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Summary

In recent times, the interest in artificial intelligence algorithms has skyrocketed
well out of academia marking a substantial shift in most, if not all, the industrial
sectors. This revolution started in the early 2010s and was made possible by the
combined availability of very powerful parallel processing units (e.g. GPUs) and
more and more abundant "big data". Although the GPU has served well as platform
to kick-start this revolution, currently this conventional digital hardware acceler-
ator struggles to satisfy the increasingly high requirements of machine learning
algorithms within a reasonable power consumption range. Most of the energy
inefficiency which characterizes conventional digital hardware accelerators (e.g.
GPU, TPU, FPGA etc) is to blame on the traditional von Neumann architecture
they implement which involves data being sent back and forth between memory
and the processor. In this context, neuromorphic computing has emerged as an
alternative to contemporary processing units’ architectural design choices which
may rise to the challenges posed by modern AI training and inference tasks. Neu-
romorphic computing takes inspiration from the biology of the animal brain by
putting the storage of information and its processing in very close spatial proximity
if not encoded and performed by the same processing element. It is this the case of
memristive technologies which have attracted the interest of lots of researchers and
companies as good candidates to implement the synaptic function in neuromorphic
hardware accelerators. The overall goal of this doctoral thesis is the investigation of
memristive based computing architecture exploiting an holistic approach ranging
from the modeling of memristive devices to the mapping of advanced machine
learning algorithm on crossbar arrays. The first part of the thesis is devoted to
memristive technologies modeling techniques while its second part deals with the
design and study of meristor-based architectures for machine learning tasks. In
particular the thesis contains novel results on the use of DRMs for Phase Change
Memory devices, the study of Spiking Neural Networks and the design of advanced
memristive crossbar based accelerators for linear algebra problems (Pagerank).
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conductance is Ĝ = 1 mS. Taken from [1] ©2022 IEEE. . . . . . . . . 42

2.11 Gap length time derivative dg/dt as a function of g, for T ∈ {400,500,600,700}K,

r/r0 = 1, Ea = 0.85 eV and different input voltages ranging from

−2V to 2V. Taken from [1] ©2022 IEEE. . . . . . . . . . . . . . . . 43

2.12 Impact on STDP functions of a 5 % variation of the parameter r0.

A continuous line represents nominal values, circles represent per-

turbed values. Taken from [1] ©2022 IEEE. . . . . . . . . . . . . . . 46

2.13 Impact on STDP functions of a 5 % variation of the parameter rm.

A continuous line represents nominal values, circles represent per-

turbed values. Taken from [1] ©2022 IEEE. . . . . . . . . . . . . . . 46

3.1 Example of a 4×4 memristor crossbar array. . . . . . . . . . . . 50

3.2 Dataset of all the patterns to be memorized. . . . . . . . . . . . 64

3.3 Accuracy for different radius of connectivity. . . . . . . . . . . 65



List of Figures xv

3.4 Mean accuracy for different number of epochs. . . . . . . . . . 66

3.5 Pattern reconstruction. . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Pattern classification. . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Example of a sequence of presynaptic input spikes of period T (up-

per figure), giving rise to postsynaptic output of period 3T. Each

pre/post synaptic spike is represented by a programming pulse

of magnitude VP and duration ts, followed by a heating pulse of

duration tH ; the time interval between the beginning of the program-

ming pulse and the beginning of the heating pulse is denoted with

tsh. It is assumed that the postsynaptic spike occurs αtH time units

after the beginning of one presynaptic spike (with 0 ≤ α ≤ 1) and

the following parameters, reported in (3.31), are shown for some

mem-conductances: γ
post/pre
1,2 (related to the time shift between the

beginning of the presynaptic programming pulses and the begin-

ning of the postsynaptic heating pulse) and γ
pre/post
2,3 (related to the

time shift between the beginning of the postsynaptic programming

pulse and the beginning of the presynaptic heating pulses). Taken

from [1] ©2022 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Spiking network composed by 60 presynaptic neurons and one

postsynaptic neuron. Upper part: mem-conductance pattern peri-

odicity (2, for T
τb
= 1.25 tH

τb
, and 3, for T

τb
= 1.3 tH

τb
); lower parts: mem-

conductance variations, due to a sequence of post/pre/post spikes.

Taken from [1] ©2022 IEEE. . . . . . . . . . . . . . . . . . . . . . . 76

3.9 Spiking network composed by 60 presynaptic neurons and one

postsynaptic neuron. Upper part: mem-conductance pattern peri-

odicity (4, for T
τb
= 1.4 tH

τb
, and 5, for T

τb
= 1.45 tH

τb
); lower parts: mem-

conductance variations, due to a sequence of post/pre/post spikes.

Taken from [1] ©2022 IEEE. . . . . . . . . . . . . . . . . . . . . . . 76



xvi List of Figures

4.1 (a) Illustration of a 2 × 2 open-loop crossbar used to perform
matrix-vector multiplication. All thermal noise sources associ-
ated with TIAs (formed by an op-amp and a feedback resistor)
and crossbar 1T1M cells are shown. (b) The one-transistor
one-memristor (1T1M) cell at each junction in a crossbar. GL:
Gate Line, RL: Row Line, CL: Column Line. (c) Illustration of a
2× 2 feedback crossbar for solving linear equations. The noise
sources are input resistors and TIAs (formed by an op-amp
and crossbar cells). Taken from [2] ©2021 IEEE. . . . . . . . . . 81

4.2 Graphical representation of a generic regular three-state MC
together with Power Method iterations. Black dashed lines
correspond to the limiting distribution. Taken from [2] ©2021
IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Summary of the architectures and operations in this work. The
open-loop crossbar enables the computation of both the next
state distribution via an MVM operation and the stationary
distribution of the chain by the sequential update provided
by the Power Method. The requirements are linear transfor-
mations to set the conductance range and recover the correct
result. When the evolution of the system is not required, the
stationary distribution of the MC can be computed in a single
step with the feedback crossbar configuration. After a prelimi-
nary linear transformation of the system, the routine does not
need a recovering step. Taken from [2] ©2021 IEEE. . . . . . . 88

4.4 Normally distributed programming noise model that illus-
trates the intended write distribution between two conduc-
tance levels separated by the pre-defined bit precision. Taken
from [2] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . 93



List of Figures xvii

4.5 Simulated programming σp, thermal σT and total σTOT noise of a

generic output component for different crossbar sizes using both (a)

open-loop and (b) feedback architectures and 8 bits precision mem-

ristors with a conductance range of [100µS, 1000µS]. (c) and (d) repli-

cate the first row plots with a conductance range of [10µS,1000µS].

(e) and (f) are the equivalent output bit precision for different matrix

sizes using open-loop and feedback crossbars, respectively. The total

noise contribution of different memristor precision was considered

and compared using MATLAB. The σp estimates were computed by

using 1000 perturbations of a random transition matrix. The same

operation was repeated for σT by perturbing the input vector. The

total noise σTOT was calculated by perturbing both transition matrix

and input vector. These estimates were then used to evaluate the

output bit precision. To obtain the relationship between precision

and noise, systematic errors were excluded. The σT includes thermal

noise contributions of memristors, resistors and op-amps. Taken

from [2] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 a) Schematic of the transistor level op-amp. b) Schematic of
a single TIA with the input resistor in a multi-loop feedback
crossbar structure. Rm is the parallel combination of memris-
tors resistances in the feedback path. Taken from [2] ©2021
IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7 Frequency domain analysis to determine stability of each loop
for the feedback circuit of Fig. 1(c). The plots show the re-
sults for a single loop in a multi-loop system. The stability of
the loop is determined by the intersection point of the open-
loop gain curve of the op-amp (Ao(s)) and noise gain curve
(1/β(s)). The phase margin is calculated on the LG phase
curve (ϕ(LG(s))) using this point. DC gain and GBW of the
op-amp are 86dB and 1.1GHz, respectively. Taken from [2]
©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



xviii List of Figures

4.8 Output accuracy in terms of normwise relative error and co-
sine similarity versus different memristor programming pre-
cisions for (a) open-loop and (b) feedback configurations for
a 64 × 64 crossbar. Output accuracy versus different matrix
sizes is given for (c) open-loop and (d) feedback configura-
tions with 8 bits precision memristors and non-ideal op-amps.
The expected accuracy is measured using 1000 perturbations
of a random matrix. The error bars contain the distribution
of each set of runs for 95% of the calculations. The normwise
relative error is a more sensitive indicator than cosine similar-
ity. The results are mainly affected by the errors arising from
memristor precision rather than op-amp non-idealities. Taken
from [2] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . 105

4.9 (a) Example of a mouse trapped in a maze. (b) Transition ma-
trix representing the probability that the mouse goes from one
room to another. (c) Comparison between the 6-th step proba-
bility distribution using MATLAB and the proposed open-loop
crossbar with 8–bits precision memristors. (d) Comparison
between the stationary distribution using MATLAB and the
proposed feedback crossbar with 8–bits precision memristors.
Taken from [2] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . 106

4.10 (a) Adjacency matrix representing the links between the 100
pages of MathWorks dataset. (b) Transient behavior of the
feedback system converging to the limiting distribution of
the chain. (c) Simulated pageranks provided by the feedback
crossbar. Taken from [2] ©2021 IEEE. . . . . . . . . . . . . . . . 111

4.11 Taken from [2] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . 113



List of Tables

2.1 Parameters used for modeling the memristor dynamics. . . . . 29

3.1 Accuracy for each single learning rule . . . . . . . . . . . . . . 62



Introduction

Motivations

In the last decade the emergence of big data problems and real world ma-
chine learning applications has put harder and harder challenges in front
of computer engineers. Sought-after tasks such as speech recognition and
image detection, which take fractions of milliwatt for the human brain to
accomplish, require many orders of magnitude more power to achieve on
traditional Von Neumann digital processors. In the new era of computing,
the high inefficiency of the conventional paradigms calls for novel computing
approaches. Very promising among those are the physics-based paradigms
(e.g. Neuromorphic Computing, Quantum Computing etc.), where the fun-
damental laws of nature are exploited to carry out the computation. Whereas
Quantum Computing exploits the laws of Quantum Mechanics, Neuromor-
phic Computing exploits the laws of Classical Electrodynamics to build
bio-inspired analog computers which are much more energy-efficient and
compact than their traditional digital counterparts.
On the neuromorphic computing side, large interest about memristive tech-
nologies has grown during the past decade. Memristors, theorized by
Chua[3, 4] in 1971 as the 4th fundamental circuit elements, are 1−port sys-
tems whose electric conductance depends on the past evolution of the port
variables (e.g. current and/or voltage)[5]. These fundamental elements take
their name by the union of the two words "memory" and "resistor", as such
circuit components behave as resistors with memory properties. Although
conceived half a century ago, the memristor has been identified with a phys-
ical implementation only in 2008 when the research group lead by Stanley
Williams at HP Labs recognized the hallmark of memristive behavior[6] in
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their Titanium Oxide nanodevices [7]. Since then, the numerous and hetero-
geneous technologies that fall into the memristive class have been widely
exploited in analog and digital systems for a broad scope of applications,
including amplifiers, filters, oscillators, logic gates and pseudo-random num-
ber generators [8–10]. At the time of writing, given memristors’ multilevel
analogue memory capabilities, mass storage and neuromorphic computing
seem to be the most promising among those applications with each technol-
ogy being best suited for certain problems[11]. In terms of voltage-current
characteristic a two terminal memristor device is described by a memduc-
tance, which may depend on a set of first and second order state variables,
commonly linked to the internal geometric parameters and to the internal
temperature.

Fundamental to the development of a memristor-based neuromorphic
computing system is the complexity of the physical modeling to be em-
ployed in higher-level circuit simulations. Thus, high-level identification
techniques, circuit modeling methods and technology specific compact mod-
els are needed to analyze analogue computing circuits made of memristors.
Although many decades long efforts have been put towards the development
of very accurate mathematical models for each technology that can explain
the fine grain dynamical behavior of these devices, still the very complex
physics based models found in literature do not serve the purpose of provid-
ing good prediction on the global behavior of large number of those devices
in a short amount of time. Since this is a surging problem for the simulation
of large scale neuromorphic systems which may contain at least thousands of
those devices, the research and development of novel modeling techniques
and technology specific compact models has attracted the interest of many
researchers both from the academia and the industry.

Furthermore devices of this kind also pose many challenges when op-
erated in large arrays to perform computations. Each technology has it
peculiarity and the device’s non-idealities when compared to the ideal mem-
ristor theorized by Chua are many, to name a few:

• Nonlinearity of the Ohm’s Law

• Drift of the memorized resistance over time
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• Cycle-to-cycle variation of the programmed value

• Device-to-device variations

Although most of this nonideal effects have to be taken into account when
designing a neuromorphic system, there are also approaches that try to
exploit some of them as an advantage for the computation.

Thesis organization

This doctoral thesis is organized as follows. Chapter 1 introduces the Phase
Change Memory (PCM) technology and proposes a physics-based compact
model that is employed to compute and validate on experimental data the
PCM Dynamic Route Maps. Chapter 2 introduces the Resistive Random
Access Memory (ReRAM) nonvolatile memory technology and proposes
a compact model suitable for memristor-based Spiking Neural Networks
(SNN). Chapter 3 brings examples on the modeling of both Spiking/Artificial
Neural Networks and more conventional linear algebra accelerators. Chap-
ter 5 concludes the manuscript and gives an overlook on possible future
developments of the work.

Main Contributions

The main contributions of this manuscript may be summarized with the
following points:

• A novel physic-based current controlled model for Phase Change Mem-
ory devices.

• Computation and experimental validation of the PCM technology Dy-
namic Route Maps.

• Derivation of an almost analytical simplified model of the ReRAM
memristor that involves two variables, the memductance, and the
temperature, which can be related one-to-one with the synaptic efficacy
and the calcium concentration in biological synapses
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• Characterization of memristor-based spiking neural networks as dis-
crete time nonlinear dynamical systems whose state variables are the
mem-conductances and whose inputs and outputs are pre and postsy-
naptic spikes respectively.

• A case example of the design procedure for a memristor-based hard-
ware accelerator.

• An in-depth study of the impact of non-idealities on memristor-based
hardware accelerators for linear algebra problems solving with a par-
ticular focus on trade-offs and comparisons with the state of the art
digital alternatives.

All the results presented in this manuscript are based on articles published
by the author:

• Marrone, F., Secco, J., Kersting, B. et al. Experimental validation of
state equations and dynamic route maps for phase change memristive
devices. Sci Rep 12, 6488 (2022). doi: 10.1038/s41598-022-09948-6

• F. Marrone, G. Zoppo, F. Corinto and M. Gilli, "A Dynamic System
Approach to Spiking Second Order Memristor Networks," in IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 4,
pp. 1641-1654, April 2022, doi: 10.1109/TCSI.2021.3137713.

• Zoppo Gianluca, Marrone Francesco, Corinto Fernando, Equilibrium
Propagation for Memristor-Based Recurrent Neural Networks, Fron-
tiers in Neuroscience, vol. 14, March 2020, doi: 10.3389/fnins.2020.00240

• G. Zoppo, A. Korkmaz, F. Marrone, S. Palermo, F. Corinto and R. S.
Williams, "Analog Solutions of Discrete Markov Chains via Mem-
ristor Crossbars," in IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 68, no. 12, pp. 4910-4923, Dec. 2021, doi:
10.1109/TCSI.2021.3126477.



Chapter 1

Memristor Device Modeling: PCM

1.1 Introduction

Phase Change Memories (PCM) store data as the phase configuration of a
layer of material between two metallic electrodes. The typical used materials
include many different compounds of Ge, Te and Sb which all show high
electrical resistivity in the amorphous phase and far lower resistivity in the
crystalline phase. The memristance of a PCM device is tunable by changing
the ratio between the amorphous and the crystalline fraction within the
device volume usually by means of suitable electrical pulses, thus achieving
a continuum of memristance (or memductance) states.

PCM devices show many fascinating nonlinear dynamical behaviors
which all arise from the complex interaction between electrical, thermal and
structural dynamics inside each device[12]. When a PCM cell is in mostly
amorphous state (OFF-state), as the applied electrical fields is increased from
relatively very low to higher values the conduction in the sandwiched ma-
terial goes through ohmic, exponential and super-exponential regimes[13].
In the high-field ON-state, conduction through the amorphous phase be-
comes metal-like and the global flow of electrons in the PCM cell becomes
dominated by the amorphous-crystalline Schottky barrier[14]. The event
switching PCM devices from OFF to ON state is known as threshold switch-
ing which involves a feedback–driven thermo–electrical mechanism[15]. It
starts when an externally applied field lowers the barrier between two close
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(a) (b)

Fig. 1.1 (a) Schematic representation of a mushroom-type PCM device operated
with a current compliance series resistor Rs. In the RESET state, the amorphous
phase blocks the bottom electrode, and the device is in a high-resistance state. The
effective thickness of the amorphous region is denoted by ua(t). Vapplied(t) is the
externally applied input voltage, I(t) is the current flowing through the PCM device
and Vcell = Vapplied − Rs I is the intrinsic voltage drop on the device.(b) Measured
pinched hysteresis loop for a mushroom PCM device stimulated by a 103 ns period
triangular Vapplied pulse of 2V peak voltage Vpk.

coulombic centers enough to induce an increase in the global conductivity
of the device. This allows more current to flow and the temperature inside
the PCM cell to rise. For high enough temperature the activation energy is
strongly reduced and this in turn allows more electrons to flow through the
material. This, in a very short time, leads to the threshold-switching event.
Threshold switching plays a crucial role in the operation of PCM devices
as it enables the fast WRITE operation by means of an abrupt temperature
increase. Within the appropriate temperature range the WRITE operation can
take the form of either a SET operation which increases the low-field conduc-
tivity by crystallizing the amorphous fraction or a RESET operation which
does the opposite via the melt-quenching process which increases the internal
PCM temperature up to the GST melting temperature TMELT ≈ 877K[16].

Accurate physical models have exploited integro-differential equations
to describe the distinctive characteristic of each operating condition in PCM
devices and thus numerical analysis is crucial to precisely capture the experi-
mental observations [15]. In this Chapter the prototypical mushroom-type
PCM device[17], depicted in Fig. 1.1a, is modeled as a memristive system as
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introduced in 1976 by S. Kang and L. O. Chua [4]. The PCM device studied
in this Chapter shows the typical memristive pinched loop under bipolar
periodic input, as exemplified in Figure 1.1b, and thus can be casted in the
memristive systems class[3]. The aim is to represent PCM devices via a state–
dependent Ohm’s Law v = R(x, i)i linking the current i through the PCM
cell and voltage v across its two terminals and a state equation ẋ = f (x, i)
which describes the dynamics of internal state variables x. By meas of the
memristor state–dependent Ohm’s law it is possible to unfold complex dy-
namic behaviors in PCM devices via the concepts of Dynamic Route Map
(DRM)[18]. If the state variable is a scalar x ∈ R, the DRM parameterized
by the input i consists in the plot of f (x, i) in the plane (ẋ, x). By varying
the parameter i it is possible to picture the entire family of curves spanning
the whole plane (ẋ, x). Additionally in the last years, DRMs have also been
found to be a convenient modeling tool for similar devices. Ascoli et al.
have proven that, in principle, DRMs can help to investigate all the cases of
switching dynamics in memristor devices[19], [20]. Afterwards others works
have demonstrated how DRMs are a powerful tool for modeling of devices
such as ReRAMs, or of complex systems such as Cellular Nonlinear Networks
[21, 22].

The PCM devices modeled in this Chapter are the ones of mushroom-
type kindly made available by Abu Sebastian’s group at IBM Research in
Zurich, Switzerland. They take their type acronym from the mushroom-like
amorphous dome which is created during the melt–quenching process that
brings the device in its OFF state. The phase-change layer consists in doped
Ge2Sb2Te5. The bottom metallic electrode (BE) is ≈ 20 nm in radius and ≈
65 nm in length. The phase change material is ≈ 100 nm thick and extends
up to the top electrode (TE) which is ≈ 100 nm in radius. In this Chapter
it is shown how the modeling of this kind of devices can be successfully
conducted via DRMs.

This Chapter is organized as follows: Section II goes deep into the physics
of the device with an overview of the most accurate models for its dynamics
and electric conduction, Section III introduces the novel proposed simplifica-
tions which enable the compact modeling of the device, Section IV reports
the methodology to compute the Dynamic Route Maps of the PCM’s first
order dynamics, Section V concludes the Chapter and gives some future
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directions for expand on this work.
The content of this Chapter is a re-elaborated version of a research paper
published by the author [23].

