
03 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An Experimental Evaluation of Control Flow Checking for Automotive Embedded Applications Compliant with ISO 26262
/ Solouki, Mohammadreza Amel; Sini, Jacopo; Violante, Massimo. - In: IEEE ACCESS. - ISSN 2169-3536. - 11:(2023),
pp. 51185-51198. [10.1109/ACCESS.2023.3279731]

Original

An Experimental Evaluation of Control Flow Checking for Automotive Embedded Applications Compliant
with ISO 26262

Publisher:

Published
DOI:10.1109/ACCESS.2023.3279731

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978771 since: 2023-05-25T09:26:36Z

IEEE

Received 28 April 2023, accepted 21 May 2023, date of publication 24 May 2023, date of current version 1 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3279731

An Experimental Evaluation of Control Flow
Checking for Automotive Embedded
Applications Compliant
With ISO 26262
MOHAMMADREZA AMEL SOLOUKI , (Graduate Student Member, IEEE),
JACOPO SINI , (Member, IEEE), AND MASSIMO VIOLANTE , (Member, IEEE)
Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Jacopo Sini (jacopo.sini@polito.it)

ABSTRACT Random hardware failures (RHFs) may result in data corruption and Control Flow Errors
(CFEs). Hardening strategies are employed to mitigate RHFs in embedded systems, either by adding
specialized hardware or using Software-Implemented Hardware Fault Tolerance (SIHFT) methods. Numer-
ous SIHFT methods have been presented over the years to improve the reliability of embedded systems.
However, evaluating these methods can be challenging in terms of the introduced overhead to the code size
and, particularly important for real-time application execution time. Most of them are implemented in the
literature using low-level languages such as Assembly. Unfortunately, writing Assembly code is not the
preferred development flow for embedded systems applications since functional safety standards require
adopting high-level programming languages such as C. Nowadays, there is still a non-negligible portion of
code written in the Assembly language where the compiler can automatically insert the SIHFT methods, but
these are limited to some high-optimized routines or device drivers. It is possible to compile an application
code and then harden the obtained assembly code. But this introduces a greater overhead than just protecting
a single statement in the high-level programming language before compiling. Hence, the approachwe present
in this paper is to apply SIHFT methods against CFEs, known in the literature as Control Flow Checking
(CFC), to the application code written in C language, before compiling the application code. To illustrate
the proposal, two established software-based control flow error detection techniques implemented in the
C programming language were compared, also considering the effects of the optimizations introduced by
the compiler.Most SIHFTmethods target only soft errors, such as single-event upsets, which typically appear
as bit flips. As a result, the diagnostic figures provided in the literature are insufficient to characterize the
techniques effectively. To address this gap, in this paper, we consider a scenario from the automotive industry
in which the primary concern is permanent random hardware faults, particularly stuck-at faults. Moreover,
we propose a classification compliant with ISO26262 to benefit those developers involved in the automotive
market, where software-only strategies may be used to balance cost and safety requirements.

INDEX TERMS Automotive applications, fault detection, fault tolerance, software reliability.

I. INTRODUCTION
Embedded systems are employed in various industries, such
as aerospace, automotive, and defense, to implement safety

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

or mission-critical applications. Functional safety (FuSa) is
a part of the product safety process that focuses mainly on
the absence of unreasonable risks. For this purpose, FuSa
standards provide reference life cycles to implement embed-
ded systems. In other words, it is required to guarantee that
the system can perform tasks correctly within a defined time

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 51185

https://orcid.org/0000-0002-3430-9706
https://orcid.org/0000-0002-2163-9925
https://orcid.org/0000-0002-5821-3418
https://orcid.org/0000-0002-3360-9440

M. A. Solouki et al.: Experimental Evaluation of Control Flow Checking

or, at least, to bring the controlled physical process into a
safe state. Most current standards derive from IEC 61508 on
functional safety for electrical, electronic, and programmable
electronic safety-related systems. In particular, the standard
for automotive industry applications is ISO 26262, targeting
applications in charge of safety-critical tasks. It was first
released in 2011 and then updated in 2018 [1].

In this concept, the designers aim to prevent systematic
design errors and ensure hardening against Random Hard-
ware Failures (RHFs). An RHF is a failure that affects a
physical component of a computation platform, especially
in this work, a central processing unit register or a (random
access) memory location. While systematic errors can be
avoided with a properly implemented life cycle, RHFs are
unavoidable due to the physical nature of the electronic com-
ponents. For example, consider platooning vehicles, which is
the linking of two ormore trucks in convoy using connectivity
technology and automated driving support systems. In this
example, sensor faults have become a common fault problem
in fault tolerant control (FTC) research, and the frequency of
fault occurrence in the actual system cannot be ignored. The
faults of single or multiple vehicles lead to the breakdown of
the entire platooning system, so the FTC is a critical issue [2].

Hardening the system generally means adding redundancy.
It can be implemented in two ways: (i) adding extra hard-
ware components or (ii) adding software instructions in the
application code. The first strategy requires adding special
hardware modules to the system architecture like watch-
dogs [3], checkers [4], or Infrastructure Intellectual Properties
(I-IP) [5]. On the other hand, software redundancy techniques
are much more flexible and cost-effective in error detec-
tion compared to hardware methods. This is because they
perform extra instructions without any hardware component
changes and allow for monitoring of the application’s correct
execution.

Software-ImplementedHardware Fault Tolerance (SIHFT)
methods are software redundancy techniques that are espe-
cially helpful when other hardening methods result in hard-
ened hardware components with high computation power or
high cost per unit. The component cost per unit is particu-
larly critical for automotive applications, where a design is
produced in tens of thousands of units. On the other hand,
software techniques allow the implementation of dependable
systems without the high cost of hardened hardware but
at the expense of higher development costs. Nonetheless,
this cost can be split over the produced units, making them
economically convenient. Various SIHFT methods have been
proposed over the years, such as Control Flow Check-
ing (CFC) [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18].

Selecting among the various CFC methods proposed in
the literature is challenging. Hence, in this paper, we pro-
pose a comparison methodology that consists of selecting
a set of representative applications, hardening them with
chosen methods, and finally performing the fault injection.

To evaluate our approach, two established CFCmethods were
selected and applied to two benchmarks representing typical
applications used in the Automotive Industry.

In this work, we are mainly concerned with RHFs
caused by permanent stuck-at faults. Most of the proposed
approaches for SIHFT methods target single-event upsets
(soft errors), such as bit flips. As a result, the diagnostic
figures provided in the literature are insufficient to character-
ize the techniques effectively. Therefore, targeting the most
suitable fault models is essential, as we propose in this paper.

In this work, we implemented the CFC methods in the
C programming language, though in the literature, the CFC
methods are usually implemented in assembly. There is still
a non-negligible portion of code written in the assembly
language. Also, implementing SIHFT methods in assembly
lets the compiler automatically insert most SIHFT methods.
One of the reasons for our choice is that implementing in
C, compared to other programming languages, significantly
outperforms execution time, energy consumption, and peak
memory usage for selected benchmarks [6]. In addition,
implementing the CFC method in a high-level programming
language reduces the developers’ challenges in comparison
to using low-level programming languages. Moreover, writ-
ing Assembly code is not the preferred development flow
for embedded systems since the functional safety standards
mandate adopting high-level programming languages such as
C whenever possible (as requested by part 6 of ISO 26262
Standard).

For application codes written in high-level programming
languages, such as C, it is possible to compile and then
harden the obtained assembly code. However, this approach
introduces more significant overhead, especially in terms
of execution time, which is a primary concern for real-
time applications compared to our approach, which includes
protecting single statements in the high-level programming
language before compiling the code. The drawback of our
approach is that the compiler may remove the extra instruc-
tions or change the order of all the instructions to optimize the
code. We also investigated this aspect by repeating the fault
injection campaigns with all four optimization levels offered
by the Gnu Compiler Collection (GCC).

The simulation results were expressed in compliance with
ISO 26262 automotive functional safety standards. These
results are obtained by assessing the efficiency of the CFC
methods based on the RHFs detection, defined by the Stan-
dard as Detection Coverage (DC).

In a nutshell, our methodology features two novelties:
(i) the CFC is implemented in the C programming language,
and the effects of the compiler optimizations on its effec-
tiveness are considered, and (ii) the results are provided in
compliance with ISO 26262.

