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Abstract—Mobile agents are widely employed in industrial ap-
plications. However, in an environment where humans and robots
coexist, the robot should be able to navigate autonomously while
safely avoiding moving obstacles, especially human operators.

In this paper, we propose a dynamic path planner providing an
additional costmap layer in which the area around the detected
human is inflated by a Gaussian cost. The latter is proportional to
the obstacle’s speed and orientation, leading to a safer avoidance
behaviour during navigation. The algorithm, suitable for low-
resource mobile agents, has been developed in ROS1 and then
experimentally validated on the Locobot mobile manipulator in
a laboratory environment.

Index Terms—Dynamic path planning, human-obstacle avoid-
ance, human detection

I. INTRODUCTION

Navigation algorithms for mobile robots have been evolv-
ing quickly to satisfy the industry’s requirements in terms
of productivity, flexibility and safety. Among the intelligent
mobile agents commonly used in an industrial context are Au-
tonomous Mobile Robots (AMRs) and mobile manipulators.
The first ones are usually employed to monitor and transport
materials, while the second ones can also manipulate objects
and perform complex tasks. Both robotic systems are required
to navigate autonomously in the working environment, imply-
ing that they should be able to carry out the following tasks:
(i) to map the environment and localize themselves within it,
(ii) to plan an optimal route to the goal position, and (iii) to
sense the environment so as to avoid collision with obstacles.

Currently, most of the robotic applications are developed
with ROS (Robot Operating System). Within this framework,
path planning methods are developed on two levels: global and
local planners. The former considers the information provided
by an occupancy map and generates a feasible path connecting
the starting and final poses. On the other hand, the latter
modifies the robot’s global plan when an obstacle is detected,
with the aim to overcome such an obstacle and resume the
motion to reach the desired destination.

The choice of the global planning method depends on the
navigation requirements and environmental constraints. For
what concerns the local planners, they are often referred to as
dynamic path planners, since their task is to deviate the robot
when dynamic obstacles intersect its trajectory. How much
the robot should deviate depends on the safety standards in

the working place; in general, when the robot must overcome
a human obstacle, it should proceed with a larger radius
with respect to other obstacles. Other factors to be taken into
account are the reaction time when the obstacle is detected
and the precision with which a new path is replanned.

A dynamic path planner presented in [1] is able to increase
the occupancy grids of generic moving obstacles, allowing the
robot to anticipate their motion and plan a more optimistic path
to reach the goal position. The approach has been developed
in ROS2, but it was validated only in simulation. Also, the
authors of [2] propose a costmap-based collision detection and
avoidance algorithm (tested in simulation), which enlarges the
obstacle footprint by convolution with a Gaussian distribution
and inflates the obstacle’s frontal area. Despite the latter being
presented as a socially acceptable behaviour, the proposed
method does not provide an actual identification of the en-
countered dynamic obstacles.

In fact, most of the traditional path-planning algorithms
do not make any distinction between human obstacles and
generic ones. In an environment where humans and robots
coexist, safety is a crucial factor to be considered in the path-
planning process of mobile agents, particularly mobile manip-
ulators, since they may carry objects during motion. Various
algorithms are available for taking care of human obstacle
detection, as illustrated in [3], where the most used sensors
and algorithms deployed in industrial robots to perceive the
human worker are analysed. In particular, combining data
from different sources, e.g., RGB-D cameras and LIDARs,
allows the mobile robot to obtain robust measurements of
the environment, as well as awareness about the presence of
human operators.

In [4], a human-aware path planning is proposed. Specifi-
cally, it deploys a modified version of the Timed-Elastic Band
(TEB) [5] algorithm, the Human Aware TEB, in which human-
aware constraints are included in the optimization algorithm.
Furthermore, to avoid collisions with high-speed obstacles, the
authors in [6] introduce an additional obstacle layer integrated
with a cut-off distance, which depends on the speed of the
moving objects. Despite their approach exploits an object
detection algorithm, they apply the same obstacle layer for
both generic and human obstacles in the simulation and real-
world tests.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



A supervisory planner algorithm, previously proposed in [7],
intervenes at a higher planning level, keeping the robot
navigating in a safe route, while avoiding human obstacles.
However, the online replanning process may take a longer
time, since it does not embed a mechanism to quickly react
to dynamic obstacles.

