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Abstract. Since 2016’s NIST call for standardization of post-quantum cryptographic
primitives, developing efficient post-quantum secure digital signature schemes has
become a highly active area of research. The difficulty in constructing such schemes is
evidenced by NIST reopening the call in 2022 for digital signature schemes, because
of missing diversity in existing proposals. In this work, we introduce the new post-
quantum digital signature scheme MiRitH. As direct successor of a scheme recently
developed by Adj, Rivera-Zamarripa and Verbel (Africacrypt ’23), it is based on the
hardness of the MinRank problem and follows the MPC-in-the-Head paradigm. We
revisit the initial proposal, incorporate design-level improvements and provide more
efficient parameter sets. We also provide the missing justification for the quantum
security of all parameter sets following NIST metrics. In this context we design a
novel Grover-amplified quantum search algorithm for solving the MinRank problem
that outperforms a naive quantum brute-force search for the solution.
MiRitH obtains signatures of size 5.7 kB for NIST category I security and therefore
competes for the smallest signatures among any post-quantum signature following
the MPCitH paradigm.
At the same time MiRitH offers competitive signing and verification timings compared
to the state of the art. To substantiate those claims we provide extensive implemen-
tations. This includes a reference implementation as well as optimized constant-time
implementations for Intel processors (AVX2), and for the ARM (NEON) architecture.
The speedup of our optimized AVX2 implementation relies mostly on a redesign of
the finite field arithmetic, improving over existing implementations as well as an
improved memory management.
Keywords: Digital Signature · MinRank · MPCitH · Post-Quantum · ZKPoK ·
Quantum Analysis

1 Introduction
The development of digital signature schemes that are efficient and post-quantum secure is
a persistent challenge. As so, the first standardization process for such schemes launched
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in 2016 by the National Institute of Standards and Technology (NIST) failed to achieve
the desired level of diversity among final candidates. This led to NIST initiating a renewed
call for proposals whose submission deadline recently passed in June 2023. For this new
standardization effort to be successful significant research efforts are required. In order to
solve the problem of missing diversity, new efficient schemes based on different hardness
assumptions are required or established schemes need to be enhanced to reach a competitive
level. This requires a thorough examination on all levels of the design process of those
schemes, including their initial construction, parameter selection, security justification as
well as improved implementations for different platforms.

In this work we contribute to this challenge of defining the next post-quantum secure
standards by presenting the new post-quantum digital signature scheme MiRitH, currently
submitted to the renewed NIST call. At its core MiRitH is based on the recently proposed
scheme by Adj, Rivera-Zamarripa and Verbel [ARZV23], which itself is constructed via
the Fiat–Shamir transform from a zero-knowledge proof of knowledge (ZKPoK) following
the MPC-in-the-Head (MPCitH) paradigm. The security of the ARZV scheme and
correspondingly the security of MiRitH rely on the hardness of the well-established
MinRank problem.

MiRitH extends and improves over the initial proposal from [ARZV23] in various ways,
by leveraging recent techniques from the literature as well as by introducing new design
improvements. We provide improved parameters and the so far missing quantum-security
justification for all parameter sets. Furthermore, we provide extensive implementations
for the scheme, including a reference implementation, as well as optimized constant-time
implementations for Intel processors (AVX2) and the ARM (NEON) architecture. Overall,
MiRitH positions as a competitive post-quantum secure digital signature scheme.

Fiat–Shamir and MPCitH Signature schemes constructed from ZKPoKs via the Fiat–
Shamir transform have been popular ever since. In the context of solving the diversity
challenges of currently available post-quantum secure signature proposals those construc-
tions have received even more attention. Such schemes offer an alternative to trapdoor
constructions by allowing to base security on random instances of well-established problems.
However, one significant limitation of these constructions has been their relatively large
signature sizes.

When transforming a ZKPoK into a signature scheme, the signature size is typically
proportional to the communication cost of the underlying ZK protocol. Consequently,
a substantial portion of the signature is composed of protocol-related messages, such as
commitments and auxiliary information, which are independent of the chosen problem
foundation. However, the increased interest in these constructions has led to various
improvements at the protocol level [IKOS07, KKW18, Beu20, AGH+23] , significantly
reducing this generic communication cost and in turn decreasing the corresponding signature
sizes.

One notable such improvement is the MPCitH paradigm [IKOS07], in which a prover
simulates all N parties of an MPC protocol (in his head). This MPC protocol is carefully
designed so that if all parties accept, it proves that the initial input shares of the parties
form a witness for a valid solution to the underlying problem. Following the simulation,
the verifier challenges the prover to disclose the initial states of all parties except one
(chosen by the verifier), enabling the verification of the correct simulation for N − 1 out of
N parties. This generally leads to a ZKPoK with a cheating probability, or soundness, of
1/N .

The introduction of MPCitH has initiated a whole line of research on constructions fol-
lowing this paradigm [FJR22, BG23, FJR23, ARZV23, Wan22, FMRV22, Fen22, CNP+22,
BBP+23, GPS22, BGKM23]. Subsequently, numerous further protocol-level improvements
have been proposed [KKW18, KZ22, BG23, AGH+23], some of which compatible with the
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MPCitH idea we have incorporated into the construction of MiRitH.

The MinRank Problem and Related Constructions. MiRitH relies on the hardness of
the MinRank problem. This problem was introduced in [BFS99] and has been extensively
studied due to its many applications in cryptology, especially in cryptanalysis [KS99,
GC00, BG06, BFP11, CSV17, Beu21, Beu22, TPD21]. However, recently the problem
became more popular as foundation for signature schemes constructed via the Fiat–Shamir
transform. Initiated by Courtois [Cou01] who proposed the first signature scheme relying
on the hardness of the MinRank problem and followed by an extension due to Bellini,
Esser, Sanna and Verbel [BESV22], called MR-DSS, leveraging the sigma protocol with
helper paradigm due to Beullens [Beu20]. The most recent and efficient constructions
are [ARZV23] shortly followed by [Fen22] which both rely on the MPCitH paradigm.
Feneuil [Fen22] proposes two constructions. The first relies on an MPC protocol similar
to [ARZV23], which verifies a matrix product relation of the form A ·B = C that proves
knowledge of the MinRank solution. While the protocol in [Fen22] is a slightly more
efficient special case of [ARZV23], the latter uses a more efficient relation based on the
Kipnis-Shamir modeling which involves smaller matrices A,B,C. MiRitH incorporates
the most efficient techniques of the two schemes. The second scheme proposed in [Fen22]
uses an MPC protocol for verifying roots of polynomials in Fq extensions, and is mostly
unrelated to [ARZV23] and MiRitH.

Our Contribution We present the new signature scheme MiRitH. MiRitH obtains
competitive signatures with 5.7 kB for NIST category I security. In comparison the
schemes from [ARZV23] and [Fen22] obtain 7.4 kB and 7.2 kB signatures respectively,
while the scheme based on q-polynomials given in [Fen22] is roughly on par with 5.5 kB
signatures. Note that the q-polynomials version of [Fen22] is the basis for the signature
scheme MIRA [ABB+23d] which is also currently submitted to the NIST process. MIRA
also obtains signatures of roughly the same size with 5.6 kB for NIST category I security.
MiRitH is therefore in competition for the smallest signatures for any construction based
on the MPCitH paradigm.

Furthermore, our optimized constant-time implementations show that MiRitH offers
greatly competitive performance. At 5.7 kB signature size, signing and verification can
be performed in roughly 30 MCycles using our AVX2 implementation, which improves
on MIRA’s 40 MCycles by about 25%. Our NEON implementation offers even better
performance allowing for signing and verification in about 20 MCycles.

Our benchmarks on a single benchmarking platform reveal that the true speed advantage
of MiRitH over MIRA is almost 50% for short signatures (around 5.7 kB) and about a
factor of x10 for the faster instantiations of both schemes. The speed advantage for fast
instantiations stems from the fact that MiRitH offers great size-performance trade-offs.
An increase of the signature to 7.9 kB allows for a speedup of a factor of roughly x6. More
precisely, signing and verification in that case can be performed at 5 MCycles using our
AVX2 implementation and 3 MCycles using our NEON implementation.

