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ABSTRACT One of the critical challenges posed by the spread of Lithium-ion Batteries (LIBs) within
Electric Vehicles (EVs) is the real-time estimation of their State-of-Health (SOH), commonly regarded as
the leading indicator of EV aging. However, SOH estimation is still challenging due to the electrochemical
complexity of LIBs. This work proposes a novel, computationally-inexpensive, and chemically agnostic
Machine Learning (ML) procedure for onboard real-time SOH estimation. The proposed methodology
requires a narrow time window of voltage, current, and State-of-Charge battery data, collected while driving
the vehicle. We defined a Simulink-based EV simulator, modeling a specific real-world EV, and we utilized
it to generate a synthetic dataset by simulating multiple driving sessions of the EV to compensate for the lack
of large-scale publicly available EV monitoring data. Then, we examined three feature extraction methods
and three ML regression models, estimating the battery pack’s SOH. We conducted a thorough comparison
of the proposed feature extraction methods and MLmodels, training the MLmodel with processed synthetic
data and inferring over real driving session monitoring data from the corresponding real-world EV model.
The best synthetic-trained ML model achieves an MAE of 0.27% and 5.08%, and an RMSE of 0.37% and
5.92% over synthetic and real test data, respectively. Finally, we implemented transfer learning over the ML
models, employing a portion of the available real data, reaching the lowest MAE of 1.97%, and an RMSE
of 2.56% over the remaining real test set.

INDEX TERMS Electric Vehicle, Battery Pack, Regression, Machine Learning, State-of-Health.

NOMENCLATURE

DD Data-Driven
EChM ElectroChemical Models
ECM Equivalent Circuit Models
EM Empirical Models
EOL End-of-Life
EV Electric Vehicle
FFNN Feed-Forward Neural Network
LIB Lithium-ion Battery
MAE Mean Absolute Error
MB Model-based
ML Machine Learning
MR MiniRocket
OLS Ordinary Least Squares

PCA Principal Component Analysis
RF Random Forest
RMSE Root Mean Squared Error
RR Ridge Regression
SOC State-of-Charge
SOH State-of-Health
TL Transfer Learning
TS Theil-Sen

I. INTRODUCTION

Mitigating climate change is considered one of the critical
challenges of our century. It is estimated that the transport
sector accounts for 27 of the global emissions of green-
house gases [1] and, more specifically, road travel accounts
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for three-quarters of transport CO2 emissions [2]. Research
and development toward a greener automotive industry have
gained worldwide momentum in recent years. Electric Vehi-
cles (EVs) have been widely accepted as a clean and reliable
alternative to fossil fuel vehicles, both in the private and
public transportation sectors. They are expected to take over
the market quickly in the upcoming years [3]. It is, therefore,
essential to investigate the leading technologies that enhance
the performance of an EV.

The core component of an EV is its rechargeable battery
pack, and its design is critical in determining the energy effi-
ciency and driving range of an EV. A battery pack typically
comprises many battery cells connected in parallel and series.
Lithium-ion Battery (LIB) cells are currently the dominating
technology in battery pack design thanks to favorable proper-
ties such as high energy density and efficiency, low memory
effects, long cycle life, low self-discharge rate, high charging
and discharging rate capability, and - last but not least - plum-
meting costs of their composing materials. EV battery packs
are hierarchically structured into three levels: cell, module,
and pack [4].Multiple battery cells are connected in series and
parallel to form a battery module, and then a certain number
of modules are assembled to form a battery pack. This design,
shown in Figure 1, aims to achieve a sufficiently high terminal
voltage while adding up the capacity of each individual cell.

FIGURE 1. The hierarchical structure of an EV battery pack [5].

A parameter to describe the electrochemical state and dynam-
ics of the battery cells is the capacity, defined as the total
amount of charge it can deliver and commonly measured in
ampere-hours [Ah]. Manufacturers usually declare the nomi-
nal (or rated) capacity,Cnominal , as the battery’s capacity when
fresh out of the factory. Multiple external factors determine
the effective battery capacity, Cactual at any given moment.
LIB cells, like all batteries, are subject to degradation phe-
nomena with time and usage due to various chemical and
mechanical changes to the cell’s electrodes. These phenom-
ena gradually lead to a decrease in capacity (capacity fading)
and an increase in internal resistance [6]. The cells inside a
battery pack are subject to uneven degradation over time due
to their asymmetrical placement, uneven temperature distri-
bution, different inter-cell contact resistances, and possible
subtle differences in manufacturing quality [7]. As a result,
each cell is characterized by a different capacity and internal
resistance, which causes current to flow unevenly among
the cells, worsening the imbalance of cell degradation rates.
Hence, estimating the conditions at the battery pack level in
real-time is not easy.

It is possible to measure battery aging in a variety of ways.
The most common method of quantifying the capacity loss of
a battery is the State-of-Health (SOH), defined as the ratio of
the actual capacity of the battery to its nominal capacity:

SOH =
Cactual
Cnominal

(1)

In the context of EVs, a battery pack is said to be at its end-
of-life (EOL) when its SOH reaches 80% [8]. This threshold
is commonly adopted since, below 80% of its SOH, a LIB
incurs a faster, typically more-than-linear degradation [9].
Monitoring SOH is a critical task, since the EOL of a battery
pack typically marks the time when it has to be retired. Nowa-
days, it is possible to perform SOH estimation in a laboratory
setting, which is time-consuming. Therefore, developing fast
and reliable techniques to quantify the battery pack’s SOH
would greatly benefit EV drivers.
In recent years, researchers devoted their efforts to design-

ing real-time and on-board procedures, allowing a more man-
ageable and cheaper alternative for estimating SOH. Among
the proposed solutions, we notice the growing interest in Ma-
chine Learning (ML) solutions, emerging as a powerful tool
exploiting historical data for estimation and forecasting issues
in many disciplines. However, in the context of monitoring
the battery pack’s SOH of an EV, implementingML solutions
is still challenging due to the unavailability of open battery
data. Nevertheless, much effort has been put into defining
EV simulators that generate accurate internal battery pack
signals.
The presented work is the outcome of an extended study

jointly aiming at tackling the mentioned issue of data unavail-
ability and the implementation of a novel ML approach to
estimate the SOH of an EV’s battery pack in real-time with-
out time-consuming laboratory experiments, allowing the de-
ployment of the proposed methodology in an actual vehicular
environment. In particular, we propose a low computational
and chemistry-agnostic data-driven (DD) methodology re-
garding the definition of ML models to estimate the SOH
of the battery pack exclusively trained utilizing synthetic EV
battery pack data, generated with an EV simulator proposed
in our previous work [10], tackling the lack of such data that
are extremely challenging to find in literature. We formulate
our problem as a regression task to assess the battery pack’s
SOHof an EV, throughout its lifespan, usingmultivariate time
series of driving session monitoring data.
We utilize distinct feature extraction methods, with a low

computation burden, to speed up the training phase and to
reduce the numerosity of the input time series of internal
battery signals, which include current, voltage, and State-of-
Charge (SOC). The performance of the synthetic-trained ML
model is then determined by inferring over test synthetic and
real data, proving the benefits of the utilization of training
simulated data whenever actual data are not available. Then,
we implement Transfer Learning (TL) over the synthetic-
trained ML to refine their hyperparameters, thinning the mis-
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alignment between real and synthetic data, which struggle to
capture all key features of a battery operating in urban traffic.