The rest of this paper is structured as follows. We dis-
cuss the background and related work in Section II, focus-
ing mainly on software-based hardening techniques and
ISO262626-compliant classification. Section III describes

51186 VOLUME 11, 2023

M. A. Solouki et al.: Experimental Evaluation of Control Flow Checking

the proposed fault models and the implemented software-
based hardening techniques, followed by a theoretical anal-
ysis of the effectiveness of the high-level programming lan-
guage implementation. Section IV reports the experimental
setup and the simulation results. Finally, the conclusion is
provided in Section V.

II. BACKGROUND
This section shows software-based hardening techniques
background mainly focuses on control flow checking tech-
niques. Then ISO26262-compliant classification is explained
in detail.

A. SOFTWARE-BASED HARDENING TECHNIQUES
There are three ways to implement data redundancy:
(i) passive, (ii) active, and (iii) hybrid.

The first one is based on a voting mechanism in such that
passive redundancy, i.e., obtaining/computing the data from
multiple independent sources) allows isolating the error and
avoids propagating wrong copy.

The second one, active redundancy, usually is founded by
dividing the error handling into three phases: fault detec-
tion, isolation, and recovery (FDIR). In this approach, if an
error has been detected, the faulty module is replaced with
another one.

The third one, hybrid redundancy, is a combination of
the two previous methods. Namely, it uses error masking
to prevent the system from producing erroneous outputs by
determining, thanks to voting based on FDIR mechanisms,
the fault-free modules of which the output has to be prop-
agated. The monitoring system can detect timing errors by
working in two phases because of watchdogs. The watchdogs
are configured in the system startup with the expected tim-
ing information. Then, at run-time, the watchdogs are reset.
The system is working correctly if the resets occur with the
scheduled timings. In the other case, a time-out error is raised,
triggering proper recovery or mitigation strategies.

Control Flow Checking (CFC) is chosen for this purpose
among the various RHFs protection techniques available in
the literature. It should be mentioned that our case study only
considers permanent faults.

In the automotive industry, the use of high-level pro-
gramming languages is recommended. Moreover, using
CFC techniques perfectly suits the automotive industry’s
needs. Usually, the production-grade embedded software is
developed by adopting the Model-Based Software Design
(MBSD). With this approach, the software is not developed
by a traditional high-level programming language (like C,
C++, or ADA) but resorting a graphical representation of
its functionality in the form of a physical/control model
or a Finite State Machine (FSM). The adopted tools for
developing these models are developed by the company
MathWorks [7].

Their popular tool for describing behavior models
is Simulink, while its package Stateflow is used to

FIGURE 1. Sample code and program CFG example. The execution from
basic block BB1 to BB2 or from BB1 to BB3 are legal, but a jump from
BB1 to BB4 is illegal and called Control Flow Error (CFE).

develop FSMs. Since these are commonly implemented soft-
ware units, CFC is perfect for hardening them against RHFs.

The main idea of CFC is to verify that the program per-
forms in the correct order. Before diving into the specific
implementation adopted to develop the benchmark appli-
cation mentioned in this paper, we summarize the CFC
techniques.

Various CFC techniques have been proposed to detect
faults that modify the execution flow. A common way to
implement this approach is through signature monitoring.
It does not require special hardware or operating system
requirements and is based on inserting some redundant
instructions into the software unit source code. Thanks to
this characteristic, it is adaptable to any COTS microcon-
troller, including low-power consumption units. Moreover,
CFC does not interfere with hardware-based hardening tech-
niques, like watchdogs, and can be accelerated if external
hardware support is available to execute run-time signatures
from the instructions and compare them with the expected
ones.

At the bottom of CFC, the main idea is the concept of a
Control Flow Graph (CFG). CFG is a methodology to divide
the program code within basic blocks (BBs).

BBs are maximal sets of ordered instructions that run
sequentially from the beginning to the end. So a BB cannot
contain branching instructions, such as jumps or calls to
functions, since they change the execution flow. The only
exception is the last instruction of the block, which can jump
to the first instruction of another BB.

More formally, by defining an oriented graph composed of
a set of vertices denoting basic blocks V = {v1, v2, . . . , vn}
and the set of edges E = {brij|brij is a branch from vi
to vj} denoting the legal set of possible jumps between the
basic blocks, a program can be represented by the graph,
G = {V ,E}. Any branch not present in E is illegal and hence
denotes a Control Flow Error (CFE). Please note that the
legal branches, represented as edges contained in E , are not
necessarily defined by explicit branch instructions but may
be implicit through execution paths, jumps, subroutine calls,
and returns. A graphical representation of CFG for a sample
source code developed in the C language can be found in
Figure 1.

Software-based CFC methods use CFG alongside signa-
tures computed by redundant instructions to detect illegal

VOLUME 11, 2023 51187

M. A. Solouki et al.: Experimental Evaluation of Control Flow Checking

branches. The basic idea of signature-monitoring techniques
is to have a static signature for each BB of a given program
and a dynamic global signature. In all CFE detection meth-
ods, a unique static signature is associated with each basic
block. CFC methods should be able to detect three types of
CFEs:

1) CFEs due to unwanted jump of the program flow from
a legal BB to an illegal BB (so a jump not present in the
E set). These are called inter-block CFEs.

2) CFEs that represent an unwanted jump of the program
flow from a legal BB to an unused memory space.

3) CFEs that manage an unwanted jump of the program
flow from the BB to another space in the same BB by
BB partitioning (e.g., the BB is split into partial-BBs
even if they are not present in the CFG).

CFC methods trigger all approaches of detection action in
an exact way. First, the CFG is generated by the high-level
language source code, then the BB signatures and their com-
putation methods are defined. While the hardened software
component is executing, the signature values computed at
run-time will be compared with the predetermined signature.
Finally, an error signal that triggers the detection will be
activated in case of a mismatch.

Examples of such methods are Enhanced Control Flow
Checking using Assertions (ECCA) [8], CFC by Soft-
ware Signature (CFCSS) [9], Control-flow Error Detection
through Assertions (CEDAs) [10] and Assertion for CFC
(ACFC) [11]. As explained before, all these approaches are
based on comparing the run-time signature computed value
with the expected values assigned to each block at the design
or compile time. This approach provides misbehaviors detec-
tion. We will clarify them below to shed more light on the
techniques.

Enhanced Control Flow Checking Using Assertions
(ECCA) method was proposed by [8]. The idea is to allocate
a unique numerical identifier to each BB of a program. When
the processor executes a new BB, particular assertions check
the control flow using the involved BBs identifiers. ECCA
methods, extending the CCA technique, can detect all CFEs
between diverse BBs but can neither detect errors inside
the same BB nor faults that cause incorrect decisions on a
conditional branch.

In Control Flow Checking by Software Signatures
(CFCSS), which is discussed in [9], instead of their sources,
are evaluated at the destinations of all branches and then
jump. During execution, a global variable G is initialized with
the signature of the first BB of a program.When transitioning
from one BB to another, CFCSS calculates the target block
signature from the source block’s signature by using the XOR
function to determine the difference between the signatures
of the source and target blocks. Control flow will be checked
by comparing the computed signature with the expected one.
The method described in [9] inserts control flow check-
ing assertions manually. This will be done by adding a
few instructions at the beginning of each BB. First, check
the incoming signature variable and then set its outgoing

signature. This way, it is possible to guarantee that the exe-
cution flow is working accurately. It needs no dedicated
hardware, such as a watchdog for CFC. It implies that CFCSS
can be used even when the operating system does not support
multitasking. CFCSS is not able to detect errors if multiple
BBs transition, at their ends, to a common BB.

The authors of [10] proposed Control-flow error detection
using assertions (CEDA) by assigning a signature verification
at the beginning and end of each BB, detecting the aliasing
errors by maintaining unique signatures for each one of the
aliased blocks. CEDA uses run-time signatures to efficiently
detect faults in the control flow by inserting them during
compilation. By doing so, CEDA can detect all faults that
violate the program flow graph but cannot detect incorrect
but legal jumps (according to the programflow graph). There-
fore, CEDA cannot achieve complete fault detection.

Assertions for Control Flow Checking (ACFC), mentioned
in [11], is a classification design for control flow faults
and the control checking method that does not depend on
the predecessor-successor relationships between BBs. The
technique inserts fewer instructions than previous methods.
Therefore, the method has less memory overhead than the
previous technique but worsening its detection performance.