In order to obtain those improvements and to build a solid foundation for MiRitH,
we provide improvements on multiple levels of the design process. In the following we
categorize the different contributions.

Design Related Improvements First, we improve the core of the construction, namely
the MPC protocol used to prove the matrix product relation, using two improvements
found in the literature. The first originates from Kales and Zaverucha [KZ22, Section 2.5]
and also found application in [Fen22]. This improvement is related to the aforementioned
more efficient special case. Second, we apply a technique by Feneuil [Fen22] to reduce
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a challenge matrix sent by the verifier at the expense of increasing the soundness error
originating from guessing that challenge.

Additionally, in [ARZV23] the challenge matrix has to be sampled from an exceptional
set, which is not necessary for MiRitH, improving performance. We provide the updated
security statements and outline differences to the proofs from [ARZV23] whenever necessary.
For the self-contained full proofs we refer to the corresponding NIST-submitted specification
document of MiRitH [ABB+23b]. Additionally, we translate to MiRitH the recent
MPCitH-hypercube technique by Aguilar-Melchor et al. [AGH+23], introduced in the
context of a ZKPoK proving knowledge of a solution to the syndrome decoding problem.
This technique allows to achieve the same soundness as an MPC protocol with ND parties
by only simulating D MPC protocols with N parties each. As still input shares for ND

parties have to be prepared, the input preparation starts dominating the computation
time rather quickly. However, we show that in our setting, the hypercube technique speeds
up signing and verification by more than 2.5 times.

Parameters and Security Justification We provide re-optimized parameters for the
NIST security categories I, III and V, showing that some of the previous suggestions from
[ARZV23] were slightly suboptimal.

Additionally, we provide the missing quantum security justification for all parameter
sets. Therefore we construct a novel quantum search enhanced algorithm that outperforms
a naive Grover improved brute-force for the MinRank solution. Our algorithm exploits the
Kipnis-Shamir modeling, which models knowledge of a MinRank solution as a matrix-vector
product involving a secret matrix K. We show that a subset of columns of K relates to a
matrix with a rank defect which can be used to distinguish those columns from random
ones in the search process, allowing to construct an oracle. Furthermore we show at the
same time that knowledge of these few columns of K is already sufficient to recover the
MinRank solution. Subsequently, we show that under NIST quantum security metrics,
which restrict the maximum depth of the used quantum circuit, all parameter sets have a
positive security margin, i.e., they exceed the defined quantum security thresholds.

Implementations and Benchmarks We provide extensive implementations for MiRitH
in the form of a first reference implementation as well as optimized constant-time im-
plementations for Intel processors (AVX2) and the ARM architecture (NEON). For the
ARM architecture we provide an implementation for high-performance devices such as
the Mac M1 as well as for low-power units such as the Cortex-M4. We provide all these
implementations with and without the hypercube improvement from [AGH+23].

In the context of our optimized implementation we provide a new improved matrix
arithmetic leveraging AVX2 instructions that outperform previous implementations from
[BCH+23]. This is achieved in two ways: first we replace the needed lookup table of
[BCH+23], with an efficient use of the vpblendvb instruction. Second, as the matrices in
MiRitH are generally small we load the full matrices directly into the necessary registers,
rather than having to move rows or columns into memory during computation.

Further we provide a comparison of MiRitH to other NIST submissions following the
MPCitH / Fiat-Shamir paradigm. In this comparison we compare public key and signature
sizes as well as key generation, signing and verification speed (compare to Table 6). In
this context we re-benchmark all considered schemes on a single benchmarking platform
to enable a fair comparison.

Outline. In Section 2 we cover general notations, introduce the MinRank problem and recall
the ARZV scheme. In Section 3 we then introduce MiRitH in full detail. Subsequently
in Section 4 we provide updated parameters for MiRitH for the different NIST security
categories. In Section 4.2 we describe our new quantum algorithm and analyze quantum
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security of the suggested parameter sets. Eventually, in Section 5 we give insights on our
optimized constant-time implementations and comparison to other NIST candidates.

2 Preliminaries
2.1 General Notation
Let Fq be a finite field of q elements, let Fm×nq be the vector space of m × n matrices
over Fq, and let Rank(M) be the rank of the matrix M . We define [i] := {1, 2, . . . , i} for
every positive integer i. Further, let log be the logarithm in base 2. We write a← A(x)
if a is the output of an algorithm A on input x and a $← S if a is sampled uniformly at
random from the set S. We use a← PRG(seed) if a is generated by the pseudorandom
generator PRG using the seed seed. In the following Hash denotes a cryptographic-secure
hash function.

Additive Sharing We recall that an additive sharing of an element a is a tuple JaK :=
(JaK1 , . . . , JaKN ) such that a =

∑N
i=1 JaKi. In the MPC context, an additive sharing JaK

is distributed between N parties, i.e., each party obtains one of the N shares JaKi. The
linearity of the sum allows the parties to compute certain operations such as the summation
of elements on individual shares, while maintaining a valid additive share for the result of
that operation. Such operations include the sum of elements, since Jx+ yK = JxK + JyK,
and the multiplication by a constant c, as Jc · xK = c · JxK. Further the addition of a
constant can also be modeled since Jc+ xK = (JxK1 , . . . , JxKN−1 , c+ JxKN ), i.e., only one
party performs the addition.

2.2 MinRank Problem and Kipnis–Shamir Modeling
The MinRank problem is the underlying hard problem of MiRitH.

Problem 1 (MinRank). Let q,m,n,k, and r be positive integers, with q a prime power.
The MinRank problem with parameters (q,m, n, k, r) is defined as:

Given: (k + 1)-tuple M = (M0,M1, . . . ,Mk) ∈ (Fm×nq )k+1.

Find: α = (α1, . . . , αk) ∈ Fkq such that Rank
(
M0 +

∑k
i=1 αiMi

)
≤ r.

To prove the knowledge of a MinRank solution we use the Kipnis–Shamir model-
ing [KS99], which is based on the following fact. Given an instance M of the MinRank
problem, if there exists a vector α ∈ Fkq and a matrix K ∈ Fr×(n−r)

q such that(
M0 +

k∑
i=1

αiMi

)
·
[
I
−K

]
= 0, (1)

where I ∈ F(n−r)×(n−r)
q is a non-singular matrix, then α is a solution to the instance M .

If in Eq. (1) we fix I to be the identity matrix of size (n− r)× (n− r), then we obtain

ML
0 +

k∑
i=1

αiM
L
i =

(
MR

0 +
k∑
i=1

αiM
R
i

)
·K, (2)

where for any matrix A ∈ Fm×nq , we let AL, respectively AR, be the matrix consisting
of the first n− r columns, respectively the last r columns, of A. Further, this allows to
rewrite Eq. (2) as ML

α = MR
α ·K, with Mα := M0 +

∑k
i=1 αiMi.
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2.3 The ARZV Signature Scheme

In its core the ARZV scheme relies on an MPC protocol Π to verify matrix-multiplication
triples in zero-knowledge, which was introduced together with the scheme in [ARZV23].
A matrix-multiplication triple is a set (X,Y, Z) of matrices fulfilling X · Y = Z. This
protocol Π is then used to verify the triple (ML

α ,M
R
α ,K), i.e., to show that this triple

satisfies the Kipnis-Shamir equation from Eq. (2), which in turn proves that α is a solution
to the MinRank problem defined on the matrices M .

In order to verify a matrix-multiplication triple, the protocol requires as input an
auxiliary matrix-multiplication triple (A,B,C) (shared among the parties). This auxiliary
triple is used in the verification process, but no information on it is revealed.

From there the scheme is constructed using the general MPCitH framework to first
construct a ZKPoK in which the prover simulates all MPC parties and then relies on the
Fiat-Shamir transform to obtain a EUF-CMA secure signature scheme in the random
oracle model.