1.2 Complete second order model

In Figure 1.2 is reported an effective block representation of the intricate
interconnection between the various phenomena involved in PCM devices’
dynamics. It is composed, on first approximation, of two state variables Tint

and ua which are the temperature at the Amorphous/Crystalline Interface
(ACI) and the amorphous dome effective radius respectively. In addition,
the output current I (and the internally dissipated power P = Vcell I) are
expressed via an algebraic relation which relate the input cell voltage drop
Vcell, the ambient temperature TAMB and the state variables.

Fig. 1.2 Simplified block representation of the PCM device subsystems. The system
has two inputs respectively Vcell(t) and TAMB and one output I(t). Vcell(t) is the
voltage drop on the PCM device. I(t) is the current flowing through the device.
TAMB is the ambient temperature the PCM device is operated at. P(t) is the algebraic
electrical power dissipated by the device and computed as the product current I(t)
times voltage Vcell(t). ua(t) is the amorphous mushroom thickness and its evolution
is determined by the crystallization dynamics. Tint(t) is the temperature at the
amorphous-crystalline interface and its evolution is determined by the heat balance
equation.
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1.2.1 Complete Ohm’s Law

Regarding the conduction mechanism in the amorphous-phase GST, more
and more precise models have been proposed over the years to capture how
it is influenced by the two state variables (ua, Tint) and the applied voltage
Vcell. Most of these models result accurate in specific electric-field domains.

In order to give an overview of the most common electric-field domain
specific conduction model it should be introduced, for convenience, FT as
the transition field:

FT =
qe

πϵrϵ0s2

where qe is the fundamental electron charge, ϵr ≈ 10 is the relative permit-
tivity of the amorphous phase, ϵ0 is the vacuum permittivity and s is the
average distance between defects in the amorphous phase.

On the one hand for low to moderate electric field regimes (i.e. F =
Vcell
ua

<< FT), the simple Poole [24] results accurate in describing electrical
conduction. On the other hand in the high field domain (F >> FT), the
Pool-Frenkel [25][26][27] model gives the best approximation.

Below threshold switching (i.e. the device is in OFF state), the 3D Poole-
Frenkel [28][29] emission of carriers from a two-center Coulomb potential
well was experimentally demonstrated to best describe in an unified manner
the conduction through GST material for both low and, moderate and high
fields F.

3D Poole-Frenkel conduction formulates the density of free carriers under
an applied field F = Vcell

ua
at an interface temperature Tint via the integral

expression:

n(F, Tint) =
K
2

∫ π

0
exp(−Ea(Tint)− EPF(F,θ)

kBTint
)sin(θ)dθ

where θ is the angle between the electric field and a possible direction of

escape from the potential well and Ea(Tint) = Ea,0 − aT2
int

b+Tint
is the interface

temperature dependent activation energy and EPF(F,θ) = −maxrΦ(r,θ, F)
is the Poole-Frenkel field-induced energy barrier lowering between two



10 Memristor Device Modeling: PCM

adjacent potential wells. These are described in this model by the electric

potential profile Φ(r,θ, F) =−qFrcos(θ)− β2

4q (
1
r +

1
s−r ) +

β2

qs with β = q2
√

qπϵrϵ0
.

The amorphous phase conductivity per unit of area can be then computed
as

σ(F, Tint) = qµ(F)n(F, Tint)

where µ(F) = µ0√
1+(µ0F/vsat)2

is the field dependent mobility of carriers. The

density of current j(F, Tint) can be readily obtained as j(F, Tint) = σ(F, Tint)F
and the current flowing through the entire cell is found by multiplying the
current density j(F, Tint) times the effective bottom electrode contact area A.
This should be computed via the effective bottom electrode radius and not
the physical radius of the heater.

Although 3D Poole-Frenkel emission model captures the conduction in
PCM materials up to the threshold switching event, nonetheless it does not
hold accurate above threshold switching, i.e. after the amorphous phase is
switched to ON state.

Phase Change Memory cells can be reset to high memristance states (OFF
states) via relatively high current pulses that rises the ACI temperature up to
the melting temperature TMELT. Given that most of the power is dissipated at
the BE, higher reset currents flowing through the device imply higher power
dissipation which cause TMELT to be reached further away from the BE. The
resulting amorphous mushroom that is created has an effective amorphous
thickness ua which is proportional to the reset current IRESET. This is shown
in Figure 1.7a where the (i− v) characteristics under a ramp input are plotted
for different reset conditions reported in the figure legend.

1.2.2 Complete PCM Dynamics

The thermal dynamics of PCM devices follows the typical Newton’s law
of cooling. The state variable of interest for this devices is Tint which is
the temperature at the ACI and drives the amorphous dome crystallization
process. It is algebraically obtained as Tint = TAMB + TSH where TSH is the
intrinsically dynamic part of Tint and physically represents the cell Joule
self-heating temperature increment while TAMB is the constant ambient
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temperature. The dynamics of TSH obeys the Ordinary Differential Equation
(ODE):

d
dt

TSH(t) =
1

τth
(Rth(ua(t))P − TSH(t)) (1.1)

where τth = Rth(ua(t))Cth(ua(t)) is the thermal time constant and Rth(ua(t)),
shown in Figure 1.3a, is the amorphous-thickness-dependent thermal resis-
tance of the amorphous-phase dome that was estimated via FEM simulations
in COMSOL [30] as the thermal resistance between the ACI and the external
environment. Under the assumption of the BE electrode being being entirely
blocked by the amorphous mushroom, an accurate linear approximation of
Rth(ua) can be given, as

Rth(ua(t)) = −κua(t) + Rth,0 (1.2)

where, κ ≈ −0.024 K
µWnm and Rth,0 ≈ 1.908 K

µW .

Given the linearly decreasing approximation of Rth(ua(t)), as the thermal
capacitance Cth(ua(t)) is directly proportional to the amorphous dome vol-
ume, it is legitimate to assume τth ≈ const. This was found to be on the order
of tens of nanoseconds[31].

The complete thermal dynamics of mushroom–type PCM cells, described
by Tint = TAMB + TSH and (1.1), can be given a circuital interpretation as
reported in Fig. 1.4.

The temperature at the ACI Tint drives the crystallization process, i.e.
the reduction in volume of the amorphous dome by the rearrangement
of disordered atoms at the interface into a regular lattice. The structural
dynamics in PCM cells governs the evolution of the effective amorphous
thickness ua(t). It should be pointed out that this differs from the real
amorphous thickness which is the distance of the ACI from the center of the
amorphous mushroom (see [32]). The evolution of ua(t) is described by the
ODE:

d
dt

ua(t) = −vg(Tint(t)) (1.3)

where ua ∈ [0,80]nm. The function vg(·) is the interfacial-temperature-dependent
crystal growth velocity which was estimated in [30] and is reported in Figure
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(a) (b)

Fig. 1.3 (a) in continuous blue the effective thermal resistance, extrapolated from
FEM simulations, as a function of the amorphous thickness ua(t). In dashed red the
linear approximation of the effective thermal resistance in the blocked BE condition.
(b) in continuous blue the experimentally estimated GST crystal growth velocity
vg(Tint) as a function of the interface temperature Tint. In dashed red its Gaussian
approximation.

1.3b. A Gaussian approximation of vg(Tint) has also recently been proposed
in [33] as

vg(Tint) = Avg exp(−(
Tint − T0

σT
)2) (1.4)

Avg ≈ 0.57nm
ns , T0 ≈ 749K and σT ≈ 98K. Higher order effects such as struc-

tural relaxation dynamics of the amorphous phase GST are not taken into
account in this model and their effect can be considered negligible given the
narrow observation time window used in collecting the experimental data.

1.3 Simplified first order model derivation

In this Section a simplified first order model of the PCM dynamics is derived
which is employed, later in this Chapter, to compute the Dynamic Route
Maps of the Mushroom type phase change memory device under study.
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P = IVcell

Tint

Cth(ua)

−+ TAMB

Rth(ua)
+

−
TSH

Fig. 1.4 First order dynamical thermal circuit that takes into account the presence of
Cth(ua). Its dynamics can be described through Equation (1.1).

1.3.1 Simplified Ohm’s Law

The read operation in PCM devices refers to the retrieval of the phase-
configuration information by means of low amplitude current pulses. By
assuming the BE to be fully blocked (i.e. ua > 0) and that the applied field is
very low (i.e. F = Vcell

ua
→ 0), then the voltage drop between the device elec-

trodes can be well approximated by a linear relation Vcell = Rm(ua, Tint)I, as
shown from experimental measurements in Fig. 1.7b, where the memristance,
Rm(ua, Tint) is given by

Rm(ua, Tint) = K
′
uaexp(

Ea(Tint)

kBTint
) (1.5)

where kB is the Boltzmann constant, Ea(Tint) is the temperature-dependent
activation energy and K

′
= 1

πr2
BEqeKµ0

. This formulation of the memristance

Rm(ua, Tint) can be readily derived from the first order expansion of the Poole
conduction model for F → 0.

The write operation in PCM devices involves the fast dissipation of power
caused by current pulses which induces an amorphous-to-crystalline transi-
tion at the ACI. This happens via the threshold switching event, that puts the
phase-change material sandwiched between the metal electrodes into a very
low resistance state independent of the long–term memory state variable ua.
The voltage drop Vcell, after a short transient has passed since the threshold
switching, is confined to a narrow voltage band around Vcell,ON ≈ 0.8V as
shown in Fig. (1.7c) and Fig. (1.6). This can be explained as the very-low
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after-switching resistance state of the amorphous phase makes the conduc-
tion dominated by the barrier at the metal-semiconductor contact junction
and by the resistance of the metallic electrodes. A simplified write model
can thus be introduced as a reduction of the complex conduction mechanism
to a simple nonlinear current-controlled resistor whose behavior, for high
enough currents, is fairly well described by an ideal voltage generator of
value Vcell,ON.

The two-domain approximation introduced above and illustrated in Fig.
(1.7d can be summarized in the following state-dependent Ohm’s Law

Vcell ≈

Rm(ua, Tint)I I ≪ ITH

0.8V I ≫ ITH
(1.6)

where the well-below-threshold-switching model (I ≪ ITH), represented
with circuital symbolism in Fig. (1.7e), serves the purpose of recovering the
phase configuration and the well-above-threshold-switching model (I ≫
ITH), illustrated with circuital symbolism in Fig. (1.7f), is meant to accurately
describe the cell power dissipation during the write phase and thus give
good predictions about the temperature rise TSH at the ACI. This is crucial
in order to predict the internal state variables (ua, Tint) evolution during the
information storing phase and therefore it comes very handy to compute
and plot the Dynamic Route Maps.

1.3.2 Simplified temperature dynamics

In order to compute the conventional Dynamic Route Maps it is necessary
to reduce the second order model to first order. By considering that the
input variables (i.e. Vcell and TAMB) vary slowly with respect to the PCM cell
thermal time constant τth ≈ 10ns, then a first order model can be obtained
by reducing (1.1) to the algebraic equation:

TSH(t) = Rth(ua(t))P (1.7)
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This simplification lets the interface temperature to be computed as Tint =

TAMB + TSH = TAMB + Rth(ua)P where the input power P = IVcell as shown
by the circuital representation in Fig. (1.5).

P = IVcell

Tint

−+ TAMB

Rth(ua)
+

−
TSH

Fig. 1.5 For the sake of the presented model the input signals to the PCM device are
considered to be at least twice longer in duration than τth, for this reason it is taken
into account (b) described by Equation (1.7).

1.4 Dynamic Route Maps

In this Section the Dynamic Route Maps of the PCM mushroom cell’s first
order dynamics are computed by employing the previously developed sim-
plified first order model in conjunction with the simlified Ohm’s Law.

1.4.1 Numerically computed DRMs

Using the above introduced current–controlled model of PCM cells a set
of simulations were performed to compute and plot the theoretical DRMs
of a PCM cell. In order to show how DRMs fill the (u̇a,ua) plane it was
performed an input current I sweep ranging from I =150 µA to 650 µ A. The
computation was carried out combining Eqs. 1.3 and 1.4 and the results were
plotted in Fig. 1.8. In all the reported case the initial ua =40 nm and each
DRM corresponds to a different constant current flowing through the cell for
an ideally infinite time.

It is possible to observe that the DRMs calculation considered a slight nu-
merical correction inside the relation Rth(ua(t)) described in 1.2 and shown
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(a) (b)

Fig. 1.6 DSO measured I − Vcell characteristics of a GST PCM cell, reset with two
different reset currents IRESET, driven by a voltage ramp V supplied by an Arbitrary
Waveform Generator through a series resistor RS ≈ 5.7kΩ. Vcell responses computed
as Vcell =V −RS I. Rise times Trise spanning in the range [26.5,1001.5]ns and supplied
voltages V in the range [1,4]V. Energy estimated as the trapezoidal approximation of
the integral of the dissipated power P = Vcell I along the curve from (I,Vcell) = (0,0)
up to the threshold switching peak. In (a) the I,Vcell characteristics for the PCM cell
when not sufficiently heated. The final Vcell plateau in (a) varies substantially. In (b)
the I − Vcell characteristics for the PCM cell when sufficiently heated. The final Vcell
plateau in (b) results to be narrowly centered around Vcell,ON ≈ 0.8V.

in Fig. 1.3a. The added correction is aimed at compensating the numerical ap-
proximations generated by FEM simulations used to compute the Rth(ua(t))
relation. The magnitude of the correction was empirically estimated on the
experimental measurements from the PCM cell, as it will be later shown in
this Section.

The simulation results show that for a given initial condition of ua, the re-
sulting final effective thickness of the GST mushroom depends on the current
flowing through the device. This is due to the fact that Tint increases with the
dissipated power P as made clear by Eq. 1.1. In fact, different dynamics of
the effective thickness ua can be observed in the cell for increasing values of
current. In order to exemplify this, it is worth considering that for I =650 µA
the effective thickness of the amorphous mushroom cannot reach 0nm but it
stops its regression around 5.5 nm, while for instance, a current I =450 µA
makes the amorphous region completely vanish. This behavior can be easily
explained by resorting to Fig. 1.3b. As aforementioned, a higher input cur-
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Fig. 1.7 (a) [Global (i,v) curves] DSO measured I − Vcell characteristics of a GST
PCM cell, reset with different reset currents IRESET, showing the same plateau Vcell
value for I ≥ Ith ≊ 100µA. Driving voltage Vapplied supplied by an by an Arbitrary
Waveform Generator through a series resistor RS ≈ 5.7kΩ. Vcell responses computed
as Vcell = V − RS I. Ramp rise time Trise = 3µs. (b) [READ operation (i,v) curves]
SMU measured low-field I − Vcell characteristics of the same PCM cell, reset with
the same currents IRESET as those on the main axes, showing an almost ideal lin-
ear behavior for very low current/voltage value. (c) [WRITE set operation (i,v)
curves] Zoom-in of the write region I − Vcell characteristics, it is noticeable how
Vcell is narrowly concentrated around 0.8V.(d) [Global model] Global model of a
PCM device as a nonlinear time-variant dynamical system (e) [READ operation
model] READ domain model of a PCM device as a state-dependent linear resistor
(f) [WRITE operation model] WRITE domain model of a PCM device as an ideal
voltage generator Vcell,ON .

rent leads to a higher Tint, which may lead to blocking the GST crystallization
dynamics when Tint ≈ TMELT which is captured as a nonzero equilibrium of
ua. In the proposed model, this physically means that a fraction of the GST
material close to the BE is molten again at 650 µA given that vg drops to zero
only for Tint = TMELT as shown in Figure (1.3b).
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Fig. 1.8 DRM computed, for a fully switched PCM Amorphous Mushroom cell in
the blocked-BE condition, by means of the proposed write model parameterized on
various levels of injected current I.

1.4.2 Experimental data acquisition details

The Agilent 81150A Pulse Function Arbitrary Generator was used to apply
the input signals while the Tektronix TDS3054B oscilloscope served to mea-
sure both AC voltages and currents (i.e. the applied voltage Vapplied and the
flowing current I). The oscilloscope sampled those currents and voltages
with a frequency fs = 2.5 GHz. Vapplied was sampled by the oscilloscope
coming directly from the generator. The current flowing through the device
was measured putting the oscilloscope in series operating as an ammeter.
An isolated integrated linear resistor, Rs in close proximity to the device
was also measured to be ≈ 5.7 kΩ and was used to compute the actual cell
voltage drop Vcell during the post processing of the data. Given the involved
frequencies of operation and the length of the wires (measured ≈ 60 cm), the
phase shift between the voltage Vapplied signal and the flowing current had
to be taken into account. This delay was measured to be ≈ 6.4 ns.

All the measurements were preceded by a square reset pulse 950 µA in
amplitude, lasting 1 µs and sharply edged both on the rising and falling
fronts ( 7.5 ns each). The reset created an amorphous dome of ua ≈ 40 nm.
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This effective mushroom radius was estimated by fitting the resulting I − V
characteristics to a transport model proposed by Ielmini and Zhang[34]. A
sequence of alternating write and read pulses were applied 20 µs after each
reset pulse. All the write pulses with 7.5 ns leading and trailing edges were ≈
2.93 V in amplitude and lasted for variable intervals of time ranging between
25 ns and 121 ns).After 25 ns, a read ramp voltage pulse with amplitude
of 0.5 V and 50 ns duration followed the each writing pulse. After 25 ns
break from the reading voltage ramp trailing edge (7.5 ns in duration) a new
writing pulse was applied. This process was repeated for 10 write/read
pulse couples

1.4.3 Comparison between numerical and experimental re-
sults

Following the same methodology applied to calculate the theoretical DRMs
in Figure 1.8, the dynamic route maps were also obtained from experimental
data collected on a GST PCM mushroom cell in the laboratory of IBM facility
in Zurich. Fig. 1.10 report a representative set of three taken from the
performed measurements. They differ from each other by the rectangular
current pulse duration W and the number of write pulses applied: three
pulses of W = 121ns in Fig. 1.10(a), six pulses of W = 42ns in Fig. 1.10(b) and
seven pulses of W = 25ns in Fig. 1.10(c). The first column of Fig. 1.10 reports
the measured voltage drops on the cell (left axis), which can be found to
settle at Vcell ≈ 0.8V (solid blue line in the graphs) for each given pulse after
a very short transient, consistently with the data shown in Figure 1.6. In the
same graphs in the first column (traced by a solid red line) is also reported
the dissipated power P (right axis), which stays constant during each WRITE
pulse. The reduction of ua is measured, after each write pulse, via the READ
operation as a change in Rm(ua, Tint) which is show by I-V curves displayed
in the middle column of Fig. 1.10. The experimentally measured power
waveforms reported in the left column of Fig. 1.10 were used to compute the
respective transient DRM shown in the right column of Figure 1.10.

Once the dynamic routes have been calculated from experimentally col-
lected power waveforms in a physical device, the same experiments per-
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formed on the PCM in the laboratory have been reproduced in a numerical
simulation using the above developed domain specific model and consider-
ing the injected current to be constant and whose value was estimated from
the collected current waveforms as the average during the middle of the
write pulse. The results of the simulation are shown in Figure 1.11. Figures
1.11(a), 1.11(b) and 1.11(c) are referred to the measurements shown in Fig-
ures 1.10(a), 1.10(b) and 1.10(c), respectively. The comparison between the
experimental measurements and the results obtained from the simulation
(superimposed black lines) is shown on the I-V curves plotted in the fist
column.

The correction applied to the thermal resistance Rth(ua(t)) described
in 1.2, was numerically obtained comparing the results. The numerical
correction, from a physical point of view, can be considered as a refinement
of the estimation of the time constant τth, introduced in the dynamic thermal
circuit of the PCM cell shown in Fig. 1.4.

The dynamic route maps were computed using the simplified write model
with the value of the input power constant and equal to the average delivered
power measured during the write pulses plateau as reported in Fig. 1.10).
The resulting DRMs are reported in the figures of the second column of
Fig. 1.11 as solid red lines (DC dynamic routes). It can be noted that these
dynamic routes "envelope" the TRANSIENT dynamic routes (i.e. the ones
calculated from the experimental data shown in Fig. 1.10, solid blue line).
This is due since the TRANSIENT dynamic routes take into consideration
also the peaks of the dissipated power P. Each of the DC dynamic routes,
was calculated considering the initial condition of ua(t) at the beginning
of each pulse train. Each route was traced considering an initial condition
ua(t = 0) ≈ 40 nm in order to generate the same effect of the corresponding
reset pulse.

