’s circuits, we can

model neural activity patterns with points of a hyperdi-
mensional space. Hyperdimensional (HD) computing [19]
explores this idea by computing with random vectors in a
very high dimensionality (d), also referred to as hypervec-
tors. To represent basic items, or symbols, HD computing
starts by selecting a set of atomic vectors: d-dimensional
(pseudo)random vectors with independent and identically
distributed (i.i.d.) components. This thus conforms to a
holographic or holistic representation: the encoded informa-
tion is distributed equally over all the d components such
that no component is more responsible to store any piece
of information than another hence maximizing robustness.
When the dimensionality is in the thousands, e.g. d=10,000,
it yields a huge number of nearly orthogonal atomic vectors
(see Section 2.2.1). This lets HD computing to combine two
atomic vectors into a new complex fixed-width vector using
well-defined vector-space operations (Section 2.2.2), while
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keeping the information of the two atomic vectors with
high probability [24]. Hence, it is also called holographic
reduced representations (HRRs) meaning that the reduced
(fixed-width) descriptions have less information about com-
ponents than the full descriptions [25]. This overall provides
a novel perspective on data representations and associated
operations with unique features in terms of robustness [26]–
[28], speed of learning [29]–[32], and energy efficiency [33],
[34].

In this paper, we consider d-dimensional binary random
vectors1 of equally probable 1s and 0s, i.e., dense binary
elements of {0, 1}d. This dense binary coding is also known
as binary spatter code [35]. In what follows, we first describe
how such vectors can be compared (i.e. a measure of simi-
larity among them), and how they can be combined using
HD arithmetic operations.

2.2.1 Measure of Similarity
Using the dense binary coding, the similarity between

two vectors is defined by the Hamming distance as the
number of components at which they differ. To express the
distance on a real scale of 0 to 1, we divide the Hamming
distance by d denoted as: ∆(X,Y ) : {0, 1}d × {0, 1}d →
[0, 1]. In high dimensions, e.g. d ≥ 1000, most points are
d/2 bits apart from each other, which yields a normalized
Hamming distance of ∆ ≈ 0.5, and stands for two nearly
orthogonal vectors [36]. This stems from the binomial dis-
tribution for p = 1/2 and n = d, where d/2 is the mean.
Correlated vectors yield ∆ ≈ 0 whereas ∆ ≈ 1 implies anti-
correlation [19].

HD computing begins by randomly generating a set of
atomic vectors that represent basic items in the cognitive
system. The atomic vectors are nearly orthogonal to each
other, and are stored in a so-called item memory (IM). The
IM is like a symbol table or dictionary of the items defined
in the system, and stays fixed throughout the computation.
In our seizure detection system, the LBP codes and the
names of electrodes are the basic items (or symbols) that are
assigned to the atomic vectors. These atomic vectors, inside
the IM, are used as building blocks from which more com-
plex vectors are constructed. Such complex vectors stand for
concepts or percepts. For a complex vector is composite in
nature, it can be very similar to other complex vectors with
similar composition and structure [37].

2.2.2 HD Arithmetic Operations
HD computing builds upon a well-defined set of arith-

metic operations with the vectors. Here, we focus on two
main operations for the dense binary codes that are used
for encoding/decoding data: addition and multiplication.
These two operations are powerful and versatile by forming
an algebraic field. Addition, or bundling, is defined as the
componentwise majority function: every component of the
input vectors is summed followed by normalization that
retains them in the binary space. This is essentially a bitwise
thresholded sum of n vectors that results in 0 when n/2
or more arguments are 0, and 1 otherwise. When adding
an even number of vectors, in case of disagreement for a
component (equal number of 1s and 0s), the majority can
be chosen randomly. To avoid this random tie-breaking, we

1. We use capitalized italic letters to indicate d-bit vectors that can
also appear with a subscript and superscript.

can augment the addition operation with an additional vector
that is computed by binding a pair of vectors that are chosen
systematically from the even number of vectors [34]. Addi-
tion of three vectors A, B, and C is denoted as [A + B + C]
where the brackets [. . .] stand for normalization.

Multiplication, or binding, is defined as the compo-
nentwise Exclusive OR (XOR). Likewise, it is denoted as
A ⊕ B ⊕ C . Both operations work on an arbitrary number
of input vectors and produce a fixed-width d-bit vector with
an important distinction: bundling produces a vector that is
similar to the input vectors (∆([A+B+C], A) ≈ 0), whereas
binding produces a dissimilar vector (∆(A⊕B⊕C,A) ≈ 0.5).
Hence, bundling is well suited for representing sets, mul-
tisets and can combine field/value pairs to represent a
larger structure (e.g., a record or a tuple). More importantly,
representations of such composite structures are constructed
directly from representations of the atomic vectors by apply-
ing the operations without requiring any learning.

Learning and classification with HD computing is com-
posed of four main steps: 1) mapping symbols to atomic
vectors; 2) combining atomic vectors with the arithmetic
operations inside an encoder to produce a complex vector
representing an item of interest; 3) combining the complex
vectors from the same category of items to produce a
prototype vector representing the entire class of category
(i.e., learning); 4) finally comparing the prototype vectors
with a query vector to put it into categories (i.e., infer-
ence/classification).

3 IEEG DATASET
3.1 Patients

We include the anonymized data sets of 16 patients
(P1–P16) of the epilepsy surgery program of the Inselspital
Bern in this study for a total of 99 recordings. Clinical data
on the patients is summarized in Table 1. Except for the
need for invasive EEG studies, there were no additional
inclusion criteria. All the patients gave written informed
consent that their data from iEEG might be used for research
purposes. The decision on the necessity for iEEG recordings,
the electrode implantation scheme and the decision on sur-
gical therapy was made entirely on clinical grounds. These
decisions were taken prior to and independently from the
compilation of this dataset.

3.2 iEEG Acquisition and Data Format
iEEG signals were recorded intracranially by strip, grid,

and depth electrodes (all manufactured by AD-TECH, Wis-
consin, USA), using a Nicolet One recording system with
a C64 amplifier (VIASYS Healthcare Inc., Madison, Wis-
consin, USA). An extracranial electrode, localized between
10/20 positions Fz and Cz, was used as reference for signal
recording. iEEG recordings were either sampled at 512 or
1024 Hz, depending on whether they were recorded with
more or less than 64 contacts. The iEEG recorded with less
than 64 contacts were down-sampled to 512 Hz prior to
further analysis. iEEG signals were re-referenced against the
median of all the channels free of permanent artifacts as
judged by visual inspection. After 16-bit analog-to-digital
conversion, the data were digitally band-pass filtered be-
tween 0.5 and 150 Hz using a fourth-order Butterworth filter
prior to analysis and written onto disk at a rate of 512 Hz.
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TABLE 1: Clinical characteristics of patients and seizures included in the dataset.
Abbreviations: FLE: frontal lobe epilepsy, TLE: temporal lobe epilepsy, PLE: parietal lobe epilepsy, L: left, R: right, MRI:
magnetic resonance imaging, y/n: yes/no, n.a.: not applicable