The aim of this paper is to propose a dynamic path-
planning method for a mobile agent, to make it able to
navigate autonomously and safely in an environment shared
with human operators. The proposed approach is developed
to be applicable to low-resource mobile agents, starting from
the analysis of the state-of-the-art solutions for the main
issues to be addressed (i.e., human detection and tracking,
path prediction), and adding a social navigation costmap layer
for a safe human avoidance. ROS1 has been preferred to
exploit the greater amount of libraries already available in the
worldwide community, and provide an approach useful for
several potentially interested users, experimentally tested on a
Trossen Robotics Locobot mobile manipulator [8].

The remainder of the paper is structured as follows: Section
II unfolds the development steps of the proposed approach.
Then, Section III presents the experimental setup and illus-
trates the experimental testing outcomes. Finally, Section IV
draws some conclusions and open issues, as well as future
works.

II. DEVELOPMENT OF THE PROPOSED SAFE DYNAMIC
PATH PLANNING ARCHITECTURE

The proposed approach addresses the problem of path plan-
ning in dynamic environments shared with human co-workers
when low-computational power mobile agents are used. Even
though the algorithm concepts are platform independent, the
implementation is based on a Locobot mobile manipulator
[8], allowing to provide a working example for the research
community. Some preliminary results have been presented in
[9], whose code is available at [10]. Further details regarding
the specific Locobot model and sensors/hardware setup can be
found in Section III-A. The proposed method makes use of a
costmap with an added navigation layer. This layer, similarly
to the inflation layer of standard costmaps, contains an inflated
Gaussian-shaped cost around humans, detected by exploiting
both LIDAR and RGB-D information.

This section provides a top-down description of each ele-
ment of the approach, with the relative choices of available
methods and ROS1 packages, and some considerations about
parameter settings. Figure 1 gives an overview of the proposed
dynamic path planning approach.

A. Human detection and tracking

When taking into consideration humans as obstacles, the ve-
locity direction may change unexpectedly, with no connection
to current velocity and pose. Thus, the robot must be able
to correctly detect human obstacles and react, dynamically
changing its path plan and adapting it to the new detected con-
ditions. Various techniques exist to tackle the human detection
problem. In a highly controlled and predictable setting, the use
of QR codes or other easy-to-read markers on both human and

non-human obstacles would be a safe and optimal solution,
since it removes the guesswork and CPU load of machine
learning and other probability-based techniques. However,
this reduces the plug-and-play capabilities of the software,
requiring prior environment preparation by placing markers
on objects and obstacles, with the risk that some obstacles
may become invisible to the robot in case the identifying
code is misplaced or not placed at all. Nevertheless, in shared
workspaces, successfully detecting human obstacles is crucial
for safety reasons.

1) Recognition: Object recognition has been a rich field of
study ever since the birth of Viola-Jones Detectors [11], which
use Haar wavelet to look for facial features, and Histogram
of Oriented Gradients (HOG) [12], which identify objects by
looking at the distribution of edge directions. Neural networks
have emerged as a natural fit for this task and are widely used
in industrial applications [13], together with traditional image
processing [14]. Also, they usually require a GPU for real-
time detection, but are stable and can identify humans where
other more traditional methods fail. In particular, convolutional
neural networks are at a mature stage of study, and many
models are being used for human recognition. Recently, for
real-time human detection, speed up in algorithms together
with hardware improvements have made possible to use these
algorithms in an online fashion [15]. Other least computa-
tionally intensive classifiers can be used, e.g., Random Forest
(RF), HOG, Haar Cascade.

The Locobot has an Intel NUC mini desktop with no
dedicated GPU, which led to narrow down the selection
to algorithms that could be reliable, while needing as few
resources as possible. Therefore, a RF classifier for the LIDAR
sensor, coupled with a HOG-based Point Cloud Library (PCL)
detector [16] for the RGB-D sensor has been chosen for human
detection.

Not only objects should be recognized but, if they are mov-
ing, they must be tracked to update the movement prediction
that is being made online.

2) Path Prediction: Obstacle tracking and path prediction
are relative to the robot’s ability to analyze obstacle informa-
tion and predict the obstacle movement direction or goal; this
is much more complicated than mere recognition, since the
path prediction may change together with the type of object.
Path prediction can be subdivided into 3 major methods: (i)
physics-based, (ii) pattern-based, and (iii) planning-based [17].
In particular, the first methods use some dynamic equation
to predict human motion, without taking into account human
decision-making, and by simply modelling people as static
linear velocity objects. Note that a linearization of previous
tracking information to infer future paths is simple but rudi-
mentary and can lead to errors, especially when tracking hu-
mans. Instead, learning human movement patterns with neural
networks is effective but complex and hardware intensive.
Also, datasets and annotation can be difficult for this kind
of pattern learning, since the amount of data to be learnt is
much larger than, for example, a simple colour image for a
classifier.