From this calculation, it can be observed that DRMs deserve to be con-
sidered a powerful tool for predicting the behavior of the PCM devices for
system design. This is clear when looking at Fig. 1.9, from a high memris-
tance (OFF state) associated with ua(t0) ≈ 50 nm, the designer can choose to
reach three different low resistance states by tuning the SET programming
current. The understanding of how the first order dynamics evolves together
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Fig. 1.9 Three dynamic route maps parameterized on different SET current values.
Each route, when travelled, leads to a distinct nonzero equilibrium of the first order
dynamic state variable ua.

with the proof of existence of nonzero equilibria of the state variable ua can be
exploited to design programmable circuits such as programmable amplifiers
and tunable filters as found in [23].

1.5 Conclusion

Phase Change Memories are good candidates for replacing CMOS technol-
ogy in the next decades. They have already found application as non-volatile
memory elements, basic computing elements for in-memory and neuromor-
phic computing and as components of reconfigurable electronic circuits as
well. In this Chapter a current-controlled memristor model of PCM devices
was developed based on

1. a state–dependent Ohm’s law (1.6) which corresponds to the PCM
conduction model during READ/WRITE operations
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2. the dynamic route maps incorporating the dynamics of the long-term-
memory state variable ua under different input current pulses applied
to the PCM.

The fundamental insight drawn from the DRMs for PCM is possibility
of designing input current pulses to drive the thickness of the amorphous
mushroom (ua(t)) and thus the corresponding low-field resistance. Thanks
to the knowledge of the temporal evolution of ua(t) (i.e. Fig. 1.8), suitable
current pulses can be chosen to modulate dissipation and manage the crystal-
lization process. As aforementioned, exploiting DRMs, it is possible to derive
the characteristic and model complex systems based through the interaction
of memristive elements, as also shown with different technologies in the
work by Ascoli et al [19]. The work here presented is thus to be considered as
a significant step towards the inclusion of memristor–based PCM model in
automatic design tools for programmable analog circuits and also for tunable
synaptic elements in neuromorphic circuitry, overcoming the limitations
given by the complex description of the dynamics of these elements.
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(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

Fig. 1.10 (Left Column) Collection of experimentally measured cell voltage drops Vcell
and the corresponding absorbed electrical Power for varying write pulse duration
W. Each square high–current write pulse is interleaved with a below threshold
triangular read pulse. (a) Three W = 121ns duration pulses. (b) Six W = 42ns
duration pulses. (c) Seven W = 25ns duration pulses. (Center Column) Collection
of measured read pulses represented on the current–voltage plane for varying pulse
duration W. The stored memory state ua is here directly proportional to the slope of
each curve being this a measure of the resistance state. (Right Column) Dynamic
Routes, for varying pulse duration W, computed by means of the proposed model
using as input the measured power signal on the left column.
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(a) (d)

(b) (e)

(c) (f)

Fig. 1.11 (Left column) Matching between the measured read pulsed on the voltage–
current plane, as reported in the central column of Figure 1.10, and the expected
voltage–current curves as obtained by the same dynamical simulation generating
the dynamic routes in the right column of Figure 1.10. (a) Three W = 121ns duration
pulses. (b) Six W = 42ns duration pulses. (c) Seven W = 25ns duration pulses.(Right
column) Superposition of the computed dynamic routes, as reported in Figure 1.10,
and the dynamic routes computed for a constant input power. The former are shown
on the left axis as the TRANSIENT dynamic routes while the latter are on the right
axis as the DC dynamic routes. The value of the constant input power used to
compute the DC dynamic routes is the average measured delivered power during
the write pulses plateau as reported in Figure 1.10.



Chapter 2

Memristor Device Modeling:
ReRAM

2.1 Introduction

Resistive Random Access Memory (ReRAM) has been considered so far one
of the most promising candidates for nonvolatile memory technology that
could substitute NAND flash in the next decades. Furthermore, ReRAM
devices arranged in crossbar arrays show low energy consumption and
excellent scalability which make this technology a contender to become the
standard in future brain-inspired processors.

In particular, tantalum oxide has become the material that during the
years has caught most of ReRAM researchers’ attention due to the demon-
strated good memory performance metrics in many key aspects including
device size (down to 28nm), switching speed (< 1ns), endurance (up to 1012)
and multilevel switching capability (up to 3bit)[35][36][37][38].

The ReRAM devices modeled in this Chapter are manufactured as a mul-
tilayer Pd/Ta2O5−x/TaOy/Pd structure, as depicted in Fig. 2.1(a), where the
functional layer comprises two layers of tantalum oxide with different stoi-
chiometrics: an oxygen-rich Ta2O5−x layer at the top and an oxygen-deficient
TaOy layer at the bottom. Because of the different oxygen concentration in
the two layers, oxygen vacancies (VO) can be transferred between the top
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layer and the bottom layer by means of an externally applied electric field,
leading to controllable resistive switching [37][39].

The ReRAM devices referred in this Chapter are the ones from [40] which
are 1µm × 1µm in size and were fabricated in a crossbar structure on a SiO2

(100nm)/Si substrate with electrodes patterned by traditional photolithogra-
phy. Initially, 35-nm bottom Pd electrodes were deposited by photolithog-
raphy, e-beam evaporation, and lift-off processes. Next, a 35-nm TaOy base
layer was deposited via DC reactive sputtering with a Ta metal target in an
Ar/O2 gas mixture at 400 °C. The pressure of Ar/O2 was ≈ 666 Pa, and the
oxygen partial pressure in the mixture was ≈ 3%. A 5nm Ta2O5−x switching
layer was then deposited via RF sputtering with a Ta2O5 ceramic target in a
pure Ar atmosphere a ≈ 666 Pa. A 30nm top Pd electrode was then deposited
by photolithography, e-beam evaporation, and lift-off processes. Eventually,
a reactive ion etching process with SF6/Ar mixture was performed in order
to expose the bottom contacts.

A common IV loop curve of the Pd/Ta2O5−x/TaOy/Pd device is shown
in Fig. 2.1(b). The device shows the typical memristive pinched loop with
low threshold switching voltages. For voltages ≈ −0.9V the device is set
from high-resistance (OFF) state to low resistance (ON) state and for voltages
≈ 1.1V it is reset from ON-state to OFF-state.

The resistive switching phenomenon can be explained with the VO trans-
fer between the Ta2O5−x and TaOy layers[37]. As the two layers are in series,
the total resistance of the device is primarily determined by the oxygen-rich
Ta2O5−x layer. Hence a negative voltage lets VO vacancies migrate to the
Ta2O5−x layer and lowers the device resistance, while a positive voltage
pushes those VO vacancies to migrate back from the Ta2O5−x layer with a
strong increase of the device resistance [37][39].

This Chapter is organized as follows: Section II goes deep into the physics
of the device with an overview of the most accurate models for its dynamics
and electric conduction, Section III introduces the novel simplified second
order model of the device, Section IV employs the introduced model to
compute the memristor response to various synaptic protocols, Section V
proposes a study which demonstrates the model robustness to parameter
variations, Section VI concludes the Chapter and gives some future directions
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for expand on this work.
The content of this Chapter is a re-elaborated version of a research paper
published by the author [1].

2.2 Complete second order model

In this Section the Pd/Ta2O5−x/TaOy/Pd memristor physics is introduced
in detail with a focus on the conduction model and accurate second order
dynamics from [40].

2.2.1 Complete Ohm’s Law
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Fig. 2.1 (a) Schematic illustration of the device showing the filament structure. (b)
Typical IV loop of a Pd/Ta2O5−x/TaOy/Pd memristor.

The Pd/Ta2O5−x/TaOy/Pd memristor considered in this derivation is
schematically depicted in Fig. 2.1(a) and its Ohm’s Law can be readily ob-
tained considering its three conductive regions in series: the base-Conductive
Filament (CF), the sub-CF and the depleted gap. The current flowing through
those regions depends from the drop on each region and, in accordance with
SI Appendix of [40], obeys 2.1.
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Ibase =
πr2

0
ρL0

Va

Isub =
πr2

ρ(L −L0 − g)
Vb

Igap = I0 exp
(

g
gm

)
sinh

(
Vc

V0

)
(2.1)

By combining 2.1 with the charge conservation law in 2.2 and the Kirch-
hoff Voltage Law in 2.3

Ibase = Isub = Igap = i(t) (2.2)

Va + Vb + Vc = VTE − VBE = v(t) (2.3)

it is possible to analytically describe the Pd/Ta2O5−x/TaOy/Pd memris-
tor as a two terminal circuit element, with the following relation between the
voltage v(t) and the current i(t):

v(t) =
ρL0

πr2
0

I0

[
1 +

L −L0 − g
L0

(r0

r

)2
]

i(t)
I0

+ V0 sinh−1
[

i(t)
I0

exp
(

g
gm

)]
(2.4)

where, L is the layer thickness, ρ is the CF regions’ resistivity, r0 and L0

are the constant radius and length of the base-CF region respectively, I0, V0,
gm are fitting parameters while r is the modulated radius of the sub-CF region
and g is the gap length. The values of both physical and fitting parameters
are taken from [40] and are here reported for convenience in Table 2.1.
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Physical parameters

Ea 0.85eV ion migration energy barrier

a 0.1nm hopping distance

f 1012Hz escape-attempt frequency

L 5.0nm layer thickness

L0 2.5nm base filament thickness

r0 2.5nm base filament radius

ρ 2.2 · 10−6 Ω/m resistivity of the CF

Fitting parameters

I0 15mA

V0 0.2V Parameters for

gm 0.2nm current

rm 0.8nm

α 3 · 104 dn/dy

β 8 · 103 dn/dx

Cpl 9.1µJ/K Heat capacitance

χ1 0.28µJK−1s−1 Thermal conductance

H 5.5 · 107 Temporal heat factor

δ 540 Heat dissipation factor

Table 2.1 Parameters used for modeling the memristor dynamics.
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2.2.2 Complete ReRAM Dynamics

The sub-CF radius r and the gap length g, as shown in Fig. 2.1(a), are
two geometric state variables and their time evolution is described by the
following system of ODEs:

d g
d t

=



−1
2 exp

(
− Ea

kbT

)
ı(t) (v ≥ 0)

−1
2 exp

(
− Ea

kbT

) ( r0
r
)2 ı(t) (v < 0)

(2.5)

ı(t) =
α a2 f
L0 − g

− 2 a f sinh
(

q a v
g kb T

)
(2.6)

d r
d t

=



−1
2 exp

(
− Ea

kbT

)[
β a2 f
r−rm

]
(v ≥ 0)

+1
2 exp

(
− Ea

kbT

) ( r0
r
)2
[

β a2 f
r−rm

]
(v < 0)

(2.7)

where kb is the Boltzmann constant, q is the electron charge, Ea is the
ion migration energy barrier, f is the escape-attempt frequency, a is the
hopping distance, and rm, α, β are model parameters. The values of all
those parameters were estimated in [40] and are reported in Table 2.1 for
convenience.

The internal temperature dynamics is modeled via the two following
coupled ODEs which describe the time evolution of the internal temperature
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T and the bulk temperature of the outer region Tb respectively:

Cp1
d T
d t

= v(t) i(t) − kth1 (T − Tb) (2.8)

Cp2
d Tb
d t

= v(t) i(t) − kth2 (Tb − 300) (2.9)

where Cp1 and Cp2 are the thermal capacitances while kth1 and kth2 are the
thermal conductances. The values of those parameters were estimated in
[40] and are reported in Table 2.1 for convenience.

Given the tabled values of the thermal fitting parameters, the values
for the temperature and the bulk temperature time constants τT and τb are
estimated as:

τT =
1

λT
=

Cp1

kth1
≈ 0.32510−9 s (2.10)

τb =
1

λb
=

Cp2

kth2
=

1
5.4106 ≈ 0.18510−6 s (2.11)

It should be noted that the internal temperature time constant τT is orders
of magnitude smaller than the bulk temperature time constant τb. This fact is
fundamental in order to unveil the role played by the temperature in second
order memristors.

2.3 Simplified second order model derivation

The main difference between the calcium based model presented in [41]
and the above described complete second order model derived in [40] is
the fact that the discussed memristor model lacks a direct expression of the
time-evolution of the memductance which represents the synaptic efficacy
variable. A second major difference concerns the correspondent roles of the
internal temperature T and the calcium concentration in equations (2.5)-(2.7)
and in Eq. (1) of [41] respectively.
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(a) g ∈ {0.2,0.4}nm (b) g ∈ {0.6,0.8}nm

Fig. 2.2 Current-voltage characteristic, for different values of the radius r (expressed
in nm), and of the length gap (g ∈ {0.2,0.4,0.6,0.8}nm). Solid lines represent the
exact characteristic, obtained by numerically inverting the v-i relation (2.4); the
current values derived from the approximate expression of the mem-conductance
given in (2.12) are represented by circles. Taken from [1] ©2022 IEEE.

In this Section, in order to compare the memristor model developed in
[40] with the calcium based biophysical model in [41] and unveil the main
neuromorphic functions of Pd/Ta2O5−x/TaOy/Pd memristors in relation
with biological synapses, a simplified model is derived which involves only
two equations and two variables, the memductance Ĝ and the internal
temperature T, which directly relate with synaptic efficacy and calcium
concentration used in biophysical models to reproduce heterogeneous Spike-
Timing-Dependent-Plasticity (STDP) curves.

2.3.1 Simplified Ohm’s Law

Even if Eq. (2.4) cannot be inverted in a closed form, the direct relation-
ship between the current i(t) and the voltage v(t) can still be numerically
computed. The memductance results to depend on the radius r, on the gap
length g and on the voltage v(t). The first way to derive an explicit form
of the memductance is to use the first term of the Maclaurin expansion of
sinh−1 function with respect to its argument i(t)

I0
exp

(
g

gm

)
, which produces

the following formulation:
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G̃ (g, r) =
1

ρL0
πr2

0

[
1 + L−L0−g

L0

( r0
r
)2
]
+ V0

I0
exp

(
g

gm

) (2.12)

As graphically shown in Fig. 2.2, the above expression seems to well
match the exact relationship between the current i(t) and the voltage v(t)
within a relatively large range of values taken by the state variables g and
r. Although some numerical inaccuracies occur for high values of g, as
expected, for lower values of the gap length g and a given fixed radius r a
reasonable range of input voltages exists where the characteristic is close to
linear and the matching with the approximate expression (2.12) is almost
perfect. From the analysis of the stationary points of equation (2.5), it can be
shown that the hypothesis of a relatively small gap length g is plausible for
all the reasonable ranges of operational temperature and voltage.

(a) v ∈ {0.5,1.0}V (b) v ∈ {1.5,2.0}V

Fig. 2.3 Memductance, as a function of the gap length g, for different values of the
radius r (expressed in nm), and different voltages v ∈ {0.5,1.0,1.5,2.0}V. Taken
from [1] ©2022 IEEE.

The second way to simplify the i-v relationship is to empirically observe,
as in Fig. 2.3, that the memductance only weakly depends on the gap length
g while most of its variation is accountable to the radius r. In particular, for
voltage higher than 1 V the memductance is almost independent from the
gap length g. For lower voltages it can be demonstrated, from the analysis of
the stationary points of equation (2.5), that only a shallow range of the gap
length can be explored, e.g. g < 0.4 nm, and thus the memductance can still
be considered varying with the radius r only.
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It should be noted that, in spite of the strong approximation, simula-
tions clearly show that the obtained formulation of the conductance is fairly
accurate and can unveil all the major plasticity properties of second order
memristors. This holds true for any admissible activation energy Ea and the
whole voltage range of interest as will be motivated in the Appendix A.

By noting that L0 = 0.5 L and by considering the conduction through the
base-CF and sub-CF regions only, from Eq. (2.4) it is obtained:

Ĝ(r) =
1

Rs

1 +

(
r0

r

)2 ,

(
Rs =

ρL0

πr2
0

)
(2.13)

2.3.2 Memductance dynamics derivation

Starting from the simplified formulation of memductance Ĝ in Eq. (2.13), the
radius r can be expressed as:

r = r0

√
RsĜ

1 − RsĜ
(2.14)

The following formulation of the time derivative of the memductance Ĝ
is easily derived from (2.13) and (2.7):

1
Ĝ

dĜ
dt

=
1
Ĝ

dĜ
dr

dr
dt

= 2
1
r
(1 − RsĜ)

dr
dt

= exp
(
− Ea

kbT

)
η(Ĝ) (2.15)
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η(Ĝ) =

√
(1−RsĜ)3

RsĜ√
RsĜ

1−RsĜ
− rm

r0

(
a
r0

)2

β f



−1 (v ≥ 0)

1−RsĜ
RsĜ

(v < 0)

(2.16)

The obtained expression is directly comparable with Eq. (1) of [41] as it
exclusively depends on Ĝ and T, which emulate the synaptic efficacy and
the calcium concentration respectively.

2.3.3 Simplified temperature dynamics

In regard of the temperature dynamic equations (2.8)-(2.9), it is considered the
fact that the voltage spikes applied to the two terminals for short time periods
can be modeled as constant sources. In fact, given that the conductance
dynamics is substantially slower than the temperature dynamics which has
the time constants (2.10)-(2.11), the conductance can be considered almost
constant during the time intervals of both the programming (≈ 20ns) and
heating (≈ 1µs) voltage pulses, according to [40]). In a time interval [t0, t]
for the temperatures T and Tb it is obtained that:

Tb(t) = exp[−λb(t − t0)] (Tb(t0)− T∞
b ) + T∞

b

T∞
b = 300 +

1
kth2

GV2 (2.17)
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T(t) = exp[−λT (t − t0)]

(
T(t0)−

1
kth1

GV2 − T∞
b

)
+

1
kth1

GV2 + T∞
b

+

{
λT

λT − λb
{exp[−λb(t − t0)]− exp[−λT(t − t0)]}

}
· {Tb(t0)− T∞

b } (2.18)

where G is the value of the conductance at the beginning of the pulse and
by V the amplitude of the constant voltage source modeling the pulse.

By considering that τb >> τT, as in (2.10)-(2.11), and that t − t0 ≈ 15ns
the contribution of the function exp[−λT (t − t0)] is negligible, and thus the
following simplified expression of the internal temperature T(t) is obtained:

T(t) ≈ exp[−λb(t − t0)] (Tb(t0)− T∞
b ) + T∞

b +
1

kth1
GV2

≈ Tb(t) +
1

kth1
G V2 (2.19)

Although in standard STDP models a single pulse makes the spike, ac-
cordingly to [40], memristors are typically excited by pre(post)synaptic spikes
consisting of a programming and a heating pulse in sequence with time du-
ration ts and tH respectively. The involved modeling is indeed more complex
as the programming pulse of the second post(pre)synaptic spike may occur
either before or after the end of the heating pulse of the first pre(post)synaptic
pulse as illustrated in Fig. 2.4 for pre/post spike pair.

By denoting with γtH the time shift between the beginning of the pro-
gramming pulse of the second spike and the beginning of the heating pulse
of the first spike, from the formulation of T(t) as in (2.19), an accurate explicit
expression of the internal temperature T(γ) associated to the programming
pulse is obtained:
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T(γ) ≈ 300 + Ĝ

{
V2

P
kth1

+
V2

P
kth2

[
1 − exp

(
− ts

τb

)]
+ Γ

V2
H

kth2

}

Γ =



exp
(
− ts

τb

)[
1 −exp

(
−γtH

τb

)]
γ < 1

exp
(
− ts+(γ−1)tH

τb

)[
1 − exp

(
− tH

τb

)]
γ ≥ 1

(2.20)

where the parameter γ is > 1 when the programming pulse starts after the
end of the heating pulse and < 1 otherwise, VH and VP are the heating and
programming voltage pulse amplitudes respectively while Ĝ denotes the
memductance which remains constant on first approximation.

2.4 Memristor response to synaptic protocols

The previously introduced analytic approach to Pd/Ta2O5−x/TaOy/Pd mem-
ristors modeling opens the door not only to the investigation of the synaptic
properties of isolated second order memristors but also to the analysis of the
neuromorphic properties of large memristor networks.

Firstly, under the hypothesis that the programming pulse of the second
spike follows after the end of the heating pulse of the first spike namely
γ ≥ 1, by replacing the formulation of T (2.20) into (2.15) the STDP function
corresponding to the memductance variation can be readily obtained in the
form of a function of the time interval ∆t = (γ − 1)tH which elapses between
two subsequent spikes.

