POLITECNICO DI TORINO Repository ISTITUZIONALE

Ferrite-based Nanoparticles: Synthesis, Characterization, and Non-enzymatic Electrochemical Sensing Applications.

Original

Ferrite-based Nanoparticles: Synthesis, Characterization, and Non-enzymatic Electrochemical Sensing Applications / Madagalam, Mallikarjun; Rosito, Michele; Bartoli, Mattia; Padovano, Elisa; Carrara, Sandro; Tagliaferro, Alberto. - ELETTRONICO. - (2022). (Intervento presentato al convegno NanoInnovation 2022 tenutosi a Roma nel 19-23 Settembre 2022) [10.13140/RG.2.2.15124.58244].

Availability: This version is available at: 11583/2971556 since: 2022-09-21T12:44:26Z

Publisher: the organizing committee of the meeting

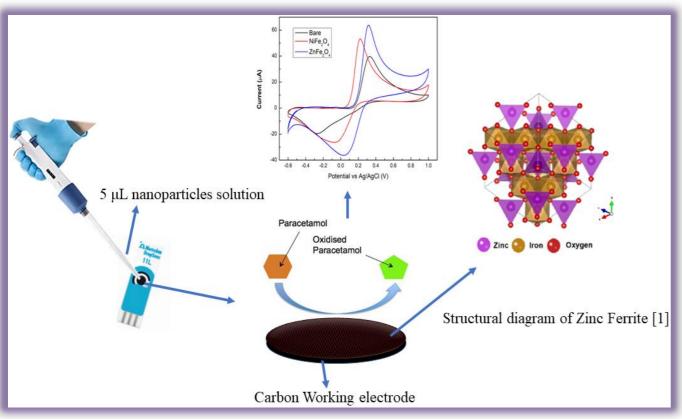
Published DOI:10.13140/RG.2.2.15124.58244

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

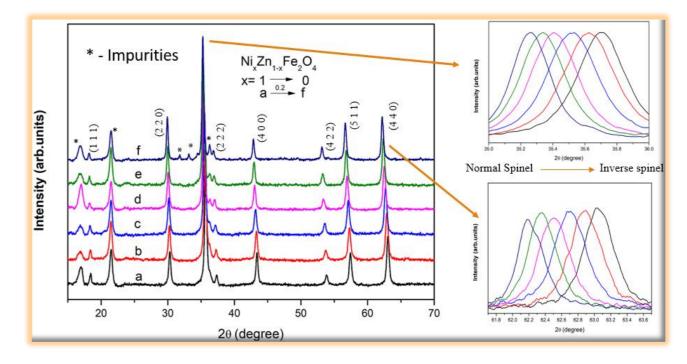
(Article begins on next page)



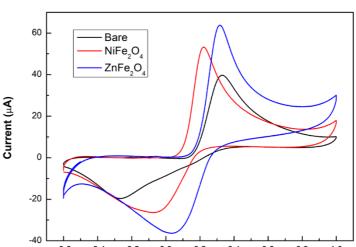
Ferrite-based Nanoparticles: Synthesis, Characterization, and Non-enzymatic Electrochemical Sensing Applications

 $\underbrace{ \text{Mallikarjun Madagalam}^{1,2,3,*} \cdot \text{Michele Rosito}^1 \cdot \text{Mattia Bartoli}^{3,4} \cdot \text{Elisa Padovano}^1 \cdot \text{Sandro} \\ \text{Carrara}^2 \cdot \text{Alberto Tagliaferro}^{1,3} }$

¹Department of Applied Science and Technology, *Politecnico di Torino*, Italy. ²Bio/CMOS Interfaces group, *École Polytechnique Fédérale de Lausanne*, Switzerland. ³National Interuniversity Consortium of Materials Science and Technology (INSTM), Italy. ⁴Center for Sustainable Future Technologies, *Istituto Italiano di Tecnologia*, Italy. * mallikarjun.madagalam@polito.it



Materials and methods


Materials	Electrodes modification	
- Zn(NO ₃) ₂ .6H ₂ O	- Methanol as solvent	
- Ni(NO ₃) ₂ .6H ₂ O	- 3:1 material to solvent	
- Fe(NO ₃) ₃ .9H ₂ O	- Carbon working electrode	
- CH ₄ N ₂ O (Urea)	- 5 μ L solution	
- DI Water, Methanol	- Drop casting	
- Paracetamol, PBS buffer	- Overnight drying	
Synthesis	Electrolytic solution	
- Autocombustion 600°C [2]	- Paracetamol	
- Annealed at 600°C (2h)	- 0.1M PBS buffer	
C 1 1 1 1 1 1	TT CO	