ID Electrodes
[#]

Seizures
[#]

Seizure
duration [s] Age[y] Hemisphere MRI findings Syndrome Engel

outcome

Mean Min Max

P1 100 5 14 10 22 46 R n TLE 2
P2 64 4 146 89 179 48 L y(hippocampal sclerosis) TLE 1
P3 62 14 98 31 139 32 L y(focal cortical dysplasia) PLE 4
P4 42 4 223 96 301 19 L y(hippocampal sclerosis) TLE 1
P5 59 6 88 67 117 31 L y(hippocampal sclerosis) TLE 2
P6 36 2 15 14 16 31 R y(tuberous sclerosis) FLE 4
P7 74 7 587 154 1002 36 L y(pilocytic astrocytoma) PLE 1
P8 61 3 121 52 184 23 L n TLE 4
P9 92 6 79 19 100 49 R y(focal cortical dysplasia) FLE 2
P10 47 13 71 10 252 24 L n TLE 2
P11 59 2 57 52 61 38 L n TLE 4
P12 54 10 99 80 154 20 R n TLE 2
P13 98 2 99 73 125 25 R n TLE 1
P14 49 10 45 23 93 59 L y(space occupying amygdala) TLE 4
P15 56 9 144 104 198 27 L n TLE 1
P16 64 2 109 83 135 26 R y(hippocampal sclerosis) TLE 1

Mean 64 6 124 60 192 33

Forward and backward filtering was applied to minimize
phase distortions.

All the iEEG recordings were visually inspected by an
EEG board-certified experienced epileptologist (K.S.) for
seizure identification and exclusion of channels continu-
ously corrupted by artifacts. Each recording consists of
3 minutes of interictal segments (immediately before the
seizure onset), the ictal segment (ranging from 10 s to 1002 s),
and 3 minutes of immediate postictal time. In addition to
the iEEG data for each patient, the dataset includes the age,
the indices of channels, the indices of resected channels, the
MRI findings, the epilepsy syndrome and the post-surgical
outcome.

4 PART I: SEIZURE ONSET DETECTION
In this section, we present the main contribution of the

paper for seizure onset detection. We show how the LBP
feature extractor and HD computing can be combined to
efficiently learn from iEEG recordings and detect novel
seizures. Our proposed algorithm exploits LBP codes to
directly symbolize the iEEG signal of each electrode. Then a
complex d-dimensional binary representation is constructed
to capture the statistics of the LBP codes across all electrodes
and over time. This representation is used for learning and
classification followed by simple postprocessing. The entire
processing chain is displayed in Fig. 2. This approach is
computationally efficient and extracts symbols for analyzing
the occurrence of patterns, a process even somewhat similar
to classical EEG reading by a human expert who tries to
integrate visually detectable local and global characteristics
of the iEEG signals into a coherent interpretation; then our
approach quickly learns from one or few examples of these
patterns per patient.

4.1 Preprocessing and LBP Feature Extraction
After filtering and downsampling the iEEG signals (Sec-

tion 3.2), a LBP code is computed for every sampling point.
Table 2 shows the impact of LBP length (l ∈ [4, 8]) on

TABLE 2: The impact of LPB length (l) on sensitivity,
specificity, accuracy and delay.

LBP length (l) 4-bit 5-bit 6-bit 7-bit 8-bit

Sensitivity (%) 95.21 95.91 96.01 95.93 96.33
Specificity (%) 94.54 94.34 94.84 94.25 93.82
Accuracy (%) 94.88 95.12 95.42 95.09 95.08
Delay (s) 15.83 15.09 15.96 14.88 14.90

various metrics averaged among patients. The LBP codes
with different lengths produce almost similar performance
(l=6 results in highest accuracy). However, using a larger
code length impairs its applicability to non-stationary iEEG
signals and increases the latency of classification since the
code length determines the minimum duration of the sta-
tistical analysis window, i.e., the duration of the window
should be large enough that all symbols can at least theoret-
ically occur once [16], [17]. With l=6, the statistical window
can be as short as 0.5 s (containing 256 samples) that meets
256 > 2l. This LBP code considers six consecutive samples,
and moves by one sample, generating 26 different symbols
that are fed into the next stage for learning and classification
(see Fig. 2).

4.2 HD Learning and Classification
We use HD computing with holographic distributed

representation to ease learning and classification from the
LBP codes. HD computing first projects the LBP codes to
the HD space via the IM, which assigns an orthogonal
binary vector to every LBP code, i.e., C1⊥C2 . . .⊥C64. To
combine these vectors across all electrodes, HD computing
generates a spatial record (S), in which an electrode name
is treated as a field, and its LBP code as the value of
this field. The IM also maps the name of electrodes to
orthogonal binary vectors: E1⊥E2 . . .⊥En for a patient
with n electrodes. This allows to bind (⊕) the name of
each electrode (Ej | j ∈ [1, n]) to its corresponding code
(Ci(j) | i ∈ [1, 64]). This binding (Ej ⊕ Ci(j)) generates a
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Fig. 2: Processing chain of our proposed algorithm: (1) Feature extraction generates a 6-bit LBP code for each electrode; (2)
HD computing projects these codes into d-dimensional atomic vectors and constructs a complex vector H to represent the
histogram of 0.5 s recording. During training the associative memory (AM) learns from this vector, and during inference
provides a label for it; (3) As postprocessing, a simple patient-dependent (tp) voting decides based on the last 10 labels.

new set of nearly orthogonal vectors to represent LBP codes
per electrode that effectively reduces the size of IM from
64×n vectors to 64+n vectors. The spatial record (S) is then
constructed by bundling the bound vectors of all electrodes:
S = [E1 ⊕ Ci(1) + E2 ⊕ Ci(2) + ... + En ⊕ Ci(n)].

The binary vector S is computed for every new sam-
ple, and holographically represents the spatial information
about the LBP codes of all electrodes. The next step is
to compute the histogram of LBP codes for a moving
window of 0.5 s with 256 samples (see Section 4.1). To
estimate the histogram of LBP codes inside this window,
a multiset of temporally generated S vectors is computed
as H = [S1 + S2 + ... + S256]. The bundling is applied
in the temporal domain through accumulation (i.e., compo-
nentwise addition) of St vectors t ∈ {1, ..., 256}, that are
produced within the window, and then thresholding at half
(i.e, normalization).

As we briefly mentioned in Section 2.1, the interictal and
ictal states show different distributions of LBP codes inside
the window: during an interictal segment, we have a nearly
random signal, with almost evenly distributed histograms;
conversely, during a seizure we typically observe rhythmic
signals, i.e., slow and often temporally asymmetric oscilla-
tions, which yield polarized histograms (see Fig. 1). This
shows that the distribution of LBP codes, not necessarily
their sequence, is an important indicator to distinguish ictal
vs. interictal states. The HD space naturally encodes such
histograms in the binary vector H by accumulating and
thresholding the spatial vectors. Appendix A explains the
HD encoding of histograms in detail.