As shown in Fig. 2.5, the memductance variation caused by a single
pre/post spike pairs (∆t > 0) is positive and thus we have potentiation of
the synaptic connection while for a single post/pre spike pairs (∆t < 0) the
variation is negative hence we have depression of the synaptic connection. It
should also be noted that the normalized variation of the memductance for
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Fig. 2.4 Input voltage corresponding to a pre/post spike pair. Each spike is repre-
sented by the sequence of a programming pulse of duration ts and a heating pulse
of duration tH , whereas tsh denotes the time shift between the programming and the
heating pulse. Left part: the programming pulse of the postsynaptic spike occurs
before the end of the heating pulse of the first presynaptic pulse. Right part: the
programming pulse of the postsynaptic spike occurs after the end of the heating
pulse of the presynaptic pulse. The time interval between two spikes is denoted by
∆t = (γ − 1)tH, with γ greater than 1 in the first case and less than 1 in the second
one. Taken from [1] ©2022 IEEE.

second order memristors depends on the initial value of the conductance Ĝ
via the internal temperature T as made clear in Eq. (2.20).

Even if spike pairs are a useful neuromorphic paradigm, they cannot
clarify more complex synaptic protocols such as the effect of repetition fre-
quency on the synaptic change [42]. All these complex protocols, including
experiments involving triplets and quadruplets, can be explained and repro-
duced by means of Eqs. (2.15) and (2.20). This allows to apply on memristive
synapses the approach presented in [41] and already used in experiments on
hippocampal cultures.

The memductance variation as a function of the spike delay ∆t is reported
in Figs. 2.6-2.7-2.8, for 30 cycles at different frequencies of pre-post pairs,
post-pre-post triplets and post-pre-pre-post quadruplets respectively.

It should be noted that:
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• Long Term Potentiation (LTP) is observed in all cases and in particular
for spike triplets the conductance saturates to the maximum value of
(2.13) Ĝ = 1

2Rs
;

• For spike pairs the potentiation is reduced when repetition frequency
increases (i.e. when the interleave time interval t f between two pairs
decreases), which is in disagreement with most experimental protocols
and represents a major drawback of classical STDP models [43];

• In order to observe the correct frequency response, spike triplets and/or
quadruplets should be exploited, as reported in [43] and [41];

Additional results are reported in Figs. 2.9-2.10 which show the memduc-
tance variation as a function of the spike interval ∆t for 30 cycles of pre-post-
pre triplets and pre-post-post-pre quadruplets at different frequencies. As
expected from the data in [41], those configurations provoke insignificant
potentiation.

(a) Gin ∈ {0.8,1.0}10−3Ω−1 (b) Gin ∈ {1.2,1.4}10−3Ω−1

Fig. 2.5 STDP function corresponding to the mem-conductance variation, generated
by a pre/post (post/pre) spike pair, as a function of the time interval ∆t

tH
, which

separates two subsequent spikes. It is assumed VH = 0.8 V, tH
τb

= 5.4, and ts
τb
= 0.108;

Gin denote the initial value of the mem-conductance. Taken from [1] ©2022 IEEE.

2.5 Model robustness study

In the first Subsection the accuracy within the voltage range of interest of the
proposed memductance expressions is proved for any admissible activation
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Fig. 2.6 Mem-conductance change versus ∆t
tH

, for 30 cycles of pre-post pairs at dif-
ferent frequencies, and different programming voltages. It is assumed VH = 0.8 V,
tH
τb

= 5.4, and ts
τb
= 0.108; t f denotes the time interval between two pairs; the initial

mem-conductance is Ĝ = 1 mS. Taken from [1] ©2022 IEEE.

Fig. 2.7 Mem-conductance change versus ∆t
tH

, for 30 cycles of post-pre-post triplets at
different frequencies, and different programming voltages. It is assumed VH = 0.8 V,
tH
τb

= 5.4, and ts
τb
= 0.108; t f denotes the time interval between two triplets; the initial

mem-conductance is Ĝ = 1 mS. Taken from [1] ©2022 IEEE.
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Fig. 2.8 Mem-conductance change versus ∆t
tH

, for 30 cycles of post-pre-pre-post
quadruplets at different frequencies, and different programming voltages. It is
assumed VH = 0.8 V, tH

τb
= 5.4, and ts

τb
= 0.108; t f denotes the time interval between

two quadruplets; the initial mem-conductance is Ĝ = 1 mS. Taken from [1] ©2022
IEEE.

Fig. 2.9 Mem-conductance change versus ∆t
tH

, for 30 cycles of pre-post-pre triplets at
different frequencies, and different programming voltages. It is assumed VH = 0.8 V,
tH
τb

= 5.4, and ts
τb
= 0.108; t f denotes the time interval between two triplets; the initial

mem-conductance is Ĝ = 1 mS. Taken from [1] ©2022 IEEE.
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Fig. 2.10 Mem-conductance change versus ∆t
tH

, for 30 cycles of pre-post-post-pre
quadruplets at different frequencies, and different programming voltages. It is
assumed VH = 0.8 V, tH

τb
= 5.4, and ts

τb
= 0.108; t f denotes the time interval between

two quadruplets; the initial mem-conductance is Ĝ = 1 mS. Taken from [1] ©2022
IEEE.

energy Ea. In the second Subsection influence of parameters variation on the
proposed second order memristor model is examined.

2.5.1 Model accuracy when changing voltages and activation
energies

In this Subsection, the second order memristor model derived in Section
2.3 and in particular the memductance expressions (2.13) - (2.12) are shown
to be accurate within the voltage range of interest and for any admissible
activation energy Ea.

In fact, even if the exact current-voltage characteristic (2.4) does only
depend on the state variables g and r, it must be considered that the ODEs
(2.5)-(2.6) and (2.7) governing the evolution of those two geometric parame-
ters do explicitly depend on the applied voltage and the activation energy
Ea.
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It is made clear in Fig. 2.3 that the memductance exhibits a weak de-
pendence on the gap length g for 0 ≤ g ≤ 0.8nm and 0 ≤ v ≤ 2V. Since
both the exact (2.13) and approximate (2.12) expressions entirely include the
dependence on r, in order to prove their accuracy, it is sufficient to show that
the variation range of g lies within the interval [0,0.8nm].

From equations (2.5) - (2.6) it follows that, for constant voltages, the
equilibria of g are given by the solutions of eq. (2.6), which is independent
from the activation energy Ea:

α a2 f
L0 − g

− 2 a f sinh
(

q a v
g kb T

)
= 0 (2.21)

(a) T = 400K (b) T = 500K

(c) T = 600K (d) T = 700K

Fig. 2.11 Gap length time derivative dg/dt as a function of g, for T ∈
{400,500,600,700}K, r/r0 = 1, Ea = 0.85 eV and different input voltages ranging
from −2V to 2V. Taken from [1] ©2022 IEEE.
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The plots of dg/dt as a function of g, also known as Dynamic Route
Maps (DRMs), are shown in Fig. 2.11, for Ea = 0.85 eV, parameterized on the
different values of the temperature reachable during the heating phase and
constant voltages ranging from −2V to 2V.

When positive voltages are applied to the memristor, each DRM features
a single zero ĝ(v,T) that is function of the voltage v and the temperature T.
Because all those DRMs cross dg/dt = 0 with a negative slope, the equilibria
ĝ(v,T) are stable and, for given voltages and temperatures, they represent
the maximum value g(t) can reach, i.e. g(t) ∈ [0, ĝ(v,T)].

When negative voltages are applied to the memristor, the time derivative
dg/dt is negative for all values of g(t) and thus the gap length shall remain
below the values reachable via positive voltages.

From the plots in Fig. 2.11 it can be noticed that:

• When the input voltage is such that 0 ≤ v ≤ 2V equilibria ĝ(v,T)
decrease as the temperature T increases.

• When the temperature is such that 400K ≤ T ≤ 700K the equilibria
ĝ(v,T) increase as the voltage v increases.

Within the temperature range T ∈ [400,700]K and for voltages not higher
than 2V, the maximum value of ĝ(v,T), as shown by the equilibria in Fig.
2.11, is less than 0.8nm. In accordance with Fig. 2.3 it is clear that the mem-
ductance only weakly depends on the gap length and thus its approximation
is accurate for Ea = 0.85 eV. Even for voltages higher than 2V, the equilibria
are only slightly pushed beyond 0.8nm, and concurrently the range of g
where the memductance depends on radius r only also enlarges.

Even if different activation energy values Ea were considered, the equi-
libria of the gap length ĝ(v,T) would not be altered, and the graph of the
gap length time derivative dg/dt versus g of Fig. 2.11 would only be scaled
along the vertical axis. Since the equilibria ĝ(v,T) are not modified, the
memductance approximate formulation is valid for the considered input
voltages and for any value of activation energy Ea.
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2.5.2 Model sensitivity to parameters variation

In this Subsection, the influence of parameters variation on the proposed
second order memristor model is examined. The memductance formulation
(2.13) fully encapsulates the dependence on the radius r and the associated
parameters r0 and rm. In order to analyze the consequence of intrinsic param-
eters variation, the dependence of the STDP function on r0 and rm parameters
should be investigated.

The STDP function is obtained from the derivative of the memductance
with respect to time (2.15). This takes the form of a product of a first term
depending on the temperature and a second term η(Ĝ) which depends on
r0 and rm.

The memductance time derivative sensitivity to the parameters variation
is then equivalent to η(Ĝ) sensitivity only, which can be easily derived from
(2.16):

r0

η(Ĝ,r0)

∂η(Ĝ,r0)

∂r0
=

rm
r0
− 2

√
RsĜ

1−RsĜ√
RsĜ

1−RsĜ
− rm

r0

(2.22)

rm

η(Ĝ,rm)

∂η(Ĝ,rm)

∂rm
=

rm
r0√

RsĜ
1−RsĜ

− rm
r0

(2.23)

Eqs. (2.22) and (2.23) show that the sensitivity depends on the memduc-
tance Ĝ and the parameters r0 and rm. Therefore, in case of slight pertur-
bation of the parameters, the STDP variation is only modified by the mem-
ductance value and not by the time shift ∆t between pre/post (or post/pre)
pairs.

As exemplified in Figs. 2.12-2.13, STDP curves are only slightly perturbed
by small variations (≈ 5%) of the parameters r0 and rm. Large-scale simula-
tions have corroborated the robustness of the proposed simplified second
order memristor model to intrinsic device parameters variation when applied
for describing the synaptic functionality of the device.
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Fig. 2.12 Impact on STDP functions of a 5 % variation of the parameter r0. A
continuous line represents nominal values, circles represent perturbed values. Taken
from [1] ©2022 IEEE.

Fig. 2.13 Impact on STDP functions of a 5 % variation of the parameter rm. A
continuous line represents nominal values, circles represent perturbed values. Taken
from [1] ©2022 IEEE.
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2.6 Conclusion

In this Chapter a simplified analytical model of second order memristors was
developed. This consists of only two state variables, the internal temperature
and the memductance, which can be directly related to the quantities used in
advanced biophysical models, precisely the calcium concentration and the
synaptic efficacy.

The response to some relevant stimulation protocols were thoroughly
studied, in particular cycles of spike pairs, triplets, and quadruplets at differ-
ent frequencies. Thanks to this approach, it has been shown that:

• The majority of relevant synaptic properties of second-order memris-
tors can be readily investigated and predicted.

• Synaptic behaviors which cannot be captured by classical spike pair
based STDP models are easily reproduced.

Supposedly by using the proposed second-order memristor model to-
gether with advanced theoretical and numerical nonlinear dynamic tech-
niques, the behavior of memristor networks stimulated by arbitrary presy-
naptic inputs can be predicted and the underlying learning mechanisms
effectively investigated.



Chapter 3

Memristor-based Neural Networks

3.1 Introduction

Multiply and Accumulate (MAC) is a fundamental operation for all sorts of
algorithms that require the computation of the weighted sum of the compo-
nents of a vector.

When digitally performed on ASICs, the MAC operation applied to a
n-dimensional vector requires either a digital adder, a digital multiplier and
an accumulator register used for n clock cycles or, when the time constraint
is more stringent, a multiple-input digital adder, lots of digital multipliers
and an accumulator. Even if many optimizations are possible, the trade-off
between circuit area / power consumption and computation latency is un-
avoidable. This becomes an even-harder design challenge when the MAC
operations are two or more to be performed in parallel as required in case
of the Matrix Vector Multiplication (MVM) between a n × m matrix and a
n-dimensional vector. The computational complexity of MVM performed
on the simpler and slower sequential single-adder-single-multiplier digital
circuit is of the order O(nm). Different MVM accelerators have been commer-
cialized during the last three decades, the most famous being the Graphics
Processing Unit (GPU) and latest being the Tensor Processing Unit (TPU). All
those digital implementations speed up MVM computation by parallelizing
products and additions at the expense of wafer area and power consumption.
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If the coefficients of the weighted sum are constant, an analog imple-
mentation of the single MAC operation is quite straightforward as it only
requires an Operational Amplifier Voltage Adder (OAVA). This was the
most widespread solution in the early days of electronics and is still in use
nowadays in certain application-specific analog circuits. The problem with
the OAVA rises as in the majority of algorithms the coefficients of the MAC
weighted sum change from time to time. In almost the totality of applications,
physically changing the conductances which encode the weights in an OAVA
is unfeasible. Even if analog multipliers can be used as a replacement for
conductances, this extreme solution makes the OAVA complex to design,
power/area hungry, affected by nonlinearity effects and thermal noise at the
point that for most cases digital implementations have been preferred.

As the interest in memristive technologies has quickly risen in the last
decade, the number of research works and market-ready products where
memristors as programmable weights are used in OAVAs to implement
MAC operation has risen too. These novel analog accelerators exploit the
continuum of resistance states displayed by memristors in order to imple-
ment the MAC operation with a computation complexity on the order of
O(1). Most notably, m memristor-based OAVAs which take in input the
same n-dimensional vector implement also the MVM with time complexity
O(1). This is very convenient in terms of speed with respect to the sequential
single-adder-single-multiplier digital implementation which requires O(nm)

operations, and it is also, at least on paper, a big step forward in terms
of power dissipation and occupied chip area with respect to both digital
accelerators (e.g. GPUs or TPUs) and analog multiplier based solutions.

The circuit that implements the multiplication of a n-dimensional vector
times a n × m matrix by means of a two dimensional memristor array is
known as memristor crossbar. It consists in m OAVAs as depicted in Fig.
3.1. The physical implementation of such structure is made of n horizontal
metallic input lines and m vertical metallic output lines with a memristor
at each intersection between a vertical and a horizontal line. It is crucial to
emphasize that differently from ASICs that continuously move data from
memory to local registers, the crossbar structure performs each multiplication
locally as each coefficient of the matrix is encoded as a conductance at the
intersection between a horizontal and a vertical line. Therefore memristor
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crossbars can perform MVM in a massively parallel fashion with amazingly
high power efficiency compared to traditional digital accelerators.
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Fig. 3.1 Example of a 4×4 memristor crossbar array.

The fact that Moore’s Law is approaching its end along with the well
known von Neumann architecture inefficiency have fueled the interest in
analog computing [44]. Architectures based on memristor crossbars can be
faster and less power hungry in comparison to state-of-the-art digital com-
puting systems still offering an acceptable accuracy for specific applications
[45–50].

Section II is organized in two Subsections which illustrate the possible
applications of the memristor crossbar as key fundamental building block
to compute MAC operations both in Artificial and Spiking neural networks.
Section III concludes the Chapter and gives some future directions for expand
on this work. The content of this Chapter is a re-elaborated version of two
research papers published by the author [51], [1].



3.2 Neuromorphic Applications 51

3.2 Neuromorphic Applications

In recent times the rise of machine learning and artificial intelligence has
created the demand for innovative computing platforms that could offer
new, ultra–low power processing methods. Neuromorphic computing tries
to go beyond the state-of-the-art in digital processing for certain specific
applications (i.e. neural networks, probabilistic models etc.) by mimicking at
various degrees the working principles of the brain. In this context the rising
interest in the development of novel nonvolatile memory technologies (e.g.
memristors) which show complex dynamics and nonlinear phenomena has
perfectly matched the need for a compact device implementing the synaptic
function ([3, 7]).

The hallmark of memristors is their synaptic plasticity effect which is
also observed in biological neural systems. As conductance levels can be
modified by regulating the firing activity of pre- and post-synaptic neurons,
memristive neural networks enable both the emulation of neurobiological
phenomena and the correspondent underlying learning process.

Spiking Neural Networks (SNNs) have attracted the interest of many
researchers both in the fields of computational neuroscience and neuromor-
phic engineering as good candidates for real-time applications if they are
implemented in hardware platforms, like memristor crossbars [52, 53]. SNNs
have also demonstrated the same computational capability of traditional
Artificial Neural Networks (ANNs) [54]. Given the connection between Heb-
bian learning and spiking [53], SNNs have been studied in the context of
supervised, unsupervised and reinforcement learning [55, 56]. Nonetheless,
these innovative kind of bioplausible networks have not reached the same
accuracy of ANNs yet, primarily because of the lack of suitable and efficient
training algorithms.

These novel computing paradigms are not only non-digital in nature,
but may also enhance computing speed and power efficiency for multiple
sensory streams. This can be obtained by means of the combination of
memristor-based crossbars and advanced machine learning algorithms used
to train neural networks. Within the realm of supervised learning, the most
widespread method for training feedforward ANNs is the backpropagation
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algorithm. Even though it is recognized as a very powerful technique, its
computational complexity is high and is unanimously considered as biologi-
cally implausible. Neurological studies have also revealed that the neural
coding of information is highly dynamic, thus Recurrent Neural Networks
(RNNs) seem a good option to model such a behavior and have been applied
to study how neural circuits efficiently complete challenging tasks.

In the first part of this Section, two possible variations of the backpropa-
gation algorithm for training RNNs, namely recurrent backpropagation and
equilibrium propagation, are studied and compared on an ideal RNN which
exploits the programmable memristor-based crossbar to implement a neural
connectome.

In the second part of this Section, it is demonstrated a possible analytical
modeling as discrete nonlinear dynamic systems of a memristor-based cross-
bar implementing a SNN which exploits the ReRAM device model derived
in Chapter 2.

3.2.1 Artificial Neural Networks

The first generalization of the backpropagation algorithm to continuous-
time recurrent networks came from [57] and [58] who separately obtained
the same results. Recurrent backpropagation (RBP) iteratively modify the
network’s connectome so that, given the initial state and a fixed input, the
system converges to a desired attractor state. This is an optimization problem
where a Certain loss function associated to the system parameters has to be
minimized. The novelty of RBP consists in the introduction of an associated
differential equation which backpropagates the error signal. This avoids
the direct computation of the gradient thus yielding a reduced number of
required multiplications. In spite of being less computationally expensive,
the presence of a side network that propagates the error derivatives makes
RBP still far from bio-plausible.

Equilibrium Propagation (EP), a novel training method for energy-based
models, was recently proposed in [59] as an alternative to the use of a side
network for the backwards propagation of error signals. This two-phases
learning technique is advantageous as it requires just one type of neural
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computation to train the network. During the first phase, called free-phase,
the inputs are fixed and the network evolves towards a fixed point corre-
sponding to an energy function local minimum. During the second phase,
called nudged-phase, a small teaching signal is added to the input which
nudges the network state towards a new but close-by fixed point that now
corresponds to a lower cost value.

Although the two training methods are quite different, it can be observed
how both share the same objective, finding low-energy configurations that
have low cost values.

Memristor–based Recurrent Neural Network

In this part of the Subsection about ANN, the two aforementioned variants
of the backpropagation algorithm for recurrent neural network are derived.
The implementation of these class of networks that exploit the memristive
crossbar array to perform MVMs can exploit any generic nonvolatile mem-
ory technology (e.g. Phase Change Memory, Resistive RAM, Spin Transfer
Torque Memristors etc) as long as the single device is embedded in a suit-
able synaptic cell circuitry that enables its conductance tuning. The most
widespread of these synaptic circuitries is the 1T–1M (one transistor–one
memristor) topology which has the memristor connected between the bitline
and the drain of a transistor (typically a n-MOS) while the transistor’s gate
is connected to the wordline. This very efficient IC topology enables the
application of fast series of discrete programming pulses during the program-
ming phase of the crossbar and the permanent connection of the desired
Subsection of the crossbar to the bitline during inference. The programming
can take place either during an online training phase when the crossbar is
actively used to perform each step of training or during an offline one when
the weight are written on it only at the end of a software performed training
phase. In either cases the programming is performed by modulating the
number of voltage (or current) pulses applied to the 1T-1M cell and/or the
single pulse amplitude/duration (see [60] and [61]).