At first, we tested the Leg Detector package introduced



Fig. 1: Dynamic path planning overview.

in [18], as part of the People package, a software stack
that contains various algorithms used for people tracking and
detection. Nonetheless, the available Leg Detector resulted in a
high amount of false positives. Also, its implementation based
on Python affected the performance of other ROS nodes.

Thereby, the package used for human detection and tracking
comes from the Spencer People Tracking package, presented
in [19] and [20]. Some of the detectors available in this frame-
work can be leveraged by the Locobot, since they make use of
low computational effort algorithms, like Nearest Neighbours
and RF classifiers. The framework uses also a ground HOG
classifier that, however, we could not use, since it requires an
NVIDIA GPU with CUDA library capabilities. The detection
and tracking models are compatible with our sensors, but
were both trained and tested using other sensors with different
configurations. For instance, the RF model for the leg detector
was trained with front and rear 2D LIDAR SICK LMS500 at
70 cm and 75 cm height, respectively, with a more accurate
angle resolution. The RGB-D data were taken from an ASUS
Xtion PRO LIVE at a height of 1.6 m, whereas the Locobot
has a stereo camera at around 60 cm height.

To adapt the package to the available platform, settings have
been edited as follows:

• To achieve satisfactory human detection and tracking,
some parameters have been tuned. In particular, the
settings in the tracking on robot.launch file have been
adapted to the Locobot package.

• Their laser-based leg detector uses a random tree
classifier model, trained on a 2D LIDAR SICK
LMS500, which is positioned at a different height
from the LIDAR in our setup. Nevertheless, by tuning
the leg detector settings, stable human detection has
been achieved. To correctly set the used model, the
model_prefix parameter has been edited. Finally,
it is noteworthy that the decision_threshold and
laser_max_distance parameters were the most im-
portant settings to change in order to achieve detection.

• The PCL used in our implementation is modified from
the one available in [16]. It uses a HOG support vector
machine to identify full-body images of humans. We
chose this detector since the other one in the framework,
an upper-body classifier, needs a dedicated GPU to work.
Moreover, to allow the detector to read the depth informa-
tion from the sensors, input topics have been accordingly
modified.

• Settings for the people tracker in the freiburg
people tracking.launch file have been kept as the orig-

inal ones. The People Tracker fuses detections coming
from all available sensors, and uses a Nearest Neighbour
data association filter to track detections.

B. Costmap Layers

Autonomous navigation of mobile platforms in human-
shared environments must take into account how humans
perceive and react to the motion of a robot in their proximity.
To this aim, social navigation takes care of the path planning
and behaviour of a robot in a social setting; it can include
human behaviour prediction, such as reading social cues. This
aspect of navigation also includes the study of proxemics,
i.e., the study of human behaviour in space, social cues and
interactions [21]. The most relevant aspect of proxemics is the
robot’s ability to respect a human’s personal space and infer
his/her movement through detection and tracking. Hall divided
human interpersonal distances from closest to farthest, namely,
intimate space, personal space, social space and public space.
To respect these spaces, a generic obstacle can be passed by
more closely, while the human must be kept farther away.

1) Social Navigation: A work presented in [22] divides
path planning for social navigation into reactive planning and
predictive planning. Reactive planning takes into account, at
all time steps, every possible movement of the robot and
removes any movement that may cause a collision. This
planning approach is the most conservative and safe, but it
cannot take into account human behaviour or read social cues.



It can also incur into the Freezing Robot Problem [23], where
the robot stops moving, since any course of action could lead
to a collision. On the other hand, predictive planning tries
to model human behaviour to plan a path optimally when
near people and moving in a “human-friendly” way. However,
being a probabilistic approach, predictive planning can lead to
a collision, if the movement prediction is wrong and the robot
cannot stop in time to avoid it.