‘‘Yet Another Control-Flow Checking using Assertions’’
(YACCA) technique is one of the most powerful (in terms of
detection capabilities) among the methods explained in [12].
This method assigns a unique signature to each BB entry and
exit point. The advantage of this method is it makes it possible
to detect CFEs that happened when the program flow jumped
from one BB’s inside to one of its legal successors, even if
the successive BB gives back the control to the BB affected
by the wrong jump. This is possible since the signature is re-
assessed before each branch instruction to drop the wrong-
successor CFE. The YACCA has fewer undetected errors and
higher performance overhead compared to CFCSS.

Software-Based Control Flow Checking (SCFC) was pro-
posed by [13]. The technique uses two run-time variables:
A variable containing the BBs’ run-time values ID and a
variable containing the run-time signature S. The compile-
time signature is constructed as in SEDSR.

A CFE can be detected at two places in the basic block;
in the run-time ID or the run-time signature S that contains a
wrong value. The ID should contain the compile-time value
of the BB, and the S should contain a signature that indicates
the predecessor BB. ID and S are updated at different places
in the basic block. The S is updated in the middle of the BB
after verifying it, while the ID is updated to the compile-time
id of the successor block at the end of the BB.

Another approach is Hybrid Error-detection Technique
using Assertions (HETA) [14]. By using HETAwe can detect
incorrect jumps during the program execution. HETA devel-
ops CEDA techniques and associates them with hardware
resources, a watchdog, for achieving complete fault detec-
tion. Using HETA methods cannot detect 100% faults in the
control flow because it only detects errors that violate the
CFG: an incorrect instruction that branches to a BB that is

51188 VOLUME 11, 2023

M. A. Solouki et al.: Experimental Evaluation of Control Flow Checking

a legal successor will not be detected since it does not feature
mechanisms to reveal data errors.

Software-only Error-detection Technique using Assertions
(SETA) is another approach. It was proposed in [15] for rec-
ognizing CFEs in processors without hardware-implemented
hardening techniques. By utilizing this method, they can
reduce the computation units’ costs. SETA is based on two
previously described techniques: HETA and CEDA. These
techniques use run-time signatures to identify errors related
to the control flow. Signatures are calculated a priori and
comparedwith the signature computed at run-time. The appli-
cation code is divided into BBs. Two Basic Block Types
(BBTs) are defined: A and X. Type A is the BB with multiple
predecessors, and at least one of its predecessors has multiple
successors. BBs without these conditions are called type X.
Then, defined BBs are grouped into networks, and BBs shar-
ing a common predecessor refer to the same network.

Every BB has two different signatures. The first is called
Node Ingress Signature (NIS), compared when entering the
BB. The other is called Node Exit Signature (NES), which is
checked when exiting the basic block. The NIS describes the
current basic blocks, and the NES is used to identify the suc-
cessor network and its legal successor BBs subsequentially.

The Relationship Signatures for Control Flow Checking
(RSCFC) was proposed in paper [16]. The method encodes
the control flow relations between different BBs into spe-
cially formatted signatures and then inserts CFC instructions
into every BB’s head and end. This technique detects inter-
block CFEs with three variables: a compile-time signature si,
the CFG locator Li, and the cumulative signature mi. RSCFC
has a higher fault detecting rate than CFCSS. The main
drawback of this method is a higher performance overhead
w.r.t. the previously described methods.

To summarize, signature monitoring methods like, for
instance, YACCA [12], CFCSS [9], CEDA [10], RASM [17],
SEDSR [13], and ECCA [8], exclusively addressed illegal
inter-block jumps during application execution bymonitoring
run-time signatures with compile-time signatures at the basic
block level. The essential difference among these techniques
is how signatures are computed and checks are performed.

To improve the aforementioned methods providing cov-
ering illegal intra-block jumps, instruction monitoring tech-
niques, such as the previously described RSCFC [16],
Software implemented error detection (SIED) [18], and Ran-
dom Additive Control Flow Error Detection (RACFED) [19]
were developed to inspect whether instruction executed in
the correct order. Moreover, in [20], a software behavior-
based technique is presented to detect CFEs in multi-core
architectures. [21] has presented the Software Implemented
Hardware Fault Tolerance (SIHFR) approach to CFEs online
detection, which is considered an appropriate method for
safety-critical applications implemented by low-cost embed-
ded systems in which availability and execution speed are
minor issues. Since other details on control flow errors are
outside this paper’s scope, if interested, you can refer to [12]
for more information.

As a final point, it is essential to remark that there is a trade-
off among the aforementioned methods regarding achieved
detection rate and computed time overhead, depending on
the number of additional statements inserted in the various
proposals.

Table 1 reports a comparison between CFC methods.
The table reported detection coverage, and overheads are
measured by [17] and [19] on implementation done at the
assembly level. They used their software-implemented fault
injection (SWIFI) tool to validate comparisons between
techniques.

B. ISO26262-COMPLIANT CLASSIFICATION
The ISO26262 is a functional safety standard designed for
automotive applications. It was released in 2011, and the
recent edition, the second edition, was updated in 2018 [1].
This Standard requires detection provision and mitigation
systems to respond appropriately to RHFs.

The main part of assessing a design, which is described
in part 5 (Product development at the hardware level) of the
Standard, is the so-called Failure Mode, Effects, and Diag-
nostic Analysis (FMEDA). A crucial point of this analysis
is to determine whether RHFs are detected as well as to
evaluate the effectiveness of the adopted mitigation strate-
gies. For this reason, we are focusing only on the detection
mechanisms.

As a piece of information, failure modes for semiconductor
components are described in part 11 (Guidelines on the appli-
cation of ISO 26262 to semiconductors, added in the second
update of the Standard).

The core idea of this paper is to compare, in a way com-
pliant with ISO26262, the effectiveness of CFC methods
performed in the C programming language on applications
developed by means of MBSD. To achieve this result, it is
needed to perform fault injections and then classify the
results. The model for the injected faults will be described
in Section III-A.

The fault injection environment and classifier are explained
in [22]. Here, we just provide an overview tomake it easier for
readers to understand the simulation results without reading
the aforementioned paper.

The classification is based on describing the application’s
behavior by comparing outputs with the fault-free execution
(‘‘golden run’’) and analyzing the Program Counter (PC)
register flow after the fault has been injected. Seven possible
outcomes have been defined:

• ‘‘Latent after injection’’: fault injected and behavior
identical w.r.t. the fault-free run.

• ‘‘Erratic behavior’’: behavior different w.r.t. the fault-
free run.

• ‘‘Infinite loop’’: PCmoves in an infinite loop not present
in the original program flow but created by the inter-
action between the source code and the defective PC
register.

• ‘‘Stuck at some instruction’’: PC remains stuck, pointing
to a valid instruction. This happens when the injected

VOLUME 11, 2023 51189

M. A. Solouki et al.: Experimental Evaluation of Control Flow Checking

TABLE 1. Compare control flow control techniques.

failure prevents the PC to increase its value (especially
when the 3rd bit is involved).

• (Detected) ‘‘by SW hardening’’: detected by the CFC.
• (Detected) ‘‘by HW (mechanism)’’: PC pointing outside
the FLASH/RAM addressing space or any other trigger-
ing of hardware traps.

• ‘‘As golden’’: detected with an output identical to the
golden run. This classification differs from the ‘‘Latent
after injection’’ since the latter represents a fault that has
not been detected, while the ‘‘as golden’’ represents a
fault that does not have any effect on the output of the
application but that has been detected.

Moreover, the other four outcomes are provisioned. ‘‘Latent,’’
‘‘error,’’ and ‘‘undefined’’ are not related to the application
itself but are inserted tomonitor the classifier, while the fourth
one, ‘‘false positives,’’ indicates the presence of defects in the
CFC implementation.

The classification required to determine the Diagnos-
tic Coverage (DC), expressed by the ISO26262 in terms
of ‘‘detected’’ if an embedded mechanism is able to
find the presence of the considered RHF, or otherwise
‘‘undetected’’.

Considering the ‘‘detected’’ class, two other subclasses can
be defined: ‘‘safe’’ if the RHF cannot have dangerous effects
on the user of the item or the surrounding environment, or just
‘‘detected’’ if it is not possible to make such an assumption
(like in the case of this paper, where the mitigation strategies
are not considered).