The high-level overview of the adopted methodology is
shown in Figure 2, which is composed by three main phases,
the data acquisition, data processing, feature extraction, re-
gression models & training, and the final SOH estimation
phase. However, each phase of the methodology will be thor-
oughly explained in Section II.

FIGURE 2. The high-level pipeline of the proposed methodology.

The best synthetic-trained ML model achieves, over real
data, an RMSE and MAE of 5.92% and 5.08%, respectively,
demonstrating the benefits of synthetic training data in a
scenario where real data are extremely difficult to find. The
accuracy of theMLmodels further improves after TL, achiev-
ing the lowest RMSE and MAE, over real data, of 2.56%
and 1.97%, respectively. Hence, the proposed methodology
demonstrates that synthetic-trained ML models might be a
starting point to deploy the presented methodology into a
real EV, and such models can be fine-tuned using few real-
time battery data, achieving state-of-the-art results for the
battery’s SOH estimation. Moreover, the low computational
burden of the adopted processing steps, as demonstrated in the
manuscript, allows real-time estimation of the battery pack’s
SOH in an actual vehicular scenario.

The rest of this paper is organized as follows. Section II
presents an overview of the available solutions in literature
to estimate the battery’s SOH; Section III describes in detail
the adopted methodology, starting from the datasets, feature
extraction methods, andMLmodels. Section IV discusses the
experimental estimation results. Finally, Section V provides
our concluding remarks and future works.

II. RELATED WORKS
In recent years, research on battery SOH estimation has been
extensive and very diverse. SOH estimation methods mainly
fall into two categories: Experimental methods and Model-
based (MB)methods.We could further expand this taxonomy,
discriminating between online and offline methods. The for-
mer employs sensor data recorded while driving or charging
an EV in real-time; the latter utilizes historical data gathered
from an EV, using them for later use [11].

The experimental methods compute relevant quantities di-
rectly from experimental battery data and use them to estimate
the SOH. Such methods are usually conducted in laboratories
given the necessity of special equipment, and they measure
internal resistance, playing a central role in the battery’s SOH,
through either direct or indirect measurements [12].

On the other hand, MB methods estimate the battery’s
SOH determining the relationship between current, voltage,
and capacity over the battery’s aging. Moreover, with re-
spect to the experimental methods, the MB methods do not
cause the battery destruction during its SOH estimation [12],
which is damaging or causing future failures of the battery,
compromising the original part [13]. Some of the available
MB methods are equivalent circuit models, electrochemical
model-based methods, machine learning and deep learning
methods.
Equivalent Circuit Models (ECM) [12] are mathematical

models of a battery based on electrical components such as
resistors, capacitors, and direct current voltage sources, which
describe the external characteristics of a battery [14]. ECM
consist of mathematical abstractions of a battery: the elec-
trical components that compose it do not have any physical
meaning, and the complex physical and chemical dynamics
inside a battery are ignored.
Similarly to ECM, Empirical models (EM) [12] are math-

ematical abstractions of a battery, which try to capture the
non-linear relationship between SOH and degradation factors
through a single function. It is possible to choose many degra-
dation factors and functional forms. However, like ECM, EM
need extensive data in different experimental conditions to be
fitted accurately. The ElectroChemical Models (EChM) [15]
try to explicitly capture the complex physical and chemical
phenomena inside a battery, causing the capacity to fade over
time.
DD methods are a family of SOH approaches that leverage

large-scale datasets of experimental battery aging data, and
whose performances often depend on the size and quality
of such datasets [16]. DD methods are gaining increasing
interest due to their extreme flexibility and variety. Many
DD methods have the advantage of being domain-agnostic,
i.e., they do not require domain expertise in electronics and
chemistry [17], as they automatically learn the relationship
between experimental data and SOH. DD methods based
on machine learning and deep learning are becoming the
most prominent approaches to SOH estimation [11], [17],
[18]. Different feature extraction techniques and regression
models are widely explored in the literature [15]. Usually,
these methods require an offline training phase. EV mon-
itoring data measured by the battery management system
are preprocessed and used for training a machine learning
model, providing fast and accurate predictions. Due to these
advantages, machine learning methods are particularly suited
for real-time, on-board SOH estimation.
Roman et al. [19] proposed a manual feature extraction

pipeline that identifies 30 features. They employed recursive
feature elimination, based on random forests, to filter out
the minor relevant features for the SOH regression task. The
resulting dataset trains several regression models, includ-
ing random forest, deep neural network ensemble, Bayesian
ridge, and Gaussian process regression. Many other tradi-
tional regressionmodels have been applied to SOH prediction
pipelines in the literature. Among these, there are support
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vector regression [20], linear regression models (ridge, lasso,
elastic net) [21], and several variations of Feed-Forward Neu-
ral Networks (FFNN) [22]–[24].

Deep learning also offers techniques to develop new per-
forming methodologies or enhance existing ones. For in-
stance, Li et al. [25] proposed a transformer-based learning
framework to accurately estimate occupancy of charging sta-
tions even when large portions of data are missing, enhancing
EV charging monitoring systems. Chemali et al. [26] devel-
oped a SOH estimation method based on a Convolutional
Neural Network (CNN), which is given raw charging data
(voltage, current, and temperature over time) as input. This
methodology’s advantage is eliminating the manual feature
engineering, as a CNN automatically learns how to extract
relevant features from raw data.

More complex DL methods have been adapted to the task
of predicting the SOH of a battery cell, namely Recurrent
Neural Networks (RNN) [27], Long Short-Term Memory
(LSTM) [28], Gated Recurrent Units (GRU) [29], indepen-
dent RNN [30] and many more. However, given the limited
computing power of an EV, the complexity of recursive mod-
els might be an obstacle for the deployment of real-time so-
lutions [31]. Therefore, simpler models, e.g., FFNN, can be a
valuable compromise between complexity and accuracy [31].

Merkle et al. [32] introduced a digital battery twin for a
2014 Volkswagen e-Golf, setting up a data pipeline to predict
the battery pack’s SOC and SOH in real-time. They acquired
a training dataset directly from the onboard diagnostics in-
terface during an actual drive cycle; however, this dataset
has not been publicly available. Song et al. [33] trained their
SOH estimation methodology on a seemingly large battery
pack monitoring dataset from the Shanghai Electric Vehicle
Public Data Collecting, Monitoring, and Research Center
(SHEVDC). However, researchers need to apply for a mem-
bership to access the dataset.