For the sake of clarity, in this part of the manuscript where the final
goal is to introduce RBP and EP and compare them on a crossbar based
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neural network accelerator no particular technology is chosen and to perform
the online training of the network a generic memristor model is used. In
particular, let each synaptic weight in the 1T-1M cell be described by a generic
memristor (see also [62], [5]) that is described by the following ODE and
Ohm’s Law:

i = G(x)v
dx
dt = f (x,v)

(3.1)

where x is the memristor internal state vector, G(·) is the memductance,
v is the voltage drop between the memristor terminals and i is the current
flowing through the memristor. Be G(x) = w the memristor synaptic weight,
in order to give a formal description of the network training via RBP and EP,
its state vector can be defined by the two following dynamics:

i = wv
dw
dt = f1(w,v,y)
dy
dt = f2(w,v,y)

i = wv
dw
dt = g(w,v) (3.2)

Biologically-plausible learning algorithms

Even though in the last 70 years a lot of progress has been made investigating
the rules that govern the learning process in the brain, yet neuroscientist
are still far from formulating a complete theory that unveils the mystery
of animal intelligence. Albeit in the last decade the success of deep learn-
ing in solving complex tasks ([63]) has made clear the role played by high
cardinality of the set of neurons involved in neural computation, still the
commonly used learning rules (e.g. Backpropagation) substantially differ
from how the learning process takes form in the brain which to neuroscien-
tists’ best understanding should be local and strictly feedforward. For this
reason, researchers in both the machine learning and computational neuro-
science communities are currently very interested in designing and studying
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bio-inspired architectures with local learning rules that approximate the
powerful backpropagation training process.

Among those neuron-like approaches other than equilibrium propagation
([59]), it is also worth citing membrane potential based backpropagation
algorithm ([64]) and feedback alignment ([65]), target propagation algorithms
([66]). See [67] for an extensive review. Training of recurrent neural networks
is the chosen task to evaluate those novel bio-plausible learning techniques.
In fact, according to neurological studies, the neural representation is highly
dynamic in nature and thus RNNs seem are the best candidates to capture
such behavior while solving various computational problems. Even though
EP shows a more suitable affinity for VLSI implementations ([59]), RBP still
represents the very first attempt in approaching energy-based models in
a supervised manner and thus is worth being reported and used as for a
comparison. In the following of this Subsection, a brief introduction to the
derivation of both algorithms is provided.

Recurrent backpropagation In the following a Recurrent Neural Network
is described by its state vector v whose evolution is governed by:

dvi

dt
= −vi + gi

(
N

∑
j=1

wijvj + Ii

)
, i = 1, . . . , N (3.3)

where Ii is i-th component of the external input vector applied to the i-th
neuron and N is the total number of neurons in the network.

Any activation function gi can be chosen as long as it is differentiable and
monotone ([58]).

With the highest degree of generality, neurons in the network can be
classified either as input, output or hidden units depending on the particular
task to perform.

The aim of the learning procedure is to gradually modify the weights in
the connectome wij so that, given a vector of input I and an initial condition
v0 = v(t0), the RNN vector state v(t), under the guidance of the field in (3.3),
evolves towards a desired fixed point v∞ = v(t∞).
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This is achieved by minimizing a loss function E which measures the
euclidean distance between the actual fixed point and the desired fixed point:

E =
1
2

N

∑
i=1

J2
i =

1
2

N

∑
i=1

(Ti − v∞
i )2 (3.4)

where Ti is the i-th component of the desired output vector state T and Ji

is the i-th component of the difference between the current fixed point v∞

and T.

Pay attention that E dependence on the weight matrix W is via the fixed
point v∞(W,I).

Thus, a possible way to have the RNN state converge to a desirable
attractor is to let it evolve in the weight parameter space along trajectories
with opposite direction with respect to the gradient of E:

dwij

dt
= −η

∂E
∂wij

= η
N

∑
k=1

Jk
∂v∞

k
∂wij

, η > 0 (3.5)

where η is the learning rate. The first order derivative of v∞
k with respect to

wij is computed by observing that the fixed points of (3.3) must satisfy the
nonlinear equation:

v∞
k = gk

(
N

∑
s=1

wksv∞
s + Ik

)
. (3.6)

By differentiating (3.6) with respect to wij:

∂v∞
k

∂wij
= (δki − g′k( Î∞

k )wki)
−1g′i( Î∞

i )v∞
j (3.7)

where δki is the Kronecker delta. It is unfortunate that (3.7) involves the
calculation of a reciprocal in order to compute the weights’ update and
because of that in [58] the problem is bypassed by considering

yi = g′i( Î∞
i )

N

∑
k=1

Jk(δki − g′k( Î∞
k )wki)

−1 (3.8)
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which can be considered as the steady state of the side network:

dyk
dt

= −yk + g′k( Î∞
k )

(
N

∑
i=1

wikyi + Jk

)
. (3.9)

Lastly, the weights’ update rule is defined as:

dwij

dt
= ηy∞

i v∞
j (3.10)

which consequently depends on the corresponding fixed points of the
dynamical systems (3.3) and (3.9).

The complete learning algorithm can summarized as the sequence of
phases that follows:

1) Let the dynamical system (3.3) evolve from a random initial state to-
wards the corresponding fixed point v∞;

2) Let the dynamical system (3.9) evolve from a random initial state to-
wards the corresponding fixed point y∞;

3) Update the weight matrix W according to:

hyperparameters∆wij = ηy∞
i v∞

j , η > 0. (3.11)

Equilibrium propagation Let now energy function E be:

E(v) =
N

∑
i=1

v2
i

2
− 1

2

N

∑
i,j=1

wijgi(vi)gj(vj)−
N

∑
i=1

Iigi(ui) (3.12)

where Ii is i-th component of the external input vector I applied to the
network and neuron N is the number of neurons in the network. As for
RBP, also EP does not require a particular choice of the activation functions
gi(·) ∀i = 1, . . . , N as long as the chosen one is monotone and differentiable.
Now suppose that the following gradient dynamics governs the time evolu-
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tion of the state variable v:

dvi

dt
= − ∂E

∂vi
= −vi + g

′
i(vi)

(
N

∑
j=1

wijgi(vj) + Ii

)
, i = 1, . . . , N (3.13)

Pay attention on the fact that the network is recurrently connected with
symmetric connections (i.e. wij = wji)). Usually in supervised learning, the
output neurons try to recreate the targets T. The measure of deviation of the
output values of the network, which are the fixed points v∞, from the targets
T is the quadratic loss function:

C =
1
2

N

∑
i=1

(Ti − vi)
2 (3.14)

It is worth noting that, for any state of v, the function C(T,v) is defined. The
fundamental idea of EP is to introduce the augmented energy function:

F(v,W,T) = E(v,W) + βC(v,W,T) v,T ∈ RN,W ∈ RN×N, β ≥ 0 (3.15)

and substitute the free dynamics with the augmented dynamics:

dvi

dt
= − ∂F

∂vi
(3.16)

The resulting second term −β ∂C
∂vi

gradually nudges v towards configurations
with a lower cost value. This is achieved, as for RBP, by gradually modifying
W in order to minimize the cost value of the fixed point v∞. As a final step
required to derive EP learning rule, consider the following objective function

J(W) = C(v∞,W,T) v,T ∈ RN,W ∈ RN×N (3.17)

Note that J(W) is the cost at the fixed point. Equilibrium Propagation ap-
proximates the gradient ∂J

∂W from measures at the fixed points of the free and
the augmented dynamics. The two respective fixed convergence points are
referred to v∞, for free dynamics, and v∞

β for the augmented one. In [59] the
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authors proved the following equation:

∂J
∂W

= lim
β→0

∂F
∂W(v∞

β )− ∂F
∂W(v∞)

β
(3.18)

providing an alternative for the estimation of the objective function gradient.
Consequently, the network implements in sequence the following dynamics
during the training phase:

1) Free dynamics: T is clamped in input and the network state vector
evolves under (3.13) relaxing to the free fixed point v∞ where ∂F

∂W(v∞)

is first measured;

2) Weakly clamped phase: the influence parameter is injected as input to
the network which relaxes to a new and nearby fixed point v∞

β where
∂F
∂W(v∞

β ) is measured.

3) Weights dynamics: according to (3.18) the interconnection matrix W is
modified in a discrete step as follows:

∆wij ∝ −η[gi(v
β,∞
i )gj(v

β,∞
j )− gi(v∞

i )gj(v∞
j )], η > 0. (3.19)

Implementation and experimental results

In the two following paragraphs experimental evidence of the two models’
efficiency is provided. In the first paragraph both EP and RBP are proven on
a pattern reconstruction task. In the second paragraph the classification of a
subset of the MNIST dataset is reported using Equilibrium Propagation as
learning rule.

Pattern reconstruction In this paragraph, a comparison among the two
aforementioned training techniques for pattern’s reconstruction task is pre-
sented. For this task, the network is designed to have input and output
units coincident with the same neurons and no hidden units are consid-
ered. Furthermore, symmetric weights are chosen for both methods as the
construction of the gradient dynamics (3.13) implies. This condition is also
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sufficient to ensure the convergence of the model (3.3). Each pattern in Figure
3.2, during the training phase, is repeatedly fed to the RNN via a constant
input I until it is memorized by the network. If multiple patterns are to be
stored, the previous steps are iterated for each single image of the dataset
for many epochs. In this manuscript, for the reported set of numerical ex-
periments, the patterns were fed to the network in the same order for each
epoch. This experiment design choice was found to be not restrictive as
similar performances were also obtained by feeding the patterns in a random
fashion.

During training, the following hyperparameters and initial conditions
were set:

- Random initialization of the state vector v;

- For RBP, whenever the first state vector v converges , the second state
vector is reset to y(0) = (0.5, . . . ,0.5)T ∈ RN;

- The interconnection matrix W is initialized with uniform random val-
ues between [−0.1;0.1];

- The used activation functions gi ∀i = 1, . . . , N are hyperbolic tangent
functions;

- The learning rate η = 0.01;

- The maximum number of epochs is 300.

- Time spans for simulating the dynamics of the systems are chosen long
enough to guarantee the convergence of the state vector(s).

Additionally, a brief analysis on the importance of local-global inter-
connections in the RNN’s connectome is performed in order to assess the
implementability of this solution in an actual IC. The reader interested in the
relation between the network topology and the computational performance
of attractor neural networks may refer to [68], [69] or [70], [71] for further
insights on current approaches for improving energy efficiency of hardware-
implemented neural networks by means of sparse and less costly number
of interconnections. In this work, for the sake of lower complexity, a naive
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investigation was performed by increasingly cutting out global connections
from a full matrix by simply setting to zero all the entries that were located
outside a band about the main diagonal. The cut out of K outer diagonals
from the matrix decreases the number of synapses from N2 to N2 − K(K + 1).

With the aim of testing the network, corrupted patterns were randomly
generated by flipping each pixel of the image either from white to black or
the other way around with a uniform probability p. In the proposed analysis,
a noisy pattern is considered reconstructed if the least square error with
respect to the uncorrupted images is null. The network was validated by
testing its recovery capabilities on 5000 corrupted patterns for each one of
the classes shown in Figure 3.2. The results measured on the RNN trained
by means of both the aforeintroduced learning algorithms are shown in
Figure 3.3 parameterized on different levels of applied noise (e.g. p = 0.10,
p = 0.15, p = 0.20 and p = 0.25). It can be observed that both methods reach
promising results in the case of full RNN’s connectome. Nonetheless, EP
can get better results even with a highly pruned connectome. This evidence,
together with the cut of the side network, motivates us to investigate EP as
a solution worthy of consideration for a VLSI implementation. The report
improvement could be induced by the noisy estimator of the gradient given
by (3.19) which lets the network efficiently explore the parameter space by
escaping from local minima. Additionally, this may also be noticed in Figure
3.4 where high accuracy values are obtained by Equilibrium Propagation
already in the first 50 epochs of training whereas Recurrent Backpropagation
needs 300 epochs at least.

As a last analysis to show the efficiency of the two novel methods, a
comparison is performed with two classical learning rules for training RNNs
as associative memories. It is commonly recognized that a Hopfield neural
network trained on uncorrelated patterns by means of the Hebbian rule
can memorize ≈ 0.14N (where N is the number of neurons in the network)
[72]. However, this storage capacity substantially lowers when patterns are
correlated. This problem has been overcome by a novel learning algorithm
introduced by [73] which significantly improved performances over the
older Hebbian learning rule for the Hopfield model, both with correlated
and uncorrelated data.
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Learning Rule Accuracy

Hebbian 0.1792

Storkey 0.2663

Recurrent BackProp 0.9968

Equilibrium Propagation 0.9971

Table 3.1 Accuracy for each single learning rule over 1000 corrupted images, with
probability 0.1, for each of the 16 classes.

However, as Table 3.1 and the examples of Figure 3.5 show, the evidence is
that both RBP and EP learning rules can teach the RNN to reconstruct even
in the presence of correlated patterns.

Pattern classification As a second application of the learning algorithm
proposed by [59] a RNN is tested on a pattern classification task. The model
has symmetric connections and includes only 1 hidden layer and 1 output
layer. No skip-layer and no lateral connections are included. The RNN is
trained using EP to classify patterns from a subset made of 5 classes from
the MNIST dataset, 600 patterns per class. The hard sigmoid was selected,
following [59], as activation function.

Training the network consisted in the iteration of the following ordered
steps:

1) Set a constant input pattern to the network;

2) Let the network freely evolve until the hidden and the outputs units
converge to a stable equilibrium and store g(v∞

i )g(v∞
j );

3) Apply the nudging signals, let the network evolve towards a different
but closeby equilibrium point and store g(vβ,∞

i )g(vβ,∞
j );

4) Update the connectome according to (3.19).

With the aim of performing the training process, (3.16) was discretized
into short time steps of duration ϵ as follows:
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vt+1 = vt − ϵ
∂F
∂vi

(3.20)

Nonetheless, as advised by [59], the state variable should be confined in
the range [0 ,1] and thus a slightly variation of the update rule was applied:

vt+1 = g
(

vt − ϵ
∂F
∂vi

)
(3.21)

with g(·) being the hard sigmoid function.

The identified class corresponds to the index of the output unit that took
the maximum value among all the others.

The hyperparameters were all chosen following the guidelines advised
in [59]: the learning rate is set as ϵ = 0.5 during the iterative inference, β = 1
is the the clamping factor value in the nudged phase, α1 = 0.1,α2 = 0.05 are
the two learning rates for updating the weights in the first and second layer
respectively.

Pay attention to the fact that in this work the learning rate η is not consid-
ered unique as in (3.19). On the other hand, instead of selecting a random
sign for β during the second phase, the two learning rates α1,α2 are halved
at the end of each epoch.

The obtained results are reported in Figure 3.6 and seem to be consistent
with the data in [59].

3.2.2 Spiking Neural Networks

The study of biological neural networks revealed that the synaptic connection
between two neurons is mostly strengthened depending on the coordinated
activity of the pre-synaptic neuron and post-synaptic neuron it links rather
than computations of all downstream neurons ([74], [75]).
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Fig. 3.2 In the top panel, the dataset of all the 16 patterns to be learnt. In the bottom
panel, a graphical representation of the corresponding patterns’ correlation matrix
computed with the Pearson correlation coefficient. Taken from [51] ©2020 Frontiers.
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Fig. 3.3 Accuracy for different radius of connectivity. At the top, the results obtained
by using recurrent backpropagation and at the bottom, the results obtained by using
equilibrium propagation. p is the probability of flipping each pixel of the image
from white to black and viceversa. Taken from [51] ©2020 Frontiers.
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Fig. 3.4 Mean accuracy over 1000 reconstructed patterns for different number of
epochs using Equilibrium Propagation (in blue) and Recurrent Backpropagation (in
orange). Taken from [51] ©2020 Frontiers.

Fig. 3.5 From the top row: six corrupted patterns with probability p = 0.1, recon-
structed pattern with Hebbian rule, Storkey rule, recurrent backpropagation rule,
Equilibrium Propagation rule and in the last row the target patterns. Taken from
[51] ©2020 Frontiers.
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Fig. 3.6 Error rates of the trained neural network over 100 random patterns chosen
among the training set (in orange) and 100 patterns from the test set (in blue) using
Equilibrium Propagation learning rule. Taken from [51] ©2020 Frontiers.

Spiking Memristor networks

Spiking neural networks employing second order memristors as synaptic
weights have exhibited the capability of classifying either dynamic or static
data and of processing temporal events, by creating unique patterns, result-
ing from local synaptic potentiation and depression [76].

By using the simplified model introduce in Chapter 2, in this Subsection
it will be shown how the pattern formation process in such networks can
be studied and deeply investigated by treating them as discrete nonlinear
dynamical systems.

Consider a structure made of N presynaptic neurons and M postsynaptic
neurons, linked through a connectome of second-order memristors, which
exhibit a conductance modeled by eqs. (2.15)-(2.16) and (2.20).

Input data might be encoded with either temporal or rate code, creating
a set of presynaptic spikes for each neuron.

For completeness’ sake, let’s recall that all presynaptic/postsynaptic
spikes can be modeled as a positive/negative programming pulse of magni-
tude Vpre/Vpost lasting for ts, which are followed by longer negative/positive
heating pulses of amplitude VH and duration tH.
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Be Xj and Yi the sets of all the spikes of the j-th presynaptic neuron and
i-th postsynaptic neuron respectively:

Xj =
{

tpre
j,1 , tpre

j,2 , ... , tpre
j,Kj

}
Yi =

{
tpost
i,1 , tpost

i,2 , ... , tpost
i,Hi

}
(3.22)

with tpre
j,k (1≤ k ≤ Kj) being the time when j-th neuron fires its k-th presynaptic

spike and tpost
i,h (1 ≤ h ≤ Hi) being the time when i-th neuron fires its h-th

postsynaptic spike.

For the chosen convention, all spikes are emitted at the beginning of the
programming pulse of duration ts and the i-th postsynaptic neuron voltage
ui(t) drops to zero, immediately after the given threshold is reached, and
thus it fires a postsynaptic spike tpost

i,h . In this formalism, the voltage ui(t)
turns can be described by means of the following formula:

ui(t) = R
Hi+1

∑
h=1

N

∑
j=1

∑
tpre
jk ∈(tpost

i,h−1,tpost
i,h )

Ĝi,j(t
pre
j,k )vpre

j,k (t)

vpre
j,k (t) = VH

[
ϵ(t − tsh − tpre

j,k ) − ϵ(t − tsh − tH − tpre
j,k )
]

+ VP

[
ϵ(t − tpre

j,k ) − ϵ(t − ts − tpre
j,k )
]

ϵ(t) = Θ(t)
[

1 − exp
(
− t

τm

)]
(3.23)

with [tpost
i,0 tpost

i,Hi+1] representing the interval under consideration, R being a
resistive constant, Ĝi,j(t

pre
j,k ) indicating the value of the memductance at

t = tpre
j,k , τm being the postsynaptic neuron time constant, Θ(·) being the

Heaviside function, and tsh denoting the time shift between the beginning of
the programming pulse and the beginning of the heating pulse as shown in
Fig. (3.7).

Be uth the voltage threshold common to all the neurons in the network
and Ĝh

i,j the value taken by the memductance at t = tpost
i,h , during the hth



3.2 Neuromorphic Applications 69

postsynaptic spike of the i-th neuron, the memductance dynamics can cor-
respondingly be modeled by the following set of N × M discrete-time state
equations:

Ĝh+1
i,j = min

{
Gmax,Ĝh+1/2

i,j + ∆pre/post
G (Ĝh+1/2

i,j ,γpre/post)
}

Ĝh+1/2
i,j = max

{
Gmin,Ĝh

i,j + ∆post/pre
G (Ĝh

i,j,γ
post/pre)

}
(3.24)

γpost/pre =
tpre

j,kh
F
− tpost

i,h − tsh

tH

γpre/post =
tpost
i,h+1 − tpre

j,kh
L
− tsh

tH
(3.25)

where

ui(t
post
i,h ) = uth and ∀ t ̸= tpost

i,h → ui(t) < uth (1 ≤ h ≤ Hi) (3.26)

In the above equations, kh
F and kh

L are the indexes of the first and of the
last presynaptic spike of j-th neuron in the time interval [tpost

i,h , tpost
i,h+1), Ĝh+1/2

i,j

expresses the memductance value due to the first variation ∆post/pre
G caused

by the post/pre pair and Ĝh
i,j expresses the final value of the memductance

due to the second variation ∆pre/post
G caused by the pre/post pair. Gmax and

Gmin stand for the maximum and the minimum values, that, according to
(2.13), each memductance can reach:

Gmax = Ĝ(r0) =
1

2 Rs

Gmin = Ĝ(rm) =
1

Rs

[
1 +

(
r0
rm

)2
] (3.27)
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The memductance variations ∆post/pre
G (Ĝh

i,j,γ
post/pre) and ∆pre/post

G (Ĝh+1/2
i,j ,γpre/post)

may be directly calculated by substituting in (2.15)-(2.16) the memductance
values and in (2.20) the opportune values of γpost/pre, γpre/post expressed in
(3.25).