On the other hand, considering the ‘‘undetected’’ class, it is
possible to define two subclasses: ‘‘latent’’ if the RHF has
not any effects on the behavior of the item, or ‘‘residual’’
otherwise. A third (not defined by the ISO26262) subclass,
called ‘‘false positive,’’ has been defined just to describe the
probability that the detection mechanism is wrongly trig-
gered. In any case, on an excellent detection mechanism, the
frequency of this subclass shall be 0%.

The ISO26262-compliant classifications are computed by
the following formulas, considering:

• N the number of injections;
• L the number of ‘‘latent after injection’’ outcomes;
• DHW the number of simulationswhere a hardwaremech-
anism has detected the RHF;

• DSW the number of simulations where the RHF has been
detected by the CFC;

• U the experiment in where the application entered an
‘‘infinite loop’’, remained ‘‘stuck at some instruction’’,

or presenting an ‘‘erratic behavior’’.

Safe =
As golden

N

Detected =
DHW + DSW

N

Latent =
L
N

Residual =
U
N

False positive =
false positive

N
TheRHF has been considered detected, following the concept
of the Fault Tolerance Time Interval (FTTI) of the Standard,
only if the detection happened within a certain amount of
machine instructions. For all the simulations of this paper,
this value is set to 200 assembly instructions. This has been
chosen since it is sufficient to allow the execution of more
than one BB.

III. PROPOSED APPROACH
The proposed approach is described in this section, focusing
on fault models and the implemented software-based harden-
ing techniques on benchmarks. Then, a theoretical analysis
of the effectiveness of the implementation in the high-level
programming language is provided.

A. FAULT MODELS
For the sake of this work, since CFCs can detect only fault
models (FMs) directly or indirectly modify the instructions
flow, we considered only those affecting the ProgramCounter
(PC). We chose to inject faults into the PC register since it
directly affects the instructions flow. Considering the scope
of CFCs, we know without any need for simulation results
that failures affecting data or making the program follow a
wrong but legal (present in the CFG) path are not detected.
For example, choosing a wrong path on conditional assertion
(e.g., if-else) due to corruption on the variable to which the
condition will be applied cannot be detected.

We decided to use the Fault Injection system presented
in [22]. The Fault Injection Manager (FIM) described
in the paper mentioned above features two fault models:
(i) ‘‘Permanent’’ and (ii) ‘‘PermanentStuckAt’’.

‘‘Permanent’’ affects only one bit of the target register.
It remains, from the injection time on, fixed to 0 or 1.

The ‘‘PermanentStuckAt’’ affects the entire register glob-
ally, making it stuck to a fixed value.

51190 VOLUME 11, 2023

M. A. Solouki et al.: Experimental Evaluation of Control Flow Checking

For the simulation campaigns, we decided to use only the
‘‘Permanent’’ fault representing, coherently with the defini-
tion commonly found in literature, a condition when a bit
inside the affected register remains permanently stuck at 0 or
1 from the moment of injection till the end of the simulation.
Injection time, the affected bit, and its state are randomly
chosen.

B. IMPLEMENTED SOFTWARE-BASED
HARDENING TECHNIQUE
The two CFC techniques were implemented manually in the
C listing of the two benchmarks, which were produced by
means of automatic code generation using Simulink Coder
based on the MBSD approach.

The first benchmark is a Finite State Machine (FSM)
implementing a timeline scheduler (TS). A timeline scheduler
is a periodic task executed based on a timer triggering an
interrupt, in charge to run, in a fixed order defined by the
system designer, a set of tasks. In our benchmark, we have
15 tasks that shall be executed in a fixed order, granting each
of them a 200 ms time slot.

The second benchmark is a software-implemented con-
troller in charge of keeping the liquid level contained in a
tank at the desired height with an on-off logic (T). It takes
the liquid level inside the tank alongside the current absorbed
by the pumps. Based on this data, it decides when to turn the
pump on and generates an alarm in case of detection of over-
currents. In this case, it shuts down the pump to avoid damage
to its motor.

It is implemented as an FSM and contains the decision
logic and an independent monitoring checker to verify that
the physical plant properly executes the commands from the
decision algorithm.

We chose these two benchmarks since they can represent
applications similar to the real automotive one, that cannot
be used for intellectual property protection reasons. The first
benchmark, referred to in the following as TS, is needed to
implement any operating system dealing with periodic tasks.
At the same time, the latter, referred to in the following as T,
is commonly found in industrial applications and, considering
the automotive domain, is similar to algorithms controlling
battery charge level in electric and hybrid vehicles.

Figure 2 shows the model-based development flow indi-
cating when the CFC methods were applied in the high-level
programming language based on the proposed approach.

We chose YACCA and RACFED since they are based
on different philosophies (bit mask vs. random numbers,
only inter-block vs. intra-block detection capabilities). Due
to these two different philosophies, we chose YACCA due
to its extreme simplicity of implementation, while RACFED
since it is one of the most recent.

1) YACCA
We adopted the methods described in [12] and [21], where
YACCA was proposed as a software-implemented RHF
detection mechanism suitable for safety-critical applications.

The program has been divided, as described in section II,
into BBs. A vertex in the CFG represents one BB. Each one
of the vertices are associated two different random numbers
(signatures) embedded into the C code at compile-time. The
first signatures represent the ID of the BB, while the second
one is the mask of its predecessors.

Since signatures have been assigned to eachBB at compile-
time, it is possible to compute them independently at run-time
and then compare the latter with the assigned one. In this
case, the algorithm makes use of two variables: ERR_CODE
and IDs. A unique ID corresponding to a power of 2 (to have
only 1-bit, assigns 1 in binary representation) is assigned to
each BB.

At the program start-up, ERR_CODE is set to equal 0, and
IDs is equal to the ID of the first BB that will be executed.
When the program enters a BB, it checks if the content of

IDs is equal to the ID of the current BB. If this condition is
not verified, the ERR_CODE variable is increased by 1.

When the BB ends, before jumping to the next BB, it resets
the IDs content by performing anANDoperation between IDs
itself and a mask corresponding to the bit-wise NOT of its ID,
then OR it with the ID of its legal successor.

If the program flow is correct, the first comparison is
verified, so ERR_CODE remains 0. Then IDs is set to all zeros
by the AND operation (if IDs is the correct one, the bit-wise
NOT of the current state ID is also the bit-wise NOT of IDs,
hence IDs NOT ID = 0) and can be set to the ID of its legal
successor by the OR operation. In the case a CFE happens, the
AND followed by the OR operations sets two different bits
to 1, so none of the BBs can successfully pass the comparison
between IDs and its ID, causing ERR_CODE to increase.

2) RACFED
Another technique we opted to implement in our benchmark
is RACFED [19]. Below its implementation steps will be
discussed in detail.

1) Firstly, for each BB there are two signatures needed
at compile time compile time signature
(CTS) and subRanPrevVal. The CTS is a random
number defining the expected signature value.
In the case that there are more than two pay-
load instructions inside the considered BB, a ran-
dom number is assigned for each payload instruction.
subRanPrevVal is the sum of all the chosen com-
pile time random numbers previously assigned to the
payload instructions.
It should be noticed that subRanPrevVal is equal to
zero if BB has less than two instructions.

2) Consider now the execution of a BB after the sig-
nature check (see Figure 3 for an example). After
each payload instruction is executed, run time
signature (RTS) is increased by the random
value assigned in the previous step to each payload
instruction. This process allows for the detection of
intra-block CFEs.

VOLUME 11, 2023 51191

M. A. Solouki et al.: Experimental Evaluation of Control Flow Checking

FIGURE 2. Indication, inside the model-based flow, indicating when the CFC is applied using high-level programming languages. The source
code is obtained automatically via the Mathworks Embedded Coder from a Simulink semi-formal model, then the obtained source code is
manually hardened.

3) Next, at the end of the considered BB (all payload
instructions have been executed), an adjustment
value is computed as the sum of its CTS and the
sum of all the random numbers assigned to its payload
instructions (numerically equal to subRanPrevVal
but independently computed at run time), then by sub-
tracting the CTS and subRanPrevVal of its suc-
cessor BB. At the end of considered BB, the RTS is
increased by the yet computed adjustment value
(starting the two-phases RTS update).