We highlight that almost all of these methods leverage
experimental data regarding single battery cells, primarily due
to the unavailability of public datasets of EV battery packs’
monitoring data. Hence, a solution to generate knowledge that
is not directly observable and measurable in the real-world
system, and compensate for the lack of publicly available EV
monitoring data, lies in the implementation a digital twin of
the system under investigation [32].

Therefore, in this work, we propose a low computational
and chemistry-agnostic DD methodology to estimate the
SOH of the battery pack leveraging internal battery signals.
The full and detailed description of the adopted methodology
is shown in Figure 3, examining in depth what is reported in
Figure 2.

The data acquisition phase represents a substantial portion
of the extended study, during which we utilized the developed
virtual-EV [10], mimicking a specific real-world EV model,
to generate a synthetic dataset which will be the sole source of
data employed to train the selectedMLmodels. Subsequently,
we acquired actual EV monitoring data from a real-world
EV model matching the one of the virtual-EV, and almost

covering the whole lifespan of the EV’s battery pack, with
an SOH ranging from 85 to 99%. We utilized the real data to
perform inference of the MLmethodology, assessing the gen-
eralization capabilities of the synthetic-trained ML models
over real data, and finally to implement TL trying to further
improve the regression models’ performances.
During the data processing phase, we standardized all

datasets, a necessary step for the training of the regres-
sion models, and then we extracted fixed-length 5-minute-
long time series from both synthetic and real datasets.
While, in the feature extraction phase, we process the ob-
tained time windows belonging to both synthetic and real
datasets using several feature extraction methods. Particu-
larly, we utilized a domain-agnostic unsupervised feature
extraction method called MiniRocket, and implemented a
novel computationally-inexpensive feature extraction method
for which we utilized ordinary least squares and Theil-Sen.
In the regression models & training phase we defined and

trained theMLmodels, which are Ridge Regression, Random
Forest, and Feed-Forward Neural Networks. Specifically, we
trained each regression model feeding the synthetic dataset
generated by each feature extraction method independently.
In this way, we could gain insights into the performances
for each combination of the feature extraction method and
regression model, furnishing a thorough comparison analysis.
Finally, in the last SOH estimation phase, we assessed

the estimation performances of the considered synthetic-
trained regression models over real data, and then we imple-
mented TL for each analyzed combination of feature extrac-
tion method and regression model. Indeed, the synthetic data,
although accurate, cannot grasp all key and tiny variations
within a battery pack operating in actual traffic. Therefore,
we fine-tuned the ML models, solely trained with synthetic
data, using 50% of real data, making the synthetic-trainedML
models closer to a real scenario.

III. METHODOLOGY
In this section, we provide a thorough description of the
proposedmethodology, shown in Figure 3.Wefirst briefly de-
scribe the developed EV simulator, employed to generate the
synthetic dataset. Subsequently, we give details on the simu-
lated and real datasets. Next, we discuss the datasets prepro-
cessing procedures, the chosen feature extraction methods,
and their characteristics and limitations. Finally, we report
the selected ML methods and their properties, and how we
implemented TL.

A. DATA ACQUISITION
Referring to Figure 3, in the data acquisition phase, we ac-
quired the real dataset from the EVmodel under analysis, and
we generated the synthetic dataset utilizing the available EV
simulator. Indeed, in our previous work [10], we presented
a virtual-EV, developed using MATLAB/Simulink, utilized
to generate the synthetic and realistic dataset internal battery
signals.
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FIGURE 3. The detailed pipeline of the proposed methodology.

The simulator is composed of several mutually dependent
subsystems, e.g., electric motor, wheels, braking system, and
battery pack, to emulate the main operational mechanisms of
a real EV. We tuned a subset of the inner blocks parameters,
sourcing from available technical EV data sheets, trying to
mimic a target real-world EVmodel [10] as much as possible.
In Table 1, we report a list of the main parameters specific
to the mimicked reference EV model and that we utilized to
parameterize the main blocks of the virtual-EV.

The choice of designing such a specific EVmodel is solely
due to the availability of real data, presented later in this same
section, gathered from the same EV model.

Notable effort has been dedicated to the definition of the
battery pack module, being the source of the synthetic outputs
of interest. Indeed, to mimic the selected real-world EV, we
defined the battery pack module as a multi-cell system com-
posed by 264 cells, organized in 22 modules, each including
four in series with three in parallel. The resulting overall
nominal energy capacity of the battery is 35.8 kWh. In our
previous work [34], we demonstrated that, in a virtual EV,
a multi-cell battery pack provides greater accuracy than a
simplified model, though with longer simulation times.

To simulate a single driving session, the user must specify
a driving cycle, defined as a time series of speeds mimicking
the user’s driving routine, the outside temperature [°C] (fixed
or as a time series of measurements), initial average temper-
ature [°C], initial SOC and SOH of the battery pack. The
generated signals are EV’s speed [km/h], the battery pack’s
terminal voltage V [V], current I [A], SOC [%], and average
internal temperature T [°C]. The virtual-EV generates such
signals with a temporal granularity of 0.1 seconds, although
customizable by the user.

The EV simulator embeds the battery’s thermal and aging
models to properly characterize the battery pack’s state, al-
lowing the generation of synthetic and realistic battery sig-
nals for the specified temperatures and SOH. In this way,
the user can properly characterize the simulated EV model’s
environmental and internal battery pack’s conditions for the

TABLE 1. Detailed information for battery, motor, and vehicle belonging
to the mimicked EV model.

Description Value
Battery pack Type Lithium-ion

Capacity [kWh] 35.8
Voltage [V] 323
Number of cells 264
Number of modules 24
Cell weight [kg] 0.692

Motor Type
Synchronous AC
Permanent Magnet

Maximum torque [lb-ft] 214
Vehicle Drag Coefficient 0.27

Curb Weight [kg] 1567
Gross Vehicle Weight [kg] 2010
Frontal area [m2] 2.19
Wheels radius [m] 0.26
Tire rolling resistance 0.01

driving session of interest. Particularly, the battery pack’s
aging model implements equation-based age fading, consid-
ering the number of discharge cycles over which the specified
SOH percentage occurs. Moreover, calendar aging is also
included, which leads to an increase of internal resistance and
a decrease of capacity.
To provide the reader with a glance of the virtual-EV’s

performances, in Figure 4, we show the comparison between
the signals of current, voltage, SOC, and average internal
temperature generated by the EV simulator along with the
measured target real battery signals, for a sample driving
session.
Referring to Figure 4, the high variability in both the simu-

lated and target signals is primarily due to the data’s sampling
frequency of 0.1 seconds, which captures small fluctuations
in the monitored signals throughout the simulation. While we
could have reduced the apparent variability by resampling the
signals, we chose to present the data in its original form to
show the reader the simulator’s actual outputs.
We report in Table 2 the deviation between simulated and

real battery data for the selected driving session, and the
virtual-EV achieves an RMSE of 38.43 A and 2.28 V over
current and voltage, in this order. Moreover, the R2 remains
positive for all the simulated signals, reaching 1.00 and 0.93
for SOC and voltage, respectively.
We utilized the developed EV simulator to generate a
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FIGURE 4. The comparison between the output signals generated by the
EV simulator, and the real data signal from the corresponding real-world
EV.