3 MiRitH Signature Scheme

In this section, we present a new MPCitH-based signature scheme called MiRitH. We
first describe its underlying MPC protocol, denoted by Πs, and its corresponding proof of
knowledge protocol. Afterwards, we outline the signature scheme which is obtained by
employing the Fiat-Shamir transformation.

3.1 MPC Protocol

MiRitH uses an MPC protocol with additive shares between N parties to verify the
validity of a MinRank solution via the Kipnis-Shamir modeling, i.e., the protocol verifies
that ML

α = MR
α ·K (compare to Section 2.2). Therefore, each party i holds an additive

share JαKi of the MinRank solution α, such that JαK =
∑N
i=1 JαKi, and an additive share

JKKi of the matrix K, such that JKK =
∑N
i=1 JKKi. Based on its shares, each party can

construct its own share of ML
α and MR

α .
Once each party obtained its input shares the protocol Πs is executed. Similarly to

[ARZV23], MiRitH uses a MPC protocol to prove that the shares of (ML
α ,M

R
α ,K) of

all parties form a valid matrix-multiplication triple, which in turn proves knowledge of
the MinRank solution. However, the MPC protocol employed by MiRitH, which we call
Πs, improves upon the protocol introduced in [ARZV23] in several ways. In Fig. 1, we
outline the full protocol Πs that verifies the validity of the solution α with a false-positive
rate of 1/qs in the semi-honest setting, i.e., when all the parties follow the protocol. The
improvements of Πs over the MPC protocol of [ARZV23] are the following.

First, the used auxiliary matrix-multiplication triple (A,B,C) is chosen as (A,K,C)
with A being chosen randomly, rather than A and B being chosen randomly. Besides
involving one matrix less this leads to further cancellation effects in the subsequent
computations, which results in increased efficiency.

Second, the random matrix R has no special structure, while the protocol in [ARZV23]
requires to select R from a special set of exceptional matrices, which is computationally
more expensive. Third, employing an optimization by Feneuil [Fen22], the random matrix
R is chosen to have size s ×m, with s < m. This consequently reduces the size of the
matrices S, C and K in Fig. 1 which in turn reduces the communication cost and ultimately
the signature size.
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Inputs: Each party knows the MinRank instance M and takes a share of the following

sharings as input: JαK and JKK, where α ∈ Fk
q and K ∈ Fr×(n−r)

q ; JAK, where A has been

uniformly sampled from Fs×r
q ; and JCK, where C = A ·K.

MPC Protocol:

1 : The parties locally compute JML
αK and JMR

α K.
2 : The parties get a random matrix R

$← Fs×m
q .

3 : The parties locally set JSK = R · JMR
α K + JAK.

4 : The parties open JSK so that they all obtain S.

5 : The parties locally compute JV K = S · JKK−R · JML
αK− JCK.

6 : The parties open JV K to obtain V .

7 : The parties output accept if V = 0 and reject otherwise.

Figure 1: The MPC protocol Πs to check that ML
α = MR

α ·K.

Proposition 1 states the correctness the protocol Πs (Fig. 1) and its false-positive rate.

Proposition 1. If ML
α = MR

α ·K then the protocol Πs in Fig. 1 always outputs accept.
If ML

α 6= MR
α ·K then Πs outputs accept with probability at most 1/qs.

Proof (sketch). Correctness easily follows. If ∆ := ML
α −MR

α ·K 6= 0 then Πs accepts if
and only if R ·∆ = 0 and, by the Rouché–Capelli theorem, the number of such R’s is at
most q(m−1)s, thus the claim follows.

3.2 ZKPoK for MinRank
Starting from the MPC protocol Πs, we build a ZKPoK of a solution to an instance of the
MinRank problem via a 5-pass protocol. A pseudocode of the ZKPoK is shown in Fig. 2.
It employs a commitment scheme Com, a pseudorandom generator PRG, and a seed tree
TreePRG. The phases of the protocol can be interpreted as follows

1) The prover prepares all inputs for the different parties of the MPC protocol and
commits to those initial states.

2) The verifier provides the first challenge R ∈ Fs×mq .

3) The prover executes the MPC protocol Πs for each party based on the challenge R
and commits to the final views of all parties.

4) The verifier provides the second challenge i∗ ∈ [N ].

5) The prover opens all commitments corresponding to parties i 6= i∗ and provides
the final view of party i∗, to allow the verifier to recompute all parties’s views and
commitments of the protocol.

It can be proven that the protocol described in Fig. 2 is correct, honest-verifier ZKPoK,
and sound with soundness error

ε := 1
qs

+
(

1− 1
qs

)
1
N
.

Proofs for these statements follow mostly along the lines of the proofs provided in [ARZV23].
Only the change to a different first challenge matrix R leads to minor necessary adaptations.



Adj, Barbero, Bellini, Esser, Rivera-Zamarripa, Sanna, Verbel, Zweydinger. 311

ZKProof(Prover(M ,α,K), Verifier(M))

Phase 1: Prover sets up the inputs for the MPC protocol Πs:

1 : seed
$← {0, 1}λ, (seedi, ρi)i∈[N ] ← TreePRG(seed)

2 : For each party i ∈ [N − 1]

JαKi, JKKi, JAKi, JCKi ← PRG(seedi)

statei ← seedi

3 : JαKN ← α−
∑

i ̸=N
JαKi, JKKN ← K −

∑
i ̸=N

JKKi

4 : JAKN ← PRG(seedN ), JCKN ← A ·K −
∑

i ̸=N
JCKi

5 : aux← (JαKN , JKKN , JCKN) , stateN ← (seedN , aux)

6 : Commit to each party’s state: comi ← Com
(
statei, ρi

)
, for all i ∈ [N ].

7 : Prover computes h1 ← Hash(com1, . . . , comN) and sends it to Verifier.

Phase 2: Verifier samples R
$← Fs×m

q and sends it to Prover.

Phase 3: Prover simulates the MPC protocol Πs:

8 : The parties locally compute JML
αK and JMR

αK.
9 : The parties locally set JSK = R · JMR

αK + JAK.
10 : The parties open JSK so that they all obtain S.

11 : The parties locally compute JV K = S · JKK−R · JML
αK− JCK.

12 : Prover computes h2 ← Hash
(JSK1, JV K1, . . . , JSKN , JV KN

)
.

13 : Prover sends h2 to Verifier.

Phase 4: Verifier samples i∗
$← [N ] and sends it to Prover.

Phase 5: Prover sends rsp :=
(
(statei, ρi)i̸=i∗, comi∗, JSKi∗

)
to Verifier.

Verification:

14 : Verifier recompute (JSKi, JV Ki)i ̸=i∗ from (statei)i ̸=i∗ .

15 : JV Ki∗ ← −
∑

i̸=i∗
JV Ki

16 : Verifier accepts if and only if comi = Com(statei, ρi), for each i ̸= i∗,

h1 = Hash(com1, . . . , comN), h2 = Hash
(JSK1, JV K1, . . . , JSKN , JV KN

)
.

Figure 2: Zero-knowledge proof of knowledge for MinRank.

3.3 Signature Scheme via the Fiat–Shamir Transform

To transform the ZKPoK of Fig. 2 into a non-interactive signature scheme, which we call
MiRitH, we use a standard generalization of the Fiat–Shamir transform for canonical 5-
pass protocols [FS87]. We provide the corresponding algorithms for signing and verification
in Fig. 4 and Fig. 5.

Theorem 1 shows that MiRitH is existentially unforgeable under adaptive chosen-
message attacks in the random oracle model.

Theorem 1 (Unforgeability). Suppose that PRG is (t, εPRG)-secure and that any adver-
sary running in time t has at most an advantage εMR against the underlying MinRank
problem associated with a public key M . Moreover, assume that Hash0, Hash1, and Hash2
are modeled as random oracles. Let A be an adaptive chosen-message adversary against
the signature scheme described in Fig. 4, running in time t, making qs signing queries,
and qi queries to Hashi for i = 0, 1, 2. Then A succeeds in outputting a valid forgery with



312 MiRitH: Efficient Post-Quantum Signatures from MinRank in the Head

probability

Pr [Forge] ≤ 3(q0 + τNqs)2

22λ+1 + qs(qs + q0 + q1 + q2)
22λ + qsτεPRG + εMR + max

0≤t≤τ
P (t),

where P (t) =
(

1−
[
1−

(
1
qs

)t(
1− 1

qs

)τ−t(
τ
t

)]q1
)(

1−
[
1− 1

Nτ−t

]q2
)
.