The ensemble of equations (3.24) - (3.25) - (3.26) together with (3.23) may
be adequately employed to analyze the dynamics of a memristor spiking
neural network, with any arbitrary presynaptic input spikes Xj.

Network Response to Presynaptic Periodic Input Spikes With the aim of
demonstrating the power of the introduced analysis method, in this para-
graph the network response to a sequence of periodic presynaptic spikes is
used as a case study. By means of the formalism in (3.22), assuming Kj = 1
for all cells, the sequence of N presynaptic spikes may be pictured by the
vector below when the time shift between two subsequent spikes is constant
and equal to a fixed period T:

I =
{

tpre
1,1 , tpre

2,1 , · · ·, tpre
N,1

}
(tpre

j+1,1 − tpre
j,1 = T, 1 ≤ j ≤ N − 1) (3.28)

Given that memristor crossbars’ columns are ideally all decoupled, with-
out losing in generality, consider a generic i-th postsynaptic neuron con-
nected to the memristors which inject current on its wordline only. In ac-
cordance with (3.23), the contribution of the programming pulses to the
membrane voltage ui(t) is considered negligible due to their brief duration.
Therefore, the threshold uth can be reached and trigger a postsynaptic spike
only in correspondence to a presynaptic neuron heating pulse. In this event,
let’s call αjtH (αj > 0) the time delay interleaving between the postsynap-
tic spike and the beginning of the generic j-th heating pulse at which the
threshold uth is crossed (check Fig. (3.7) for more details). The following
Proposition holds:

Proposition 1. Consider a network which includes N presynaptic neurons and one
single postsynaptic neuron and assume N to be a multiple of an integer P and that
the input I , given by (3.28), is presented multiple times to the postsynaptic neuron.
Consider the following P + 1 equations set:
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Fig. 3.7 Example of a sequence of presynaptic input spikes of period T (upper figure),
giving rise to postsynaptic output of period 3T. Each pre/post synaptic spike is
represented by a programming pulse of magnitude VP and duration ts, followed
by a heating pulse of duration tH; the time interval between the beginning of the
programming pulse and the beginning of the heating pulse is denoted with tsh. It
is assumed that the postsynaptic spike occurs αtH time units after the beginning of
one presynaptic spike (with 0 ≤ α ≤ 1) and the following parameters, reported in
(3.31), are shown for some mem-conductances: γ

post/pre
1,2 (related to the time shift

between the beginning of the presynaptic programming pulses and the beginning
of the postsynaptic heating pulse) and γ

pre/post
2,3 (related to the time shift between

the beginning of the postsynaptic programming pulse and the beginning of the
presynaptic heating pulses). Taken from [1] ©2022 IEEE.
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∆pre/post/pre(Ĝ0
p,γpost/pre

p ,γpre/post
p ) = Ĝ1

p − Ĝ0
p = 0

(1 ≤ p ≤ P) (3.29)

Ĝ1
p = min

{
Gmax,Ĝ1/2

p + ∆pre/post
G (Ĝ1/2

p ,γpre/post
p )

}
Ĝ1/2

p = max
{

Gmin,Ĝ0
p + ∆post/pre

G (Ĝ0
p,γpost/pre

p )
}

(3.30)

γ
post/pre
p =

pT − α tH − 2tsh

tH

γ
pre/post
p =

(P − p)T + α tH

tH
(3.31)

uth = RVH

{
P−1

∑
p=1

Ĝ1/2
p exp

(
− (P − p)T

τm

)[
exp

(
− (α − 1)tH

τm

)
−exp

(
−αtH

τm

)]
+ Ĝ1/2

P

[
1 − exp

(
−αtH

τm

)]}
(3.32)

and the following inequality:

RVH

P−1

∑
p=1

Ĝ1/2
p exp

(
− (P − p)T

τm

)[
1 − exp

(
− (tH

τm

)]
< uth (3.33)

When the inequality (3.33) holds and there exist α > 0 and P memductances
Ĝ0

p, (1 ≤ p ≤ P) which satisfy the above P + 1 equations set (3.29) - (3.32), then
the discrete time system (3.24) - (3.26) shows a steady state solution, which has the
two features: 1) memductance patterns display a spatial periodicity of order P; 2)
postsynaptic spikes fire with a temporal periodicity of P T.

Proof. The considered periodic input I shows one presynaptic spike per
presynaptic neuron, with period T, i.e. in accordance with (3.28) tpre

j+1 −
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tpre
j = T. Consider the time delay between two generic postsynaptic spikes

[tpost
h , tpost

h+1).

The last presynaptic spike prior to the postsynaptic spike tpost
h is fired by

the the presynaptic neuron of order J and P presynaptic spikes occur in the
time interval [tpost

h , tpost
h+1). In accordance with (3.23), by not considering the

programming pulse effect, the voltage u(t), due to the input I , in the generic
interval [tpost

h , tpost
h+1) can be written as follows:

u(t) = R
P

∑
p=1

ĜJ+p(t
pre
J+p)vpre

J+p(t)

vpre
J+p(t) = VH

[
ϵ(t − tsh − tpre

j,k ) − ϵ(t − tsh − tH − tpre
j,k )
]

(3.34)

As aforesaid, the threshold uth can be crossed during a presynaptic heat-
ing pulse only. Without a loss of generality, as pictured in Fig. (3.7), it can
be assumed that the threshold crossing, which fires the postsynaptic spike
tpost
h occurs after a time αtH since the beginning of the Jth presynaptic heating

pulse.

If the voltage u(t) drops to zero after the postsynaptic spike, then the
expression (3.34) takes the form:

u(t) = R VH

P

∑
p=1

ĜJ+p(t
pre
J+p)

[
ϵ(t − tpost

h − pT + αtH)

− ϵ(t − tpost
h − pT + αtH − tH)

]
(3.35)

It should be noted that the index J, which expresses the presynaptic spike
order, preceding the tpost

h postsynaptic spike, can be omitted. This turns to be
very helpful in order to simplify (3.35). Furthermore, by denoting with Ĝ0

p

the memductance values in correspondence of the tpost
h postsynaptic spike,
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then, following (3.24) and (3.30), Ĝp(t
pre
p ) is given by Ĝ1/2

p , i.e. it is obtained
by Ĝ0

p through a post/pre variation.

By means of the just introduced simplified notation, the following for-
mulation of the voltage u(t) at t = tpost

h + PT can be readily obtained from
(3.35):

u(tpost
h + PT)=RVH

{
P−1

∑
p=1

Ĝ1/2
p exp

(
− (P − p)T

τm

)

·
[

exp
(
− (α − 1)tH

τm

)
− exp

(
−αtH

τm

)]

+ Ĝ1/2
P

[
1 − exp

(
−αtH

τm

)]}
(3.36)

Equivalently, the postsynaptic voltages at the end of the heating pulses
of the first P − 1 presynaptic spikes, can be obtained from (3.35) as uq =

u[tpost
h + qT + (1 − α)tH], (1 ≤ q ≤ P − 1):

uq = u[tpost
h + qT + (1 − α)tH ] = RVH

{
q

∑
p=1

Ĝ1/2
p

·exp
(
− (q − p)T

τm

)[
1 − exp

(
− tH

τm

)]}
(3.37)

The following considerations hold:

1. When the ensemble of P equations (3.30)-(3.31) is satisfied, all the
memductances Ĝ0

p, (1 ≤ p ≤ P) turn out to be unchanged following a
pre/post/pre triplet.

2. The right side of (3.36) is equal to the right side of (3.32), therefore
if the supplementary P + 1 equation (3.32) is also satisfied, then the
voltage threshold uth is crossed at t = tpost

h + PT. As a result, PT is
the time delay between the two subsequent postsynaptic spikes under
consideration tpost

h and tpost
h+1, i.e. tpost

h+1 − tpost
h = PT.
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3. It can be easily checked that the voltages uq in (3.37) do satisfy the
following property:

uq ≤ uq+1, (1 ≤ q ≤ P − 2) (3.38)

and thus the maximum value of uq is uP−1. As the maximum of u(t)
is at the end of the heating pulse of a presynaptic spike, uP−1 also
expresses the maximum value assumed by u(t) resulting from the
contribution of the first P − 1 presynaptic spikes. Note that the for-
mulation of uP−1, i.e. (3.37) with q = P − 1, is equal to the left side of
the inequality in (3.33). Thus, when (3.33) holds, the voltage u(t) stays
lower than the threshold uth until when the heating pulse of the P − 1th

presynaptic spike ends. This in turn implies that, in accordance with
(3.36), the threshold is crossed for the first time at t = tpost

h+1 = tpost
h + PT.

As a final step in the proof, consider a pattern made of a replica of P
memductances Ĝ0

1, Ĝ0
2, · · ·,Ĝ0

P which satisfy (3.29) - (3.32), and (3.33). It can
be easily verified that such a pattern is an equilibrium point of the discrete-
time dynamical system modeled by (3.24) - (3.26), which demonstrates the
existence of a steady state solution with spatial periodicity P. Furthermore,
given that for such a pattern tpost

h+1 − tpost
h = PT, it is also demonstrated the

second part of the thesis, i.e. the periodicity of PT in the occurrence of
postsynaptic spikes. ■

It should be noted that the thorough and meticulous study of the curves
which represent ∆pre/post/pre(Ĝp,γ

post/pre
p ,γ

pre/post
p ) as a function of Ĝp, it

follows that either they have no zeroes (which means that the memductance
eventually saturates to Gmin or Gmax) or they show a negative slope at the
zero, consequently ensuring the stability of the solution.

The results presented in this Subsection may have significant applications.
A first example concerns the analysis of spiking neural networks dynamics,
and the subsequent characterization of space and temporal periodic patterns.
A second application may regard the study of unsupervised learning mech-
anisms which occurs in memristive neural networks. Numerical solutions
of (3.29) - (3.32) demonstrate that all presynaptic frequencies are dynami-
cally encoded onto a memductance patterns. Therefore such patterns are
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Fig. 3.8 Spiking network composed by 60 presynaptic neurons and one postsynaptic
neuron. Upper part: mem-conductance pattern periodicity (2, for T

τb
= 1.25 tH

τb
, and

3, for T
τb
= 1.3 tH

τb
); lower parts: mem-conductance variations, due to a sequence of

post/pre/post spikes. Taken from [1] ©2022 IEEE.

Fig. 3.9 Spiking network composed by 60 presynaptic neurons and one postsynaptic
neuron. Upper part: mem-conductance pattern periodicity (4, for T

τb
= 1.4 tH

τb
, and

5, for T
τb
= 1.45 tH

τb
); lower parts: mem-conductance variations, due to a sequence of

post/pre/post spikes. Taken from [1] ©2022 IEEE.
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exploitable in order to classify different ensembles of presynaptic spikes. A
last application example regards the possibility of engineering supervised
learning methods with the aim of optimizing neural network performance.
As reported in [55], this would require estimating the memductance pattern
which maximizes the probability of a given postsynaptic output. A deeper
elaboration of the proposed dynamic system-based approach could well
serve the purpose of searching the required memductance pattern.

The results of the analysis of a SNN containing 60 presynaptic neurons a
1 postsynaptic by means of the proposed approach are reported in Fig. 3.8
and 3.9 for tH = 2τb and increasing values of the input period. It should be
noted that

• The memductance pattern and the postsynaptic spike periodicity in-
crease proportionally to the presynaptic periodic input T, spanning
from a spatial periodicity of 2 (with temporal period 2T and T

τb
= 1.25 tH

τb
)

to a spatial periodicity of 5 (with temporal period 5T and T
τb
= 1.45 tH

τb
);

• The initial P − 1 memductances evolve towards a stable value within
the range (Gmin, Gmax), characterized by a zero of the post-pre-post
curve, with a negative slope;

• The Pth memductance takes the value Gmax, coherently with (3.30), due
to the positivity of the post-pre-post variation for any Ĝ within the
interval (Gmin, Gmax);

• The neural network simulation which involved the application of 240
iterations of each input sequence, can precisely reproduce the results
theoretically predicted by (3.29) - (3.32).

3.3 Conclusion

In the first part of this Chapter the dynamics of memristor–based recurrent
artificial neural networks has been studied. The analyzed network was
trained by using two distinct generalizations of the backpropagation algo-
rithm tailored for continuous-time energy-based models. Such local learning
rules enable the gradual adjustment of the memristor–based artificial neural
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network connectome without computing the gradient of the loss function.
Even if additional experimental work is needed to find the best memristive
technology to implement such networks, the performed analysis shows two
suitable learning rules applied to the synaptic weights’ update. Those two
learning algorithms can be implemented in a by a series of discrete pro-
gramming pulses in a READ-WRITE scheme. The results obtained from
simulations make clear that both rules largely outperform conventional ap-
proaches for training RNNs for pattern reconstruction tasks. Furthermore,
equilibrium propagation has also proven to well perform on classification
tasks.

In the second part of this Chapter memristor spiking neural networks
have been characterized as discrete nonlinear dynamic systems, with mem-
ductances playing the role of state variables and presynaptic/postsynaptic
spikes as inputs and outputs. By means of explicitly formulated state equa-
tions, given in Chapter 2, which govern the memductance evolution, it has
been shown how the network response to periodic presynaptic inputs can be
easily found by computing the system equilibria and analyzing their stability
properties. Even if additional work is necessary, the proposed approach
provides a theoretical framework for understanding temporal learning prop-
erties of second order memristors [52, 76]. Furthermore it has the potential,
employed with advanced nonlinear dynamic techniques, of enabling the
investigation of the response of memristor networks to arbitrary presynaptic
inputs and the underlying learning mechanisms.



Chapter 4

Memristor-based Linear Algebra
Accelerators

4.1 Introduction

As conventional memristor crossbars can compute the MVM in O(1), it has
also been shown that linear systems and constrained eigenvector equations
can be solved by the same 2D array of memristors in O(1) complexity [77] by
slightly changing the input/output interconnections. For all those applica-
tions anyway the benefit of memristor crossbars is the merge of information
storage and computation which avoids the von Neumann bottleneck. No-
tably, MVM time complexity using a memristor crossbar does not depend
from the matrix size.

The aim of this Chapter is to provide a thorough study of a proposed
memristor crossbar-based accelerator. The problem the system is designed to
solve by means of the memristor crossbar is the acceleration of the Markov
Chain (MC) inference process. Discrete MC models are a widespread class
of statistical models used, to name a few, in medical decision making, com-
plex networks’ analysis, large-scale economics, biology, engineering, physics
and one of the most famous real-world applications is Google’s Pagerank
algorithm [78–80]. These class of problems are typically solved using ma-
trix methods. Two different accelerator architectures are proposed in the
following Chapter each one with it strengths and complexities. On the one
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hand the first architecture, which is a common MVM accelerator, will be
referred to as the open-loop configuration and will compute the successive
updates to a discrete Markov process in a step-by-step fashion. On the other
hand the second proposed architecture, originally conceived by Ielmini and
co-workers, will be referred to as the feedback configuration and takes the
solution of this linear algebraic problem one step further by requiring a single
time step to directly compute the MC stationary distribution with very little
hardware overhead. In pursuit of this aim of studying and comparing these
two solutions, the mathematical tools need to evaluate a memristor crossbar-
based accelerator are introduced in terms of noise contributions, systematic
errors and trade-offs for energy efficiency. The obtained simulation results
for the two architectures are compared with the state of the art in digital
computations.

In Section II a brief introduction to the theoretical background of MCs
is given. In Section III different mathematical approaches to solve discrete-
time MCs are described. Section IV presents the implementation of MCs
on memristor crossbars and the use of conversion algorithms. In Section
V a detailed precision analysis of the proposed architectures is carried out.
In Section VI the system accuracy is evaluated. Section VII benchmarks
the system performance for two different applications with random and
ill-conditioned matrices. In Section VIII the conclusions about this study are
drawn. The content of this Chapter is a re-elaborated version of the research
paper published by the author [2].

4.2 Theoretical background

Markov models appeared in the scientific literature of the early 1900s to
forecast the evolution of a system that switches randomly between states.
When the future behavior of the system depends on the recent past only, with
very weak influence from the remote history, the system can be modeled by
a Markov process. If the space of states is discrete, a Markov process is called
a Markov Chain.

MC models are described by a state vector and a transition matrix that can
be used to forecast the system future states. Diffuse attention has been payed
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Fig. 4.1 (a) Illustration of a 2 × 2 open-loop crossbar used to perform matrix-vector
multiplication. All thermal noise sources associated with TIAs (formed by an op-amp
and a feedback resistor) and crossbar 1T1M cells are shown. (b) The one-transistor
one-memristor (1T1M) cell at each junction in a crossbar. GL: Gate Line, RL: Row
Line, CL: Column Line. (c) Illustration of a 2 × 2 feedback crossbar for solving linear
equations. The noise sources are input resistors and TIAs (formed by an op-amp
and crossbar cells). Taken from [2] ©2021 IEEE.

to the calculation of MCs’ stationary distribution. In the years, numerous
viable solutions to this mathematical problem have emerged [80]. To cite
those that are applied in this study, the MC stationary distribution can be
obtained either by an iterative process or by solving an eigenvector problem
cast as a linear system solution problem.

Other approaches include, to name a few, LU decomposition and Gaus-
sian Elimination which are the de facto standard algorithms for solving linear
equations when the matrix is small and dense. However when this last re-
quirement is not satisfied, iterative methods such as Gauss-Seidel and Power
Method algorithms are preferred for determining the stationary distribution
of discrete MCs. Nonetheless, time complexity for this category of algorithms
is polynomial with respect to the matrix size [81].

This Section introduces discrete-time MCs by providing the required
mathematical background needed to well understand the following of the
Chapter. Curious readers that want to know more about Markov Chains can
refer to [82].

A discrete random variable with finite state X is a measurable function
X : Ω → Γ where Ω is the set of admissible outcomes and Γ = {1, . . . ,m}. A
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discrete time stochastic process with finite state is a sequence {Xk : k ∈ N} of
discrete random variables with finite state.

Definition 1. A first-order MC with finite state is a discrete time stochastic process
that for all k ∈ N satisfies the Markov property:

p(Xk+1 = xk+1|Xk = xk, . . . , X0 = x0) = p(Xk+1 = xk+1|Xk = xk). (4.1)

A first-order MC is (time) homogeneous if for all k, h ∈ N:

p(Xk+1 = xk+1|Xk = xk) = p(Xh+1 = xh+1|Xh = xh). (4.2)

Henceforward, the studied MCs are assumed to be homogeneous and move
between a finite number of states. This guarantees that the transition matrix
M can represent in a compact form all the transition probabilities:

Mij = p(Xk+1 = j|Xk = i). (4.3)

where M is a m × m non-negative probability matrix whose column elements
sum to 1. The matrix size clearly corresponds to the number of states m of
the MC. To find the probability distribution pk = [p(Xk = 1), . . . , p(Xk = m)]T

at time k from the distribution at previous time k − 1, the following MVM
has to be performed:

pk = Mpk−1 (4.4)

From Eq. 4.4, it can be readily found that:

pk = Mkp0 (4.5)

where Mk = ∏k
1 M and p0 is the initial distribution.

Definition 2. A finite MC with transition matrix M is defined irreducible if for all
pairs of states (i, j), at least one r = r(i, j) ∈ N exists such that Mr

ij > 0.

Irreducibility ensures that all the states are reachable from any other state.
MCs with transition matrix M are said to admit a stationary distribution
p∞ = [p1

∞, . . . , pm
∞]T when the following condition is satisfied:

p∞ = Mp∞,
m

∑
i=1

pi
∞ = 1. (4.6)
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Eq. 4.6 can be thought as if the chain by chance starts in the stationary distri-
bution, it indefinitely remains in that distribution. More than one stationary
distribution may be admissible, all corresponding to the eigenvectors of the
transition matrix eigenvalue 1. Nonetheless, if the chain is irreducible, the
singularity of the stationary distribution p∞ is ensured and for every state i,
pi

∞ expresses the mean return time to that particular state. Another way of
looking at the component of the stationary distribution pi

∞ is to think at com-
ponent as the proportion of time spent by the system in a given state. Unless
the MC is also regular, its convergence towards its stationary distribution
is not guaranteed for all the initial distributions. Hence, the concept of MC
regularity has to be introduced.