4) Finally, RTS is updated at the beginning of the suc-
cessor BB, (concluding the two-phases RTS update)
by subtracting the subRanPrevVal of its predeces-
sor. At this point RTS shall equal CTS. If not, CFEs
happened, otherwise CTS equals RTS and the process
repeats from step 2.

To simplify the implementation of the algorithm, consider-
ing that each state of our FSMs contain a branch instruction,
and that the branches have a different number of C code state-
ments (in this specific case, 4 and 1, respectively), we decided
to choose random numbers such that the sum is the same
regardless the chosen branch.

The reader can find the branch instruction at line 162 of
Figure 3, where it is possible to see that the sums in both the
execution paths are the same: the sum obtained by executing
the statements at lines 165, 169, and 173 (respectively adding
25, 35, and 67 to the signature) is the same as executing the
statement at line 177, which adds 25+35+67=127.

C. IMPLEMENTING CFC METHODS IN HIGH-LEVEL
PROGRAMMING LANGUAGES
Usually, CFC techniques are implemented in the assem-
bly language. Nonetheless, it would be too time-consuming
and error-prone. Moreover, international standards like the
ISO26262 prescribe that the code has to be written, with
some minimal exceptions, in a structured way using a high-
level programming language. We decided to harden the code
by implementing the CFC methods in the C programming
language.

For CFC methods, maintaining the instruction order is
crucial to allow the correct signature update. Moreover,
if the update is based on some arithmetic computations, the

compiler can merge all the partial sums to obtain the right
numerical results before the correctness verification. These
optimizations can affect the detection capabilities of the CFC
method. To investigate this possibility, we designed the exper-
iments with each of the 4 optimization levels O0, O1, O2, and
O3, offered by GCC for RISC-V.

RACFED was developed based on Random Additive Sig-
nature Monitoring (RASM) technique [17] to detect both
inter-block and intra-block CFEs. RASM is a signature mon-
itoring technique that uses two gradual signature updates and
one signature verification per BB. Using gradual updates
means that all updates on a specific, intentional path are
linked together, acting as one update. Skipping one gradual
update implies that the run-time signature can never hold
the correct value again. Of course, compiler optimization
can also affect these gradual signature updates, making it
act as a single update in the compiled application. However,
RACFED extends this functionality by inserting gradual sig-
nature updates after each instruction inside the run time
signature (RTS) variable [19].
To verify whether the hardened code is correctly trans-

lated in Assembly, first, the code of a BB hardened
with RACFED should be compiled with no optimizations;
then, the obtained assembly code should be investigated.
Then, it is possible to verify if the compiler changes the
order of the instructions. The result of this experiment is
discussed in IV.

In addition to the compilation process, compiler optimiza-
tions can also affect RACFED. To verify if the compiler
impacts RACFED effectiveness by filtering out its instruc-
tions, first, the code of a BB hardened with RACFED should
be compiled with optimizations; then, the obtained assembly
code should be investigated. The result of these experiments
is discussed in IV.

IV. SIMULATION RESULTS
This section shows the obtained simulation results, describes
the chosen RISC-V environment, and provides how the per-
formances of the hardening techniques have been assessed.
Finally, it covers the fault injection results, diagnostic cov-
erage, and overheads for both CFC methods when compiled
with different optimization levels.

51192 VOLUME 11, 2023

M. A. Solouki et al.: Experimental Evaluation of Control Flow Checking

FIGURE 3. Mapping between the signature updates instructions in C and the relative Assembly (RISC-V RV32I) translation. It is possible to see that
GCC, configured with O0 optimization settings, keeps the instructions in order.

A. TARGET PLATFORM
The target platform on which we run the benchmark appli-
cation is based on RISC-V. It is a free and open Instruction
Set Architecture (ISA) introduced by the University of Cali-
fornia, Berkeley [23]. RISC-V is based on Reduced Instruc-
tion Set Computing (RISC) theory to decrease hardware
implementation costs, improve performance, and simplify
instruction specifications. Developers can take advantage of
RISC-V to modify the architecture to suit specific applica-
tions or to remain open to applications made by programmers
unaware of the underlying hardware. It allows developers
to combine the advantages of both worlds [24], providing
flexibility to both hardware and software. The benchmark
applications considered in this paper were compiled using the
GNU RISC-V Toolchain [25].

As the target platform, as described in [22], we choose
RISC-V RV32I, simulated at the ISA level thanks to the
QEMU (Quick Emulator) [26].

QEMU is an open-source machine emulator and virtualizer
written by Fabrice Bellard. Most parts are licensed under
GNU General Public License (GPL), others under different
GPL-compatible licenses. The main reason QEMU was used
in our proposal is to make the test bench agnostic to ISAs,
allowing for application on different architectures.

The GNU DeBugger (GDB) [27] is used to interact with
QEMU. The fault injection is managed by a Fault Injection
Manager that writes the GDB scripts needed to inject the
faults and log the simulation results. The classifier uses these
results to assess the fault injection results.

B. HARDENING TECHNIQUE PERFORMANCE
ASSESSMENT
As described in section III-B, the source codes were gen-
erated directly from the Simulink StateFlow chart via the
Embedded Coder and then were hardened manually.

To verify whether the hardened code is correctly translated
in Assembly, the code of a BB hardened with RACFED
was compiled with no optimizations (of course, with the O0
optimization flag of GCC). In Figure 3, it is possible to verify
that the compiler with the aforementioned settings did not
change the order of the instructions.

When the benchmarks are compiled with optimization
flags enabled, the execution time overhead decreases. Still,
as expected, this reduction in execution time overhead is
counterbalanced by a reduction in error detection.

In addition to the compilation process, compiler optimiza-
tions can also affect RACFED. To verify if the compiler
impacts RACFED effectiveness by filtering out its instruc-
tions, the code of a BB hardenedwith RACFEDwas compiled
with optimizations. We found that the compiler filters out the
mechanism’s operation and makes it less effective, as better
described in the following sections.

Before starting with the fault injections, a golden execution
was performed for each campaign. A golden execution runs
when the target system is simulated without injecting any
faults. It is needed to obtain a log file representing the bench-
mark applications’ nominal behaviors and gather information
on the target system and the simulator’s state. Moreover, it is
a way to guarantee no false positive detections.

VOLUME 11, 2023 51193

M. A. Solouki et al.: Experimental Evaluation of Control Flow Checking

C. FAULT INJECTION RESULTS
We conducted 13 campaigns, each one of 1000 injections of
‘‘Permanent’’ faults affecting the Program Counter (PC) of
the target. There needs to be more than this number of injec-
tions to provide statistical results, but the CFC methods have
already been proven effective in the literature. The purpose
of this work is not to assess their effectiveness again but to
provide data about the Diagnostic Coverage to application
developers in a realistic scenario, taking into account also the
effect of the optimization introduced by the compilers.

The 13 campaigns are organized as follows:
• 7 campaigns with O0 optimizations

– 5 have been performed on the timeline scheduler
(TS) benchmark;

– 2 on the Tank level controller (T).
• Moreover, other 6 campaigns have been conducted on
the TS benchmark:
– 3 for the TS hardened with YACCA;
– 3 for the TS hardened with RACFED.

Each campaign has been performed by compiling the
application with the remaining 3 optimization lev-
els (O1, O2, and O3), obtaining all the possible
combinations.

In all the campaigns, the injected ‘‘Permanent’’ faults are
of the stuck-at type, described as one of the bits composing
the registers remaining stuck at 0 or 1 from the moment of
the injection up to the end of the simulation. When injecting
stuck-at faults on the PC, the expectation of an unwanted
instruction only happens if the stuck-at fault changes the PC
value. Since the PC is 32-bit long, injecting a stuck-at fault
on its most significant bits will lead to a considerable jump
in the instruction memory. It is noteworthy that all the stuck-
at faults were injected in random positions of the PC bits at
random times.

The same faults have been injected on both YACCA and
RACFED. Considering the campaigns with O1, O2, and O3
optimization levels, we injected faults only on TS since the T
benchmark seemed unsuitable to be hardened with CFC (very
low detection rate).

