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Abstract 

Spacecraft health management is a key component to ensure the safety and mission operation life of a satellite complex 
system. The health monitoring task is pursued exploiting telemetry data, collected using various sensor reading from on-
board devices, that can be analyzed to retrieve and early detect anomalies which can lead to critical failures. The traditional 

monitoring methods, based on simple threshold checks, are now facing with lots of difficulties the increased complexity 
of the spacecraft, requiring updated and intelligent systems based on data-driven approaches. In this paper we propose 
different ML-based methods that contribute to the generation of an intelligent anomaly detector, that can face up the 

numerous telemetry data. Finally we focus on how to optimize and implement the developed models on constrained 
hardware, representative of spacecraft processors.  

Keywords: Machine Learning, Spacecraft, Health Monitoring  

 

1. Introduction 

Health Monitoring (HM) and prognostic are key modules 

for complex systems like Spacecrafts, and play a relevant 
role to guarantee its  reliability, availability and safety 
objectives.  

The complexity of modern space systems, related to their 
size, autonomy requirements, harsh extraterrestrial 

environment and the impossibility to perform repairs after 
the launch, makes the telemetry analysis by ground 
operators an essential and time-consuming activity. The 

on-board generated telemetries describe the overall system 
health status, including measures from sensors like 
temperature, voltage, absorbed current, etc., which are also 

constantly monitored by the on-board FDIR (Fault 
Detection, Isolation and Recovery) function. Moreover 

fault detection systems like these are required are needed 
to alert space operations engineers of anomalous behavior 
and prevent significant failures, which could result in a 

potential loss of the spacecraft itself. 
Expert knowledge is currently required in order to correctly 
understand and analyze the data coming from the 

spacecraft, making difficult to provide cost-effective 
ground operations, especially given the growing number of 

constellations planned in the near future. The on-board 

FDIR function classically employs a threshold-based logic, 
consisting in verifying whether telemetry values are within 
pre-defined limits or fall outside of them, also referred to 

as “Out-Of-Limits” (OOL) technique. The definition of the 
nominal ranges/threshold values and tables for each 

telemetry sensor represents an expensive and time-
consuming task, requiring advanced domain-specific 
knowledge. Moreover the telemetry monitoring has to be 

performed for the whole duration of the mission, which can 
be translated in workload for space operations engineers. 
The experience acquired by Thales Alenia Space Italia 

(TAS-I) in the frame of Space Segment Operations 
engineering, shows that the increasing operational 

workload required to analyze spacecrafts telemetries could 
no longer be met with classical approaches. Innovative and 
more efficient approaches are required to automatically 

detect anomalous patterns in the data, reducing the ground 
operations workload while increasing the mission 
reliability and availability. The generated telemetry data 

streams can be analyzed and correlated with a data-driven 
approach, in order to automate the complex task of failure 

detection and prognostic. Machine Learning techniques 
can be exploited to model and predict the system 
behaviour, allowing to early detect potentially critical 

anomalies. 

mailto:carlo.ciancarelli@thalesaleniaspace.com
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2. Related works 

Today’s onboard FDIR solutions are based on simple Out-
Of-Limit checks (OOL) for the identification task of 
anomalies in telemetry data. In the last decade the 

increasing maturity of Machine Learning techniques and 
more specifically for anomaly detection techniques lead to 
the consideration, through feasibility study, and 

implementation also in space use cases, constrained by 
limited Hardware capabilities. 

These maturity and reliability was first envisaged by space 
agencies like NASA and ESA for on ground applications, 
where ML was applied and deployed to assist agencies 

operators. [1] In this study we aim to apply and coherently 
modify these data driven approaches to on-board 
application, facing up to space constraints. 

From a data point of view, this kind of task has to face 
another difficulty, identified in the composition of the 

dataset at disposal of Data Engineer and Scientist: the 
anomalies are (fortunately) rare and spurious events, 
therefore the available dataset contains high volumes of 

nominal data, generating an unbalanced set in favor of 
normal samples. Even if synthetic anomalies can be 
injected in telemetry to simulate faulty sub-modules, they 

will not be fully representative of spurious and never 
before seen anomalous events that can occur in a monitored 

system. 
Therefore, in order to face up this peculiar dataset 
composition, Machine Learning provides a set of 

approaches based mainly on unsupervised or semi-
supervised learning techniques. The first try to train a 
model without a knowledge of the data itself; while the 

second one leverages on the fact that the majority of 
samples are nominal and the model are trained to learn only 

the manifold of these samples, if a samples belongs outside 
this space it is considered as anomalous. 
Hereafter a literary review of automated anomaly detection 

approaches is presented, focusing on unsupervised and 
semi-supervised models. 
Starting from clustering techniques we consider [2], K-

means [3] which given an initial but not optimal clustering, 
relocate each point to its new nearest center, update the 

clustering centers by calculating the mean of the member 
points and repeat the relocating-and-updating process until 
some predefined convergence criteria are satisfied. This 

method was exploited for health monitoring and anomaly 
detection applied for industrial robot in [4]. The detection 
of anomalous events is performed during a post-processing 

phase, where the test data and the cluster centers, computed 
by the K-means algorithm after the training procedure, are 

compared: if the distance from the new data points to the 

cluster centers exceeded a predefined threshold the data 
point was flagged as an anomaly.  
Random Forest (RF), a Decision Tree approach, was 

exploited in [5] for condition monitoring and early 
detection of failures for industrial plant equipment. After 

the data pre-processing and feature extraction phases, 
which include the transformation in the frequency domain 
via the Fast Fourier Transform (FFT), the authors used the 

extracted features to train the RF model and construct N 
decision trees trained on N bootstrapped samples of the 
training data. The resulting model was able to predict the 

development of the industrial plant health index with better 
performance of a  persistence technique used as 

benchmark. 
Another approach for fault and anomaly detection was 
developed using Least Squares-SVM in [6], where the 

authors proposed an LS-SVM regression model for 
spacecraft telemetry to identify contextual and collective 
anomalies [7] of in-orbit satellite telemetries. The resulted 

algorithm consists in an improved version of the classical 
SVM method, obtaining very good classification and 

generalization ability for anomaly detection of spacecraft 
in-orbit telemetries. 
The framework proposed in [8] exploited, distinctly, two 

different approaches VAE [9] and GANomaly [10] trained 
on nominal data generated by LUNASIM [11] (lunar 
orbiter AOCS simulator).  