Definition 3. A matrix M is defined primitive if one value r ∈ N exists such that
Mr

ij > 0 for all pairs of states (i, j). A finite MC with a primitive transition matrix
M is said to be regular.

It is arguable that regular a MC is always irreducible, but actually the inverse
assertion needs a further constraint:

Definition 4. The period di of the state i is given by di = gcd{r ≥ 1 : Mr
ii > 0}

with gcd denoting the greatest common divisor. A MC state i is said to be aperiodic
if di = 1. The finite MC and its transition matrix M are called aperiodic when all
states are aperiodic.

Proposition 2. a) Irreducible and aperiodic finite MC ⇔ Regular MC;

b) Irreducible finite MC and there exists i ∈ Γ such that Mii > 0 ⇒ Regular
MC;

c) Regular MC ⇒ limn→∞ p(Xn = i|X0 = j) = pi
∞ ∀j.

Reader interested in further details on the proofs can read [82]. In all the
cases when a limiting distribution exists, the chain asymptotically evolves
towards it independently of the initial condition. Each component i of the
limiting probability distribution vector can be interpreted either as the long-
run probability of finding the system in the state i or the proportion of time
spent by the chain in a that state.
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4.3 Solving Discrete-Time Markov Chains

Given an initial probability distribution p0, the evolution of a finite MC can
computed by repeatedly iterating Eq. (4.4). The next most probable state
of the chain can always be forecasted by computing the MVM between the
transition matrix M and the current probability distribution vector pk. In
order to make clear the process, in Figure 4.2 the evolution of the distribution
vector is shown for a generic regular MC over different iterations. It should be
noted how, after a certain number of transitions, the discrete state probability
vector asymptotically converges to the stationary distribution.

From Eq. (4.6), the stationary distribution can be interpreted as the so-
lution of either an eigenvector problem or of a linear system. As aforemen-
tioned there are two classes of algorithms commonly employed to find it:
direct and iterative methods [80]. The first class mostly needs the entire
coefficient matrix stored in memory and applications are usually constrained
by memory capacity and computing power (e.g. Gaussian Elimination, LU
decomposition, GTH-algorithm, etc). When the problem is large, the second
class of algorithms is the only viable way (e.g. Gauss-Seidel, Power Method,
etc). In both cases the time complexity is polynomial with respect to the ma-
trix size. For additional details on space and time complexity the interested
reader may refer to [81].

Historically, the MC stationary distribution search has been treated as
an eigenvector problem which could be solved by iteratively applying the
Power Method. This algorithm starts with an initial distribution vector p0,
which might also be random. At each next iteration k + 1, it computes a
MVM between the transition matrix M and the current distribution vector
pk until the stop condition is reached.

Very recently, a novel closed-loop memristor crossbar design was pro-
posed which can find the dominant eigenvector of a matrix in a single time
step [83]. On the one hand this novel approach avoids the numerous MVMs
required by Power Method, on the other hand it makes impossible to com-
pute the k-th step forecast which not rarely is required in certain MC applica-
tions.
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Fig. 4.2 Graphical representation of a generic regular three-state MC together with
Power Method iterations. Black dashed lines correspond to the limiting distribution.
Taken from [2] ©2021 IEEE.

The transition matrix irreducibility ensures that there is one stationary
distribution only. Nonetheless, the convergence of both the proposed imple-
mentations is determined by the primitivity of M. If the stochastic matrix M
is not primitive, then it might have more than one eigenvalue on the unitary
circle and this may arise convergence problems. In particular, it may happen
that the far future probabilities of the chain greatly depend on the initial
condition p0. Conversely, primitive matrices have only one eigenvalue on the
unit circle with all the others strictly less than 1 in modulus. Thus, primitive
matrices guarantee the convergence of the probability vector to the unique
dominant eigenvector, e.g. starting from any probability vector, the Power
Method is guaranteed to converge. When the matrix is not primitive, it is
still possible to consider a modified transition matrix Q = αIm + (1 − α)M
where Im is the m × m identity matrix and 0 < α < 1. If p∞ = Mp∞ then one
can observe that Qp∞ = [αIm + (1 − α)M]p∞ = p∞. Hence, the two MCs
whose transition matrices are M and Q respectively share the same stationary
distribution. Still, the MC with Q as transition matrix is a regular MC (see
Prop. 2(b)) and thus has a unique limiting distribution and the choice of
α is the only factor to influence the results’ accuracy. An alternative to the
iterative method is the direct computation of the eigenvector p∞ by solving
an associated linear system as shown in the following proposition.

Proposition 3. Let M be the transition matrix of a finite irreducible MC with
stationary distribution p∞.
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Let A = (Im − M + 1m×m) where 1m×m is the matrix with all entries equal to 1
and 1m is the column vector of ones. Then:

a) A is non-singular and A−1
ii > 0 ∀i = 1, . . . ,m;

b) p∞ is the unique solution of the system

Ax = 1m. (4.7)

Proof. a) For details see [84, 85].
b) The objective is to find p∞ such that Mp∞ = p∞, subject to ∑m

i=1 pi
∞ = 1.

This constraint can be written as

1m×mp∞ = 1m. (4.8)

By summing p∞ − Mp∞ = 0 to (4.8) and by collecting p∞, the claim is ob-
tained. For a), the irreducibility assumption ensures the non-singularity of
the matrix, thus the uniqueness of the solution. ■

To conclude, (4.6) and (4.7) have in common the same solution. Nevertheless,
the direct calculation of the linear system in (4.7) guarantees no convergence
issues which could occur with the iterative methods.

4.4 Crossbar Implementations

The transition matrix M can be mapped within a precision of choice onto a
memristor crossbar array by programming each memductance Gij inside the
correspondent 1T1M cell as shown in Fig. 4.1(b). As explained in this Chapter
introduction, in order to perform a MVM by means of a (mem)resistive
crossbar array, a vector of voltages has to be applied to the rows of the
open-loop crossbar as shown in Fig. 4.1(a) and then the multiplication
happens thanks to the Ohm’s Law at each intersection between a bit-line
and a word-line where a memristor exists. All the resulting currents are
summed at each column by means of the Kirchhoff’s Current Law. Each
current flowing out of its column in a single time step is physically measured
using a transimpedance amplifier (TIA) and taken as the correspondent
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component of the vector resulting from the MVM operation. The iterative
approach which performs a MVM operation at each time step enables both
the k-th MC state prediction and if required even the recursive update up to
convergence as in the Power Method. When the MC is regular eventually,
after many iterations, the output probability distribution vector will settle
to the MC stationary distribution. It should be mentioned that during the
whole computation the transition matrix must not change. In order to ensure
that, the voltage components of the input vector must be constrained within
the operating voltage range that avoids conductance drift.

Differently from the open-loop crossbar solution, the feedback architec-
ture shown in Fig. 4.1(c) can solve systems of linear equations [77] such
as

Ax = b (4.9)

in which x is the unknown vector while A and b are the known matrix and
the vector respectively. In this promising architecture, each TIA composed of
an op-amp and the memristive crossbar itself as feedback serve two purposes.
Exactly as in the open-loop architecture, the TIAs enable the conversion from
current to voltage. Conversely from the former architecture, in the feedback
solution the created virtual reference nodes serve the purpose of letting the
input current I divide over the entire crossbar along feedback path. Due to
Kirchhoff’s Current Law, the following equation holds at the outputs of the
TIAs’:

I + GVo = 0 (4.10)

with G being the memductance matrix of the crossbar.

As shown in Fig. 4.1(c), the resistors Rc serve the purpose of converting
input voltages to currents which are provided as input vector I = −b. In a
single time step, Eq. (4.9) is solved and the solution is the output voltage Vo:

x = Vo = −G−1I (4.11)

The convenience of employing a crossbar to solve the linear equation Ax = b
is that the calculation of A−1 is not needed which drastically reduces the
computational complexity.
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Fig. 4.3 Summary of the architectures and operations in this work. The open-loop
crossbar enables the computation of both the next state distribution via an MVM
operation and the stationary distribution of the chain by the sequential update
provided by the Power Method. The requirements are linear transformations to set
the conductance range and recover the correct result. When the evolution of the
system is not required, the stationary distribution of the MC can be computed in
a single step with the feedback crossbar configuration. After a preliminary linear
transformation of the system, the routine does not need a recovering step. Taken
from [2] ©2021 IEEE.

Equation (4.9) has the same form as (4.7), where x = p∞, A = (Im − M +

1m×m) and b = 1m. Hence, memristive crossbar arrays can perform the
computation of the MCs’ stationary distribution vector without iterating.
Furthermore, a key feature of this system is that the vector b in (4.7) has all
unitary entries, e.g. 1m. Therefore, the Markov Chain stationary distribution is
obtainable by means of the same input current for each row in the crossbar. This fact
substantially lowers the complexity of the peripheral circuitry in the feedback
crossbar architecture with respect to the open-loop counterpart by making
Digital-to-Analog Converters (DACs) unnecessary, thus lowering power
consumption [86, 87]. Matrix A in the form (Im − M + 1m×m) is mappable
onto the crossbar with each conductance within the technology imposed
range of memductances. The resulting stationary distribution vector p∞ can
be measured as the TIAs’ output.

Due to the always limited conductance range offered by any memristive
technology, computing either a MVM or the solution of a linear system may
be challenging with a crossbar array. The entries of the matrix A require to
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be mapped into this range using the following linear transformation [45, 47]:

γ =
Gon − Go f f

Amax − Amin

δ = Gon − γAmax

Gmap = γA + δ1m×m

(4.12)

where Gon and Go f f correspond to the highest and the lowest memductances
reachable, respectively. Amax and Amin are to the highest and lowest elements
in the matrix A. Gmap is the memductance matrix programmed into the
crossbar and henceforth, for writing convenience, G = Gmap. The required
linear transformation can be preliminary computed by means of a digital
system.

After the output vector from the open-loop crossbar architecture depicted
in Fig. 4.1(a) gets measured, the correct result can be obtained using the
inverse operations that follows:

Proposition 4. Let M be the transition matrix of a finite MC. If I = MV and
Ĩ = GV then I = 1

γ (Ĩ − δ1m).

Proof. Consider the linear operation I = MV. By multiplying both sides by γ

and then adding vector δ1m×mV one obtains:

γI + δ1m×mV = γMV + δ1m×mV

γI + δ1m = GV
(4.13)

by using 1m×mV = 1m and A = M in (4.12). Let Ĩ = γI + δ1m then I = 1
γ (Ĩ −

δ1m). ■

Hence, once the analog to digital conversion is completed, the adimensional
MVM result can be recovered on a digital system by means of Prop. 4. The
closed form relation linking the measured and the adimensional outputs
cannot be easily generalized to the linear systems case. Nonetheless, while
computing the stationary distribution via the crossbar in Fig. 4.1(c), Markov
Chains are demonstrated to meet the circuit requirements thanks to the
following proposition:
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Proposition 5. Let A = (Im − M + 1m×m) where M is the transition matrix of an
irreducible finite MC. The two following systems are equivalent:

AV = 1m, GV = (γ + δ)1m.

Proof. Consider the linear system AV = 1m. By multiplying both sides by γ

and then adding the vector δ1m×mV, one obtains the equality:

γAV + δ1m×mV = γ1m + δ1m×mV (4.14)

By collecting V and observing that 1m×mV = 1m, one gets GV = (γ + δ)1m.
■

This solution bypasses the need of a recovering step to find the adimensional
solution of the linear system (4.7). Furthermore, two different ways exist to
compute the output:

• When (γ + δ)1m is in input, the architecture will output the normalized
eigenvector;

• When 1m is in input, the architecture will output a vector which can be
transformed into the solution by means of a normalization.

Depending on the selected of memristive technology and the required matrix
A, there is a high risk of the (γ + δ) term in the first option being a number
so small that the circuit could not be physically designed. On the other hand,
the second option is free from that risk for any technology and matrix A
and thus is the chosen approach in this dissertation. It is worth highlighting
that both configurations need ADCs to convert the crossbar TIAs output and
perform post-processing operations in the digital domain.

In summary, the open-loop crossbar architecture in Fig. 4.1(a) is employable
either to find the stationary distribution of a regular MC by a series of sequential
updates via the Power Method or to forecast the distribution vector at the next time
step via a simple MVM operation. In the particular case when the evolution of the
system is not relevant, a MC’s stationary distribution can be computed in a single
step using the feedback crossbar architecture in Fig. 4.1(c). In Figure 4.3 the two
structures/approaches are compared for MC applications.
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In physical ICs, each circuit component introduces random fluctuations
and systematic errors:

• random noise limits the system precision,

• the systematic errors degrade the output accuracy.

Recently, different metrics have been adopted to estimate the output pre-
cision and accuracy of memristive crossbars, such as cosine similarity [83],
relative error [88] and bit-precision [47]. The two following Sections provide
a novel analysis of both random and systematic errors. Application-agnostic
mathematical tools are introduced to systematically estimate precision and
accuracy in the two architectures from Fig. 4.1(a) and (c).

4.5 System Precision Analysis

In this Section, the two architectures are studied with a focus on thermal
and programming noise sources. A signal-to-noise ratio (SNR) metric will
be employed to estimate the output precision in terms of bits and an accu-
rate comparison between memristive crossbars and their analog and digital
counterparts is provided. From this point forward, G ∈ Rm×m and V,I ∈ Rm

such that
GV = I. (4.15)

4.5.1 Open-Loop Crossbar

The open-loop crossbar configuration in Fig. 4.1(a) is the first to be investi-
gated. The noise sources affecting the output precision are two: program-
ming and thermal noises. Memristors in the crossbar give a contribution to
both noise sources, while feedback resistors and op-amps contribute to the
thermal noise only. Flicker (1/f) noise generated by transistors and op-amps
is neglected because the proposed system is operated in a wide bandwidth
configuration and the contribution of the thermal noise overwhelms the (1/f)
noise.
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Thermal Noise

In Figure 4.1(a), the thermal noise sources in the open-loop architecture are
shown. The thermal noise coming from transistors in the 1T1M structures
can be neglected by means of proper sizing [89]. The mean square current
noise i2

nT,jk generated in a single memristor at the j-th row and k-th column
is given by:

i2
nT,jk = 4kTBWnGjk, (4.16)

with BWn being the noise bandwidth. Thermal noise is modeled by means of
a zero mean Gaussian distribution with variance σ2

T, in which σ2
T = i2

nT [90].
As all memristors’ contributions are independent, the total current noise
variance at the input of the k-th TIA is:

i2
nT,k =

m

∑
j=1

i2
nT,jk. (4.17)

Then, the total voltage noise variance at the output of the k-th TIA is:

v2
nT,k = i2

nT,kR2
f + v2

nT,R f
(4.18)

with v2
nT,R f

being the feedback resistor voltage noise variance. The thermal
noise contribution generated by the op-amp is be discussed in the feedback
crossbar Subsection.

Programming Noise

Programming noise is the other effect which degrades the overall system
precision. Memristor are commonly embedded in the 1T1M structure (Fig.
4.1(b)) which enables their programming by dynamically driving the transis-
tor gate with appropriate voltage levels which in turn control the amount of
current flowing in the memristor [91]. By means of this structure it is also
possible to be interdict unused cells in the crossbar [92]. For instance, a m×m
crossbar can perform k × k operations (m > k) by interdicting the unused
cells transistors. In this Chapter, tantalum-oxide memristors [93, 94] with
a 100µS − 1000µS conductance range are chosen as a possible technology
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reference. In the selection of the appropriate conductance range, the trade-off
to consider is between low and high conductance levels. It is known from pre-
vious studies[45, 83] that higher conductances enable precise programming,
while, lower values offer improved power efficiency. Memristors can be
programmed to an arbitrary conductance within a range Grange = [Go f f , Gon],
while accepting a chosen tolerance [95, 96] which is function of an iterative
read-write programming scheme. This procedure for writing a value into
memristors enables improved precision at the expense of more iterations and
in turn higher energy expenditure. With the aim of comparing the precision
of the proposed analog accelerator to an equivalent digital implementations,
Grange is subdivided into 2Nb subranges (levels), with Nb being the equivalent
number of bits. To the best of the author’s knowledge, the highest experi-
mentally measured memristor bit precision reported in literature at the time
of writing is of 8 bits (256 memductance levels)[97].

Fig. 4.4 Normally distributed programming noise model that illustrates the intended
write distribution between two conductance levels separated by the pre-defined bit
precision. Taken from [2] ©2021 IEEE.

It is well known that a same device programmed to a same target conduc-
tance level cannot be exactly set to that desired value. From programming
cycle to programming cycle the actual written level fluctuates. These cycle-to-
cycle fluctuations are statistically Gaussian distributed. When the application
requires very frequent memristors reprogramming, this phenomenon affects
precision and in the following of the text will be referred to as programming
noise. However this is not always the case as many applications need the
conductance matrix to stay constant and be repeatedly used for iterative
calculations. In this latter case, after the first programming phase, the error
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remains constant until the next programming stage. In this case, the error
becomes a systematic level shift in the mean conductance and thus only
affects the output accuracy. This phenomenon affecting the computation
accuracy will be called programming error and analyzed in the next Section.

It is common in literature for the programming noise to be modeled by
a normal distribution with a standard deviation of σ [45, 47, 46, 83]. In this
manuscript, in order to analyze the programming noise contribution on
output precision, a normally distributed perturbation ∼ N(0,σ2) is added
to each ideal memristor conductance level. In order to have those levels
distinguishable with high degree of confidence, as in Fig. 4.4, each interval
of width ∆L =

Grange

(2Nb−1)
ought to contain at least ±3σ. With this aim in mind,

for the rest of this analysis it is set σ = ∆L/6.

Consider a single MVM operation where I is the output vector while G
and V are the known variables. Suppose to perturb the matrix G by adding
a disturbance sampled from a Gaussian distribution with zero mean and
variance σ2:

G̃ = G + Z, Zij ∼ N(0,σ2). (4.19)

Then, system (4.15) becomes:

Ĩ = G̃V = (G + Z)V = GV + ZV = I + ZV (4.20)

with Ĩ being the perturbed output. The k-th component of Eq. (4.20) is a
linear combination of independent Gaussian random variables and therefore
the following holds [98]:

Ĩk − Ik ∼ N(0,∥V∥2
2σ2) ∀k (4.21)

with ∥ · ∥2 being the euclidean norm. In practice, if all the entries of a
matrix are randomly perturbed by disturbances sampled from a Gaussian
distribution N(0,σ2), then the k-th output current noise will be normally
distributed N(0,σ2

p) where σ2
p = ∥V∥2

2σ2. From σ2
p output variance expressed

in terms of current noise it is readily derived the output voltage noise by
multiplying the former one times the square of the feedback resistance:
v2

np,k = σ2
pR2

f . This turns to be very helpful in the SNR analysis at the output
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in order to compare the contributions of programming noise and thermal
noise.

4.5.2 Feedback Crossbar

Differently from the open-loop structure in Fig. 4.1(a) which uses volt-
age inputs, The feedback crossbar depicted in Fig. 4.1(c) uses current in-
puts and thus current noise variances are needed in order to find the out-
put distribution. Furthermore, the random fluctuations’ amplitude greatly
changes with the conductance matrix itself. Consider the linear system
(G + Z)(V + ϵ) = (I + η) and suppose that ∥Z∥∥G−1∥ < 1 for an arbitrary
chosen induced matrix norm, it follows that:

∥ϵ∥
∥V∥ ≤ K(G)

1 − ∥Z∥∥G−1∥

( ∥Z∥
∥G∥ +

∥η∥
∥I∥

)
(4.22)

with K(G) = ∥G∥∥G−1∥ being the condition number [81]. From Eq. (4.22)
follows that when the conductance matrix G is not hill-conditioned (i.e.
K(G) ≈ 1), small perturbations applied to G and I result in small variations
of the solution V. When instead G is ill-conditioned (i.e. K(G)≫ 1), small
perturbations applied to G and I might result in large variations of the
solution V. In conclusion, it can be stated that the system precision heavily
depends on the nature of the application as it will be shown in the following.