The output of the encoding is H , a binary distributed
vector that is updated every 0.5 s. To train our classifier,
we use this vector to build an associative memory (AM)
containing two prototype vectors representing ictal and in-
terictal labels. To train the interictal prototype, all H vectors
computed over an interictal window of 40 s are accumulated
(summed), and then thresholded (normalized) to be stored
in the AM as a binary prototype vector. Similarly, an ictal
prototype vector is generated from a smaller window of 10–
30 s depending on seizure duration. For classification, the

label of an unseen 0.5 s window is determined by comparing
its H to every prototype of the AM: the prototype that
results in the minimum Hamming distance is the label.

4.3 Postprocessing
The last part of the algorithm postprocesses the labels

produced by the HD classifier every 0.5 s. It defines a win-
dow of 5 s where a final decision is made based on the last 10
labels collected from the HD classifier (shifting labels of 0.5 s
at a time). The decision is made based on a patient-specific
threshold (tp): the algorithm detects the seizure onset when
the number of ictal labels inside the 5 s window is equal
or greater than tp. During the training, tp is initially set to
10 (out of 10, to reduce the false alarms) and is decreased
such that the algorithm can detect the training ictal segment.
After training, for all the patients, tp ∈ [8, 10].

Overall, our algorithm has five parameters: the dimen-
sion of vectors (d), the size of LBP code (l), the duration
of the two windows, and tp. Only the last parameter is
patient-dependent, whereas the others are fixed for all pa-
tients. Nevertheless, to reduce the memory load, d can be
adjusted to the individual patient depending on the number
of electrodes and seizure dynamics. We observed that the
algorithm works with d=10,000 for all patients. For some
patients it may even be reduced to 1000 without impairing
its performance.

5 PART I: EXPERIMENTAL RESULTS
In this section, we first provide a concise review of the

state-of-the-art methods for seizure onset detection (Sec-
tion 5.1). We then compare these methods with our pro-
posed algorithm (Section 5.2).

5.1 State-of-the-Art Methods
We focus on recent machine-learning based seizure on-

set detection methods [1], [7], [8] that may be partitioned
into two groups. The first group is based on extracting
time or frequency features or a mixture of them from the
iEEG signals followed by traditional supervised machine
learning methods (Section 5.1.1). For implementation of this



7

TA
B

LE
3:

C
om

pa
ri

so
ns

of
ou

r
al

go
ri

th
m

(L
BP

+H
D

)w
it

h
th

e
st

at
e-

of
-t

he
-a

rt
m

et
ho

ds
:L

BP
+

SV
M

[7
],

LG
P

+
M

LP
[7

],L
ST

M
[8

],
M

ix
ed

+
R

F
[1

].
Th

e
up

pe
r

pa
rt

of
th

e
ta

bl
e

sh
ow

s
th

e
re

su
lt

s
in

th
e

on
e-

sh
ot

le
ar

ni
ng

se
tt

in
g,

w
hi

le
th

e
lo

w
er

pa
rt

sh
ow

s
th

e
re

su
lt

s
of

fe
w

-s
ho

t
le

ar
ni

ng
.T

he
ei

gh
t

pa
ti

en
ts

in
th

e
on

e-
sh

ot
gr

ou
p

pr
es

en
t

si
gn

ifi
ca

nt
ly

fe
w

er
se

iz
ur

es
w

it
h

sl
ig

ht
ly

lo
ng

er
du

ra
ti

on
s

th
an

th
e

ot
he

r
ei

gh
tp

at
ie

nt
s

in
th

e
fe

w
-s

ho
tg

ro
up

.T
he

la
st

pa
rt

of
ta

bl
e

sh
ow

s
th

e
m

em
or

y
re

qu
ir

em
en

ts
to

st
or

e
ea

ch
m

od
el

(i
.e

.t
he

le
ar

ne
d

w
ei

gh
ts

).
A

bb
re

vi
at

io
ns

an
d

sy
m

bo
ls

us
ed

in
th

is
ta

bl
e:

Tr
S:

nu
m

be
r

of
tr

ai
ne

d
se

iz
ur

es
,k

:n
um

be
r

of
fo

ld
s

in
cr

os
s-

va
lid

at
io

n,
`:

la
te

nc
y

as
de

la
y

of
se

iz
ur

e
on

se
td

et
ec

ti
on

,S
pe

.:
sp

ec
ifi

ci
ty

,S
en

.:
se

ns
it

iv
it

y,
el

ec
.:

el
ec

tr
od

es
,a

nd
A

cc
ur

ac
y:

m
ac

ro
av

er
ag

in
g

ac
cu

ra
cy

.

O
ne

-s
ho

t
le

ar
ni

ng

LB
P

+
H

D
C

om
pu

ti
ng

LB
P

+
Li

ne
ar

SV
M

LG
P

+
M

LP
LS

T
M

M
ix

ed
+

R
F

ID
Tr

S
k

`
[s

]
Sp

e.
[%

]
Se

n.
[%

]
`

[s
]

Sp
e.

[%
]

Se
n.

[%
]

`
[s

]
Sp

e.
[%

]
Se

n.
[%

]
`

[s
]

Sp
e.

[%
]

Se
n.

[%
]

`
[s

]
Sp

e.
[%

]
Se

n.
[%

]

P2
1

4
15

.1
10

0
10

0
10

.1
91

.7
4

75
12

.2
98

.2
6

10
0

10
.6

10
0

10
0

10
.8

10
0

10
0

P4
1

4
34

.5
10

0
10

0
29

.3
10

0
10

0
35

.2
10

0
10

0
29

.5
10

0
10

0
19

.4
10

0
10

0
P5

1
6

20
.9

10
0

10
0

14
.7

92
.0

9
10

0
14

.6
84

.5
4

10
0

17
.1

99
.3

1
10

0
24

.0
10

0
10

0
P6

1
2

6.
3

10
0

10
0

9.
0

10
0

10
0

7.
5

10
0

10
0

8.
9

10
0

10
0

9.
0

10
0

10
0

P8
1

3
13

.2
10

0
10

0
11

.9
10

0
10

0
10

.3
10

0
10

0
10

.9
10

0
10

0
13

.4
10

0
10

0
P1

1
1

2
7.

0
10

0
10

0
6.

5
10

0
10

0
6.

5
10

0
10

0
8.

5
10

0
10

0
5.

5
10

0
10

0
P1

3
1

2
10

.0
10

0
10

0
16

.3
10

0
10

0
9.

8
10

0
10

0
11

.3
10

0
10

0
7.

0
95

.7
6

10
0

P1
6

1
2

32
.3

10
0

10
0

29
.3

10
0

10
0

29
.5

96
.8

1
10

0
27

.3
10

0
10

0
16

.3
10

0
10

0

m
ea

n
17

.4
10

0.
0

10
0.

0
15

.9
97

.9
8

96
.8

8
15

.7
97

.4
5

10
0.

0
15

.5
99

.9
1

10
0

13
.2

99
.4

7
10

0.
0

Fe
w

-s
ho

t
le

ar
ni

ng

P1
2

4
6.