Proof. This theorem is essentially obtained from Theorem 4 of [ARZV23] by considering
the probability 1

qs instead of 1
qn due to the corresponding change to the ZKPoK in

Section 3.2.

Key Generation The uncompressed public and secret key of our scheme are a random
instanceM of the MinRank problem and the corresponding witness (α,K), respectively. If
stored directly, this would require mn(k+1) log q bits for the public and

(
k+r(n−r)

)
log q

bits for the secret key.

KeyGen()

1 : (seedpk, seedsk)
$← {0, 1}λ × {0, 1}λ

2 : M1, . . . ,Mk ← PRG(seedpk)

3 : α,K,ER ← PRG(seedsk)

4 : E ← ER ·K | ER

5 : M0 ← E −
k∑

i=1

αiMi

6 : pk← (seedpk,M0)

7 : sk← seedsk

return (pk, sk)

DecompressPK(pk)

1 : seedpk,M0 ← pk

2 : M1, . . . ,Mk ← PRG(seedpk)

return (M0, . . . ,Mk)

DecompressSK(sk)

1 : seedsk ← sk

2 : α,K,ER ← PRG(seedsk)

return (α,K)

Figure 3: Algorithms for generating, compressing, and decompressing the keys.

We employ the original key generation scheme which compresses the public key into
λ+mn log q bits and the secret key into λ bits. This key generation scheme is detailed in
Fig. 3.

We remark that using the key generation scheme proposed by Di Scala and Sanna [DSS23]
would allow to compress the public key further to λ+ (m(n− r)− k) log q bits, at the cost
of computation time.

3.4 Hypercube Variant
Recently, Aguilar-Melchor et al. [AGH+23] introduced a general technique, called hypercube,
that makes possible to reduce from ND to only ND the number of parties that an MPCitH
based on a linear secret sharing needs to simulate. They applied the hypercube to a
MPCitH for the syndrome decoding problem to produce a code-based digital signature. In
MiRitH, we applied the hypercube technique to our MPCitH of MinRank. In the following,
we briefly describe how the technique is applied. Overall, the hypercube application results
in further computational speedups.

Consider the original ZKPoK from Fig. 2 with ND parties (instead of N). In this
ZKPoK protocol, the shares for the ND parties, which are called leaf parties in the
following, are set up and committed as usual. So, the hypercube variant uses the same
initialization.
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Sign(M ,α,K,msg)

1 : salt
$← {0, 1}2λ

Phase 1: Set up the views for the MPC protocols

for ℓ ∈ [τ ] do

2 : seed(ℓ)
$← {0, 1}λ, (seed

(ℓ)
i )i∈[N ] ← TreePRG(salt, seed(ℓ))

for i ∈ [N − 1] do

3 : JA(ℓ) Ki, Jα(ℓ) Ki, JC(ℓ) Ki, JK(ℓ) Ki ← PRG(salt, seed
(ℓ)
i )

4 : state
(ℓ)
i ← seed

(ℓ)
i

5 : JA(ℓ) KN ← PRG(salt, seed
(ℓ)
N ), Jα(ℓ) KN ← α−

∑
i ̸=N

Jα(ℓ) Ki
6 : JK(ℓ) KN ← K −

∑
i̸=N

JK(ℓ) Ki, JC(ℓ) KN ← A(ℓ) ·K −
∑

i ̸=N
JC(ℓ) Ki

7 : aux(ℓ) ← (Jα(ℓ) KN , JK(ℓ) KN , JC(ℓ) KN ), state
(ℓ)
N ← (seed

(ℓ)
N , aux(ℓ))

8 : com
(ℓ)
i ← Hash

(
salt, ℓ, i, state

(ℓ)
i

)
, for all i ∈ [N ]

Phase 2: First challenges

9 : h1 ← Hash
(
msg, salt, (com

(ℓ)
i )i∈[N ],ℓ∈[τ ]

)

10 : R(1), . . . , R(τ) ← PRG(h1)

Phase 3: Simulation of the MPC protocols

for ℓ ∈ [τ ] do

11 : Compute JML,(ℓ)
α K, JMR,(ℓ)

α K from Jα(ℓ) K
12 : JS(ℓ) K← R(ℓ) · JMR,(ℓ)

α K + JA(ℓ) K
13 : S(ℓ) ←

∑
i
JS(ℓ) Ki

14 : JV (ℓ) K← S(ℓ) · JK(ℓ) K−R(ℓ) · JML,(ℓ)
α K− JC(ℓ) K

Phase 4: Second challenges

15 : h2 ← Hash
(
msg, salt, h1,

(JS(ℓ) Ki, JV (ℓ) Ki
)
i∈[N ], ℓ∈[τ ]

)

16 : i∗,(1), . . . , i∗,(τ) ← PRG(h2)

Phase 5: Assembling the signature σ

17 : σ ←
(
salt, h1, h2,

((
state

(ℓ)
i

)
i ̸=i∗,(ℓ) , com

(ℓ)

i∗,(ℓ)
, JS(ℓ) Ki∗,(ℓ)

)
ℓ∈[τ ]

)

return σ

Figure 4: Signing algorithm of MiRitH using τ parallel executions of the ZKPoK.

However, instead of running an MPC protocol on ND parties, the hypercube variant
expresses each leaf party i ∈ [ND] as coordinates in a D dimensional hypercube with
sides of length N . Hence, each leaf party i is uniquely identified via a set of coordinates
(i1, . . . , iD) ∈ [N ]D. Next, D sets of N main parties each are constructed from the leaf
parties. On each of those sets follows an execution of the MPC protocol with N parties.
The share JXK(k,j) of a value X, k ∈ [D], j ∈ [N ], for the j-th main party in the k-th
set, is defined as the sum of all leaf party shares that have coordinates lying on the j-th
hyperplane orthogonal to the k-th dimension. Put differently, the share JXK(k,j) is the sum
of the shares JXKi held by the leaf parties i = (i1, . . . , iD) having ik = j. Straightforward
computations show that by this construction method each of the values from the original
protocol, i.e., α, K, A and C, is recovered by summing all corresponding shares of the N
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Verif(M ,msg, σ)

1 : R[1], . . . , R(τ) ← PRG(h1)

2 : i∗,[1], . . . , i∗,(τ) ← PRG(h2)

for all ℓ ∈ [τ ] do

3 : Compute JV (ℓ) Ki as in Sign

4 : Compute com
(ℓ)
i and JS(ℓ) Ki as in Sign, for all i ∈ [N ]\{i∗,(ℓ)}

5 : S(ℓ) ←
∑

i
JS(ℓ) Ki

6 : Compute JV (ℓ) Ki as in Sign, for all i ∈ [N ]\{i∗,(ℓ)}
7 : JV (ℓ) Ki∗,(ℓ) ← −

∑
i ̸=i∗,(ℓ)

JV (ℓ) Ki
8 : h′

1 ← Hash
(
msg, salt, (com

(ℓ)
i )i∈[N ],ℓ∈[τ ]

)

9 : h′
2 ← Hash

(
msg, salt, h1,

(JS(ℓ) Ki, JV (ℓ) Ki
)
i∈[N ], ℓ∈[τ ]

)

10 : Output accept if h′
1 = h1 and h′

2 = h2, otherwise output reject

Figure 5: Verification algorithm of MiRitH.

main parties in one set.
All D MPC protocols are executed in parallel on the same initial challenge R. The

rest of the protocol proceeds as usual. That is, the verifier provides a second challenge
value i∗ ∈ [N ]D corresponding to one of the leaf parties. The prover then reveals all initial
states of the leaf parties except for leaf party i∗, for which it provides the corresponding
communication. The reason for the resulting protocol offering the same soundness as an
MPC protocol with ND parties lies in the specific crafting of the input shares, namely,
disclosing all but one of the leaf party shares discloses the value of all but one main party
share per set. For the full details we refer to [AGH+23].