TABLE 2. The deviation between the output signal generated by the EV
simulator and the target real signals.

Battery signal RMSE R2

Current 38.43 A 0.28
Voltage 2.28 V 0.93
SOC 1.11 % 1.00

Avg. internal temp. 0.65 °C 0.77

synthetic EV battery pack data dataset, aiming at acquiring a
sufficiently representative monitoring dataset in a wide range
of driving conditions. We populated the synthetic dataset by
executing individual simulations, given a unique combination
of inputs, which include: the driving cycle, the initial battery
pack’s SOH, SOC, internal temperature, and the environmen-
tal temperature.

We selected 9 input standard drive cycles [35] to span
different driving conditions, including city, urban and high-
way driving. The drive cycles are categorized based on the
maximum speed observed, that is, 50 Km/h, 90 Km/h, and
above 90 Km/h for city, urban, and highway, respectively.
The initial battery pack’s SOH remains the same throughout
the simulation, and it is set, through the battery pack block’s
aging model, to an integer value ranging between 100% and
80% (i.e. battery’s EOL [8]). In this way, we try to retrieve
synthetic data, covering the whole lifespan of the EV battery
pack.

The initial SOC always starts from 100%,while the starting
environmental and internal temperatures are randomly drawn
from two uniform distributions with bounds [-5,30]°C and
[T_env, T_env+5]°C, respectively, where T_env is the envi-
ronmental temperature. In Table 3 we summarize the set of
simulation inputs and their values.
Once all the simulation inputs have been defined, the sim-

ulation starts, and the driving cycle is looped until the battery
pack’s SOC gets below 10%. The simulation stops when such
a condition is met, and the output signals are collected.
We executed a number of simulations matching the total

number of combinations between the 9 driving cycles and the
21 integer SOH values. In this way, the synthetic dataset will
include 189 simulated driving sessions covering a vast range
of driving conditions.
For each simulated driving sessions, and for the sake of our

study, we solely selected signals of current, voltage, and SOC,
characterized by a temporal granularity of 0.1 seconds.
Apart from the synthetic dataset generation, we acquired a

real EV dataset from a private EV fleet management company
relative to the same real-world EV model, mimicked by the
virtual-EV. The real-world EV is equipped with a battery
pack characterized by 264 lithium-ion cells, organized in 22
modules, each including four in series with three in parallel,
with overall nominal energy capacity is 35.8 kWh. The same
battery pack’s architecture defined in the virtual-EV.
The general overview over the real dataset is provided in

Table 4, in whichwe report for each value of SOH, the number
of available driving sessions’ data, and their total temporal
converge in seconds. The real dataset span several months
of data acquisition, and it includes monitoring data signals
collected by the battery management system of distinct EVs,
all belonging to the same considered real-world EV model.
The collected real data signals include information related
to EV’s speed, battery pack’s current, voltage, SOC, average
internal temperature, and environmental temperature. Each of
such signals is sampled using different sampling rates [10].
For our methodology, We only extrapolated data signals of
voltage, current, and SOC.
The real driving session is accompanied by the battery’s

SOH value, obtained discovering the nominal and actual ca-
pacity of the battery pack through a proprietary and commer-
cial test, whose methods and conditions remain undisclosed
to the public. The estimated SOH values have a maximum
error of±3%, as claimed by the private EV fleet management
company. The estimated SOH values during the monitored
periods exhibit sufficient variability, including SOH values
ranging from 99% to 85%, almost covering the whole lifespan
of the EV’s battery pack.

B. DATA PREPROCESSING
Before using the feature extraction methods, as shown in Fig-
ure 3, we performed a few preprocessing steps on synthetic
and real datasets. As previously mentioned in Section III-A,
each measured real signal is sampled with a different fre-
quency. Thus, we independently resampled all signals in the
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TABLE 3. The list of inputs utilized to characterize all executed
simulations.

Input Value/characteristics
Driving cycle 5 urban, 2 city, 2 highway

SOH [100, 99, 98, ..., 82, 81, 80]%
SOC 100%

Environmental temp. [T_env] U[-5, 30]°C
Avg. internal temp. U[T_env, T_env+5]°C

TABLE 4. Real dataset composition, grouped by the SOH values, with the
relative number of available drive sessions, and total temporal coverage
in seconds.

SOH [%] # available driving sessions Total time coverage [s]
85 29 17303
86 25 17563
87 27 17351
88 31 17322
92 2 8499
93 5 13930
94 2 15003
95 8 2853
96 1 6106
99 1 16961

real datasets through linear interpolation with the same sam-
pling rates specific of the synthetic dataset, that is 0.1 seconds.
Such a resampling is necessary to have the synthetic dataset
and the real one sharing a common time base for all included
signals, allowing a correct implementation of the proposed
methodology over the synthetic and real data.

Then, as shown in Figure 3 , we split all simulated and
real driving sessions signals into several non-overlapping 5-
minute-long time windows, which inherit the corresponding
SOH value, the target label, associated with that session.
Each extracted time window includes a time series of current,
voltage, and SOC.

The complete timewindow extraction algorithm is reported
in the Algorithm 1,
where dataset is the dataset from which to extract time
windows, either synthetic or real; length is the duration of
the time windows in [s], by default we adopted a length of
300 s; slide is the time between the starting points of two
consecutive time windows in [s], and we choose a value for
slide that would generate non-overlapping time windows;
freq is the sampling rate of the measurements [Hz], in our
case 5 Hz; random_starting_point is a Boolean to
choose the starting point of the first time window at random
in the interval [0, length], by default it is set to True;
min_SOC and max_SOC are set to 0 and 100, respectively,
to make sure time windows do not contain SOC values out of
the range [0, 100]%.

The time window extraction, described in the Algorithm 1,
has been accomplished independently for all driving sessions
belonging to the synthetic dataset and real one. Each extracted
time window can be viewed as a multivariate time series with
C = 3 channels (V, I, SOC) and length T = 1500 (i.e., 300 s ×
5 data/s).