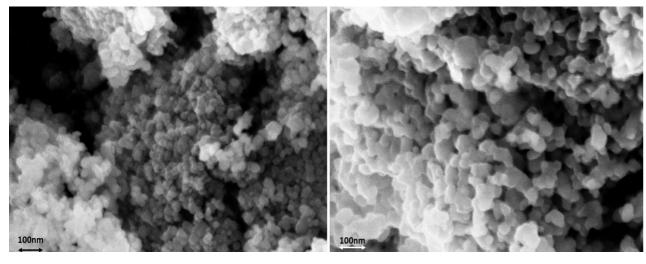
X-ray diffraction spectra of Ni-Zn mixed ferrites and zoomed part of the phases (3 1 1) and (4 4 0) clearly show the transition from spinel to inverse spinel.

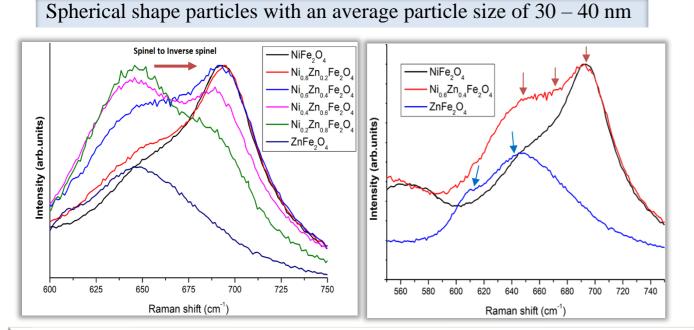
Electrochemical measurements

Cyclic voltammograms of 1mM paracetamol in 0.1M PBS pH 6.9 with different electrodes and their corresponding oxidation currents and potentials.

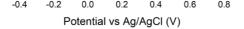
Electrode	Oxidation Potential (mV ± SEM)	Oxidation Current (µA ± SEM)
Bare	326.80 ± 0.73	39.11 ± 0.16
NiFe ₂ O ₄	246.6 ± 3.2	51.53 ± 0.80
ZnFe ₂ O ₄	307.0 ± 6.0	59.17 ± 0.63

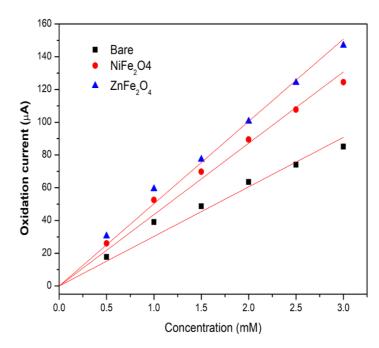
SEM – standard error mean




- Cooled and grounded

– pH 6.9


Materials characterization



FE-SEM pictures of NiFe₂O₄ (left) and ZnFe₂O₄ (right)

Microraman spectra of intensive A_{1g} band showing the transition from spinel to inverse spinel (left). The band shows a doublet and triplet-like shape due to pure and mixed ferrites [3, 4, 5]. The right figure shows three red arrows indicating 3 different molecular vibrations due to the presence Fe, Ni, and Zn whereas two blue arrows indicating only two molecular vibrations because of Fe and Zn.

 $NiFe_2O_4$ and $ZnFe_2O_4$ have lesser peak to peak separation compared to the bare electrode which gives an indication of faster reaction at the interface leading to higher kinetic rate constant.

Future work

Electrochemical measurements of the other mixed ferrite-based sensors.

Calculation of kinetic rate constant (k), electron transfer rate coefficient (α).

Chronoamperometric measurements to calculate the active surface area of the working electrodes.

Computational approach to calculate the kinetic rate constant.

Electrode	Sensitivity (µA/mM ± SEM)	$\frac{\Delta E_p}{(mV \pm SEM)}$
Bare	30.2 ± 1.0	594.4 ± 1.2
NiFe ₂ O ₄	43.6 ± 1.1	290.6 ± 1.3
ZnFe ₂ O ₄	50.26 ± 0.98	278.3 ± 2.7

ΔE_p – Peak to peak separation

Calibration curves of 3 different electrodes and the slopes indicate the sensitivity of respective electrochemical sensors.

References

[1] ACS Appl. Nano Mater. 2021, 4, 4026-4036.

[2] JOURNAL OF MATERIALS SCIENCE **37** (2002) 3569 – 3572.

[3] Journal of Alloys and Compounds 563 (2013) 6–11.

[4] J. Raman Spectrosc. 2011, 42, 1087– 1094.

[5] Ceramics International40(2014)12855– 12860.

[6] Electrochimica Acta 317 (2019) 701 - 710.