The communication complexity of the hypercube variant is equivalent to the non-
hypercube variant with ND parties. However, the hypercube approach still offers a
two-fold advantage. First, the computational complexity is improved by having to simulate
exponentially fewer parties (N ·D instead of ND). Second, even though ND initial states
have to be prepared for the leaf parties, which usually becomes the dominating part after
applying the technique, all but one of those states can be set up offline, giving rise to
interesting online-offline computation ratios.

4 Parameters
In Table 2, we propose parameter sets for MiRitH achieving the different security levels
I, III, and V defined by NIST, which correspond to 143, 207, and 272 bits of classical
security, respectively [NIS].

The MinRank problem parameters (q,m, n, k, r) are chosen with respect to the best-
known classical attacks against random instances. These attacks follow the hybrid approach
introduced in [BBB+23c], which requires to guess a < d kme vectors in the kernel of the
unknown low-rank matrix E and ` coefficients of the solution vector α. For each guess,
one solves a smaller P instance with parameters (q,m, n− a, k−ma− `, r). This approach
has a complexity of qa·r+lv (MR(P ) + k · (am)2) multiplications over Fq, where MR(P ) and
(am)2 are the costs of solving and building the instance P , respectively. The instance P is
solved by using either the Kernel-Search (KS) [GC00], the Support-Minors (SM) [BBC+20]
or the Big-k algorithm [Cou01].
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Table 1: Bit complexities of the MinRank instances of MiRitH against known attacks.

Set q m n k r KS (a, `) Big-k (a, `) SM (a, `, b, n′)
Ia 16 15 15 78 6 148 (4,3) 155 (5,3) 144 (5,0,1,8)
Ib 16 16 16 142 4 159 (8,0) 231 (0,0) 166 (8,0,2,8)
IIIa 16 19 19 109 8 207 (5,0) 431 (0,0) 210 (5,0,2,14)
IIIb 16 19 19 167 6 232 (8,0) 352 (0,0) 236 (8,0,2,11)
Va 16 21 21 189 7 269 (8,0) 452 (0,0) 274 (6,0,8,15)
Vb 16 22 22 254 6 303 (11,0) 425 (0,0) 301(11,0,1,11)

Table 1 shows the bit complexities to solve the MinRank instances of MiRitH, where
the cost of one multiplication in Fq is taken as log2(q)2 bit operations, the exponent
for matrix multiplication in KS and Big-k is set to be 3, and SM is taken in its Block-
Wiedemann variant. Further, in Section 4.2 we provide a justification for parameter
security in a quantum setting under NIST security metrics.

Table 2: Parameters of MiRitH with corresponding public key and signatures sizes in
bytes.

Set Variant λ q m n k r s N D τ Bit security Public key Signature

Ia

fast

128 16 15 15 78 6

5 2 4 39

144 129

7,877
short 9 2 8 19 5,673
shorter 12 2 12 13 5,036
shortest 12 2 16 10 4,536

Ib

fast

128 16 16 16 142 4

5 2 4 39

159 144

9,105
short 9 2 8 19 6,309
shorter 12 2 12 13 5,491
shortest 12 2 16 10 4,886

IIIa

fast

192 16 19 19 109 8

7 2 4 55

207 205

17,139
short 9 2 8 29 12,440
shorter 13 2 12 19 10,746
shortest 13 2 16 15 9,954

IIIb

fast

192 16 19 19 167 6

7 2 4 55

232 205

18,459
short 9 2 8 29 13,136
shorter 13 2 12 19 11,202
shortest 13 2 16 15 10,314

Va

fast

256 16 21 21 189 7

10 2 4 71

273 253

31,468
short 10 2 8 38 21,795
shorter 14 2 12 26 19,393
shortest 14 2 16 20 17,522

Vb

fast

256 16 22 22 254 6

10 2 4 71

301 274

34,059
short 10 2 8 38 23,182
shorter 14 2 12 26 20,394
shortest 14 2 16 20 18,292

The remaining parameters, i.e., the number of rows of the challenge matrix R, the
number of parties ND in the underlying MPC protocol and the number τ of repetitions
of the identification protocol, are computed such that the forgery cost of the best known
generic attack on 5-pass protocols from [KZ20] is at least 2λ.

We provide two classes of parameter sets, namely: a and b sets. The Xa sets minimize
the signature size, while precisely matching the NIST security level definitions. We re-
optimize the original parameter sets and find that they allow for a slightly smaller choice
of k. This reduces signature size and increases efficiency. Following [ARZV23], we provide
with the Xb sets a more conservative choice of parameters which include some security
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margin to account for potential future attack improvements.
Further, for each parameter set, we provide a “Fast”, “Short”,“Shorter” and “Shortest”

variant leveraging a trade-off between signing/verification time and signature size that
originates from the use of the MPC protocol. In fact, lowering the number of MPC parties
allows to reduce the computation time, but to maintain the same forgery cost the number
of repetitions has to be increased, which in turn results in larger signature sizes.

4.1 Signature and Key Sizes
Additionally, Table 2 states the public key sizes λ+mn log q (compare to Section 3.3) and
the corresponding maximum signature size. The maximum signature for MiRitH is of
size (compare to Fig. 4)

6λ︸︷︷︸
salt,h1,h2

+τ

(k + r(n− r) + s(n− r) + sr) · log q︸ ︷︷ ︸
Jα(`)K

ND
,JK(`)K

ND
,JC(`)K

ND
,JS(`)K

i∗,(`)

+λ ·D · logN︸ ︷︷ ︸
(seed(`)

i
)i6=i∗

+ 2λ︸︷︷︸
com

i∗,(`)


bits. Note that in comparison to Fig. 4 the number of parties changed from N to ND due
to the hypercube improvement (see Section 3.4). The secret key for each parameter set is
derived from a single seed of size λ bits.

4.2 Quantum Analysis
We restrict our analysis to polynomial memory quantum algorithms. This is motivated
by the fact that it is widely unclear to which degree QRAM such as quantum accessible
classical memory (QACM) or quantum accessible quantum memory (QAQM) can be
realized in practice. Also the computational overheads of the corresponding circuits are
expected to be significant. Therefore we are interested in leveraging quantum search
speedups, also known as Grover search, to solve the MinRank problem.
Grover Search [Gro96] Given a quantum accessible function F : D → {0, 1} with a
unique element x ∈ D for which it holds that F(x) = 1, a Grover search finds the element
x ∈ D within O(

√
D) calls to the quantum oracle F with high probability.

A first obvious strategy is a quantum search improved brute-force for the solution
α ∈ Fkq . In that case the quantum oracle F is defined with domain Fkq and F(x) = 1 iff
x is a solution to the MinRank problem. The amount of calls to the oracle to find the
solution α in that case is O(2(k log q)/2). However, in the following we construct a better
suited quantum oracle to be used for a Grover search which relies on the Kipnis-Shamir
modeling (see Eq. (1)).

4.2.1 A Quantum Algorithm Solving MinRank

The main idea of our quantum algorithm consists in searching for a subset of the columns
of the secret matrix K from Eq. (1).

By Eq. (1), any set of t columns of K yields an affine linear system of k variables and
tm equations, where the MinRank solution α is also a solution to that linear system. In
particular, the vector (α, 1) ∈ Fk+1

q belongs to the left kernel of the matrix representing
the linear system. This fact is highlighted in Proposition 2, where we also show the matrix
defining the linear system for every guess of the first t columns of K.

Proposition 2. LetM = (M0, . . . ,Mk) be a MinRank instance, whereM` = [µ(`)
(i,j)]

m,n
i,j=1 ∈

Fm×nq with solution α = (α1, . . . , αk). Let K = [κ(i,j)]r,n−ri,j=1 ∈ Fr×(n−r)
q be as in Eq. (1)
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and 1 ≤ t ≤ n− r be an integer. For xt = (x(1,1), x(1,2), . . . , x(r,t)) ∈ Frtq define

B(xt) =

 B1(xt)
...