To fulfill the requirements of the proposed DD approach,

Algorithm 1 Time windows extraction

1: time_windows_dataset ← empty list;
2: for driving session ∈ dataset do
3: duration ← duration of the current driving ses-

sion;
4: if random_starting_point then
5: start← U(0,length);
6: else
7: start← 0;
8: end if
9: end ←start+length;
10: while end ≤ duration do
11: time_window←[start, end];
12: if SOC values in time_window ∈

[max_SOC, min_SOC] then
13: append data of time_window to

time_window_dataset;
14: end if
15: start ←start+slide;
16: end ←end+slide;
17: end while
18: end for
19: return time_window_dataset;

we randomly split the synthetic time windows dataset into
a synthetic-training-set and a synthetic-test-set, including
80% and 20% of the total time windows, respectively. The
time windows are assigned to the synthetic-training-set and
synthetic-test-set in a stratified fashion so that the distribution
of different SOH values, in each set, is the same as in the
original dataset. Table 5 reports the total number of time win-
dows extracted from the synthetic and real datasets. We also
note in Table 5 the cardinality of the synthetic-training-set,
synthetic-test-set and real-test-set that will be further pro-
cessed during the feature extraction phase and, subsequently,
employed to train the regression models.

TABLE 5. The total time windows extracted using the Algorithm 1, from
synthetic and real datasets, and their relative partitioning into sets for the
regression models.

Synthetic dataset Real dataset
Training set 7210 -
Test set 2509 440
Total 9013 440

When training an ML model, it is common to standardize
the data, as the scale of the training data has a relevant effect
on the scale of the learned parameters and, thus, on the quality
of the final solution. Having input variables scaled to zero
mean and unit standard deviation implies that each feature
will be deemed equally relevant in the learning process. It can
be shown that this improves the convergence rate of training
a neural network [36]. The values s1, ..., sT of each signal are
transformed using Equation 2:
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zi =
si − s̄(train)

σ̂(train)
(2)

where si is the input value of the signal, s̄(train) and σ̂(train)

are the sample mean and standard deviation of the consid-
ered signal in the training set, respectively, and zi is the
standardized output. We individually compute the mean and
standard deviation for current, voltage, and SOC across all
time windows belonging to the synthetic-training-set. We
then, as depicted in Figure 3, standardized all available time
windows within synthetic-training-set, synthetic-test-set, and
real-test-set, using the discovered mean and standard devia-
tion. Computing the mean and standard deviation concerning
only the synthetic-training-set avoids data leakage from both
synthetic-test-set and real-test-set, which must be kept unseen
until the end of the training phase.

C. FEATURE EXTRACTION
In many experimental settings, the length of the recorded time
series might be too long to train a regression model directly
on raw time series data. Indeed, each sample is regarded as a
feature, and many machine learning algorithms do not scale
well with the number of features of a dataset [37]. More-
over, when dealing with continuous signals, data taken at
contiguous timestamps are typically correlated in some way,
meaning that some feature selection is desirable to reduce
such redundancy. Therefore, it is often preferable to find a
static feature-based representation of the time series [37].

Thus, we may want to find a way to transform a generic
N × C × T time series dataset into a static N × M features
dataset where, in our case, N , C , and T are the number of
extracted time windows, available channels, and duration of
the time series, respectively. While, M is the number of new
input attributes extracted using feature extraction methods.
Then, the new dataset with dimensions N × M is employed
to train the regression models. These approaches to time
series extrinsic regression problems are called feature-based
regression algorithms [38].

In the literature, we could identify two distinct time series
feature extraction techniques: manual and automatic. With
the former, features are hand-crafted by a domain expert
to capture relevant information about a specific problem,
but they are often poorly generalizable to other regression
problems. The latter uses algorithms to extract features in a
supervised or unsupervised fashion automatically andwithout
the requirement of data expertise.

As previously highlighted, in this work we utilized three
different automatic feature extraction approaches to distill
meaningful features from the extracted 5-minute-long time
windows. Particularly, we employed MiniRocket and a novel
extraction method leveraging linear regression in the I-V-
SOC space through ordinary least squares and Theil-Sen,
independently.

The proposed feature extraction methods are individually
applied to the synthetic-training-set, synthetic-test-set, and
real-test-set, as reported in Table 5. We then use the resulting

new datasets to train and test the regressionmodels to estimate
the target battery’s SOH.
Dempster et al. [39] proposed MiniRocket (MR), a new

time series regression procedure that achieves state-of-the-art
accuracy in time series regression with a low computational
expense.
Although MR is considered state-of-the-art for time series

extrinsic regression problems, the utilized transform opera-
tion is computationally expensive. Almost 10,000 convolu-
tions per time window needs to be computed. Moreover, it
produces many features (9996) from each input time series.
The extremely high number of features may cause machine
learning models to not scale well with high-dimensional
datasets due to sparseness in data, a phenomenon known as
the curse of dimensionality. Therefore, we used Principal
Component Analysis (PCA) [40] to perform a dimensionality
reduction of the features extracted by MR to overcome the
discussed issue.
PCA [40] is a method to perform a certain change of basis

on the data, inwhich the axes of the new coordinate system are
the set of orthonormal eigenvectors commonly known as prin-
cipal components of the dataset. PCA is typically exploited as
an unsupervised dimensionality reduction technique, since it
maximizes the data’s variance when mapped down to lower
dimensional spaces.
PCA is applied toMR-transformed synthetic and real datasets.

By visualizing the scree plot for the synthetic-training-set
in Figure 5, we observe that with just 32 features out of
the original 9996, we can explain over 94% of the total
variance in the data. The first 32 principal components of the
synthetic-training-set are then used for all PCA transforms.
Moreover, since PCA requires standardized data, time series
data transformed through MR is standardized before the
PCA transform with sample mean and standard deviation
defined for the synthetic-training-set. Furthermore, the PCA
transform does not necessarily output standardized data, so
standardization is also applied after every PCA transform.

FIGURE 5. The results of PCA over the MR-transformed dataset for the
synthetic dataset highlight the 32 features that explain over 94% of the
total variance in the data produced by MR.

Thus, we can reduce the 9996 features to 32 for each time
window after applying PCA over the features extracted by
MR. The processed synthetic-training-set will be used as in-
put to train the regression models, while the synthetic-test-set
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and real-test-set will be utilized to perform inference over the
synthetic-trained models estimating the battery’s SOH.

As already highlighted, MR computes almost 10,000 con-
volutions between the time window of monitoring data given
as input and the MR kernels. However, embedding a SOH
estimationmethod on a real EV requires the procedure to have
a low memory footprint and – most critically – a little com-
putational cost due to the need to estimate the SOH in real-
time. Therefore, we introduce in this section a new feature
extraction method that is domain-specific, computationally
cheap, and low dimensional.

The EV field data typically consists of time series of V,
I, and SOC data (among others), taken during a driving
session of the vehicle. We will refer to the tuple of data
(V (ti), I(ti), SOC(ti)) for a given timestamp ti as an operating
point of the EV. The operating points of a specific driving
session appear to lie on a hyperplane in the V-I-SOC space.

We show in Figure 6 the cloud of operating points for
two synthetic and two real time windows, drawn from the
respective datasets, characterized by a SOH of 99% and 94%,
along with their interpolating planes computed using OLS.
Observing Figure 6, it is clear that such an observation is
accurate concerning both synthetic and real data, although
with certain degree of approximation.