The first approach is a probabilistic model that tries to 
reconstruct data from the input data space via maximum 

likelihood estimation and variational inference, the second 
one is an implementation of the Biderectional GAN 
framework that borrows an AE-style generator and an 

encoder-style discriminator for parsing the representation 
of a given training- set.  
Hence, anomalies are detected by measuring the 

reconstruction error for newly input data. It was shown that 
if nominal and abnormal samples are not clearly different, 

the VAE obtains noisy output conversely GANomaly 
could discriminate abnormal samples more effectively 
because it utilizes AE to reconstruct input data and GAN 

to match a distribution of generated samples to the target 
(nominal) distribution. 
In addition, different methods can be used concurrently for 

the Anomaly Detection, using a combination of models 
that work on the same (or group of) signal or using parallel 

models that are trained on different TM signals/channels. 
The first approach is called in literature Ensemble Learning 
and allows to train multiple models on the same task 

together, which outputs can be combined using three 
different techniques. 
Even if this approach can potentially have better 

performance, it has a major drawback given by the high 
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computational effort and demand that multiple models 
used concurrently can need. Therefore, it’s important to 
take into account the Hardware constraints imposed by a 

limited and complex system like a spacecraft. 
The paper is organized as follows. In Section 3 a 

background on the satellite FDIR mechanisms is provided, 
as an introduction to the proposed operational use case, 
described in Section 4. Section 5 is devoted to the 

mathematical modeling of the adopted anomaly detection 
ML techniques and the identification of the critical 
hyperparameters to be tuned, alongside the definition of the 

score generation mechanisms and the estimation of the 
memory footprint. Moreover, the experimental settings are 

described and detection performances in the reference 
scenario are discussed and compared. Section 6 points out 
to some hardware implementation strategies for low-power 

micro-controllers. Finally, some conclusions are drawn. 

3. FDIR 

The satellite FDIR logic has the aim of detecting, isolating 
and recovering faults at unit, subsystem or equipment 

level. It is actually based on a hierarchical architecture 
trying to confine failures at the lower FDIR levels to 
minimize outages and provide high system availability; for 

example, in terms of Avionic subsystem, this mechanism 
should be able to detect the failure at sensor or actuator 

level before having problems at attitude level. However, it 
is a deterministic approach based on several predefined 
tables containing selected monitoring items and relative 

recoveries. These tables are designed according to 
experience and then implemented in the Avionic SW 
(ASW), they come from different satellite subsystems and 

each of these stores a set of parameters, but they are fixed 
and they are not able to detect failures that are not foreseen 

by the designer. In fact, the goal of the approach is to verify 
that a proper set of parameters computed by the ASW does 
not exceed the predefined operational thresholds. After a 

confirmation time (“filter” configuration data), the 
detection of the violation of a monitoring criterion foresees 
a recovery action. This is done in order to eliminate 

spurious or transient events that don’t affect the system. In 
general, the satellite FDIR is usually handled by software 

functionalities, but the highest level of the FDIR hierarchy 
is in charge to the Ground Control Centre (GCC). The GCC 
is able to send telecommands in order to enable/disable the 

on-board autonomous FDIR operations, or for setting the 
FDIR configuration parameters and logics. 
As said previously, the FDIR performances could be 

potentially affected by this limited nature of a table-driven 
approach, since both operational limits and confirmation 

time are decided a priori by design. In fact, the approach is 

not flexible and it is not able to recognize any type of 
failure, but only those ones that are expected by design and 
for which the parameters have been selected to be 

monitored. Furthermore, it does not guarantee any 
preventive maintenance. When the satellite is affected by 

unexpected recoveries due to lack of design or prediction 
capabilities, GCC shall investigate about the anomaly 
causes and it could take long times to restore the satellite 

functionalities. For this reason, the introduction of on-
board ML approaches for FDIR could overcome these 
problems, especially in identifying and isolating failures at 

the lowest level possible (equipment level) thus fostering 
equipment/software reuse, mission availability and 

autonomy. In fact, the ML algorithms could be able to 
analyze a big amount of on-board available data and 
recognize failures not foreseen by design, or could react 

faster than the fixed confirmation time. 
The table-driven approach has been implemented until now 
due to space hardware limitations. Space computers are 

really much less powerful than the terrestrial ones. On-
Board Computers are characterized by space qualified 

components, since hardware shall be reliable to space 
environment (for example, ionizing radiation). This means 
that space OBCs are limited by computational capabilities, 

maximum volatile and non-volatile memories constraints, 
maximum stack of any algorithm function etc., i.e. all 
characteristics relevant for ML algorithms usage. In order 

to use the ML algorithms on-board, it should be also 
necessary to investigate about the possibility to optimize 

software coding and reduce the computational needs, 
paying attention to the use of external AI and ML libraries 
that should be no hardware dependent or adaptive to space 

software compilers. 
Thanks to the most recent improvements in space 
processor performance, the use of ML strategies on-board 

has been recently investigated. Several categories of space 
processors can be identified, of which different are already 

used in flight. The low performance and medium-low 
performance devices are already used for a variety of space 
missions. The first category consists of a single-core 

architecture, but AI inference algorithms generally need a 
very large number of MACs operations to be performed in 
parallel (especially NN and DNN algorithms) and single-

core architectures are not particularly suited to support this 
kind of processes. The second one consists of multi-core 

architectures. Scaling the numbers of cores constitutes, 
with frequency scaling, the easiest way to improve the 
performances of single-core architectures, and this seems 

to be in line with the implementation of several ML 
algorithms with limited computational effort. Today, 
higher categories of processors (many-core and 

FPGA/programmable SoC FPGA) are not ready for in-



73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.  
Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved. 