3
10

0
10

0
6.

9
10

0
10

0
6.

9
96

.7
6

10
0

5.
9

99
.9

8
10

0
5.

8
99

.9
1

10
0

P1
5

2
8

36
.4

10
0

10
0

31
.3

99
.8

6
10

0
30

.8
91

.7
1

10
0

31
.4

99
.9

9
10

0
24

.4
89

.8
8

10
0

P3
3

12
21

.8
79

.9
7

91
.0

3
15

.6
81

.3
3

10
0

16
.8

77
.0

4
10

0
16

.1
86

.8
5

55
.3

0
17

.2
73

.2
8

69
.6

4
P7

3
5

5.
0

49
.9

88
.5

7
5.

0
51

.7
8

88
.5

7
10

.9
65

.5
3

91
.4

2
14

.1
50

.1
6

85
.0

0
3.

2
48

.7
1

88
.5

7
P9

3
4

16
.2

96
.3

1
96

.4
3

12
.4

89
.0

5
96

.4
2

14
.4

88
.9

3
89

.2
8

7.
5

82
.9

8
10

0
6.

0
91

.0
4

10
0

P1
0

3
11

3.
9

98
.4

1
94

.4
1

9.
2

97
.3

9
92

.3
1

13
.3

98
.7

8
88

.8
1

8.
9

98
.6

7
99

.0
9

8.
5

98
.9

8
88

.4
6

P1
2

6
5

15
.9

96
.8

8
80

13
.6

82
.6

2
88

17
.3

85
.0

1
90

17
.6

99
.5

6
90

2.
4

33
.9

0
87

.5
0

P1
4

4
7

10
.5

95
.9

4
85

.7
1

9.
1

98
.0

2
95

.7
1

9.
9

94
.5

8
94

.2
8

9.
6

98
.8

5
92

.8
6

17
.4

93
.4

7
10

0

m
ea

n
14

.5
89

.6
8

92
.0

2
12

.9
87

.5
1

95
.1

3
15

.0
87

.2
9

94
.2

2
13

.9
89

.6
3

90
.2

8
10

.6
78

.6
5

91
.7

7

To
ta

l
m

ea
n

15
.9

94
.8

4
96

.0
1

14
.4

92
.7

4
96

.0
0

15
.4

92
.3

7
97

.1
1

14
.7

94
.7

7
95

.1
4

11
.9

89
.0

6
95

.8
9

A
cc

ur
ac

y
95

.4
2

94
.3

7
94

.7
4

94
.9

6
92

.4
7

M
em

or
y

fo
ot

pr
in

t

W
ei

gh
ts

[b
yt

es
]

24
96

2
5
6
×

#.
el

ec
.

1
0
2
4
0
×

#.
el

ec
.+

1
6
0

1
8
5
4
0
8

36
00

0
1

4–
10
×

14
8–

41
0×

74
×

14
×



8

group, we use Python 2.7 with the Scikit-learn library. The
other group consists of recent deep learning algorithms
that automatically extract features and construct classifiers
(Section 5.1.2). The deep neural networks are implemented
in Python 2.7 using Keras library with Tensorflow backend.

5.1.1 Feature Extraction and Supervised Learning
We consider three algorithms using different combina-

tion of feature extraction and classifier:
(1) Mixed+RF. We consider the first place algorithm from

the crowdsourcing kaggle.com competition for develop-
ment of seizure detection algorithms using iEEG [1]. This al-
gorithm considers three sets of mixed features: the pairwise
cross-correlation between channels, the cross-correlation be-
tween normalized channel power spectra, and the frequency
magnitudes of each channel in the range of 1–47 Hz. For
classification, a random forest classifier of 3000 trees is used.
Random forest is an ensemble method that combines several
individual classification trees. From the training dataset
several bootstrap subsets are drawn, and a classification tree
is fit to each of them. The response variable is predicted as
majority vote of the predictions of all trees.

(2) LBP+SVM. The histogram of LBPs is used as features
to a support vector machine (SVM) using a linear kernel
(i.e., separation). The SVM is a discriminative classifier that
is defined by a separating hyperplane. The SVM model is
trained using the box constraint with regularization param-
eter (c) equal to 1.0; more details in [7].

(3) LGB+MLP. A slightly different version of LBP is
called local gradient pattern (LGP). The histogram of LGP
as features, is fed to a multilayer perceptron (MLP) [7]. The
MLP is a class of feedforward artificial neural networks,
consisting of at least three fully connected layers: one input
layer, one or multiple hidden layer(s), and an output layer.
The backpropagation algorithm is used to train the model.
We use a single hidden layer with 40 neurons, and 1000 as
the maximal number of iterations for convergence. The MLP
performs better with LGPs than LBPs.

5.1.2 Deep Learning
We consider a long-short term memory (LSTM) network

that is fed with raw iEEG samples (all channels are concate-
nated) [8]. LSTM is a cell for layers of a recurrent neural
network enabling to process sequences of inputs. The LSTM
network is composed of the first layer with 100 neurons,
a subsequent dense layer that reduces the dimensionality
to 50, and a max-pooling stage with 50 output features
followed by a softmax layer that performs the classification;
more details are discussed in [8].

We also consider a convolutional neural network (CNN),
as a deep feedforward neural network commonly used in
analyzing visual inputs. Recent work [38] proposes to use
CNNs coupled with short time Fourier transform (STFT) as
a universal method for seizure prediction. We apply their
method to our iEEG based seizure detection that results
in lower performance compared to other state-of-the-art
methods: 83.61% specificity, 97.73% sensitivity, and 17.9 s
delay.

5.2 Comparisons
We compare our algorithm (LPB+HD) with the afore-

mentioned state-of-the-art methods using the dataset de-

scribed in Section 3. Our algorithm is implemented in
Python 2.7 using PyTorch. To have an identical setup for
the state-of-the-art methods we also add the postprocessing
step that is tuned for each of them to increase their speci-
ficity. We report performance metrics including specificity,
sensitivity, macroaveraging accuracy, and delay of seizure
onset detection given a limited number of trained seizure ex-
amples. Sensitivity is defined as the percentage of correctly
detected seizures in the test dataset. Specificity is defined
as the percentage of misclassified interictal 0.5 s windows.
Macroaveraging accuracy is the mean of sensitivity and
specificity that gives them equal weights to address the
different durations of ictal and interictal segments. Latency
is measured as the time the algorithm takes to classify an
unseen seizure after the seizure onset time point marked
by the expert; note that it is not the implementation latency
but the working latency of an algorithm. Table 3 illustrates
the full comparison results. We divide all available seizures
for a patient into only two sets: training and testing (no
evaluation set). We train all the methods only on the training
set, and measure the metrics on the test set using k-fold
cross-validation, where k is the total number of seizures
minus the number of seizures in the training set (i.e., we
rotate the trained seizures among all available seizures).