Interestingly, the hyperplane defined by the operating
points seems to be discriminative of the age of the battery
during that driving session. Different battery SOH values
define different hyperplanes in the V-I-SOC space.

Therefore, we could consider the problem of predicting the
SOH of a battery pack as equivalent to finding the hyperplane,
which approximates all the possible operating points of an
EV at a specific point of its operating lifetime. To make this
task compatible with the requirements of a real-time SOH
estimation method, we need to find a hyperplane from the
knowledge of only a relatively short timewindow of operating
points (i.e., a small sample of consecutive operating points)
instead of the whole statistical population of operating points.
The equation of an affine hyperplane in a three-dimensional
space is defined in Equation 3 as follows:

z = ax + by+ c (3)

where the three parameters a, b, c ∈ R uniquely identify a
3D hyperplane. Hence, we can represent each time window,
i.e., a distribution of operating points, with just three features,
namely the a, b, and c defining the hyperplane that better fits
those operating points. Estimating the hyperplane parameters
that pass near all the points in a given set can be stated
as a linear regression problem [41]. We explored two such
methods for designing our novel feature extractor: Ordinary
Least Squares estimation (OLS) and Theil-Sen estimation
(TS).

OLS estimation is the most common solver for a linear
regression problem. It consists in finding the parameters β
minimizing the residual sum of squares defined in Equation 4:

RSS(β) =
N∑
n=1

(yi − f (xi;β))
2 (4)

where xi is the vector of input samples, yi the output
variable, N is the number of input samples, and β is the set
of parameters that minimizes the residual sum of squares.
The inputs can be represented as a matrix X of dimensions
N ×M +1, where N is the number of samples andM are the
features of each input, with the dataset samples x1, ...,xN as
rows, with a constant xi,0 = 1. It is possible to define the
Gram matrix as XTX . If the Gram matrix is positive definite,
then the OLS regression problem has a unique solution, re-
ported in Equation 5:

β̂OLS = (XTX)
−1
XTy (5)

where, y is the vector of outputs and β̂OLS is the set of
parameters of the OLS solution.
The OLS generally yields a reasonable estimate for the

parameters β under the assumption that E(y|x) is a linear
function with good approximation. However, OLS estimates
are susceptible to outliers since it seeks to minimize all resid-
uals equally and penalize large residuals more [42].
In the literature, more robust regression methods [42] are

designed to limit the effect of outliers on regression estimates.
Indeed, besides OLS, we also analyzed the TS estimation
method, a robust alternative to the OLS method that reduces
outliers’ contribution to the error loss, thereby limiting their
impact on regression estimates. TS estimation was first intro-
duced by Henri Theil [43] and Pranab K. Sen [44] as a method
for fitting simple linear models with just one explanatory
variable, f (x;m, b) = mx+b; recently, it has been generalized
to multiple linear regression by Dang et al. [45].
As originally defined, the TS estimate for the slope param-

eterm, of the simple linear model on a set of two-dimensional
points (x1, y1), ..., (xN , yN ), is the median of the slopesmi,j =
(yj − yi)/(xj − xi), determined by all pairs of sample points.

The intercept b̂
TS

can be estimated in several ways; one of
them is setting b as the median of the values bi = yi − m̂TSxi.
It is clear that computing m̂TS and b̂

TS
with this procedure

becomes very expensive as the dataset size N increases. For
instance, having N points,

(N
2

)
slopes must be computed one

for each pair of points.
One possible solution is sampling at random a subpop-

ulation S ≪
(N
2

)
of pairs of points and performing TS

estimation on this reduced training set, effectively computing
only S slopes. In this way, we can reduce the computational
cost, but the estimation may become very sensitive to the
particular random choice of the subpopulation, especially if
S is very small. In this work, S has been set to 10,000 for all
experiments.

We believe that MiniRocket, thanks to its accuracy and
speed at processing the input samples, combined with PCA,
allows the reduction of the input features to the most infor-
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FIGURE 6. The distribution of operating points for two synthetic and two real time windows in the SOC-I-V space, generated by a battery pack
characterized by an SOH of 99% and 94%, and their interpolating plane obtained using OLS.

mative ones, improving the estimation precision of the ML
models.

Conversely, the spatial distribution of the time windows’
operating points in the V-I-SOC space, shown in Figure 6,
leads us to believe that the application of linear regression
in the same space can condense extended multi-dimensional
time windows to just few features, strictly related to the initial
signals in the time windows.

D. REGRESSION MODELS & TRAINING
Using the feature extraction methods, reported in the re-
gression models & training block in Figure 3, we trans-
formed the time series belonging to the synthetic-training-set,
synthetic-test-set, and real-test-set, as reported in Table 5, to
their static feature-based representations. The dimensions of
the new datasets provided by the feature extraction methods
are reported in Table 6. Subsequently, we chose and trained
regression models to predict the battery pack’s SOH given the
transformed time series of its internal signals of I, V, and SOC,
as reported in Table 6. Many regression models exist, both
linear and non-linear. In this work, we consider three well-
known regression models, namely, Ridge Regression (RR),
RandomForest (RF),Feed-Forward Neural Network (FFNN).

TABLE 6. Dimensions of the synthetic-training-set, synthetic-test-set, and
real-test-set after the application of the feature extraction methods.

Synthetic dataset Real dataset
Feature extraction

method Training set Test set Test set

MR+PCA (7210, 32) (1803, 32) (440 32)
OLS (7210, 3) (1803, 3) (440 3)
TS (7210, 3) (1803, 3) (440 3)

Considering a linear regression model, as defined in Equa-
tion 4, the Gram matrix might sometimes present a singular-
ity, which means that it includes highly correlated indepen-
dent variables in the data. In such cases, the OLS estimation

problem becomes ill-posed, leading to severe numerical is-
sues. Hence, to mitigate this problem, we may impose a size
constraint on the coefficients by introducing an L2 regulariza-
tion term in the residual sum of squares defined in Equation 4,
which becomes,

RSSL2(β;λ) =
N∑
n=1

(yi − f (xi;β))
2 + λ

M∑
n=1

βi
2 (6)

where λ ∈ R is a user-defined penalty factor. Equation 6
defines the linear regression problem, called ridge regres-
sion problem, which can be solved by minimizing the L2-
regularized RSS. Ridge regression has the following closed-
form solution,

β̂ridge = (XTX + λI0)
−1
XTy (7)

where I0 is the (M +1)x(M +1) identity matrix with 0 as
the first diagonal entry. Therefore, adding a positive constant
to the diagonal of XTX before inversion makes the resulting
matrix non-singular, even when XTX is non-singular, thus
making the linear regression problem well-conditioned. No-
tice also that due to the addition of λI0, ridge estimates are not
equivariant under scaling of the inputs (as opposed to OLS),
and so one normally standardizes the dataset before solving
the ridge regression problem.