 

IAC-22-B6.2.6                           Page 4 of 14 

 

flight usage since their Technology Readiness Level is too 
low to be considered as possible choices, but some of these 
are considered possible candidates for future missions. 

This augment the possibility to introduce higher 
demanding ML algorithms on-board, and improve the 

performance of FDIR logic. 

4. Space data 

With the aim to verify and test the capabilities of the 
proposed algorithms in the task of identifying on-board 
anomalies through the analysis of the telemetry data, thus 

reducing the on-board reaction time of the FDIR function, 
a real-life operational use case is proposed hereafter. The 
data available in this work comes from different sensors 

on-board a Spacecraft in the LEO (Low Earth Orbit), in 
particular from the Reaction Wheel (RW) units, which are 

actuators consisting of a spinning wheel driven by an 
electric motor, used for three-axis attitude control and 
stability of a spacecraft: these are typically selected in 

configurations of three or more units for redundancy, and 
allow to apply a continuous fine attitude control over the 
orbit with a high pointing accuracy, which is crucial in the 

nominal space operations. 

 

Figure 1. Telemetry data containing anomalous event 
occurred on a RW used a test case 

The monitored sensors mounted on the RW that are 
exploited for the study are: 

• motor current 𝐴, current absorbed by the RW; 

• thermistor ∘𝐶, temperature of the RW; 

• speed 𝑟𝑎𝑑/𝑠, velocity of the RW; 
• torque 𝑉, torque commanded to the RW. 
A sample of the telemetry in nominal behaviour can be 

seen in Fig. 1, where there are three different lines, each 
one corresponding to a different sensor: motor current 
(blue line), temperature (orange line) and angular speed 

(green line) telemetries of RW.  

The satellite does not operate in the nominal operation 
mode all the time during the mission, and could enter non-
nominal operation modes for a number of reasons 

including orbit maneuvers. These, in turn, create outlier 
values in the telemetry data that could alter the anomaly 

detection process. To distinguish the outlier data related to 
non-nominal operations from the actual anomalous one, 

each sample at time 𝑡𝑖 is also tagged with a flag denoting 
whether the received values correspond to a nominal or 
non-nominal operation of the satellite. 

An example of anomalous behaviour can be seen in Figure 
1, which contains the plots of the telemetry data of the four 
sensors in anomalous behaviour: we can observe a step in 

the values of current, temperature and voltage, while the 
speed remains at the nominal operation value. This step, 

which does not happen in the nominal cases, is caused by 
the anomaly registered in the RW itself. It has to be noted 
that the values of the sensors are plotted using different y-

dimensions.  

5. ML algorithms for anomaly detection 

In the attempt of making the detector effective, a classical 
signal processing chain is considered, as depicted in Fig. 2. 

On-board sensors readings, pre-processed in order to 
transform heterogeneous sources of information into 
homogeneous time-series, are prepared to be examined by 

employing a time window-based partition, so that it is more 
likely to accomplish the task of uncovering sub-sequences 

of unusual behavior. 

 

Figure 2. Signal acquisition and processing chain to 
prepare data in compliance with the ML tasks 

Actions performed in the pre-processing stage could 
include: missing data imputation, filtering/cleaning, re-

sampling, re-scaling and low-level feature extraction. 
Depending on the number of sensors included in the 
monitoring system, a score value is computed starting from 

more than one windows of samples. The detectors outputs, 
i.e., the scores, can then be transformed into final labels in 
comparison with predefined thresholds. Prepared data are 
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arranged in a tabular fashion with each row relating to a 
single timestamp 𝑡𝑗, 𝑗 = 0, . . . , 𝑁𝑇 − 1, and columns 

identifying a specific telemetry signal.  

The segments composing the obtained time series 𝑦 can be 
compared by transforming them into a multidimensional 

representation. One may be interested in observing either 
the correlation across time of the values assumed by a 
single quantity (upper part of Fig. 3) or across multiple 

series synchronized by their timestamps (lower part of Fig. 
3). Clearly, a semantic understanding of the problem 
domain is fundamental in order to identify a proper 

transformation. The simplest transformation consists in 

building a high dimensional input matrix 𝑋 ∈ ℝ𝑁𝑇𝑖
×𝑛

. 
Nevertheless, it is possible to derive other representation 

types, e.g., by adopting discretization methods. Other 
methods such as Discrete Wavelet Transform (DWT) and 
Discrete Fourier Transform (DFT) are available for 

compressing the series into numeric coefficients (multi-
scale decomposition) .  
In the optic of not being able to simulate every faulty 

condition that might occur in a complex system, the 
monitoring issue, and so the definition of these kinds of 

detectors, can be addressed by training phases realizing on 
the recognition of those behaviors which don’t exceed the 
boundary of a nominal one. 

 
Figure 3. Transformation of prepared data into 
multidimensional vectors ready for the ML tasks, either 
considering correlation across time of a specific signal 

(X1) or across multiple series as well (X2) 

Within this framework, let 𝜂: ℝ𝑛 → ℝ be the function 

providing a score for input 𝑥𝑖 ∈ ℝ𝑛. The training phase 
allows to derive the confidence intervals of the inlier scores 

values, assumed to have an upper bound 𝑙+. Here, the test 

set is balanced in the amount 𝑁𝑆 of good and anomalous 

examples and undergoes the same signal processing to 
which the training set is subject (Fig. 4).  

A score 𝜂(𝑥𝑖) = 𝑙𝑖 ≫ 𝑙+ is symptomatic of a behavior 
significantly differing from the underlying data generation 
process. Here, the focus is on four possible detectors which 

differ in the concept of similarity they rely on, i.e., on how 
they define the boundary representing the nominal 

behavior. Moreover, each model has a distinct impact on 
the memory footprint. 

Figure 4. Inference stage 

5.1. Similarity-based methods 

This section is devoted to the introduction of two well-
known ML methods: 

• a proximity-based method, the approach called Local 

Outlier Factor, LOF, which combines the 𝑘-nearest 
neighbors learning method with some data-dependent 
similarity measure to address the issue of local density 
variation; 

• a non-linear method, One-Class Support Vector 
Machines, OCSVM. It takes advantage of non-linear 

mappings to compute similarity measures in what is 
called a feature space. 