Bt(xt)


>

∈ F(k+1)×(mt)
q ,

where

Bj(xt) = −


µ

(1)
(1,j) µ

(k)
(1,j) µ

(0)
(1,j)

... · · ·
...

...
µ

(1)
(m,j) µ

(k)
(m,j) µ

(0)
(m,j)

+


∑r
i=1 µ

(1)
(1,n−r+i)x(i,j)

∑r
i=1 µ

(k)
(1,n−r+i)x(i,j)

∑r
i=1 µ

(0)
(1,n−r+i)x(i,j)

... · · ·
...

...∑r
i=1 µ

(1)
(m,n−r+i)x(i,j)

∑r
i=1 µ

(k)
(m,n−r+i)x(i,j)

∑r
i=1 µ

(0)
(m,n−r+i)x(i,j)

 .

Then it holds that (α1, . . . , αk, 1) · B(κt) = 0, where κt := (κ(1,1), κ(1,2), . . . , κ(r,t)) ∈ Frtq
is formed from the first columns of K.

Note that Proposition 2 implies that B(κt) is not full-rank, and, in particular, its last
row belongs to the vector space spanned by the remaining ones. We want to use this as
our distinction factor for the vector κt in the set Ftrq . To this end, we choose t to be large
enough so that, with high probability, B(κt) is the unique matrix in {B(γ) : γ ∈ Ftrq } that
is not of full-rank.

Precisely, we choose t to be the smallest integer such that dk/me ≤ t ≤ n − r and
rt ≤

(
mt
k+1
)
. Hence k + 1 ≤ mt, and κt ∈ Frtq is expected to be the only vector such that

B(κt) is not full-rank. Indeed, the total number of different matrices B(γ) with γ ∈ Frtq is
at most qrt, each of them has

(
mt
k+1
)
maximal minors, and any of these minors is zero with

probability close to 1/q. Therefore, the expected number of matrices B(γ) that are not
full-rank is close to qrt/q(

mt
k+1) ≤ 1 .

Finally, note that once κt is known, the MinRank solution α can be efficiently recovered
by classical Gaussian elimination using the relation from Proposition 2.

Let us now define the necessary quantum oracle. We aim for a quantum oracle
F : Frtq → F2 such that

F(γ) =
{

1 if γ = κt
0 otherwise.

The computation of our quantum oracle F on input γ := (γ(1,1), γ(1,2), . . . , γ(r,t)) ∈ Frtq
splits into three parts:

1. Compute the matrix B(γ).

2. Compute, by Gaussian elimination, the row-reduced form of B(γ).

3. Apply a NOT gate to every qubit representing the last row of B(γ), and then output
the product of such qubits.

Notice that F(γ) = 1 if and only if at the end of step 2, the last row of B(γ) is the zero
vector.

Grover’s algorithm states that the vector κt can be found with high probability after
O
(
2(rt log q)/2) calls to the quantum oracle F . The complexity of computing F is dominated
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by the Gaussian elimination step, which can be performed in O
(
(k + 1)2 ·mt

)
operations

in Fq. Therefore, we estimate our quantum complexity to be

O
(
2(rt log q)/2 · (k + 1)2mt

)
operations over Fq.

4.2.2 Quantum Security of Parameter Sets

For the quantum security definition of categories I, III and V provided by NIST, the
maximum depth of the used quantum circuits is limited to 2maxdepth with maxdepth ≤ 96.
A parameter set is said to match the quantum security definition for a category if an attack
requires at least 2b−maxdepth quantum gates for b = 157, 221, 285 for category I, III and V,
respectively.

We lower bound the depth of the described quantum circuit by

D = 2(rt log q)/2k2,

which corresponds to the sequential repetition of the Grover iterations, where we lower
bound the depth of the oracle with k2.

In the case of D > 2maxdepth, the most efficient strategy [Zal99] to restrict the depth of
the quantum circuit is to partition the search space in P equally sized, small enough sets.
Subsequently, the search has to be reapplied for each of the P partitions, which comes at
a depth of

DP = D√
P
,

and it leads to DP = 2maxdepth for a choice of P = (D/2maxdepth)2.
The total number of quantum gates necessary to launch the depth-limited attack

becomes
T = O(P ·DP ·mt log2 q), (3)

where we count log2 q gates per field multiplication.
In Table 3, we state the estimated quantum security margin for each parameter set.

That is the quotient of the gates necessary to launch a quantum attack according to Eq. (3)
and the defined security threshold of 2b−maxdepth for b = 157, 221, 285 for category I, III
and V respectively. Note that all parameter sets have a positive margin, i.e., they offer
higher quantum security than AES with the corresponding key length.

Table 3: Quantum security margin of MiRitH parameter sets.

Set Ia Ib IIIa IIIb Va Vb
t 6 10 6 9 10 12

security margin (bits) 23 43 9 36 37 47

5 Implementation
We provide three implementations for MiRitH, namely: one reference implementation
and three optimized constant-time implementations.

The first optimized implementation is for Intelr processors and optimizes the matrix
arithmetic as well as the use of symmetric primitives such as hash functions by using
AVX2 instructions. The second optimized implementation is for ARM processors and
optimizes those parts by using NEON instructions. Last but not least we provide an
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implementation for low-power ARM devices that do not support the NEON instruction set
like a Cortex M4. All of our implementations share the same code base, with the exception
of the vector finite field arithmetic and the hash function. Those are specialized for each
architecture. Additionally, the field is represented as F24 = F2[x]/(x4 + x+ 1) and we use
the straightforward conversion, i.e., 1 corresponds to 1, 2 corresponds to x1, 4 corresponds
to x2, and so forth.

5.1 Symmetric Primitives
For the symmetric primitives we use shake256 as PRG and sha3 as hash function lever-
aging the Extended Keccak Code Package (XKCP1), as it is currently the fastest known
implementation of all Keccak associated algorithms.

5.2 Arithmetic
For all implementations: AVX2, NEON, M4 and reference implementation, we pack each
column into the memory, i.e., there is no alignment between two subsequent columns, thus
all our matrices are column-major.

Additionally as the matrices in MiRitH are generally small we are able to fully load
each matrix into a small set of registers, and thus are not forced to reload each column
upon the next step in the matrix-matrix multiplication as done by [BCH+23].

5.2.1 Reference Implementation

This implementation is written entirely in ANSI C. It has the only purpose of showing how
the proposed scheme can be implemented without employing any particular optimization.
As all our implementations it represents two finite field elements from F24 in a single byte.
The reference implementation implements the finite field arithmetic over F24 via a lookup
table. The matrix arithmetic is computed element-wise, resulting in n3 table lookups for a
matrix-matrix multiplication of two n× n matrices.

The reference implementation relies on the symmetric primitives of the OpenSSL library
due to its acceptable speed and great availability among most platforms.

5.2.2 AVX Implementation

Our optimized implementation of the finite field arithmetic uses the Advanced Vector
Extension (AVX) and Advanced Vector Extension 2 (AVX2) instruction sets, which have
been part of every X86 CPU since the Intel Haswell generation in 2013. These instruction
sets introduced 256-bit vector registers while following the Single-Instruction-Multiple-Data
(SIMD) approach. Thus, a broad variety of instructions are available, which allow to
manipulate a 256-bit vector as 8-/16-/32-/64-bit vector elements, while computing all
vector elements simultaneously in constant time. Newer x86 CPUs even support AVX512
which introduced 512-bit vectors and instructions. But as this extensions did not find
broad adoption in consumer hardware, the main focus of this work lies on an AVX2
implementation.

Finite Field Arithmetic Before we start with the description of our AVX implementation,
let us first have a look into how the scalar multiplication in plain C could be implemented.
Given two elements a = a3x

3 + a2x
2 + a1x+ a0 and b = b3x

3 + b2x
2 + b1x+ b0 ∈ F24 , the

multiplication a · b can be expressed as
∑3
i=0 ai · xi · b.