Based on the number of seizures used for training, we
observe that the patients may be roughly partitioned into
two groups: patients with one-shot learning (in the upper
part of Table 3), and patients that need few more training
seizures (few-shot learning) in the lower part of the table.
For half of the patients (8 out of 16), our algorithm exhibits
one-shot learning, i.e. training with only one seizure is
possible. Our algorithm achieves perfect (100%) specificity
and sensitivity in detecting novel seizures. The other meth-
ods cannot exhibit such perfect generalization in the one-
shot setting: the LSTM is the closest method that achieves
99.91% specificity. Overall, all the methods achieve better
performance for these patients in the upper part of the table.

The remaining eight patients, listed in the lower part
of Table 3, are more challenging due to their fast and very
localized seizures (i.e., only 2 or 3 electrodes out of 70 are
involved in the ictal activity). Hence for these patients few
more seizures (2–6) are required for training. Our algorithm
trained with two seizures still maintains perfect generaliza-
tion for two more patients (P1 and P15) while the other
methods are behind. Only for two patients (P3 and P7), our
algorithm shows a low specificity in the few-shot learning;
on average, it achieves 89.68% specificity (vs. 89.63% in the
LSTM) and 92.02% sensitivity (vs. 90.28% in the LSTM).

Considering both one-shot and few-shot settings across
Table 3, our algorithm achieves higher macroaveraging ac-
curacy on average (95.42%) than the other methods. The
LSTM comes closest reaching 94.96% macroaveraging ac-
curacy due to our added postprocessing method to avoid
otherwise lower accuracy of 90.46%. Although other meth-
ods reach slightly higher sensitivity for some of the pa-
tients, our algorithm achieves the highest specificity (94.84%
on average) that clearly shows the limitation of the other
methods for long-time recordings. We further assess our
algorithm on long-time recording from P15 using the same
training setup. Our algorithm achieves 0 false alarms in 191
hours interictal recording; further results about long-term
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recording are provided in [39].
The latency of seizure onset detection of our algorithm is

slightly larger than the one yielded by the LSTM (15.9 s vs.
14.7 s). Given that the average duration of ictal segments is
123.6 s (see Table 3), our algorithm still detects the seizures
in the first 8% of the ictal window. Such a delay of detection
below 20 s is well suited for several important applications
considering that iEEG seizure onset often precedes clinical
onset by more than 20 s [40]. Furthermore, considering that
the median durations of mesial temporal lobe seizures and
of neocortical extratemporal seizures have been found to
be 106 s and 78 s, respectively [41], it may be helpful for
therapeutic interventions aimed at early seizure termination
or prevention of generalization of seizure activity [42].

More importantly, our algorithm operates with simple
binary operations and a lower memory footprint than all
other methods, which employ floating-point operations. As
the output of training, our algorithm requires to store only
the contents of the AM: 2×d bits for the two prototypes. The
IM can be efficiently rematerialized by a cellular automaton
from a random seed [43], hence there is no need to store
the IM [34]. The last part of Table 3 shows the number of
weights to be stored for each model. The number of weights
for all the state-of-the-art methods (except the LSTM) grows
with the number of electrodes. Though the number of
weights in the LSTM are constant, its computational time
grows with the number of electrodes, since it is a sequen-
tial model. Considering d=10,000, our method is stored
on 2,500 bytes resulting in at least 4–10× lower memory
requirements with respect to the simplest SVM classifier,
and up to 74× with respect to the LSTM. Moreover, this
is a conservative memory estimation for our algorithm, as
the dimensionality can be reduced to 1000 for some iEEG
recordings without affecting the performance.

6 PART II: IDENTIFICATION OF ICTOGENIC BRAIN
REGIONS

In this section, we present the main contribution of
the paper for identification of ictogenic brain regions. Pre-
cise identification of ictogenic brain regions followed by
surgical resection often improves seizure control and can
even eliminate the occurrence of seizures completely [5].
An important practical challenge is that with presurgical
iEEG recordings (or any other current diagnostic method)
the brain tissue of the so-called “epileptogenic zone,” i.e.
neuroanatomical areas that are necessary and sufficient to
generate epileptic seizures, cannot be mapped directly and
completely. Therefore, in clinical practice, the seizure onset
zone/”ictogenic zone” (SOZ, i.e. the area where the first ictal
iEEG signal changes are recorded), is used as a proxy for
the epileptogenic zone [44]. To date, the seizure onset zone
is delineated by clinical interpretation of iEEG recordings,
mostly based on visual analysis, which is time consuming
and may yield high inter-rater variability. This demands an
algorithm that can learn transparent codes from the iEEG
recordings, hence the codes are analyzable to locate the
SOZ. HD computing produces such codes with interpretable
features due to its well-defined set of arithmetic operations
with inverses. In the following, we describe our algorithm
that can automatically identify the SOZ at two levels of

P1    P2    P3    P4    P5   P6     P7    P8   P9   P10   P11 P12  P13  P14  P15  P16
Patients ID
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Electrodes in left hemisphere

Electrodes in right hemisphere

Fig. 3: Number of electrodes implanted in left and right
cerebral hemisphere.

spatial resolution: the cerebral hemispheres and cerebral
lobes.

6.1 Algorithm for Identification of Ictogenic Hemi-
spheres

Fig. 3 shows the number of electrodes implanted in the
left or right cerebral hemispheres. As shown, for 11 patients
out of 16, the clinical experts are uncertain whether the
seizures start from the left, from the right, or from both
cerebral hemispheres, and hence the number of electrodes
implanted into both hemispheres is almost equal. Our first
aim is to identify the location of SOZ at the spatial scale of
the cerebral hemispheres.

Our proposed algorithm is mainly based on the seizure
onset detection algorithm (Section 4) followed by statistical
hypothesis testing. The algorithm first generates two sets of
ictal (PS

j ) and interictal (P I
j ) prototypes for every electrode

j by bundling the vectors representing the LBP symbols
(Ct

i(j)) extracted from the related segments:

PS
j = [

∑
t∈ictal(10 s)

Ct
i(j)] | i ∈ [1, 64] j ∈ [1, n]

P I
j = [

∑
t∈interictal(10 s)

Ct
i(j)] | i ∈ [1, 64] j ∈ [1, n]

Note that the prototypes are computed solely for the rele-
vant electrode. For example, for ‘electrode 1’, one prototype
vector (P I

1 ) is associated with one interictal window of 10 s,
and another prototype (PS

1 ) with one ictal window starting
right after the seizure onset for 10 s (the duration of the
shortest seizure is 10 s c.f. Table 1). If the algorithm requires
more ictal/interictal examples, multiple prototypes will be
generated (one per example). As is immediately apparent,
when two different electrodes k and l continuously receive
the same input stimuli, their corresponding encoded proto-
types are identical, i.e., P I

k = P I
l and PS

k = PS
l .

Then, the algorithm computes at least one score for every
electrode j as the normalized Hamming distance between
its related prototypes (∆(P I

j , P
S
j )): the larger the identifica-

tion score, the closer the proximity of the electrode to the
SOZ. When the two prototypes encode iEEG windows with
very similar dynamics (i.e. the same distribution of Ci), they
yield a ∆ ≈ 0. Conversely, a ∆ ≈ 0.5 implies no correlation
between the two prototypes due to a different distribution
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Fig. 4: Electrodes’ scores of P2, generated by four subsequent seizures. Considering only the first seizure (the first row of
scores) is sufficient for the algorithm to identify the correct hemisphere. The red squares mark the electrodes in the SOZ.
The box-plot of scores is shown in Fig. 5.