The results obtained from the classifier for YACCA and
RACFED are available in Table 2. In both tables, columns
show the benchmarks on cumulative results which the fault
injection campaign was conducted for different random fault
injection masks. TS stands for the timeline scheduler bench-
mark, and T stands for the tank level controller benchmark.
In each row, the number of occurrences of 5 different out-
comes is reported.

Analyzing the experimental results where the CFC is not
able to detect the failures (rows for ‘‘infinite loop’’ or ‘‘Stuck
at some instructions’’), it is possible to observe a known
limitation of the selected CFCmethods. Since the application
and the CFC code are executed on the same computation
unit, no detection is possible if the error prevents the CFC
test instructions from executing. ISO26262 indicates these
cases as ‘‘not free from interference’’ since the same cause
can affect both the benchmark and the CFC code.

In Table 2, there is no ‘‘Infinite loop’’ or ‘‘Stuck at some
instruction’’ outcomes for the T benchmark with hardening
with RACFED. This observation, alongside the very high rate
of ‘‘Latent after the injection’’ outcomes for the TS bench-
mark, shows how much the effectiveness of the hardening
method is application-dependent. Suppose no decisions (and
hence transitions between BBs) are performed in the time
window between the injection and the end of the simulation.
In that case, the injected faults remain latent due to the
impossibility of executing the CFC’s test instructions. In the
case of sufficient spare execution time, a possible proposal to
solve this issue can be to add a dummy control flow to check if
the computation unit is working correctly. This solution can
be adopted when an online test is unavailable for the target
platform, or the application should not depend on any specific
platform for commercial or intellectual property protection
reasons.

The detailed experimental results for the campaigns are
reported in Table 2 for the experiments without almost all
compiler optimizations (O0), and in Table 3 and Table 4 for
the three levels of optimization.

D. DIAGNOSTIC COVERAGE
The results shown in Section IV-C were transposed into ISO
26262-compliant classifications, which requires computing
the Diagnostic Coverage (DC) of the proposed CFCmethods.
The obtained results are presented in Table 5 and Table 6. It is
important to remark that the ‘‘Detected’’ column is calculated
by taking into account both hardware and software-detected
failures; hence, in the following analysis, this sum is consid-
ered. More specifically, the ‘‘Detected’’ column in Table 5
is the sum of the last two rows of Table 2 for YACCA and
RACFED methods.

We can observe no ‘‘safe’’ detected failures for the TS
benchmark, while the ‘‘safe’’ detected failures are predom-
inant for the T benchmark. The state in the Time scheduler
(TS) benchmark FSM is changed continuously. Since the
FSM is implemented by switch-case structures, every
time the state is updated, the BBs are changed accord-
ingly. On the other hand, the states of the Tank level Con-
troller (T) benchmark FSM are changed only in reaction to
input changes. However, considering the tank level inertia
with respect to its controller update time (10 milliseconds),
the controller usually keeps the current state, avoiding BB
changes.

Table 5 considers the codes compiled with no optimiza-
tions (O0). Starting with YACCA, its DC for TS benchmark
is 67.49% and for T benchmark is 2.80%. It is important
to note that YACCA does not feature intra-block detection
mechanisms, so skipping only one instruction results in a high
probability of remaining unnoticed.

As shown in Table 5, hardening the TS benchmark and
T benchmark with RACFED, its DC respectively 56.80%
and 0.3%. This observation is due to the fact that RACFED
features intra-block detection mechanisms.

51194 VOLUME 11, 2023

M. A. Solouki et al.: Experimental Evaluation of Control Flow Checking

TABLE 2. Cumulative classifier results obtained from the 7 fault injection campaigns evaluating the YACCA and RACFED methods without compiler
optimizations, manually implemented directly in C code, on benchmarks. The ‘‘As Golden’’, ‘‘False Positive’’, ‘‘Undefined’’, and ‘‘Error’’ results are all zero
for all columns, so they are not reported in the table.

TABLE 3. Classifier results obtained from the fault injection campaign
assessing the YACCA implemented manually directly within the C code on
TS benchmark with different compiler optimizations. ‘‘As golden’’, ‘‘False
positive’’, ‘‘Undefined’’, and ‘‘Error’’ outcomes are all zero for all the
columns, so they are not reported in the table.

TABLE 4. Classifier results obtained from the fault injection campaign
assessing the RACFED implemented manually directly within the C code
on TS benchmark with different compiler optimizations. ‘‘As golden’’,
‘‘False positive’’, ‘‘Undefined’’, and ‘‘Error’’ outcomes are all zero for all the
columns, so they are not reported in the table.

Considering the ‘‘Undetected failures’’ in Table 5, there
are 11.0% and 88.30% of ‘‘latent’’ undetected failures for
the hardening TS benchmark and T benchmark hardening
with YACCA, respectively. The ‘‘latent’’ undetected failures
for hardening benchmarks with RACFED are 8.60% for TS
benchmark and 94.50% for the T benchmark. This outcome
can be explained considering that the fault injection can affect
a higher significant bit. If the affected bit is stuck at a value
equal to the expected one, the PC is the same as expected.
Hence the fault does not affect the code execution. For the
T benchmark, the number of ‘‘latent’’ undetected failures is
greater in comparison to TS benchmark since it changes states
less frequently compared to the TS benchmark, so a situation
where its output remains stuck can remain unnoticed for a
longer time.

The ‘‘Residual’’ undetected failures for the TS benchmark
hardening with YACCA for TS benchmark is 20.92% and
for T benchmark is 4.90% and using RACFED and from
38.5% and 0.0% for TS and T benchmarks. These failures
are not detectable by the CFC itself but can be detected as
timeout errors thanks to external hardware components like
watchdogs. Considering the T benchmark, this case is rare:
4.9% occurrences for YACCA and 0.0% for RACFED.

In conclusion, considering Tables 2 as observed in the rows
titled ‘‘Detected by SW hardening+ safe,’’ the CFCmethods
can increase the system DC by an average of 15,65% in a
realistic scenario. These results may not appear impressive.
However, considering that these SIHFT methods should be
employed alongside other hardening methods like watchdogs
andmemory error detection and correction, they can be useful
to reach a high diagnostic rate (usually≥99%) required by the
Standard.

Table 3 and Table 4 show results with different com-
piler optimizations obtained on the TS benchmark, Table 6
the obtained DCs, and finally Table 7 the corresponding
overheads.

Starting from the results in Table 3, the diagnostic coverage
(SW only) for YACCA is the best at O1, while the DC is
similar for O0 and O2, with O2 being slightly better than
O0. Overall with all three different compiler optimizations,
the DC is improved compared to the case where no compiler
optimizations were used (O0). This can be explained, con-
sidering that YACCA does not feature intra-block detection.
Hence the code will be shorter in each optimization, and the
probability that the failure inside the PC triggers a detectable
CFE increases. Moreover, the transition between BBs is due
to transitions inside the application algorithm, so the opti-
mization cannot strongly affect them.

A similar story can be seen in Table 4 for RACFED, which
also features intra-block detection capability. From O0 to O1,
the detections by software increased from 93 to 183. The
same pattern, even if less evident, is observed from O2 (136)
to O3 (156). To explain this phenomenon, we analyzed the
generated Assembly code. Between O0 and O1, the intra-
block signature update instructions are almost kept in the
correct order, but the occupied program memory is shrunken
(causing the CFC test function calls to be closest to each
other) of about 20%. Similar to YACCA, this leads to an
increase in the probability that the failure causes a detectable
CFE. Repeating the analysis for O2 and O3, we observed
that the intra-block updates are merged, completely losing
the intra-block detection offered by RACFED. But again,
shrunken occupied program memory section increases the
probability of a detectable CFE between O2 and O3.

In Table 6 the DCs for different compiler optimizations
are reported. We can observe that, for YACCA, the DC
decreases as the optimization levels increase (shortened
code counterbalances Detected with the Undetected ones).

VOLUME 11, 2023 51195

M. A. Solouki et al.: Experimental Evaluation of Control Flow Checking

While for RACFED, the results are less intuitive. From O0 to
O1, the DC increases by about 24% as the occupied program
memory is shrunken by about 20%. The DC for O2 and O3
remains approximately the same as the O1 optimizations.
For RACFED, all compiler optimizations result in zero

‘‘residual undetected’’ failures. This means that all unde-
tected failures are ‘‘latent.’’ Hence, no wrong program exe-
cution is expected due to the fact that the failure is either
detected or is a latent undetected that does not change the
behavior of the program. However, for YACCA, all compiler
optimizations result in zero ‘‘residual undetected’’ failures
except the O2 optimization.