The code is straightforward, we extract the four bits of a and multiply each with
xib, which is implemented as a lookup into the precomputed table p containing those

1https://github.com/XKCP/XKCP

https://github.com/XKCP/XKCP
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1 tmp1 = ((a & 0x1) >> 0) * p[b*4 + 0];
2 tmp2 = ((a & 0x2) >> 1) * p[b*4 + 1];
3 tmp3 = ((a & 0x4) >> 2) * p[b*4 + 2];
4 tmp4 = ((a & 0x8) >> 3) * p[b*4 + 3];
5 c = tmp1^tmp2^tmp3^tmp4;

Figure 6: Computation of c = a · b for a, b, c ∈ F24 . The lookup table is build as follows:
{0x0, 0x1, 0x2, 0x3, 1x0, 1x1, 1x2, 1x3, · · · , 15x0, 15x1, 15x2, 15x3}

values. Lastly, we aggregate the partial products by means of XOR operations. This is the
foundation of the AVX implementation, which is a vectorized version of the code in Fig. 6.

The core idea of our implementation is the usage of the vpblendvb instruction. Given
three registers ymm_a, ymm_b, ymm_c ∈ F32

24 this instruction returns each vector element by
selecting either the corresponding vector element from ymm_b or ymm_a if the highest bit
in the vector element of ymm_c is set or not.

Since ai ∈ F2, an addend xi · b in the computation of c =
∑3
i=0 ai · xi · b is selected

depending on ai, which matches the usage of the vpblendvb instruction.
Each register ymm_a and ymm_b is filled with the maximum amount of rows/columns

of the two input matrices they can hold. The multiplication with xi is implemented via
a small lookup table, which fits into three AVX 256-bit registers utilizing the vpshufb
instruction. This instruction shuffles 8-bit vector elements across 128-bit lanes based on a
given 4-bit index. More precisely, given two 256-bit registers ymm_v_i = (v0, . . . , v31) =
(0xi, 1xi, . . . , 15xi, 0xi, · · · , 15xi) ∈ F32

24 , representing the lookup table and ymm_w =
(w0, . . . , w31), wi ∈ F24 the lookup is performed by simply computed as:

ymm_t = vpshufb(ymm_v_i, ymm_w) = (vw0 , . . . , vw31) = (w0x
i, . . . , w31x

i).

Note that only the lowest four bits of each vector element of the variable ymm_w are
used as a lookup index, thus the hardware restriction of shuffling only on 128-bit lanes.
Additionally note that three registers ymm_v_i for i = 1, 2, 3 are sufficient to fully save all
needed powers of x. Fig. 7 shows how a single addend of the sum

∑3
i=0 aix

i · b is computed.
By repeating the code from Fig. 7 for each i = 0, 1, 2, 3, one obtains the full polynomial
multiplication.

The first line applies the multiplication with xi via the vpshufb instruction, while the
second shifts each 4-bit nibble into the higher 4 bits of each 8-bit vector element. Lines 3
and 4 shift the lowest bit of each nibble into the highest bit of the corresponding byte,
preparing it to be the selection bit for the two subsequent lines. These lines apply the
vpblendvb instruction, selecting either zero or the permuted ymm_b value, depending on
the i-th bit of each nibble of ymm_a. The final result must be added together from the low
and high nibbles.

1 __m256i lowlookup = _mm256_shuffle_epi8(ymm_v_i, ymm_b);
2 __m256i highlookup = _mm256_slli_epi16(lowlookup, 4);
3 __m256i tmplow = _mm256_slli_epi16(ymm_a, 7-i);
4 __m256i tmphigh = _mm256_slli_epi16(ymm_a, 3-i);
5 __m256i tmpmu1low = _mm256_blendv_epi8(zero, lowlookup , tmplow);
6 __m256i tmpmulhigh = _mm256_blendv_epi8(zero, highlookup, tmphigh);
7 __m256i tmp = _mm256_xor_si256(tmpmullow, tmpmulhigh);

Figure 7: Computation of aixi · b for a, b ∈ F64
24

In total we therefore spend 12 shift, 3 vpshufb, 8 vpblendvb and 7 XOR instructions,
which can be computed in 29.5 cycles on a Ryzen 7600X. This is an improvement of 11.5%
over the implementation of [BCH+23] which uses 33.3 cycles on the same system.
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Table 4: Median time (in MCycles) for the AVX2 and NEON-ARM implementation of
MiRitH on an 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz (Turbo Boost disabled)
and on an Apple M1 Max chip, respectively.

Set Variant

AVX2 NEON-ARM

Key Signing
Verification Key Signing

Verification
generation Online (%) Total generation Online (%) Total

Ia

fast

0.109

28.02 5.19 4.72

0.083

23.75 3.33 2.92
short 4.24 31.91 31.76 3.19 23.06 22.75
shorter 0.41 329.98 326.08 0.30 251.04 250.40
shortest 0.04 4,109.28 4,126.42 0.02 3,108.80 3,111.62

Ib

fast

0.197

28.11 5.51 4.94

0.158

21.37 4.15 3.77
short 4.40 31.40 31.47 3.57 24.14 23.79
shorter 0.43 332.39 332.53 0.34 256.70 254.56
shortest 0.04 4,072.82 4,150.09 0.03 3,175.63 3,155.11

IIIa

fast

0.247

27.30 11.10 10.43

0.206

23.52 6.71 6.16
short 5.65 54.42 54.93 4.09 38.85 38.33
shorter 0.61 529.15 538.78 0.34 389.20 395.78
shortest 0.05 6,777.93 6,750.47 0.04 4,939.69 4,963.37

IIIb

fast

0.373

27.29 12.67 12.34

0.315

22.91 7.27 6.99
short 6.02 56.07 56.53 4.25 39.83 39.40
shorter 0.65 532.81 539.27 0.47 400.99 397.08
shortest 0.06 6,784.73 6,807.26 0.04 5,096.71 5,066.26

Va

fast

0.515

32.38 19.33 17.95

0.408

26.12 12.66 11.92
short. 5.73 92.39. 92.23 4.42 64.95 64.26
shorter 0.61 1,040.72 1,054.26 0.45 765.62 771.81
shortest 0.05 12,869.20 12,966.45 0.04 9,485.61 9,496.04

Vb

fast

0.703

32.19 21.96 20.44

0.602

25.47 15.19 14.62
short. 5.72 103.53 103.47 4.42 76.55 76.44
shorter 0.62 1,047.11 1,064.93 0.47 791.42 796.771
shortest 0.06 12,954.79 13,018.82 0.04 9,743.79 9,866.68

PCLMULQDQ Instruction: In our AVX2 code we are not using the PCLMULQDQ instruction
as its computing the carry-less multiplication over F264 and not over F24 as we need it.

5.2.3 NEON Implementation

ARM introduced its SIMD solution in 2004 with the ARMv7 Instruction Set Architecture
(ISA), which was extended for ARMv8 to process 128-bit registers. This ISA is implemented
by Apple on the M1 Max chip, which is our test system.

Finite Field Arithmetic The core of our implementation is based on [BCH+23] by utilizing
the vmulq_p8 instruction. This instruction computes an 8-bit polynomial multiplication on
16 vector elements from two input registers. The subsequent reduction is an implementation
using a lookup table. The only difference to the arithmetic by [BCH+23] is that our
implementation, as the AVX2 version, preloads all columns/rows into registers, which
speeds up the overall computation of the matrix-matrix multiplication.

The symmetric primitives are the same as in the AVX2 version, with the only difference
being that we use the generic 64-bit version of SHA3 rather than the ARMv8 assembly
version, which surprisingly performed faster on our benchmarking system.

5.2.4 M4 Implementation

Additionally to the optimized NEON implementation for the ARM architecture, we
provide a version for low-power devices like the Cortex-M4. These chips are often built
into restricted IoT devices, because of their low power consumption.
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Table 5: Median time (in MCycles) on a STM32F407G Cortex M4 over ten iterations.

Set Variant

Reference Bit-Slice

Key Signing Verification Key Signing Verificationgeneration generation
Ia fast 1.74 172 141 1.18 87.5 84.8
Ib fast 2.98 169 144 2.23 135 117

Finite Field Arithmetic Chips like the Cortex-M4 do not provide any SIMD instruc-
tion set like NEON. Therefore our implementation is based upon the proposed bitsliced
implementation of [BCH+23].