The work presented in this paper implements a reactive ap-
proach to human-obstacle avoidance, together with a physics-
based method for path prediction. To do so, a social naviga-
tion layer has been added for human avoidance during path
planning with a Gaussian-based costmap approach. The Social
Navigation Layer package [24] adds two custom layers to the
Costmap 2D package [25]. Namely:

• social_navigation_layers::ProxemicLayer:
This layer uses the theory of proxemics to add a Gaussian
cost to the detected humans; this cost forces the path
planner that reads it to take this cost into account during
the path calculation.

• social_navigation_layers::PassingLayer:
This layer introduces a similar cost to that of the
proxemic layer, but adds a Gaussian cost area to a
desired side of the detected human. This way, if the
robot has to pass by the human, it is forced to plan a
path on the other side.

The Gaussian cost added through the Proxemic Layer
is deformed by the velocity of the person. In fact, when
stationary, the Gaussian results in a circular shape with a
cost that decreases along the radius. Instead, when a person is
moving, the velocity deforms the Gaussian function towards
the direction of movement, resulting in an oval shape that
envelops the space in front of the person. This is done to take
into account the temporal aspects of a moving obstacle, so as
to discourage path plans that use the cells in front of it. The
faster the speed, the more deformed the Gaussian.

The described layers use information from the /People topic
to add an inflated cost to the obstacles recognized as humans.
The /People topic is provided by the People package, exploited
here for its custom ROS messages functionalities.

C. Tracked People Translator Node

Having set up the previously described packages, we needed
a way for the detections to be seen by the social navigation
layers. The Spencer People Tracking package uses its own
ROS messages to publish detections and tracking information,
and publishes them to the /spencer/perception/tracked persons
topic. On the other hand, the Social Navigation Layers
package expects detections to be published to the /People
topic. To merge these two packages we implemented a C++
ROS translator node, named tracked people translator. This
node is launched together with the detectors and subscribes
to /spencer/perception/tracked persons. When a new set of
detections is published, the Translator node reads them and
translates them to people msgs/People messages. Detections
are only translated and published if they contain a matched

ID, that is, if the track is currently matched by a detection.
These are then published to the /People topic.

D. Path planning and navigation

For our implementation, the standard ROS1 Navigation
Stack has been used. Specifically, the global and local planners
have been chosen as follows:

• Global Planner: the standard navfn package comes by
default as a global planner package; however, it only
allows for Dijkstra’s algorithm for path calculation. On
the other hand, the Global Planner package has the option
of using the A* and has much more flexible settings.
Note that there is a trade-off between the two path
planners: Dijkstra is better for smoother and shorter paths,
while A* leads to faster computing time. For a dynamic
environment, A* is better, since it is able to recompute
a global path when it encounters a moving obstacle so
large to prevent the local path planner to keep the global
plan within the set constraints. However, A* paths tend to
be angular and non-natural, taking the shape of stair-like
patterns (causing most of the distance losses with respect
to Djikstra).

• Local Planner: depending on the application require-
ments or limitations imposed by the available hard-
ware/software, one may choose among the three available
local planners: Dynamic Window Approach (DWA), Elas-
tic Band (EBand) or TEB. It is worth noting what follows:
DWA requires fewer computational resources and has
high repeatability, the results obtained from the EBand
are more accurate, while the TEB has a quick reaction
to dynamic obstacles but requires more computational
power [26]. Moreover, the authors in [27] pointed out that
the TEB performed better in different test scenarios, while
the DWA showed some issues when dealing with dynamic
obstacle avoidance, and the EBand had difficulties com-
puting local path in the case of static obstacles. The local
costmap, based on which the local plan is computed, has
been integrated with the Proxemic Layer, by adding
it to the plugin list in the configuration files and suitably
adjusting its parameters. Among these, the most relevant
are the amplitude and the factor parameters.
– amplitude scales the size of the Gaussian. If this

value is too small, the inflation radius will overtake the
proxemic inflation and this plugin will have no effect;
if it is too large, the path planners will have trouble
finding an optimal path.

– factor is a multiplicative factor affecting the Gaus-
sian function deformation in a directly proportional
manner. A too small value will result in a circular
Gaussian even when a human is moving at fast speeds,
while a too large value will lead to overcorrection.

The default values were too high for our environment. An
amplitude value of 77 meant that the Gaussian generated
occupied most of the corridor available for testing, im-
posing more than 2.5m of free space between the robot
and the human.



This caused the robot to always stop when encountering a
person, since a too limited space was left for replanning.
We found that a value of 40 was more reasonable, and to
increase the effect of speed on the shape of the Gaussian
we doubled the value of the factor to 10. The settings
used for the plugin are reported in Table I.