It is essential to highlight that, under the hypothesis of
a multi-core system or external hardware (like companion
chips or dedicated custom peripherals for CFC), two HW
mechanisms can aid the detection of these failures: (i) a
trap raised when the injected fault results in the PC pointing
outside the program memory to a non-valid memory address.
(ii) the injected fault results in the PC pointing to a valid
but undesirable memory address. This can be explained by
considering the differences in the program memory size for
the two benchmarks. The occupied program memory is com-
posed of 9012 instructions for the T benchmark and only
1736 instructions for the TS benchmark. Since the number
of instructions for the T benchmark is almost five times the
number of instructions for the TS benchmark, and the proba-
bility of finding jump/branch instructions increases when the
number of instructions increases, the likelihood of the occur-
rence of case (ii) increases for the T benchmark compared to
the TS benchmark. For the same reason, the probability of
case (i) decreases for the T benchmark.

In conclusion, YACCA and RACFED, two different CFC
methods, react similarly to the compiler optimizations: for
both, the number of ‘‘detected’’ by only software is better
with O1 optimization, then O2 and O0 are similar, while O3
performs better compared to O2. The ‘‘Residual Undetected’’
failures, with O0 optimization, are relatively high (26.6%
for YACCA, 38.50% for RACFED). Then, the ‘‘Residual
Undetected’’ failures for all compiler optimizations are zero,
except for the O2 optimization with YACCA, which is equal
to the case of no compiler optimization. The ‘‘latent unde-
tected’’ failure for YACCA increases with the optimization
level, with a huge step between O0 and O1, explainable as
the occupied program memory is reduced to half of its size,
leading to freeing one bit of the PC to be used for representing
a valid instruction address. At the same time, for RACFED,
we have 8.6% for O0 and about 20% for the optimized
versions.

E. OVERHEADS
There are two types of overheads considered in this work:
(i) the increases in Text Segment Size (TSS), which shows
the increase in the size of the occupied program memory due
to the CFC instructions added to the program instructions
after compiling the hardened program. This leads to requiring
more space in the flash memory of the embedded system.

(ii) Execution time overhead, measured, given the ISA-level
simulation adopted to run the campaigns, as the extra num-
ber of machine instructions (# exec. instr.) it takes for the
hardened program to execute. The overhead has been com-
puted with respect to the non-optimized version without the
hardening.

Considering both overheads is essential for embedded
applications. The concerns are the code size for applications
running on low-costmicro-controllers with aminimal amount
of embedded flash memory and the number of executed
instructions (as a figure of the execution time) for real-time
applications.

Table 7 reports the overhead on the program memory rep-
resented as ‘‘TSS’’ and the overhead on executed instructions
represented as ‘‘# exec. instr.’’ The overhead on the number
of executed instructions is obtained from the increase in the
ISA-level simulator counts when running the simulation of
the fault-injected program compared to the simulation of the
fault-free program.

For both benchmarks, YACCA imposes less TSS overhead
compared to RACFED. The difference between TSS over-
heads imposed by these two CFC methods is insignificant for
the T benchmark, while it is much more significant for the TS
benchmark.

The YACCA method is implemented in the TS bench-
mark by inserting the CFC instructions at each BB entry and
exit point. While in the T benchmark, the YACCA method
is implemented by calling functions for the set and test
operations. For the TS benchmark, the TSS overheads are
more significant than the TSS overheads in the T bench-
mark. This is due to the strategy to harden the code without
using function calls. In RACFED implementation, there are
many duplicated instructions (similar to the inserting strategy
adopted for YACCA implementation). On the contrary, in the
T benchmark, in which we chose to use functions, the TSS
overheads are around 20%.

The discussion is more complicated regarding the number
of executed instructions overhead, considering the compiler
optimization’s importance. For both benchmarks, YACCA
imposes a greater overhead in terms of executed instructions
than RACFED; hence RACFED outperforms YACCA in this
comparison. For the T benchmark, the difference between the
executed instructions overheard of by the two CFC methods
is negligible, while this difference is more noticeable for the
TS benchmark. This can be explained considering that almost
every BB of the TS benchmark has more than two instruc-
tions, while the T benchmark has fewer. This is important
since, for those BBs containing more than two instructions,
RACFED sums to the signature a random number after each
instruction. At the same time, YACCA does not perform any
different operations. Again, considering the other optimiza-
tion levels, we can observe that with optimization O2 and O3,
the number of executed instructions is less than that of the
vanilla version without optimization. Still, it is important to
remark that, in these two latter cases, the intra-block detection
is lost.

51196 VOLUME 11, 2023

M. A. Solouki et al.: Experimental Evaluation of Control Flow Checking

TABLE 5. ISO 26262-compliant classification of the cumulative results obtained from the fault injection campaigns on the benchmarks compiled with
almost no optimization (O0).

TABLE 6. ISO 26262-compliant classification of the results obtained from the fault injection campaigns on the TS benchmark compiled with different
compiler optimization levels. The results obtained with almost no optimizations (O0) are also reported for ease of reading.

TABLE 7. Data regarding memory occupation and executed instruction.T = Tank Level, TS = Timeline Scheduler, and TSS = Text Segment Size. Vanilla
refers to the application that is not hardened from its original form. For TS, are reported the overheads with the different optimization levels. All the
differences are computed in comparison to the Vanilla version compiled with almost no optimizations (O0).

For YACCA, with any compiler optimization level, the
number of executed instructions is greater than the number
of executed instructions in the Vanilla O0. However, the
executed instructions overhead decreases drastically from O0
to 01, while this overhead decreases slowly while chang-
ing the optimization level from O1 to O2 and from O2 to
O3. For RACFED, with O1 compiler optimization level, the
number of executed instructions is greater than the number
of executed instructions in the Vanilla O0. On the contrary,
with O2 and O3 optimization levels, the executed instruc-
tions become negative. The executed instructions overhead
decreases drastically from O0 to 01, and also from O1 to
O2. While this overhead decreases slowly while changing
the optimization level from O2 to O3. In conclusion, for
both benchmarks, YACCA imposes less TSS overheads while
RACFED imposes less executed instructions overheads.

V. CONCLUSION
Numerous Software-Implemented Hardware Fault Tolerance
(SIHFT) methods have been presented in the literature to
increase the reliability of embedded systems against Random
Hardware Failures (RHFs).

The adoption of a specific SIHFT method is challeng-
ing because the various methods are available in the lit-
erature, lead to the need for an objective comparison
methodology.

We proposed a comparison methodology that consists
of selecting a set of representative applications, harden-
ing them with selected SIHFT methods, and finally per-
forming the fault injection. Two established CFC methods
were selected and applied to two benchmarks to evaluate
our approach. Finally, simulation results were reported in
compliance with automotive functional safety standard ISO
26262 by evaluating the efficiency of the CFC methods in
detecting RHFs. The effects of the compiler optimization on
their effectiveness have been investigated by repeating the
experiments for each of the 4 optimization levels featured
by GCC.

Our approach can be extended to other industrial land-
scapes, e.g., unmanned aerial vehicles, since it is more com-
prehensive than the automotive industry application domain.
Here, we selected automotive industry benchmarks to address
the needs of automotive functional safety standards for the
use of high-level programming languages.

VOLUME 11, 2023 51197

M. A. Solouki et al.: Experimental Evaluation of Control Flow Checking

REFERENCES
[1] Road Vehicles—Functional Safety, Standard ISO 26262, 2018.
[2] B. Yue and W. Che, ‘‘Data-driven dynamic event-triggered fault-tolerant

platooning control,’’ IEEE Trans. Ind. Informat., early access, Oct. 31,
2022, doi: 10.1109/TII.2022.3217470.

[3] A. Mahmood and E. J. McCluskey, ‘‘Concurrent error detection using
watchdog processors—A survey,’’ IEEE Trans. Comput., vol. 37, no. 2,
pp. 160–174, Feb. 1988.

[4] T. M. Austin, ‘‘DIVA: A reliable substrate for deep submicron microarchi-
tecture design,’’ in Proc. 32nd Annu. ACM/IEEE Int. Symp. Microarchitec-
ture, Nov. 1999, pp. 196–207.