S
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[Δ

]

Left hemisphere Right hemisphere

Electrodes’ scores

p = 6.7 × 10−27

Fig. 5: Box plot with scores of P2 by supplying all four
seizures and one interictal window. On each box, the central
mark indicates the median, and the bottom/top edges of
the box indicate the 25th/75th percentiles. The dotted line
extends to the most extreme data points not considering
outliers. Outliers are marked with ’*’.

of the Ci. In other words ∆ ≈ 0 indicates that the electrodes
are not involved in the seizure activity whereas an increas-
ing value of the score suggests an increasing proximity of
the electrodes to the SOZ. Fig. 4 shows an example of the
scores computed for each electrode from four seizures of
P2.

Finally, the algorithm incorporates statistical analysis
with the computed scores of individual electrodes for iden-
tifying the seizure-generating hemisphere. The electrodes
are divided into two groups, i.e. electrodes in the right
hemisphere and electrodes in the left hemisphere. Then we
use the Kolmogorov-Smirnov test to assess the distribution
of the scores. Since the distribution is normal, we perform
a t-Student test to determine if the two groups of scores
are significantly different from each other. If the result of
the test is statistically significant, i.e., the resulting p-value
of the test is lower than 0.01, we accept it, and identify the
hemisphere with highest score as the ictogenic one. Fig. 5
shows an example of the box-plot of the scores for P2,
clearly indicating that the left hemisphere is ictogenic with
p=6.7× 10−27.

If the result of the test is not significant (p ≥ 0.01),
we reject it; this means that the algorithm requires more
examples to be able to infer the hemisphere correctly, hence

we supply more ictal and/or interictal examples. For each
exemplar window a separate prototype will be generated
that effectively increases the number of scores per electrode
and therefore the significance of the test. Therefore our algo-
rithm keeps computing new prototypes and related scores
over time until p < 0.01. For most of the patients a single
ictal window and five interictal windows are sufficient (see
Table 4).

6.2 Algorithm for Identification of Ictogenic Lobe
Here, our aim is to further investigate the location of the

SOZ at the spatial resolution of cerebral lobes. We straight-
forwardly extend our proposed algorithm (Section 6.1) by
dividing the electrodes into a larger number of groups
(hence using a finer spatial resolution), and accordingly
invoke a proper statistical testing method. Since the gener-
ation of prototypes and computation of scores are the same
as in the previous section, we present the statistical analysis
only.

First, the electrodes are divided into different groups
according to the lobes that they cover. However, the exact
electrode’s membership in the lobes is not available, hence
we use strips/grids (series of close electrodes) as a proxy.
The strips with six or less electrodes are associated to a
single group whereas the strips with eight or more elec-
trodes are divided into two different groups. Then, one-way
ANOVA test (with Bonferroni post-hoc test) is computed
to determine if at least one group of scores (i.e. one lobe)
is significantly different from the others. We use all the
available ictal segments to compute the scores for this fine-
grained identification.

7 PART II: EXPERIMENTAL RESULTS
In this section, we report the identification accuracy and

the p-values of our algorithm for determining the ictogenic
regions. For identifying the ictogenic hemisphere, we assess
how our algorithm performs on the patients with bilaterally
localized electrodes (11 out of 16 patients; see Fig 3).

For these patients, ictogenic hemispheres are indicated
by the experts as previously reported in [5]. The second
column of Table 4 lists these hemispheres as ground truth,
and shows the mean score of our algorithm for the left and
right hemispheres. When the score of one side significantly
differs from the other side (p < 0.01), the algorithm classi-
fies the hemisphere with the highest score as the ictogenic
hemisphere.

Using only one interictal window, the algorithm often
requires one or more ictal examples to meet p < 0.01.
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TABLE 4: Patients with bilaterally localized electrodes are analyzed to identify their ictogenic hemisphere. The first part
shows the minimum number of seizures for training (TrS.) to identify the ictogenic hemisphere with p < 0.01. Five interictal
prototypes are used to attain robustness of identification. In addition, the mean scores of the hemispheres and the p-value
of the t-test are reported. The experiments are also repeated by training with all available seizures.

Trained with min. # of seizures s.t. p < 0.01 Trained with all available seizures

ID Hemisphere TrS.
[#]

Mean Score
Left Hem.

Mean Score
Right Hem. p-value TrS.

[#]
Mean Score
Left Hem.

Mean Score
Right Hem. p-value

P1 R 1 0.1306 0.1836 < 0.00001 5 0.1206 0.1809 < 0.00001
P2 L 1 0.2825 0.1436 < 0.00001 4 0.2574 0.1009 < 0.00001
P5 L 1 0.3423 0.1938 < 0.00001 6 0.3433 0.2093 < 0.00001
P6 R 1 0.1273 0.1789 0.001 2 0.1004 0.1627 < 0.00001
P8 L 1 0.1191 0.0815 < 0.00001 3 0.1170 0.0783 0.00002
P9 R 2 0.1152 0.1460 < 0.00001 6 0.1030 0.1441 < 0.00001
P11 L 1 0.1740 0.1174 < 0.00001 2 0.2090 0.1541 < 0.00001
P12 R 1 0.0611 0.0968 < 0.00001 10 0.0665 0.0923 < 0.00001
P13 R 1 0.1402 0.1904 0.00007 2 0.1329 0.2086 < 0.00001
P15 L 1 0.2043 0.1216 0.001 9 0.2297 0.1552 < 0.00001
P16 R 1 0.1185 0.2958 < 0.00001 2 0.1941 0.2791 < 0.00001

TABLE 5: Patients of Table 4 are also analyzed for ictogenic
lobe identification. The table shows the ictogenic lobe, the
identified lobe (if present) and p-value of the identification.

ID Ictogenic Lobe Identified Lobe p-value

P1 right temporal right temporal < 0.00001
P2 left temporal left temporal < 0.00001
P5 left temporal left temporal < 0.00001
P6 right temporal right temporal < 0.00001
P8 left temporal n.a. n.a.
P9 right temporal right temporal < 0.00001
P11 left temporal left temporal < 0.00001
P12 right temporal right temporal < 0.00001
P13 right temporal right temporal < 0.00001
P15 left temporal left temporal < 0.00001
P16 left temporal left temporal < 0.00001

On the other hand, the number of interictal windows is
naturally very large, a fact that can be exploited to produce
the same reliable results with fewer ictal examples. Hence,
the algorithm randomly selects five interictal windows and
one ictal window for all patients (except P9, where two ictal
windows were used) resulting in the correct classification
of the ictogenic hemisphere with an accuracy of 100% (11
of 11) and p < 0.01. Moreover, we perform further analysis
by increasing the number of ictal windows (see the second
half of Table 4). The p-value decreases, implying a more
robust identification. The randomly chosen interictal win-
dows should be within an hour of seizure onset—though,
this choice might influence the results.