Social Layer Parameters Default Value Set Value
enabled True unvaried
cutoff 10.0 unvaried

amplitude 77.0 40.0
covariance 0.25 unvaried
factor 5.0 10.0

keep_time 0.75 unvaried

TABLE I: Social Layer plugin parameter settings

A good example of the combination of global and local
planners is the one proposed in [27], which combines the
A* global path planner with a local planner, allowing for
path smoothing that shortens the resulting path, either TEB
or EBand. In our approach, we decided to employ the A* as
the global planner and the TEB as the local planner, since it
complements the global path planner A* well, by smoothing
the global plan’s stair-like pattern.

III. EXPERIMENTAL VALIDATION

A. Hardware and software setup

The Locobot WX250 mobile manipulator by Trossen
Robotics, whose technical specifications are available in [8],
has been chosen to test the proposed approach. In particular, it
is composed of a Kobuki mobile platform and a WidowX250
6-DOF manipulator. The mobile platform has differential
wheels and active bumpers to sense if there is any contact
with obstacles. Moreover, it is equipped with an RPLIDAR
A2M8 (360° 2D LIDAR) and an Intel RealSense D435 (Stereo
RGB-D), used for both manipulation and navigation tasks.

As previously stated, the proposed approach has been de-
veloped on top of ROS1 packages. Indeed, exploiting the ROS
middleware avoids rewriting the entire software stack in case
of slight modifications in hardware and driver packages. A
ROS-based solution favours the reuse of the provided code
with other setups. It is worth noting that the RTAB-Map
(Real-Time Appearance-Based Mapping) algorithm [28] has
been employed to solve the SLAM problem. In fact, this
algorithm allowed us to take advantage of the complete set
of sensors the mobile robot is equipped with (unlike other
tested packages, e.g., SLAMToolbox [29], which exploits 2D
LIDAR data only).

B. Testing

The proposed approach has been tested in a research labora-
tory setup, whose map can be seen in Figure 2. A brief demo
video of the approach experimental validation is available
at [30].

Figures 3-5 highlight some of the features of the proposed
dynamic path planning approach. In order to test the navigation
safety when humans move near the robot, different scenarios
have been considered, for instance, a human stopping in front

Fig. 2: Testing map visualization in rviz. Global path and
local path plans are in green and red, respectively.

of the mobile robot, and two humans moving at different
speeds in the mobile agent’s vicinity. Each figure shows a shot
from the real scenario (on the right), and the corresponding
view in rviz (on the left) for the three considered cases.

From Figure 3, it can be seen that the robot conservatively
moves away from the human thanks to the Gaussian area,
and replans the motion to reach the final goal. Note that
the testing scenario has been enriched with static non-human
obstacles (cardboard boxes). This was done to showcase how
the planning reacts to generic obstacles, compared to how the
Gaussian cost added on a detected human ensures the planned
path to overcome the obstacle in a more conservative and
socially acceptable way. Figure 4 and 5 capture the planner’s

Fig. 3: Human stopping in front of the robot.

reaction to the human moving at different speeds, showing
how the shape of the inflated area is larger when the human
moves faster, alerting beforehand the replanning procedure of
the local planner.

IV. CONCLUSIONS AND FUTURE WORKS

The work presented in this paper provides a human-centred
dynamic path planning approach along with a working and
open-source example for its use on a mobile agent, developed
in ROS1 on a low-resource mobile agent and tested in a real
context. The ability to detect human obstacles and distinguish
them from generic ones allows to take advantage of shortest
path algorithms when a safe distance is not necessary and,
instead, to have more acceptable behaviour -from a human
perception- when it comes to navigate in the vicinity of a
human operator.



Fig. 4: Human walking slowly near the robot.

Fig. 5: Human walking fast near the robot.

However, a method like ours, which relies on the proper
recognition of obstacles that are encountered on the path,
can be affected by false positives and issues with tracking.
So, a time-consuming but necessary improvement would be
the creation of customized datasets for training. Furthermore,
delay problems related to the low computational power of
the on-board computer could be improved by upgrading to
more powerful hardware, depending on the application re-
quirements.

Finally, industrial applications need to be real-time and
guarantee a certain level of security that ROS1 cannot provide.
Therefore, future work is likely to prefer a ROS2 implemen-
tation, which is more industrial-oriented.
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