[5] C. A. Lisboa, M. I. Erigson, and L. Carro, ‘‘System level approaches for
mitigation of long duration transient faults in future technologies,’’ in Proc.
12th IEEE Eur. Test Symp. (ETS), May 2007, pp. 165–172.

[6] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes, and
J. Saraiva, ‘‘Energy efficiency across programming languages: How do
energy, time, and memory relate?’’ in Proc. 10th ACM SIGPLAN Int. Conf.
Softw. Lang. Eng., Oct. 2017, pp. 256–267.

[7] MATLAB Version: 9.13.0 (R2022b), The MathWorks Inc., Natick, MA,
USA, 2022. [Online]. Available: http://www.mathworks.com

[8] Z. Alkhalifa, V. S. S. Nair, N. Krishnamurthy, and J. A. Abraham, ‘‘Design
and evaluation of system-level checks for on-line control flow error detec-
tion,’’ IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 6, pp. 627–641,
Jun. 1999.

[9] N. Oh, P. P. Shirvani, and E. J. McCluskey, ‘‘Control-flow checking
by software signatures,’’ IEEE Trans. Rel., vol. 51, no. 1, pp. 111–122,
Mar. 2002.

[10] R. Vemu and J. Abraham, ‘‘CEDA: Control-flow error detection using
assertions,’’ IEEE Trans. Comput., vol. 60, no. 9, pp. 1233–1245,
Sep. 2011.

[11] R. Venkatasubramanian, J. P. Hayes, and B. T. Murray, ‘‘Low-cost on-line
fault detection using control flow assertions,’’ in Proc. 9th IEEE-Line Test.
Symp., Jul. 2003, pp. 137–143.

[12] O. Goloubeva,M. Rebaudengo,M. S. Reorda, andM. Violante, ‘‘Improved
software-based processor control-flow errors detection technique,’’ in
Proc. Annu. Rel. Maintainability Symp., 2005, pp. 583–589.

[13] S. A. Asghari, H. Taheri, H. Pedram, and O. Kaynak, ‘‘Software-based
control flow checking against transient faults in industrial environments,’’
IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 481–490, Feb. 2014.

[14] M. Altieri, J. Becker, and F. L. Kastensmidt, ‘‘HETA: Hybrid error-
detection technique using assertions,’’ IEEE Trans. Nucl. Sci., vol. 60,
no. 4, pp. 2805–2812, Aug. 2013.

[15] E. Chielle, G. S. Rodrigues, F. L. Kastensmidt, S. Cuenca-Asensi,
L. A. Tambara, P. Rech, and H. Quinn, ‘‘S-SETA: Selective software-only
error-detection technique using assertions,’’ IEEETrans. Nucl. Sci., vol. 62,
no. 6, pp. 3088–3095, Dec. 2015.

[16] A. Li and B. Hong, ‘‘Software implemented transient fault detection in
space computer,’’ Aerosp. Sci. Technol., vol. 11, nos. 2–3, pp. 245–252,
Mar. 2007.

[17] J. Vankeirsbilck, N. Penneman, H. Hallez, and J. Boydens, ‘‘Random addi-
tive signature monitoring for control flow error detection,’’ IEEE Trans.
Rel., vol. 66, no. 4, pp. 1178–1192, Dec. 2017.

[18] B. Nicolescu, Y. Savaria, and R. Velazco, ‘‘SIED: Software implemented
error detection,’’ inProc. 16th IEEE Symp. Comput. Arithmetic, Nov. 2003,
pp. 589–596.

[19] J. Vankeirsbilck, N. Penneman, H. Hallez, and J. Boydens, ‘‘Random
additive control flow error detection,’’ in Proc. Int. Conf. Comput. Saf.,
Rel., Secur. Cham, Switzerland: Springer, 2018, pp. 220–234.

[20] M. Maghsoudloo, H. R. Zarandi, and N. Khoshavi, ‘‘An efficient adaptive
software-implemented technique to detect control-flow errors in multi-
core architectures,’’ Microelectron. Rel., vol. 52, no. 11, pp. 2812–2828,
Nov. 2012.

[21] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante, ‘‘Soft-
error detection using control flow assertions,’’ in Proc. 16th IEEE Symp.
Comput. Arithmetic, Nov. 2003, pp. 581–588.

[22] J. Sini, M. Violante, and F. Tronci, ‘‘A novel ISO 26262-compliant test
bench to assess the diagnostic coverage of software hardening tech-
niques against digital components random hardware failures,’’ Electronics,
vol. 11, no. 6, p. 901, Mar. 2022.

[23] A. Waterman and K. Asanović, Eds., The RISC-V Instruction Set Manual,
Volume I: User-Level ISA, document Version 20191214, RISC-V Interna-
tional, Dec. 2019.

[24] S. Di Mascio, A. Menicucci, G. Furano, C. Monteleone, and M. Ottavi,
‘‘The case for RISC-V in space,’’ inProc. Int. Conf. Appl. Electron. Pervad-
ing Ind., Environ. Soc. Cham, Switzerland: Springer, 2019, pp. 319–325.

[25] (2022). Gnu RISC-V Toolchain. [Online]. Available: https://github.com/
johnwinans/riscv-toolchain-install-guide

[26] F. Bellard, ‘‘QEMU, a fast and portable dynamic translator,’’ in Proc.
USENIX Annu. Tech. Conf., 2005, p. 46.

[27] (2022). The Gnu Debugger. [Online]. Available: https://www.gnu.
org/software/gdb/

MOHAMMADREZA AMEL SOLOUKI (Grad-
uate Student Member, IEEE) received the B.Sc.
degree in computer engineering from the Islamic
Azad University of Mashhad, Mashhad, Iran,
in 2013, and the M.Sc. degree in computer
architecture from the Department of Computer
Engineering, Qazvin Islamic Azad University,
Qazvin, Iran, in 2017. He is currently pursuing
the Ph.D. degree with the Department of Control
and Computer Engineering (DAUIN), Politecnico

di Torino, working under the supervision of Prof. Massimo Violante. He is
involved in reliable software for detection, recovery, and resilient behavior.
His key topics are validation techniques, functional safety (ISO 26262),
model-based development, and embedded software.

JACOPO SINI (Member, IEEE) received the
B.Sc. degree in computer engineering, the M.Sc.
degree in mechatronic engineering, and the Ph.D.
degree in control and computer engineering from
Politecnico di Torino, in 2014, 2016, and 2021,
respectively. Since 2016, he has been a Research
Assistant with Politecnico di Torino. He is
involved in several research projects in the area of
embedded systems for automotive applications in
collaboration with ITT and ELDOR. His research

interest includes testing highly dependable embedded items, with a particular
focus on autonomous vehicle-enabling technologies.

MASSIMO VIOLANTE (Member, IEEE) received
the M.S. and Ph.D. degrees from Politecnico
di Torino, Italy. From 2008 to 2009, he was a
Research Assistant with the Institute of Physics,
Academia Sinica, Tapei, Taiwan. He is currently
an Associate Professor with Politecnico di Torino.
He is very active in technological transfer activities
with industries in the automotive and industrial
sectors on topics, such as functional safety, model-
based design, and embedded system design and

validation. He is scientific responsible of a number of research projects in the
area of embedded systems for space, avionic, and automotive applications
in collaboration with the European Space Agency, Thales Alenia Space,
ITT, CNH Industrial, ELDOR, and Magneti Marelli. He published more
than 150 articles in the area of testing and designing reliable embedded
systems. He has coauthored two books. His main research interests include
the design and validation of embedded system for safety- and mission-
critical applications, with emphasis on the use of commercial off-the-shelf
components like multi core processors and field programmable gate arrays in
automotive, avionic, and space applications, and the development of surface
processing and biological/medical treatment techniques using non-thermal
atmospheric pressure plasmas, fundamental study of plasma sources, and
fabrication of micro- or nanostructured surfaces. He served as the Program
Co-Chair and the General Co-Chair for the IEEE Defect and Fault Tolerance
in VLSI and Nanotechnology Systems, in 2011 and 2012, and the Program
Chair for the IEEE European Test Symposium, in 2012.

Open Access funding provided by ‘Politecnico di Torino’ within the CRUI CARE Agreement

51198 VOLUME 11, 2023

http://dx.doi.org/10.1109/TII.2022.3217470