Whenever the number of samples N and features M is
high, the resulting matrix X becomes very large. Hence, the
matrices XTX and XTX + λI0 are expensive to compute.
Therefore, we solve the ridge regression problem using the
Stochastic Gradient Descent (SGD) [46].
Random forest [41], [47] is an ensemble learning method

for classification and regression tasks, which performs pre-
diction through majority voting (classification) or averaging
(regression) the predictions of an ensemble of decision trees.

A Feed-Forward Neural Network is a non-linear model
which can be used for regression tasks. The central idea is to
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extract linear combinations of the input variables as derived
features, and then model the target as a non-linear function of
these features. The building block of a neural network is the
neuron, which computes the linear combination of an input
vector x with weights w1, ...,wM and bias b. The neuron’s
output is then used as the argument of a non-linear function,
called the activation function. The non-linear inner structure
of the neurons makes the FFNN a non-linear model.

The training phase of a FFNN consists in estimating a set
of learnable parameters θ, namely its weights and biases, in
such a way that the predicted values for the target variable
associated with the training samples x1, ..., xN are close to the
ground-truth targets y1, ..., yN . The function that quantifies
the deviation between training samples and targets is called
cost function L. During the training phase, the FFNN’s pa-
rameters are usually updated iteratively via SGD. The SGD
requires the gradient of the cost function with respect to
each learnable parameter to perform an update. An efficient
algorithm to compute analytically, and recursively, the partial
derivatives ∂L/∂θ is called backpropagation [48].

We discuss now the adopted procedures to train the selected
RR, RF, and FFNN regression models to estimate the battery
pack’s SOH. As a result of the feature extraction phase, we
obtain the new synthetic-training-set, synthetic-test-set, and
the real-test-set, as reported in Table 6.

We trained the regression models utilizing the new
ynthetic-training-sets, independently. Subsequently, we as-
sessed the performances of the regression models over the
corresponding synthetic and real test sets. In this way, we
can determine the best-performing combination of the feature
extraction method and regression model separately. Since we
considered three regression models and three feature extrac-
tion methods, we trained three instances of each model, one
for each feature extraction method.

We utilized K-fold cross-validation to tune the hyper-
parameters of the RR and RF models. The K-fold cross-
validation randomly splits the training set into K subsets
called folds. One fold is held out as a validation set, while
the remaining K − 1 folds are used for training the model.
Each prediction pipeline is fitted and trained on the K − 1
training folds and tested on the remaining validation fold,
on which one or more performance metrics are evaluated.
Such a procedure is repeated K times to use each fold as a
validation set; therefore, a total of K regression models are
trained. The resulting performance metrics are averaged over
the K rounds to estimate the model’s predictive performance
on unseen data.

Typically, a grid search is performed over different hy-
perparameters through cross-validation. The hyperparameter
combination achieving the highest cross-validation score is
considered the optimal one. The regression procedure with
the optimal hyperparameters is refit on the whole training
set, thus obtaining the final regression model. Consequently,
we performed a grid search with 5-fold cross-validation to
tune some hyperparameters of RR and RF models. While the
FFNN hyperparameters were tuned using a "trial and error"

approach due to the higher computational cost of training
such models. Hence, for the FFNN, we selected 10% of the
synthetic-training-set to validate its performances at the end
of each epoch. Moreover, the FFNN is trained via SGD with
a learning rate divided by 10 whenever the training loss does
not decrease enough for several consecutive epochs.
We report in Table 7 the discovered optimal hyperparam-

eters for each of the nine combinations of feature extraction
method and regression model. In particular, for RR α is the
constant that multiplies the regularization term, η0 is the value
of the initial learning rate, and p is the exponent for the inverse
scaling learning rate. While, for the FFNN, the neurons per
layer refer to the number of neurons per hidden layer, α is
the learning rate, η0 is the rate at which, in the SGD, the
learning rate is reduced whenever the training loss does not
decrease enough forP consecutive epochs, andµ is the SGD’s
momentum.
We run the experiments over a machine with the following

specifications: Intel Xeon W-2155 CPU @ 3.30 GHz (10
cores, 20 threads), 64 GB RAM, NVIDIA Quadro P4000
GPU (8 GB GDDR5).

E. SOH ESTIMATION
At this point, following the procedures discussed in Sec-
tion III-D, we independently trained the selected ML models
using the synthetic-training-set, each generated utilizing the
methods presented in Section III-B. Then, during the SOH
estimation phase, as reported in Figure 3, we assess the
performances of the synthetic-trained ML models over the
synthetic-test-set and real-test-set.
Comparing the estimation results of theMLmodels trained

using the distinct processed synthetic datasets, as reported in
Table 6, we intend to discover the best combination of feature
extraction method and ML model to estimate the battery
pack’s SOH.
As depicted in Figure 3, after assessing the performances

of the synthetic-trained ML models for the distinct feature
extraction methods, we applied Transfer Learning (TL) over
the same models, trying to improve their estimation results.
We utilized a fraction of the corresponding processed real
dataset, i.e., 50%, to fine-tune the hyperparameters of the ML
models. Specifically, we randomly selected, roughly, 50%
of real samples for each SOH label to populate the dataset
utilized for TL, preserving the same distribution of SOH
labels in the original real dataset. In this way, it is possible to
fine-tune the MLmodels preventing them to, possibly, overfit
over a specific SOH value.
More in detail, the parameters of the synthetic-trained RR

model are updated through a new fitting procedure utilizing
the selected fraction of the specific real dataset. While, for
the RF, starting from the synthetic-trained model, we added
200 new decision trees fitted using the 50% of the specific
processed real dataset. Finally, the FFNN undergoes a new
training phase, during which we solely update the parameters
of the neurons belonging to the output layer.
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TABLE 7. Hyperparameters chosen for each regression model and training set.

Ridge regression Random forest Feed-Foreward Neural Network

α η0 p
max. tree
depth n. trees

neurons
per layer

max
epochs α η0 µ P

MR+PCA 0.0278 0.001 0.25 30 1000 (120, 60, 40) 300 0.0001 0.1 0.9 5
OLS 0.01 0.0464 0.25 50 500 (40, 20) 300 0.0001 0.1 0.9 5
TS 0.01 0.0464 0.25 unlimited 500 (40, 20) 300 0.0001 0.1 0.9 5

We believe that, given the issue of data unavailability, we
can train the backbone ML models with the realistic syn-
thetic data, constituting a solid foundation to the regression
models. Then, we fine-tune the hyperparameters of the same
synthetic-trained ML models with a fraction of real data,
making them closer to a real scenario.

The resulting fine-tuned ML models will embed hyperpa-
rameters discovered using the synthetic data, and then im-
proved with the real data. We assessed the precision of the
fine-tunedMLmodels performing inference on the remaining
50% portion of real data not utilized during the TL procedure.