For identifying the ictogenic lobe, we consider the same
patients of Table 4. Table 5 lists the ictogenic lobe identified
by visual inspection by an expert (K.S.). The algorithm
identifies the same lobes for 10 out of 11 patients with
p < 0.00001. For one patient (P8) the statistical analysis is
ineffective as the scores of multiple lobes are almost similar.
This result can be compared to the post-surgical outcome:
the algorithm correctly classifies the SOZ for all the patients
who remained seizure-free after surgery, i.e. Engel outcome
(EO) = 1, and for all patients with rarely occurring disabling
seizures after surgery for at least 2 years (EO = 2), whereas
it can’t identify a single ictogenic lobe for a patient with EO
= 4 (no improvement after surgery).

8 CONCLUSIONS AND FUTURE WORK
Our algorithm learns from one or few iEEG seizure

recordings; it exploits LBP codes and HD computing that
enable full binary operations during training and infer-
ence. Its learning procedure is transparent and thus allows
to translate the learned codes into information about the
spatial localization of the seizure-generating brain regions,
for example to better target surgical resection or neuro-
modulatory interventions. Our algorithm also provides a
universal and linearly scalable interface with a minimal
set of parameters that ease analyzing all iEEG recordings
from different patients with 36 to 100 implanted electrodes.
Using our dataset with 16 patients and 99 seizures, our
algorithm requires a total of 34 seizures for training: eight
seizures for eight patients (with one-shot learning) and 26
seizures for the other eight patients (with few-shot learn-
ing). We test the algorithm on 65 unseen seizures using k-
fold cross-validation: the algorithm outperforms LBP+SVM,
LGP+MLP, LSTM, and Mixed+RF with higher specificity
and macroaveraging accuracy, and a lower memory foot-
print. Its performance however on other datasets is not yet
reported.

Future work will focus on efficient hardware implemen-
tation of our algorithm in order to analyse long-term iEEG
recordings.

REFERENCES
[1] S. N. Baldassano et al., “Crowdsourcing seizure detection: algo-

rithm development and validation on human implanted device
recordings,” Brain, vol. 140, no. 6, pp. 1680–1691, 2017.

[2] D. Schmidt et al., “Evidence-based review on the natural history of
the epilepsies.” Current opinion in neurology, vol. 25 2, pp. 159–63,
2012.

[3] J. F. Tellez-Zenteno et al., “Long-term outcomes in epilepsy
surgery: antiepileptic drugs, mortality, cognitive and psychosocial
aspects,” Brain, vol. 130, no. Pt 2, pp. 334–345, Feb 2007.

[4] S. Wiebe et al., “A randomized, controlled trial of surgery for
temporal-lobe epilepsy,” N. Engl. J. Med., vol. 345, no. 5, pp. 311–
318, Aug 2001.

[5] C. Rummel et al., “Resected Brain Tissue, Seizure Onset Zone and
Quantitative EEG Measures: Towards Prediction of Post-Surgical
Seizure Control,” PLoS ONE, vol. 10, no. 10, p. e0141023, 2015.

[6] Y. Nagahama et al., “Intracranial EEG for seizure focus localiza-
tion: evolving techniques, outcomes, complications, and utility of
combining surface and depth electrodes,” J. Neurosurg., pp. 1–13,
May 2018.



12

[7] A. K. Jaiswal et al., “Local pattern transformation based feature
extraction techniques for classification of epileptic EEG signals,”
Biomedical Signal Processing and Control, vol. 34, pp. 81 – 92, 2017.

[8] R. Hussein et al., “Robust detection of epileptic seizures using
deep neural networks,” in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), April 2018, pp.
2546–2550.

[9] W. Zhou et al., “Epileptic Seizure Detection Using Lacunarity and
Bayesian Linear Discriminant Analysis in Intracranial EEG,” IEEE
Trans Biomed Eng, vol. 60, no. 12, pp. 3375–3381, Dec 2013.

[10] F. T. Sun et al., “The RNS system: responsive cortical stimulation
for the treatment of refractory partial epilepsy,” Expert Review of
Medical Devices, vol. 11, no. 6, pp. 563–572, 2014.

[11] C. C. Jouny et al., “Characterization of epileptic seizure dynamics
using Gabor atom density,” Clin Neurophysiol, vol. 114, no. 3, pp.
426–437, Mar 2003.

[12] C. Geier et al., “How important is the seizure onset zone for seizure
dynamics?” Seizure, vol. 25, pp. 160–166, Feb 2015.

[13] N. M. Wetjen et al., “Intracranial electroencephalography seizure
onset patterns and surgical outcomes in nonlesional extratemporal
epilepsy,” J. Neurosurg., vol. 110, no. 6, pp. 1147–1152, Jun 2009.

[14] J. S. Naftulin et al., “Ictal and preictal power changes outside of
the seizure focus correlate with seizure generalization,” Epilepsia,
vol. 59, no. 7, pp. 1398–1409, Jul 2018.

[15] C. Harden et al., “Practice guideline summary: Sudden unexpected
death in epilepsy incidence rates and risk factors: Report of
the Guideline Development, Dissemination, and Implementation
Subcommittee of the American Academy of Neurology and the
American Epilepsy Society,” Neurology, vol. 88, no. 17, pp. 1674–
1680, Apr 2017.

[16] K. Schindler et al., “On seeing the trees and the forest: Single signal
and multi signal analysis of periictal intracranial EEG,” Epilepsia,
vol. 53, no. 9, pp. 1658–1668, 2012.

[17] K. Schindler et al., “Forbidden ordinal patterns of periictal in-
tracranial EEG indicate deterministic dynamics in human epileptic
seizures,” Epilepsia, vol. 52, no. 10, pp. 1771–1780, 2011.

[18] Y. Kaya et al., “1d-local binary pattern based feature extraction
for classification of epileptic eeg signals,” Applied Mathematics and
Computation, vol. 243, pp. 209 – 219, 2014.

[19] P. Kanerva, “Hyperdimensional computing: An introduction to
computing in distributed representation with high-dimensional
random vectors,” Cognitive Computation, vol. 1, no. 2, pp. 139–159,
2009.

[20] A. Burrello et al., “One-shot learning for iEEG seizure detection
using end-to-end binary operations: Local binary patterns with
hyperdimensional computing,” in 2018 IEEE Biomedical Circuits
and Systems Conference (BioCAS), Oct 2018, pp. 1–4.

[21] C. S. Daw et al., “A review of symbolic analysis of experimental
data,” Review of Scientific Instruments, vol. 74, no. 2, pp. 915–930,
2003.

[22] T. S. Kumar et al., “Classification of seizure and seizure-free EEG
signals using local binary patterns,” Biomedical Signal Processing
and Control, vol. 15, pp. 33 – 40, 2015.