In the presented setting, no specific assumption is made on 

the inputs 𝑥 ∈ ℝ𝑛 other than they live in a metric space. 
One of the most flexible concepts of similarity measure is 
indeed found in the scalar or inner product, although, in 

general, nothings ensures that the input space 𝒳 is 
provided with such an operation nor the linear separability 

of its objects. Proximity can thus be computed when the 
collections of sub-sequences of time series are transformed 

into matrix 𝑋 ∈ ℝ𝑁𝑇𝑖
×𝑛

, e.g., by means of the Euclidean 
distance. 

5.1.1. Local Outlier Factor 

The model, originally proposed in [12],  exploits the 

concept of 𝑘-distance of an observation 𝑥𝑖 ∈ ℝ𝑛, denoted 

as 𝑑𝑘(𝑥𝑖), i.e., the distance between 𝑥𝑖 and its nearest 

neighbor 𝑡𝑖 in the training set 𝒯 ⊂ ℝ𝑛, which is in turn 
compared to distance 𝑑𝑘(𝑡𝑖) between 𝑡𝑖 and its own 
neighbors in the training set. It is possible to assert whether 

a point lies within a 𝑘-neighborhood or not by deriving a 
measure called reachability distance and defined as  

𝑟𝑘 (𝑥𝑖 , 𝑡𝑗) = max{𝑑(𝑥𝑖 , 𝑡𝑗),𝑑𝑘(𝑥𝑖)}, (1) 
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where 𝑑(𝑥𝑖 , 𝑡𝑗) is the actual distance between two points. 

Then, by taking the inverse of the average 𝑟𝑘  of object 𝑥𝑖 
from its neighborhood, one derives a local reachability 

density, namely 𝑙𝑘(𝑥𝑖), which is the distance at which 𝑥𝑖 
can be reached by its neighbors: the quantity is small when 

𝑥𝑖 is isolated from the surrounding neighbors. 
Finally, the local outlier factor score can be derived by 
comparing the local reachability densities of the points in 

neighborhood 𝑁𝑘(𝑥𝑖) and the object’s own value as 

𝜂𝐿𝑂𝐹 (𝑥𝑖) =
1

|𝑁𝑘(𝑥𝑖)|
∑

𝑙𝑘(𝑦𝑖)

𝑙𝑘(𝑥𝑖)
𝑦𝑖∈𝑁𝑘(𝑥𝑖)

. (2) 

The local distance behavior is accounted for by using 

distance ratios in the definition of the score. In fact, a larger 
reachability distance indicates that the object in exam 
shows lower density than the surrounding ones, meaning it 

lives in a sparser region and can be considered an outlier. 

5.1.2. One-Class Support Vector Machines 

The approach finds its roots in the statistical theory of 
learning [13] [14] and it allows to find a hyperplane 
separating the single-class normal data examples from the 

origin with maximal margin 𝜌. The attempt of minimizing 
the structural error of such a hyperplane results in the 

definition of a quadratic programming problem [15]. In 
order to make the approach more effective, all SVM-based 
methods adopt the so called kernel trick such that the scalar 

product between two vectors is generalized as follows 

𝜅(𝑥, 𝑦) = exp−𝛾|𝑥−𝑦|2
, (3) 

where this represents the case of a Gaussian kernel 
function. 

Within this framework, for a new observation 𝑥𝑖, the score 
is computed by 

𝜂𝑂𝐶𝑆𝑉𝑀(𝑥𝑖)

= ∑ 𝛼𝑗

𝑆−1

𝑗=0

𝜅(𝑠𝑗,𝑥𝑖) − ∑ ∑ 𝛼𝑗

𝑆−1

𝑗=0,𝑗≠𝑖

𝑆−1

𝑖=0

𝜅(𝑠𝑗, 𝑠𝑖) 
(4) 

where 𝜌 = ∑ ∑ 𝛼𝑗
𝑆
𝑗=1,𝑗≠𝑖

𝑆−1
𝑖=0 𝜅(𝑠𝑗,𝑠𝑖) is the maximal 

marginal and 𝑠0 ,… , 𝑠𝑆−1 is a set of examples in the training 
set properly selected in the training phase, named support 
vectors, and for which the cardinality of the set is 

controlled by a tunable parameter 𝜈 ∈ [0,1] . The basic 
idea behind a SVM-based detection mechanism is 
summarized with the schematic in Fig. 5. It resembles the 

architecture of a simple neural network, in which the 
weights 𝛼𝑗 are derived from a subset of the training 

examples. 

 

 

Figure 6. General architecture of a SVM 

5.2. Subspace-based methods 

The kind of techniques described here allows to map each 

incoming input signal 𝑥𝑖 ∈ ℝ𝑛 into a lower dimensional 
subspace where the projection is 𝑧𝑖 ∈ ℝ𝑚, with 𝑚 < 𝑛. 
The input signal can then be recovered by means of a 

decoding stage as 𝑥𝑖 ∈ ℝ𝑛 from the low-dimensional 
representation (see Fig. 6). 

• a linear method as Principal Component Analysis, PCA, 
which allows to extract a low dimensional 

representation of the data by projecting the windows of 
samples onto the subspace in which the information 
content of the signal concentrates; 

• a non-linear method representing the generalization of 
PCA, a deep Neural Network architecture named 
Autoencoder, AE. Here the goal is to find the manifold 

which better represents the input signals in a low-
dimensional space . 

 

5.2.1. Principal Component Analysis 

The main goal of this method is to find the so-called 

principal components, i.e, a set of 𝑚 < 𝑛 vectors along 
which the energy of the input signals concentrates in 

average. 
Linear projection is performed by means of a 

multiplication through a matrix 𝑈 ∈ ℝ𝑛×𝑚 in a way that 

𝑧𝑖 = 𝑈⊤𝑥, �̂�𝑖 = 𝑈𝑧𝑖 . (5) 

where 𝑈 is the matrix minimizing the expectation of the 
error ∥ 𝑥𝑖 − 𝑥𝑖 ∥2 and it can be computed by arranging as 

columns of 𝑈 the eigenvectors of the input signal 
correlation matrix associated to la largest eigenvalues. 