In the next Section IV we discuss and compare
the estimation results of the ML models, trained with
the synthetic-training-set, over the synthetic-test-set and
real-test-set. Afterward, we present the improvements intro-
duced by TL, performing inference for the fine-tuned ML
models over the remaining 50% of the real-test-set.

IV. RESULTS
This section presents the estimation performances achieved
by the different regression models and feature extraction
methods. Firstly, we evaluated the results of the proposed
methodology in terms of Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE). The former gives infor-
mation on the prediction error that is committed on average,
whereas the latter measures the average difference between
simulated and the actual values. The mathematical formula-
tion of the MAE and RMSE is the following,

MAE =
1

N

N∑
n=1

(ŷi − yi)2 (8)

RMSE =

√∑N
n=1(ŷi − yi)2

N
(9)

where, yi target ground-truth sample, ŷi is the estimation
generated by the considered regression model, and N is the
cardinality of the test set.

Using the MAE and RMSE, we have firstly evalu-
ated the synthetic-trained regression models on the held-
out synthetic-test-set; then, we analyze the performances
of the same synthetic-trained regression models over the
real-test-set. In Table 8, we report the obtained estimation
results for each combination of feature extraction method and
ML model, over the synthetic-test-set and real-test-set. Ob-
serving Table 8, we can determine that the FFNN, trainedwith
features extracted with MR+PCA, substantially outperforms,

over the synthetic-test-set, all the rival regression models and
feature extractionmethods. Indeed, the combination of FFNN
and MR+PCA achieves over the synthetic-test-set an RMSE
and MAE of 0.37% and 0.27%, in that order.
The RR models are the least accurate regression models,

which achieve, paired with MR+PCA, the lowest RMSE
and MAE of 3.14% and 2.51%, respectively, over the
synthetic-test-set. The RR, fitted with OLS and TS data,
struggle to reach an RMSE lower than 6.00%. The discrep-
ancy between results obtained by the RR and FFNN can be
justified addressing the relatively lower design complexity of
the RR compared to the FFNN model. On the other hand, the
RF models perform well over the synthetic-test-set, although
not as much as the FFNN.
Now, we analyze the performances of the synthetic-trained

regression model over the real-test-set. In contraposition
with the results examined for the synthetic data, the best-
performing regression model over real data is the RF. In
fact, the RF combined with MR+PCA reaches, over the
real-test-set, an RMSE of 5.08%. While, the FFNN, that
obtained lower errors over the synthetic-test-set, performs
quite poorly over real data, reaching the minimum RMSE of
4.59%.
Moreover, the RF, compared with the other ML models,

achieves more consistent result, with RMSE values below
10.00% and without exploding errors like FFNN and RR.
Indeed, due to low generalization capabilities, the synthetic-
trained FFNN achieves RMSE and MAE errors out of scale
over real data, making it too unreliable compared to the RF
model.
Overall, OLS is constantly outperformed by the other fea-

ture extraction methods. Indeed, the OLS, as discussed in
Section III-C, is strongly affected by the presence of outliers
and generally, as shown in Figure 6, time windows exhibit
irregular points distribution. Such a susceptibility to outliers,
inevitably affects the performances of the OLS method.
Moreover, in Table 8, we report the average feature ex-

traction time for each feature extraction since the required
computational time is critical for a real-time SOH estimation
procedure. We omit the time for predicting the SOH value
since it happens to be negligible, e.g., < 10−3 seconds
per time window, for all regression models. Therefore, we
conclude that every possible combination of a single feature
extraction method with a single regression model defines a
SOH estimation procedure that fulfills the real-time require-
ment.
Finally, in Table 8, we also compare the performances
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achieved by the synthetic-trained model and the same models
after TL. The RF remains the best-performing model over
real data, both before and after TL. Moreover, the MR+PCA
proves to be, still, the best feature extraction method com-
pared to the others. Thus, using the combination of RF and
MR+PCA and after the TL fine-tuning of the model, we can
reach the lowest RMSE and MAE of 2.56% and 1.97% over
the reduced real-test-set. Nevertheless, all regression models
benefit from fine-tuning, reducing the deviation between esti-
mations and ground truth by a substantial margin. All models,
after TL and combined with the proper feature extraction
methods, obtain anRMSE andMAEgenerally lower than 5%.

We utilized 50% of the real dataset to accomplish the
models’ fine-tuning through TL, which, intuitively, leads to
believe that larger datasets would further improve the accu-
racy of the regression models. However, we believe that syn-
thetic data can become the baseline foundation to accomplish
preliminary training of the regression models for estimating
the battery pack’s SOH, given the issue of data unavailability.
Then, with a few real data, we can fine-tune the regression
models, reaching good results in the monitoring of battery
aging.

In Table 9 we report the computational times required
by each feature extraction method and to infer the SOH
estimation from the trained ML models, per sample, i.e., 5-
minute-long time window. Analyzing the best performing
combination of feature extraction method andMLmodel, that
is MR+PCA and RF, the aggregate computational time does
not exceed 0.20 seconds, which allows us to fulfill the real-
time requirements of the proposed methodology. Nonethe-
less, given that a substantial variation of SOH becomes con-
siderable over time, the user might instantiate the methodol-
ogy once every fixed amount of time, possibly absorbing the
latency, although very small.

V. CONCLUSIONS AND FUTURE WORKS
In this work, we proposed a novel DD and chemistry-agnostic
approach to estimate the battery pack’s SOH. Due to a lack
of publicly available datasets of EV field data, we defined
a MATLAB/Simulink simulator, mimicking a specific real-
world EV model [10]. We utilized the EV simulator to simu-
late many driving sessions in different conditions, collecting
synthetically-generated EV field data.

We extractedmany 5-minute-long timewindows from each
artificial driving session, and we processed them using three
feature extraction methods: MR+PCA, OLS, and TS. We
applied each feature extraction method over the synthetic
and the real datasets independently, obtaining a static repre-
sentation of time series data. We finally used the processed
synthetic data to train three different regression models: RR,
RF, and FFNN.

In general, the synthetic-trained RF combined with
MR+PCA and TS achieve acceptable results over real data.
The application of TL using a portion of real data proved to
be effective. Indeed, the fine-tuned RF model, combined with

MR+PCA, reaches over real data the lowest RMSE andMAE
of 2.56% and 1.97%, respectively.
As highlighted in Table 9, the processing and inference

procedures proved to be very fast, with their combined com-
pletion times way below one second. Therefore, given the
offline training of the ML models, the methodology becomes
suitable for real-time monitoring of SOH.
For future works, we intend to develop a co-simulation

platform to execute new simulation sourcing from actual
routes, including information about road’s slope. This would
allow us to define a more vast and realistic dataset from a
whole EV fleet. Moreover, we will investigate the applica-
tion of scientific ML reducing regression estimates violating
physical relationships.
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