This technique breaks a field element into its individual bits and processes each bit
separately. Therefore one can pack the same bit of multiple field elements into a single
register. As each bit is treated as independent, the same operation is performed on all
corresponding bits of multiple binary numbers simultaneously. This parallel processing of
individual bits can lead to significant speed improvements.

For MiRitH this means instead of using a lookup table for the multiplication, writing
the multiplication circuit in software using general logic instructions. Note that, before
(and after) each multiplication, one needs to transform the input data into (and from) its
bitsliced form.

5.3 Performance Data
In this section, we provide performance evaluations for our optimized constant-time
implementations.

For the AVX2 and NEON implementations we measured all parameter sets of MiRitH.
The key generation, signature generation, and verification benchmarks were performed on
an 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz (Turbo Boost disabled) and on an
Apple M1 Max chip, respectively. The reported timings are the medians and are shown in
Table 4 given in million CPU cycles.

For the Cortex M4 implementation we measured only the Ia fast and Ib fast parameter
sets of MiRitH. The key generation, signature generation, and verification benchmarks
were performed on a STM32F407G Cortex M4 over 10 iterations. The reported timings
are the medians and are shown in Table 5 given in million CPU cycles.

5.4 Comparison with Other NIST Candidates and Beyond
In this section we compare the performance of MiRitH against its competitors in the
renewed NIST standardization process as well as some selected schemes, which are not
part of the current competition. Regarding NIST candidates, we include all schemes that
follow a similar construction strategy, i.e., either they also rely on the MPCitH paradigm
or employ more generally the Fiat-Shamir transform.2

Table 6 states the performance data of all considered candidates on a single benchmark-
ing system. Additionally, we provide public key and signature sizes. All schemes besides
MEDS and LESS obtain generally small public keys of size less than 0.25 kB. The smallest
signatures are obtained by constructions based on symmetric primitives, such as AIMER
and FAEST as well as by BISCUIT, which relies on a variant of the MQ problem. In
terms of signing and verification times, many schemes lie below the threshold of 5 MCycles,
including MiRitH (for its fast instantiation). We also provide the necessary script to

2With the exception of SQIsign [CSSF+23] as it has a completely different performance profile, targeting
different applications.
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Table 6: Signature Size and Performance comparison in Kilobytes (kB) and MCycles (Mcc),
respectively, of MiRitH against MPCitH- and Fiat-Shamir-based NIST submissions on
an 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz (Turbo-Boost disabled), compiled
using gcc 11.4.0.

Name Variant
Signature Size (kB) Performance (Mcc)

pk σ pk + σ Keygen Sign Verify

AIMER [KCC+23, KHS+22]

param1 0.03 5.77 5.80 0.066 1.76 1.42
param2 0.03 4.77 4.80 0.065 3.66 3.37
param3 0.03 4.08 4.11 0.070 11.62 11.28
param4 0.03 3.84 3.87 0.073 56.52 56.72

BISCUIT [BKPV23] fast 0.05 6.57 6.62 0.083 6.87 6.23
short 0.05 4.65 4.70 0.084 56.02 55.69

CROSS [BBB+23b, BBP+23] fast 0.04 8.46 8.50 0.036 4.06 2.84
small 0.04 7.45 7.48 0.036 14.64 10.28

FAEST [BBK+23] fast 0.03 6.19 6.22 0.002 2.74 2.70
short 0.03 4.89 4.92 0.002 25.58 25.83

LESS [BBB+23a, BBPS21] small-pk 13.38 8.20 21.58 0.922 249.88 261.07
large-pk 93.65 5.08 98.73 5.068 200.55 209.43

MEDS [CNP+23] fast 12.91 12.67 25.58 1.564 51.50 51.41
small 9.69 9.66 19.35 1.193 307.02 305.20

MIRA [ABB+23d, Fen22] fast 0.08 7.20 7.29 0.130 44.22 43.58
short 0.08 5.51 5.59 0.132 52.20 49.72

MQOM [FR23]

gf31-fast 0.05 7.44 7.49 0.598 15.03 13.75
gf31-short 0.05 6.20 6.25 0.605 36.13 34.70
gf251-fast 0.06 7.63 7.68 0.454 9.01 8.20
gf251-short 0.06 6.42 6.48 0.460 20.31 19.70

PERK [ABB+23a]

fast-3 0.15 8.15 8.30 0.085 7.52 5.13
short-3 0.15 6.41 6.55 0.090 38.34 25.83
fast-5 0.23 7.84 8.08 0.098 7.07 4.86
short-5 0.23 5.92 6.15 0.104 35.21 24.21

RYDE [ABB+23c, Fen22] fast 0.08 7.27 7.36 0.059 5.60 4.75
short 0.08 5.82 5.90 0.076 24.62 21.52

SDitH [MFG+23] gf256-hyp 0.12 8.05 8.17 7.083 13.59 12.63

MiRitH (this work) fast 0.13 7.69 7.82 0.108 4.70 4.45
short 0.13 5.54 5.67 0.108 32.08 31.90

Table 7: Median time (in MCycles) for MiRitH and MIRA implementations on an 11th
Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz (Turbo Boost disabled).

Set Variant

MiRitH MIRA

Key Signing Verification Key Signing Verificationgeneration generation

I fast 0.109 5.19 4.72 0.126 43.71 43.16
short 31.91 31.76 0.131 51.86 49.45

III fast 0.247 11.10 10.43 0.336 124.49 123.97
short 54.42 54.93 0.343 137.47 134.03

V fast 0.515 19.33 17.95 0.795 375.20 374.66
short 92.39 92.23 0.799 385.78 382.48

relaunch the benchmark on an arbitrary system. The single system benchmark shows that
MiRitH offers a higher speedup over MIRA than implied by the specification document.
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Table 8: Signature Size and Performance comparison in Kilobytes (kB) and MCycles
(Mcc), respectively, of MiRitH against other MPCitH-based schemes on an 11th Gen
Intel(R) Core(TM) i7-11850H @ 2.50GHz (Turbo-Boost disabled), compiled using gcc
11.4.0.

Name Variant
Signature Size (kB) Performance (Mcc)

pk σ pk + σ Keygen Sign Verify

BN++LowMC [KZ22] N = 16 τ = 34 0.03 12.52 12.56 0.015 7.19 6.95
N = 256 τ = 18 0.03 7.80 7.83 0.021 60.52 61.98

BN++ Rain3 [KZ22] N = 16 τ = 33 0.03 6.28 6.31 0.014 2.11 1.92
N = 256 τ = 17 0.03 4.34 4.38 0.017 15.76 15.71

Helium+AES [KZ22] N = 17 τ = 31 0.03 17.17 17.20 0.005 23.59 21.29
N = 255 τ = 16 0.03 9.66 9.69 0.006 60.37 57.66

Helium+LowMC [KZ22] N = 17 τ = 31 0.03 10.91 10.94 0.018 19.37 18.37
N = 255 τ = 16 0.03 6.43 6.46 0.020 64.81 63.19

Banquet [BDK+21] N = 16 τ = 37 0.03 20.47 20.50 0.006 19.00 14.30
N = 255 τ = 21 0.03 12.97 13.00 0.008 124.05 112.08

Rainer3 [DKR+22] N = 16 τ = 33 0.03 8.34 8.38 0.012 2.40 2.24
N = 256 τ = 17 0.03 5.41 5.44 0.014 15.91 15.74

MiRitH (this work) fast 0.13 7.69 7.82 0.108 4.70 4.45
short 0.13 5.54 5.67 0.108 32.08 31.90

In Table 7 we provide a direct comparison between all suggested MiRitH and MIRA
instantiations benchmarked again on a single system. We observe that the speedup of
MiRitH over MIRA increases together with the security category and is generally higher
than indicated by the specification documents.

Eventually, in Table 8 we provide a comparison to recently proposed schemes relying
on the MPCitH paradigm in combination with symmetric primitives, which are not part
of the current NIST competition.
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