Here ∥⋅∥ indicates the 𝑙2-norm of a vector. 

Figure 5. Working principle of PCA and AE 
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Starting from the knowledge of 𝑈 it is possible to define 
two distinct outlier scores to catch unusual variability both 

within and outside the learned principal subspace. 
1. Squared Prediction Error, SPE: it represents both the 

reconstruction error for 𝑥𝑖 and the level of 
inconsistency with respect to the identified best linear 
fit, i.e., the amount of energy in the minor subspace. 

𝜂 𝑆𝑃𝐸 (𝑥𝑖) = ‖𝑥𝑖 − 𝑥𝑖‖2
2 =∥ 𝑥𝑖 − 𝑈𝑈⊤𝑥𝑖 ∥2

2 (6) 

2. Hotelling’s 𝑇 2: it consists in a statistical test which 
provides the level of similarity between the energy 

content of the principal subspace and that of a specific 

input sample 𝑥𝑖 and is defined as: 

𝜂𝑇2
(𝑥𝑖) = ∑

(𝑈⊤𝑥𝑖)𝑙
2

𝜆𝑙

𝑚

𝑙=1

, (7) 

where (⋅)𝑙 represents the 𝑙-th element of a vector and 

𝜆𝑙 is the 𝑙-th highest eigenvalue of the input signal 
correlation matrix. 

5.3. Autoencoder 

As for PCA, an Autoencoder-based detector encodes some 
meaningful information extracted, by non-linear projection 

of the input observation 𝑥𝑖, into a manifold living in a lower 

dimensional space 𝑧𝑖 ∈ ℝ𝑚, with 𝑚 < 𝑛. This is also the 
input of a decoder stage which produces as output a vector 

𝑥𝑖 ∈ ℝ𝑛 designed to be a replication of 𝑥𝑖 (see Fig. 6). 
Both encoding and decoding stages involve a neural 

network represented by the two non-linear functions 𝑓(𝑥𝑖) 

and 𝑔(𝑧𝑖) such that 𝑥𝑖 = 𝑔(𝑓(𝑥𝑖)). More in detail, in the 

encoder stage is composed by a convolutional layer (2 
filters, strides equal to 4 and a kernel size equal to 40) and 

a fully connected layer producing 𝑧𝑖 and preceded by a 
layer performing a flattening operation. The decoder is 

done by transposing the encoder architecture. The network 
parameters are trained by minimizing a loss function given 
by the Mean Squared Error, MSE computed as the 

expectation of 

𝜂 𝐴𝐸 (𝑥) =∥ 𝑥 − 𝑥 ∥2
2. (8) 

MSE is also used as anomaly score. 

5.4. Model tuning and memory requirements 

Based on the previous discussion, an estimation of the 
memory footprint of each method is given in terms of how 

many digital quantities must be stored. This is a quantity 

depending on 𝑛 (the number of samples in each 
observation), the parameters characterizing each method 

and also, in some cases, on 𝑁𝑇, i.e., the amount of training 
examples. The critical parameter which has to be tuned for 

LOF is 𝑘, the cardinality of the neighborhoods along with 

the number of examples in the training set 𝒯. For each of 

the 𝑁𝑇 observations, the values of the 𝑘 distances of the 
nearest neighbors need to be stored. Therefore, given the 

same prediction capabilities, the smallest effective 𝑘 would 
be the preferable choice. The number of digital quantities 

to be stored is then computed as 

M𝐿𝑂𝐹 = 𝑘 × 𝑁𝑇, with 𝑁𝑇 ≫ 𝑛 (9) 

In the case of OCSVM, the critical parameters are 𝛾, which 
modulates the kernel width (e.g., the Gaussian kernel in 

(3)), and 𝜈, which sets a minimum on the number of 
support vectors and a maximum on the tolerated amount of 
outliers. Nevertheless, only the former impacts on the 
required amount of digital words to be locally stored 

M𝑂𝐶𝑆𝑉𝑀 = 𝑛 × 𝜈𝑁𝑇 + 𝜈𝑁𝑇,  

with 𝑁𝑇 ≫ 𝑛 and 𝜈 ∈ (0,1] 
(10) 

Regarding the detector based on PCA, the matrix 𝑈 is the 
only entity to be stored on board such that 

M𝑃𝐶𝐴 = 𝑛 × 𝑚, with 𝑚 < 𝑛 (11) 

Regarding the number of parameters characterizing the AE 
detector, this is a value that strongly depends on the 
adopted architecture. 

M𝐴𝐸 = 𝑛 × 𝑚 + 𝑚 + 𝑛/2 + 163,  with 𝑚
< 𝑛 

(12) 

As an example, with 𝑛 = 1000 and 𝑚 = 250 we have 

𝑀𝐴𝐸 = 250913 parameters. 
Since outlier scores are computed based on the comparison 
between groups of samples located in subsequent intervals 

of time, the size 𝑛 of the adopted windows affects the 
achievable performance in terms of abnormal behaviour 

detectability. 
 