[23] K. Schindler et al., “Ictal time-irreversible intracranial EEG signals
as markers of the epileptogenic zone,” Clinical Neurophysiology,
vol. 127, no. 9, pp. 3051 – 3058, 2016.

[24] R. W. Gayler, “Vector symbolic architectures answer Jackendoff’s
challenges for cognitive neuroscience,” in Proceedings of the Joint
International Conference on Cognitive Science. ICCS/ASCS, 2003, pp.
133–138.

[25] T. Plate, Holographic Reduced Representations. CLSI Publications,
2003.

[26] A. Rahimi et al., “A robust and energy efficient classifier using
brain-inspired hyperdimensional computing,” in Low Power Elec-
tronics and Design (ISLPED), 2016 IEEE/ACM International Sympo-
sium on, August 2016.

[27] A. Rahimi et al., “High-dimensional computing as a nanoscalable
paradigm,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 64, no. 9, pp. 2508–2521, Sept 2017.

[28] T. Wu et al., “Brain-inspired computing exploiting carbon nan-
otube FETs and resistive RAM: Hyperdimensional computing case
study,” in IEEE International Solid-State Circuits Conference, ISSCC,
2018.

[29] A. Rahimi et al., “Hyperdimensional biosignal processing: A case
study for EMG-based hand gesture recognition,” in IEEE Interna-
tional Conference on Rebooting Computing, October 2016.

[30] A. Moin et al., “An EMG gesture recognition system with flexible
high-density sensors and brain-inspired high-dimensional clas-
sifier,” in IEEE International Symposium on Circuits and Systems,
ISCAS, In press 2018.

[31] A. Rahimi et al., “Hyperdimensional computing for noninvasive
brain–computer interfaces: Blind and one-shot classification of
EEG error-related potentials,” 10th ACM/EAI International Con-
ference on Bio-inspired Information and Communications Technologies
(BICT), 2017.

[32] A. Rahimi et al., “Hyperdimensional computing for blind and
one-shot classification of EEG error-related potentials,” Mobile
Networks and Applications, Oct 2017.

[33] F. Montagna et al., “PULP-HD: accelerating brain-inspired high-
dimensional computing on a parallel ultra-low power platform,”
in Proceedings of the 55th Annual Design Automation Conference, ser.
DAC ’18. New York, NY, USA: ACM, 2018, pp. 111:1–111:6.

[34] M. Schmuck et al., “Hardware Optimizations of Dense Binary Hy-
perdimensional Computing: Rematerialization of Hypervectors,
Binarized Bundling, and Combinational Associative Memory,”
ACM Journal on Emerging Technologies in Computing (JETC), 2019.

[35] P. Kanerva, “Binary spatter-coding of ordered k-tuples,” in
ICANN’96, Proceedings of the International Conference on Artificial
Neural Networks, ser. Lecture Notes in Computer Science, , Ed.,
vol. 1112. Springer, 1996, pp. 869–873.

[36] P. Kanerva, Sparse Distributed Memory. Cambridge, MA, USA:
The MIT Press, 1988.

[37] M. A. Kelly et al., “Encoding structure in holographic reduced rep-
resentations.” Canadian Journal of Experimental Psychology, vol. 67,
no. 2, pp. 79–93, 2013.

[38] N. D. Truong et al., “Convolutional neural networks for seizure
prediction using intracranial and scalp electroencephalogram,”
Neural Networks, vol. 105, pp. 104 – 111, 2018.

[39] A. Burrello et al., “Laelaps: An energy-efficient seizure detection
algorithm from long-term human ieeg recordings without false
alarms,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2019, 2019.

[40] H. Martin et al., “Latencies from intracranial seizure onset to
ictal tachycardia: A comparison to surface eeg patterns and other
clinical signs,” Epilepsia, vol. 56, no. 10, 2015.

[41] P. Afra et al., “Duration of complex partial seizures: an intracranial
EEG study,” Epilepsia, vol. 49, no. 4, pp. 677–684, Apr 2008.

[42] G. K. Bergey, “Neurostimulation in the treatment of epilepsy,” Exp.
Neurol., vol. 244, pp. 87–95, Jun 2013.

[43] S. Wolfram, “Random sequence generation by cellular automata,”
Advances in Applied Mathematics, vol. 7, no. 2, pp. 123 – 169, 1986.

[44] F. Rosenow et al., “Presurgical evaluation of epilepsy,” Brain, vol.
124, no. 9, pp. 1683–1700, 2001.

APPENDIX A
HD ENCODING OF HISTOGRAMS

We describe how the HD operations can be applied to
encode histograms. The aim is to store an approximated
version of a histogram in HD space to save memory and
ease computation with only binary components. Below, we
illustrate an example to better explain the procedure.

We use the LBP codes as basic symbols, and their counts
in a 1 s window (i.e. 512 symbols) as a histogram. First, the
LBP codes are mapped into atomic vectors through the IM.
Then, the atomic vectors generated during the 1 s window
are bundled to produce a complex vector (H) representing
the histogram. In this way, the histogram of LBP codes
is holistically represented in a single binary vector H . The
original LBP distribution can be recalled by comparing H
with the individual atomic vectors. For every symbol, we
compute the similarity as 1 − ∆ that recovers the count of
the symbol. The set of the computed similarities represents
the approximated histogram.

Fig. 6 shows the Pearson correlation coefficient between
the similarity values (extracted from the approximated his-
tograms) and the exact count of the symbols in the his-
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Fig. 6: Pearson coefficient between exact histograms and their approximated HD versions. The procedure consists of
the following steps: (1) creations of Gaussian and uniform distributions from an alphabet with m symbols where m ∈
{16, 64, 126, 256, 512}; (2) association of a random atomic vector to every symbol; (3) creation of the histogram vectors H
for a window of 512 symbols by bundling their corresponding atomic vectors; (4) computing the similarities between H
and the the atomic vectors; (5) Plotting Pearson correlation between similarities and the exact counts.

(a) H = [ A + A + A + B + C ] (b) H = [ A + A + B + B + C ]

1 - Δ 1 - Δ

A B         C

3

2

1

A B         C

3

2

1

Fig. 7: Similarity between three atomic vectors and two different encoded histograms. (a) symbol A occurs more than 50%
of time, whereas (b) no symbol occurs more than 50% of time.

tograms. We consider five alphabets with different sizes
of 16, 64, 128, 256, and 512 symbols. We use two different
distributions to generate histograms from these alphabets
for a window of 512 symbols: a Gaussian distribution to
mimic polarized ictal histograms, and a uniform distribu-
tion to mimic randomly distributed interictal histograms.
The experiments are repeated for vectors while varying
the dimension (d). Using a d > 2000 with the 64-symbol
alphabet, a Pearson correlation > 0.9 is observed for both
distributions. The Pearson correlation further grows toward
1 with larger d. However, if a single symbol occurs more
than 50% of the total symbols inside the histogram, the
encoded H is a copy of that specific symbol (Fig. 7). This
is due to the characteristics of the bundling operation (ma-
jority sum): if several copies of any vector are included
in the bundling, then the resultant vector is closer to the
dominating vector than to other vectors.
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