5.5. Numerical Evidences 

Figure 7 Amount of digital words required by LOF, 

OCSVM PCA and AE where LOF and OCSVM adopt the 

𝑁𝑇3
 configuration. 
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In the training phase, for LOF and OCSVM, the model is 

fitted in three different configurations based on the size 𝑁𝑇 
of the training set, using references containing 
approximately 𝑁𝑇1

𝑛 ≈ 300𝐾 samples, 𝑁𝑇2
𝑛 ≈ 1.3𝑀 

samples, 𝑁𝑇3
𝑛 ≈ 6.5𝑀 samples, respectively. Whereas for 

PCA and AE, since their memory footprint is not directly 
affected by the amount of training examples, only the third 
reference set and a set containing 𝑁𝑇4

/𝑛 ≈ 15.5𝑀 samples 

have been considered. The reference test set includes 𝑁𝑆𝑛 

samples, that is in the order of ≈ 300𝐾 sensor readings. 
Both training and test set are passed to a pre-processing 
stage where filtering and data standardization are 

performed. Both the processing and the investigation of the 
ML methods have been carried out in a Python-based 
environment. Pandas [16] was mainly used as tool for data 

manipulation, together with libraries such as Numpy [17]. 
Tensorflow [18] has been used as ML platform for the AE 
model and Pyod [19], a wrapper of the library Scikit-learn 

[20], for LOF and OCSVM. 
For what concerns the model adopted to represent 

anomalous events, the presented analysis is specialized to 
the case of anomalies originated by Gaussian sources. Such 
kinds of anomalies could be representative of the effect of 

a large variety of possible system degradation conditions 
as well as it has been proved that white noise acts as a 
reference case in modeling the statistics of any possible 

class of anomalies [21]. Moreover, the clean signal is 
compared with portions of a time series associated with an 

actual anomaly recorded on the same channel, i.e., the step 
anomaly mentioned in Section 4. In the identified reference 
scenario, the four different cases in Table 1 are under 

investigation. 
Being the test set balanced, one can adopt the area under 
the Receiver Operating Characteristic curve, ROC (briefly 

referred to as AUC), as metric to assess detection accuracy 
[21]. The AUC takes the scores as inputs and provides an 

indication on the detection capabilities of a model, 
independently of a possible threshold value.  

Assuming value 𝑙𝑖
− is the minimum score assigned by 𝜂(𝑥𝑖) 

to the irregular instances in the test set, the detector is 

considered able to discriminate between clean signal and 

outliers if 𝑙𝑖
− > 𝑙+, where 𝑙+ is the upper bound of the 

confidence interval derived after the training phase for the 
scores associated to inliers, as anticipated in the initial part 

of Section 5.. The total absence of superposition of the 
scores distributions is assumed equivalent to AUC=1. In 
the following, histogram representations are used as a 

visual tool in order to distinguish between the distributions 
of the scores assigned to the clean signal and to the 
anomalous ones. The scores have been normalized by 

removing, at instance level, the mean 𝜇𝑥 and dividing by 

the standard deviation 𝜎𝑥 of the “good” ones, therefore, the 
values indicating normality concentrate around zero. A 

detector shows a good performance when a spread between 
the 90-th percentile, corresponding to the darker dashed 

line labeled as 𝑝𝑥 = 90 in Fig. 8 and 9, of the scores 
assigned to the nominal behavior and the 10-th percentile, 

labeled as 𝑝𝑐 = 10, of the anomaly scores is observed. 
The settings adopted here were suggested by recent 

research. In order to include the required memory footprint 
in the analysis, Fig. 7 provides an estimation of the amount 
of digital words to be stored with the produced time-

window division.  

Table 1. Reference cases for the test phase. 

Case Description 

C1 
The clean signal is compared to pure white 
Gaussian noise sharing the signal energy 

(WGN) 

C2 

Additive white Gaussian noise is considered, 

(AWGN), where noise and clean data have the 
same energy 

C3 
AWGN as for C2 but with a lower noise 
intensity modeled by an energy ratio between 
the signal and noise equal to 5 

C4 
The signal representing the nominal mode is 
compared to a profile resembling an actually 
recorded anomaly  

 

We limit the analysis to the cases 𝑛 ≥ 600, value around 
which an inversion in memory trend is recorded, since the 

detectors reach AUC=1 for 𝑛 ≥ 600 with only few 
exceptions. Fig.8 shows a comparison between all 
detectors except AE in their respective least expensive 

setting (LOF is set up with 𝑘 = 4 as number of nearest 

neighbors, OCSVM with 𝛾 = 1/𝑛, 𝜈 = 0.01 and 𝑛/𝑚 = 6 
for the PCA) when scores of clean signal are compared 

against the ones of anomalies in Table 1 when 𝑛 = 600. 
Moreover, the first two methods are trained considering the 

less memory hungry configuration 𝑁𝑇1
. PCA, since its 

trained offline, is still working with 𝑁𝑇3
 or even larger sets. 

In few cases only the AUC measure does not reach the full 
unitary value: an overlap of the score distributions can be 

observed for LOF in case C2 and for both LOF and 

OCSVM dealing with case C3 as well as for the 𝑇 2 scoring 
of PCA with respect to pure WGN (case C1).   
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Figure 8. Distribution of the scores obtained with LOF, OCSVM and PCA (both SPE and 𝑇 2 scores) in their least 
expensive setting for windows containing 𝑛 = 600 samples in the cases described in Table 1). 

 

Figure 9. Distribution of the scores obtained with PCA (SPE) and AE for window length 𝑛 = 600 and generated subspace 
dimension 𝑚 = 150, in the cases described in Table 1).
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Both the metrics adopted for PCA succeed in detection 
when the clean signal is compared to the noisy signals of 

cases C2 and C3, however, the 𝑇 2 scores show more 
variance. Moreover, all of the detectors appear to correctly 

flag the step anomaly C4. Fig. 9 depicts the comparison 
between the performances of PCA and AE when dealing 
with the aforementioned irregularity cases, proving the 

models act as proper detectors for cases C1, C2, C3 for 𝑛 =
600 and 𝑛 = 1200 (however, this is true for every 𝑛 under 
test) and thus robustness against noise, even if additive and 
of medium-low intensity with respect to a regular signal. It 

has been already shown how the PCA scores are able to 
detect anomaly C4, The most critical case for AE is C4: for 

𝑛 = 600, there is a significant overlap between the score 
distributions, while it performs slightly better when the 

window length is increased (e.g., 𝑛 = 1200). The AE 
model with convolutional layers, however, appears to be 

more versatile as a compression method when window 
length increases much, therefore is a candidate for 
solutions in which multiple time series are monitored. 

Nevertheless, PCA, confirms its already known robustness 
with a required memory footprint in the same range as the 
AE model, and perhaps* it will be long before the model 

goes actually out of fashion. 
For the sake of completeness, Fig. 10 demonstrates how 
the scores deviate in time when encountering the step 

anomaly shown in the first subplot. All the detectors 
provide the ability to identify a peak of unusual magnitude, 

arising suspicions about the behaviour of the monitored 
system. However, among them, the SPE score for PCA and 
the MSE for the AE model do not keep track of the 

deviation of the signal above its usual mean value. In turn, 

the 𝑇 2 score is able to identify such change in behavior: as 
a matter of fact, the metric is more sensitive to the 
discrepancies in terms of signal energy. An usual trend in 

the evolution of the scores can be observed for LOF as 
well.  

5.6. Results discussion 

Given the aforementioned performances, the models, 
properly tuned, can be included in a list of candidates for 
an anomaly detection building block at the foundations of 

an FDIR mechanism. It appears that the described 
techniques allow to properly raise a flag in correspondence 

of corrupted sequences in the time evolution of a telemetry 
signal. In some cases, the desired performance is achieved 
even with the configurations of minimum cost, depending 

on the model, especially in terms of memory footprint. 
Future developments are expected with pruning 
approaches (note that it can even be done for LOF, e.g., by 

ranking the top 𝑟 𝑘-nearest neighbors, and OCSVM, for 
which is suffices to imagine the SVM as a non-linear 

network whose input weights correspond to significant 
training examples, although domain knowledge is 
fundamental for the task) and while exploiting data 

representation techniques such as wavelet transforms, 
especially in view of an automated system monitoring 

multiple quantities simultaneously. In the following 
section, the possible enhancements related to pruning 
techniques are discussed from  a hardware perspective.  

 

 
Figure 10. Evolution in time of the scores when the step 
anomaly of case C4 is encountered. The dashed line marks 

the beginning of the irregular behavior. 
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6. Hardware implementation strategies for low-
power micro-controllers 

When implementing ML based algorithms on board, one 
of the main issues is the possible lack in resources, as many 

ML algorithms are, in the general case, quite expensive in 
terms of resources requirements. In particular, deep neural 
networks often suffer from over-parametrization and large 

amounts of redundancy in their models, resulting typically 
in inefficient computation and memory usage [22] 

Mainly, four aspects are to be considered. 

• Energy - This is indeed an issue affecting any hardware 
block, due either to a limited energy available, or a 
limited possibility of dissipating energy. Mitigation of 

this issue happens both at hardware level (low-power 
implementation) or at a software level (lower 
complexity algorithms). 

• Speed - Some types of data require real-time processing. 
Indeed, almost any types of data has a validity time 
range, after which they expire. A natural constraint for 

any data processing system is that data has to be 
elaborated before expiration, so elaboration speed has 

always to be taken into account. 
• Memory footprint - Memory (either volatile or non-

volatile) is typically limited in IoT devices, and this is 

in constraint with the requirements of many ML 
approaches. For example, AlexNet [23]is a well-studied 
network for image classification. Indeed, it has 61M 

double-precision parameters for a single image, 
requiring about 250MB of memory. These numbers are 

clearly out of the possibility for many devices. 
• Availability of dedicated peripherals  - many tasks 

could be performed in a more efficient way (in terms of 

energy, speed, or even both) given the availability of a 
dedicated hardware block. An example could be 
hardware accelerators for neural networks, that are 

nowadays coming to interest, and many high-end 
devices can be found with some accelerators [24]. To 

consider a much more common example, low-power 
micro-controllers programmers have often to deal with 
a single-precision floating-point arithmetic unit, and in 

some cases with a fixed-point arithmetic unit only, in 
contrast with the requirements of many ML algorithms. 

Here we limit ourselves on two critical aspects. The first 
one is the efficient arithmetic implementation on a standard 

micro-controller unit of arithmetic computations. Many 
algorithms considered in Section 5 require (independently 
of their implementation) many memory expensive matrix-

                                                             
1 online repository https://github.com/ARM-
software/CMSIS_5 

vector multiplications, matrix-matrix multiplication, or 
even more complex multiplication. This may be a problem, 
both for speed and in particular for the huge memory 

requirement, opposed to the generally small quantity of 
available memory. 

The second considered aspect is the optimization of a 
neural network architecture, that is a common structure 
used to implement ML algorithms. In particular, two 

aspects will be taken into account. The firs t one is the 
implementation of the DNN over a finite-precision 
arithmetic unit, as a double-precision unit is not always 

available in small, low-energy controllers. The second is 
the reduction of the number of parameters used by the 

DNN, a large ratio of them are typically redundant, and can 
be removed. This process is called pruning and, roughly 
speaking, is nothing more than a trade-off between a 

(generally) negligible cost in terms of performance drop 
and an important reduction (generally a decimation) of the 
number of parameters in the network. 

6.1. Fast and memory efficient arithmetic on MCU 

Many mathematical libraries are available for the efficient 

implementation of matrix operations. An example is the 
CMSIS-DSP library of the CMSIS project1 developed for 
ARM micro-controllers. Some techniques employed to 

improve the efficiency of arithmetic operations are listed 
here. 

• Loop Unroll: loops are massively employed in this kind 
of operations. As a consequence, loop-unrolling 

significantly increases the performance by removing 
unnecessary index updates, comparison and branches. 
Generally, this technique is automatically adopted by 

compilers when using some optimization flags. 
• Register blocking: matrix-matrix multiplications are 

performed as a series of vector-vector dot products 
(involving the interested row and the interested column) 
performed through a sequence of multiply-and-

accumulate operations. The output result is an entry of 
the output matrix, and require the reading (i.e., the 
transfer from the memory) of the whole row and of the 

whole column. By employing multiple accumulators 
(i.e., multiple temporary registers) simultaneously, it is 

possible to compute multiple output values at the same 
time involving a single row and multiple columns (or 
either multiple rows and a single column). This leads to 

a shorter number of memory accesses, with a shorter 
execution time and lower energy requirements. 
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• Buffered multiplication: in a matrix-matrix 
multiplication, one of the two input matrices may not be 
used anymore after the operation. In this case, the output 

matrix could be written in the same memory block used 
for the matrix that is not necessary anymore. 

Implementing this is  relatively easy when a square 
matrix is involved, that is a quite common case. As an 

example, multiplying a 𝑛 × 𝑘 matrix by a 𝑘 × 𝑘 matrix 

gives rise to a 𝑛 × 𝑘 output matrix. Classical 
implementation requires a memory space of (2𝑛 + 𝑘)𝑘 
values for the storage of the three matrices, which, 

however, can be almost halved if 𝑛 ≫ 𝑘 by storing the 

output matrix in the same memory location of the 𝑛 × 𝑘 
input matrix. The computation of each row of the output 
matrix requires the knowledge of corresponding row 

only in the rectangular matrix, and the full square 

matrix. After computing this row in a 𝑘-size temporary 
buffer, the corresponding row in the input matrix is not 
required anymore and can be overwritten. This 
overwriting procedure comes at the cost of a slight 

increase in the computation time. 

• Transposition of square matrices: The transposition (⋅)𝖳 
of a rectangular matrix requires, in general, to copy the 

entire matrix in another memory space. In the case of a 
square matrix, transposition can be obtained overwriting 
the original matrix, and so removing unnecessary 

memory blocks, by swapping each value in the two 
triangular parts. As in the previous case, this comes at 
the cost of a slight increase in the computation time. 

• Transposed multiplications: The operations 𝐴𝐵𝖳 and 

𝐴𝖳 𝐵 can avoid the transpose operation by modifying the 
multiplication operation and scanning the transposed 
matrix row-first instead of column-first (or vice-versa). 

6.2. Optimizing a neural network for a low-power MCU 

Optimized mathematical libraries are available also for the 
efficient implementation of neural network. The CMSIS-

NN library of the CMSIS project is specialized in the 
implementation of neural networks. Indeed, the inference 

of a NN-based algorithm is based on strongly structured 
matrix-matrix multiplication, with low possibility to 
introduce any sort of optimization. 

Therefore, NN-based algorithms are usually optimized in 
other ways, limiting the execution energy, memory 
footprint, execution time, or in general hardware 

requirements at the cost of a small and controlled reduction 
in the algorithm accuracy. In other words, the same 
principle of the well-known lossy compression (accuracy 

vs complexity reduction) is applied here. 
A first way to reduce complexity is to limit the precision of 

all parameters value to a given number of bits. This would 
allow to use fixed-point arithmetic, making not necessary 

anymore a single-precision or a double-precision 
arithmetic unit. However, in the general case, a 
straightforward rounding of all network parameters to the 

nearest low-precision representation usually implies a 
destructive drop in network performance. 

Conversely, it is possible to exploit the redundancy of 
parameters in a neural network by employing quantization-
aware training techniques. This would keep a good 

performance of the network in terms of accuracy when 
using quantized values in the network inference process. 
Among the many solutions proposed in the literature, two 

of them are worth mentioning, namely the fake-
quantization [25] and the cosine regularization [26]. 

• Fake-quantization consists in the emulation of the loss 
of precision due to quantization, performed by applying 

quantization to parameters during the feed-forward 
phase of training. The update of the parameters is still 

performed with high (i.e., floating-point) precision, as 
small variations are required for the fine-tuning of the 
network. 

• Cosine regularization is used instead to push the 
parameters – again, stored with high precision during 
training – near the quantized values allowed. For this 

purpose, a regularizer function is added during the 
training to the cost function in order to penalize values 

far away from the allowed, quantized levels, and 
promote values that instead are similar. In this way, the 
overall quantization error is reduced. 

Weight quantization techniques where parameters are 

constrained to binary values represent the most hardware-
friendly approach. The ultimate goal is binary weight 
quantization, where parameters can be memorized with a 

single bit value. Note that multiplication between two 1-bit 
values is nothing more than an XOR bitwise operation [27]. 
The exploitation of the inherent redundancy in the number 

of weights in a neural network for removing (i.e., zeroing) 
unnecessary parameters is known as pruning. A pioneering 

work of weight pruning is presented in [28]. Authors 
propose a novel class of layers based on the Multiply and 
Max-Min computation (MAM2) instead of the classical 

Multiply and Accumulate. These layer favorites pruning 
since after each multiplication between the input and the 
layer weights only the two contributions associated to the 

maximum and the minimum values contributes to the layer 
output. Weights never selected for the output computation 

can be discarded without any impact in the network 
functionality. 
Considering the AE presented here, the adoption of MAM2 

layers make possible the pruning of the 97% of the network 
parameters without any loss in the performance. For the 
same network, the adoption of standard MAC layer and 
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considering several pruning approach makes possible the 
zeroing of at least the 50% of the parameters without any 
loss of performance.  

7. Conclusion 

The topic of this work regarded the investigation, 
implementation and application of machine-learning based 
techniques for feature extraction and anomaly detection in 

satellite telemetries. The performance of four well-known 
ML algorithms, accordingly tuned for telemetry anomaly 

detection, were assessed in order to study the integration 
feasibility in on-board spacecraft health monitoring 
systems. A key point in this research is the decision criteria 

(anomaly scores, thresholds), used to improve the detection 
of anomalies and minimizing the false positive together. 
The observed results in terms of accuracy suggest that the 

ML models are worth deploying for the application of 
interest. Finally, we analyzed the possible methods to 

implement such ML-models in low-power 
microcontrollers, presenting different memory efficient 
approaches for arithmetic operations and a novel approach 

for NN layer optimization. Such optimization steps are 
required for limited computational power processors, that 
are at our disposal for satellite on-board processing. 

In our research roadmap, further investigations and 
developments are planned, e.g. in terms of simultaneous 

monitoring of several telemetry quantities in the same 
window (multivariate time series analysis), scalability and 
reliability analysis of developed ML models, focusing on 

the optimization process needed to implement the ML-
based methods in space qualified hardware with limited 
computational power. 
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