Thermal Noise

Consider Eq. (4.15) where V is the unknown voltage vector while I and G
are the input current vector and the conductance matrix respectively. By
solving this linear system via the feedback crossbar, Fig. 4.1(c) makes clear
how all the memristors in the feedback path and all input resistors generate
their own mean square current noises i2

nT, and thus the total current noise
variance generate by the j-th row of the feedback crossbar is:

σ2
Tj,F = 4kTBWn

(
m

∑
k=1

Gjk +
1

Rc

)
(4.23)
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with Rc being the input resistor. The feedback output noise analytical formu-
lation can be obtained by summing to the input current vector I a disturbance
vector ȷ whose components ηj ∼ N(0,σ2

Tj,F
) ∀j:

GṼ = Ĩ = I + ȷ ⇒ Ṽ = V + G−1ȷ (4.24)

with Ĩ, Ṽ being the perturbed input and output of the system in Eq. (4.15)
respectively, and V = G−1I. The j-th component of Eq. (4.24) is a linear
combination of independent Gaussian random variables resulting in [98]:

Ṽj − Vj ∼ N

(
0,

m

∑
k=1

(G−1
jk )2σ2

Tk,F

)
∀j. (4.25)

Input resistors and memristors are accountable for the most of the voltage
noise variance at the output of the j-th TIA which is:

v2
nT,j =

m

∑
k=1

(G−1
jk )2σ2

Tk,F. (4.26)

The remaining contribution to thermal noise in crossbars comes from the
CMOS transistors which make up operational amplifiers. In order to accu-
rately estimate this source of noise, the voltage noise variance of a transistor
at the output of an amplification stage with gain Ao is:

v2
n,tr =

4kTΓBWn A2
o

gm
. (4.27)

with gm being the transconductance value of each stage. The dynamic range
D, at each stage output is:

D =
V2

o

v2
n,tr

=
(V2

o )gm

4kTΓBWA2
o

(4.28)

with Vo being the output voltage. Therefore, gm for each stage can be esti-
mated as:

gm =
4kTΓBWn A2

oD
(V2

o )
. (4.29)
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Note that the gm values from Eq. (4.29) are a conservative estimation. The
total output voltage noise variance of a two-stage operational amplifier can
be computed using these transconductance values as [99]:

v2
n,o = 4kTΓBWnR2

Lgm2(gm1 gm2 R2
o1
+ 1) (4.30)

with gm1 and gm2 being the transconductance of the first and second amplifi-
cation stages respectively, Ro1 being the output resistance of the first stage
and RL the load resistance. This latter coincides with the parallel resistances
of all the memristors along the feedback path. The first and second terms in
Eq. 4.30 correspond to the first and second amplification stages voltage noise
variances respectively. It can be noted how a lower memristor conductance
yields a higher output voltage noise.

Negative feedback can be employed in order to improve the noise per-
formance with a degree proportional to the closed-loop gain of the system.

The input-referred noise of the operational amplifier, v2
n,in =

v2
n,o

A2
o

, can be mul-
tiplied by the noise gain in order to compute the total output voltage noise
variance in a feedback crossbar system:

v2
n,amp =

1
β2 v2

n,in. (4.31)

Programming Noise

Conductance matrix G and input current vector I are the known in the
linear system of Eq. (4.15) while V is the unknown vector. By perturbing
the linear system (4.15) as in Eq. (4.19) the following conclusions can be
drawn. Given a matrix norm of choice, in case that the perturbation is
sufficiently small ∥G−1Z∥ < 1, if follows that (G + Z)−1 is non-singular.
Furthermore, the Neumann expansion’s linear part of (G + Z)−1 is (G +

Z)−1 ≈ G−1 − G−1ZG−1. Thanks to the introduced approximation, the
analytical computation is made practicable:

Ṽ = (G + Z)−1I ≈ V − G−1ZV (4.32)
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Fig. 4.5 Simulated programming σp, thermal σT and total σTOT noise of a generic
output component for different crossbar sizes using both (a) open-loop and (b)
feedback architectures and 8 bits precision memristors with a conductance range of
[100µS,1000µS]. (c) and (d) replicate the first row plots with a conductance range
of [10µS,1000µS]. (e) and (f) are the equivalent output bit precision for different
matrix sizes using open-loop and feedback crossbars, respectively. The total noise
contribution of different memristor precision was considered and compared using
MATLAB. The σp estimates were computed by using 1000 perturbations of a random
transition matrix. The same operation was repeated for σT by perturbing the input
vector. The total noise σTOT was calculated by perturbing both transition matrix and
input vector. These estimates were then used to evaluate the output bit precision. To
obtain the relationship between precision and noise, systematic errors were excluded.
The σT includes thermal noise contributions of memristors, resistors and op-amps.
Taken from [2] ©2021 IEEE.
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with V = G−1I. Due to the linearity of Gaussian random variables combina-
tion, each j-th component of Eq. (4.32) becomes [98]:

Ṽj − Vj ∼ N
(

0,∥G−1
j· ∥2

2∥V∥2
2σ2
)

∀j (4.33)

with ∥G−1
j· ∥2 being the euclidean norm of the j-th row of the inverse of G.

If all the entries of a matrix are perturbed by adding a component wise source
of noise sampled from a Gaussian distribution N(0,σ2), it can be concluded
that the j-th output voltage noise variance driving from the programming
noise is v2

np,j = ∥G−1
j· ∥2

2∥V∥2
2σ2.

4.5.3 Output Precision

In the following Subsection, the global output precision gets evaluated in
both structures. All the systematic errors coming from the actual circuit
implementation are not considered here. In this way, the analysis remains
focused on the stochastic error contributions only.

The formerly obtained equations for programming and thermal noises
were experimentally verified and subsequently employed to present noise
contributions in Fig. 4.5. Both the feedback and open-loop output program-
ming noise are proportional to the norm of the ideal vector V. For increasing
matrix sizes, given that the sum of the components of the vector V is equal
to 1, the corresponding norm gets smaller. The consequence of this is that
the programming noise σp decreases with a trend proportional to (1/

√
m) as

shown in Figs. 4.5(a) and (b). The total thermal noise for a single column, in
the open-loop architecture, shows to be proportional to matrix size m as in
Eq. (4.17). Analogously, in the feedback architecture, the product in Eq. (4.25)
shows to be proportional to m. As a consequence, for both configurations
σT increases as the matrix size grows. Different noise trends can be found
for other types of matrices, but Eqs. (4.17) and (4.25) are valid independent
of the application. Although matrices of other kinds may yield different
noise trends, Eqs. (4.17) and (4.25) hold independently from the application.
These findings make feasible the system SNR and output bit precision com-
putations. The output bit precision enables a direct comparison between
the proposed analog systems and their digital implementation counterparts
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[100]. The thermal noise is usually simulated in addition to the programming
noise, however it was found that the final result is unchanged by assuming
the two noise sources independent. The overall SNR for each output is:

SNR =
V2

o

v2
nT,o + v2

np,o + v2
n,amp

(4.34)

with v2
nT,o and v2

np,o being the thermal and programming noise variances at

each output, respectively, and v2
n,amp is the voltage noise variance generated

in the op-amp while V2
o is proportional to the output signal power. The noise

generated by op-amps is considered negligible. The output bit precision is
calculated as:

Output Bit Precision =
10log(SNR)− 1.76

6.02
(4.35)

As shown in Fig. 4.5(a) and (c), thermal noise overshadows the programming
noise in the open-loop architecture for bigger matrices and is the limiting
factor to the output bit precision. This means that, for larger matrices, the
design can be optimized by choosing lower precision memristors which save
time and energy during the crossbar programming phase. On the other hand,
in the feedback architecture, the programming noise is the performance lim-
iting factor, and thus employing higher precision memristors results in better
SNR. A single additional bit at the memristor level can yield even more than
one bit improved precision at the crossbar output. The fact that the output
bit precision in Fig. 4.5(f) lowers in the feedback crossbar configuration may
be imputed to lower levels of output signal power for larger matrices.

By increasing the levels of output signal power, both the SNR and out-
put bit precision can be improved. The negative side of using the feedback
crossbar architecture in Fig. 4.1(c) over the open-loop one in Fig. 4.1(a) is the
presence of memristors along the crossbar feedback loop. This unfortunately
puts a limit to the highest possible output voltage which keeps memristors
in their linear operation region. Consequently, this fact in turn lowers the
SNR and output signal power.

Regarding the relationship between the conductance range and SNR,
it is found that the memristor technology Gon/Go f f ratio only marginally
influences the thermal noise contribution for fixed Gon and decreasing Go f f .
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The programming noise does not depend on Gon/Go f f ratio in the open-loop
configuration (see Eq. (4.21)). Nonetheless, in the feedback architecture the
parallel equivalent resistance Rm = 1/Gm increases and thus also program-
ming noise increases. One way to mitigate this effect consists in changing
the input vector in Eq. (4.33). Larger Gon/Go f f ratios primarily influence the
individual memristors’ bit precision, as shown in Fig. 4.5. Given the demon-
strated better programming noise performance in larger crossbar arrays (see
Figs. 4.5 (b) and (d)), in the following, Gon/Go f f ratio is set to 10. Keeping
Gon/Go f f ratio fixed while decreasing Gon (i.e. 0.1 − 1µS) increases Rm thus
resulting in higher thermal noise and decreased SNR. This a trade-off results
in improved power efficiency. At the same time, Rm strongly affects the
power consumption if compared to Gon/Go f f ratio.
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Fig. 4.6 a) Schematic of the transistor level op-amp. b) Schematic of a single TIA
with the input resistor in a multi-loop feedback crossbar structure. Rm is the parallel
combination of memristors resistances in the feedback path. Taken from [2] ©2021
IEEE.
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4.6 System Accuracy Analysis

Precision metric can not entirely describe the performance of the system.
In recent times, reducing the wire resistances effect by means of an estima-
tion of linear scaling factors for each column output was proposed in [46].
Furthermore, other systematic errors affect the real world op-amp imple-
mentation such as finite gain, input and output resistance and capacitance,
voltage offsets, non-linearity which all result in inaccuracy. As previously
mentioned, also the stochastic fluctuations in the programmed memductance
value, which are called programming errors, result in system inaccuracy.
Moreover, the matrix’ properties are very important for the feedback archi-
tecture overall accuracy. In the following, these additional problems are
addressed and methods to mitigate the errors for both configurations are
described.

4.6.1 Open-Loop Crossbar

Fig. 4.7 Frequency domain analysis to determine stability of each loop for the
feedback circuit of Fig. 1(c). The plots show the results for a single loop in a multi-
loop system. The stability of the loop is determined by the intersection point of
the open-loop gain curve of the op-amp (Ao(s)) and noise gain curve (1/β(s)). The
phase margin is calculated on the LG phase curve (ϕ(LG(s))) using this point. DC
gain and GBW of the op-amp are 86dB and 1.1GHz, respectively. Taken from [2]
©2021 IEEE.

On the one hand the main issue for the open-loop architecture is the
voltage division due to the source impedance [101], while on the other hand,
global system stability and op-amp gain are a lesser concern. Therefore,
for current to voltage conversion, in place of a resistor, in the open-loop
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architecture a TIA is employed which provides the benefit of decreased input
impedance seen from the crossbar which is:

Ri =
R f

Ao + 1
≈ R f

Ao
(4.36)

with Ri being the input resistance of the TIA while Ao the op-amp open-loop
gain. During operation, all the memristors ought to be operated in their
linear region [46] in order to avoid unwanted variation in the memductance
levels. This means that the voltage between the memristors’ terminals, Vm,
ought to be kept much lower than the characteristic technology threshold
switching voltage:

Vm < Vj − Vre f (4.37)

with Vre f being the TIA virtual reference voltage while Vj the crossbar’s j-th
row input voltage.

As the gain of the op-amp is not infinite, each TIA’s virtual reference
node is not exactly equal to Vre f . This results in a systematic error introduced
on each output voltage. An after-measurement compensation of the error
which compensates this systematic error is possible. This error correction is
derived by analyzing a non-ideal voltage adder. The k-th output voltage can
be adjusted post-measurement by scaling it of a correction factor which is:

G f +
(∑m

j=1 Gjk + Gin + G f )(G f + Go)

Go Ao − G f
(4.38)

with Gin and Go being the op-amp’s input and output conductances respec-
tively, ∑m

j=1 Gjk the sum of the memristor conductances connected to the k-th
TIA, and G f the TIA feedback conductance. This multiplicative correction is
operated all at once with the recovering step defined in Prop. 4.

4.6.2 Feedback Crossbar

The design of an accurate version of the feedback architecture in Fig. 4.1(c)
poses more challenges than the open-loop configuration. This is due to
the crossbar itself being located along the negative feedback path, which
result in stricter requirements on the op-amp performance. In the feedback
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crossbar, each op-amp together with the crossbar resistance form a TIA which
is responsible for the distribution of the input currents. A custom transistor-
level op-amp is designed with 86 dB DC gain and 1.1 GHZ GBW in a 28 nm
CMOS node with 0.9V supply voltage. Figure 6(b) reports the schematic of
the designed op-amp which employs a two-stage folded cascode structure
and a Class B output stage. While gain and global system stability are not a
concern in the design of the open-loop crossbar, a careful analysis on these
two is essential for the feedback crossbar. A sufficient condition that ensures
the system operates in a stable negative feedback [77] is the positivity of the
diagonal entries of the inverse matrix (Im − M + 1m×m)−1. This condition is
satisfied thanks to Prop. 3(a).

An a high open-loop gain operational amplifier is chosen in order to
minimize the finite gain error. Unfortunately, this also results in high power
consumption and therefore asks for a trade-off between power consumption
and accuracy. The voltage difference between the TIA input (virtual refer-
ence) and the output nodes is limited to values lower than the memristor
threshold switching voltage thus ensuring the memristors operating in their
linear region. Apart from keeping the linearity which is fundamental in
the operation of the crossbar array as a MVM accelerator, this also avoids
memductance drifts due to slow unwanted reprogramming. The inverting
terminal of the TIA must be at the virtual reference potential in order to guar-
antee the correct distribution of input current. Any potential value within
the common mode range of the op-amp can be used as the virtual reference
value. This can be compensated afterwards by subtracting this, possibly
non-null, value from the TIA output voltage before the normalization step of
the results.

The analysis of a single TIA loop gain in the feedback crossbar config-
uration is performed, using the circuit in Fig. 4.6(a), with the purpose of
studying how non-idealities affect the output accuracy. Both op-amp input
and output parasitic capacitances are neglected as they do not impact the
gain error analysis. As in this special case all inputs are equal, approximate
circuit could be studied where Rm is the equivalent parallel memristor re-
sistances along the feedback path. The derived transfer function takes the
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(a)

(c)

(b)

(d)

Fig. 4.8 Output accuracy in terms of normwise relative error and cosine similarity
versus different memristor programming precisions for (a) open-loop and (b) feed-
back configurations for a 64 × 64 crossbar. Output accuracy versus different matrix
sizes is given for (c) open-loop and (d) feedback configurations with 8 bits precision
memristors and non-ideal op-amps. The expected accuracy is measured using 1000
perturbations of a random matrix. The error bars contain the distribution of each set
of runs for 95% of the calculations. The normwise relative error is a more sensitive
indicator than cosine similarity. The results are mainly affected by the errors arising
from memristor precision rather than op-amp non-idealities. Taken from [2] ©2021
IEEE.
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form:
Vo

V
= −

Rm
Rc

1 + Rm+Ro
Ao− Ro

Rm

(
1

Rc
+ 1

Rm
+ 1

Rin

) . (4.39)

The gain error Eg in Eq. (4.39) is:

Eg =
Rm + Ro

Ao − Ro
Rm

(
1

Rc
+

1
Rm

+
1

Rin

)
(4.40)

with Rin and Ro being the input and output resistances of the op-amp re-
spectively, while Ao is the DC open-loop gain of the op-amp. It should be
noted that the gain error can minimized either by increasing the open-loop
gain, or by increasing the input resistance, or by reducing the op-amp output
resistance. Furthermore, it should also be noted that a higher input resistance
Rc and lower memristances in the crossbar reduce the gain error further.

(a) (b) (c) (d)

Fig. 4.9 (a) Example of a mouse trapped in a maze. (b) Transition matrix representing
the probability that the mouse goes from one room to another. (c) Comparison
between the 6-th step probability distribution using MATLAB and the proposed
open-loop crossbar with 8–bits precision memristors. (d) Comparison between the
stationary distribution using MATLAB and the proposed feedback crossbar with
8–bits precision memristors. Taken from [2] ©2021 IEEE.

Another factor to be meticulously taken into consideration is the relation-
ships between input/output resistance of the op-amp, the input voltage and
conductance range of the memristors in the crossbar. The output resistance
Ro, in the feedback configuration (see Fig. 4.1(c)), is designed in order to
avoid an incorrect virtual reference at node Vx and saturation as the op-amps
are loaded with resistors. In turn, the value of the parallel combination of all
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the memristors along the feedback path Rm can be as low as 100Ω or even
lower for very large crossbars. This requires the op-amps to capable of drive
low resistance loads. In order to satisfy this requirement, the transistor-level
op-amp design employs an efficient low output impedance stage which
guarantees good linearity over the required output voltage swing range.

Also the stability analysis is carried out considering a single loop in the
feedback crossbar architecture from Fig. 4.1(c). The effect on stability of the
op-amp output capacitance is considered negligible as the pole that it forms
in the transfer function of a single loop is placed at high frequencies thanks
to the low value of the output resistance Ro. However this consideration
holds as long as the value of the output capacitance does not substantially
increases due to the ADC or op-amp output stage, in which case the pole
moves to a lower frequency and should be taken into account. Conversely,
the parasitic input capacitance of the op-amp Cin, is crucial to the stability of
the crossbar configuration. This capacitor creates a pole in combination with
Rm, Rc and Ro, which reduces the margin of phase and the system global
stability. The frequency at which this pole lives is

fp =
Rc + Rm + Ro

2πRcCin(Rm + Ro)
. (4.41)

A possible way to achieve the maximum width of band available is to
operate the circuit in Fig. 4.1(c) as an attenuator, e.g. Vo < V. Therefore, the
system margin of phase is computed by considering the loop noise gain in Fig.
4.7. The op-amp input capacitance generates a zero in the transfer function
which makes the noise gain curve increase by 20 dB/dec once passed the
break point of fp. The system margin of phase is reduced when fp lives at a
frequency lower than the loop unity-gain frequency. The effect of the input
capacitance on the noise gain is:

1
β
= 1 +

Z f

Zin
(4.42)

with Z f being the feedback impedance, β the feedback factor and Zin =

Rc|| 1
sCin

for high Rin. The phase curve in Fig. 4.7 goes down rapidly because
of the contribution given by the poles associated to the op-amp input capaci-



108 Memristor-based Linear Algebra Accelerators

tance which is located at fp. The loop gain, expressed as LG(s) = βAo(s), has
a margin of phase which is determined by means of the intersection point
between the op-amp open-loop gain (Ao(s)) and the op-amp noise gain (1/β)
curves.

The gain and stability need to be analyzed for all the loops in the circuit in
order to guarantee the correct operation of the feedback crossbar architecture.
Moreover, for different matrix sizes, trade-offs should be evaluated as Rm

varies when the number of memristors changes in the crossbar.

In the same fashion of the precision analysis, also for the feedback config-
uration, properties of the programmed matrix are very relevant on accuracy
and time to convergence [102]. Therefore, the same implementation of the
feedback architecture may converge with different accuracy when changing
the transition matrix.

4.6.3 Output Accuracy

The global output accuracies are calculated, taking into consideration the
aforedescribed systematic errors, for both the feedback and open-loop ar-
chitectures. The metrics employed are the cosine similarity and normwise
relative error. Being x the high accuracy output obtained from a digital
system (i.e. MATLAB), x̃ the output vector measured on the crossbar ar-
chitectures and ∥ · ∥2 the euclidean vector norm, then the cosine similarity
sim(θ) and the normwise relative error Er are defined respectively as as:

sim(θ) =
x · x̃

∥x∥2∥x̃∥2
, Er =

∥x − x̃∥2

∥x∥2
. (4.43)

The variation of the programmed memductance for a same target value
from cycle to cycle worsens the overall output precision as mentioned in Sec-
tion 4.5. For the open-loop configuration, the accuracy evaluation depends
on which of two following use cases are of interest. On the one hand if the
next step distribution is the only computation of interest, then a unique pro-
gramming error affects the open-loop configuration. This error is a particular
sample drawn from the general distribution of programming noise. On the
other hand if either the multi-step distribution or the stationary distribu-
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tion of a MC are the computation of interest, then the programming error
accumulates and degrades the output accuracy over iterations.

On the contrary, with the feedback architecture, if one is only interested
in the calculation of the MC stationary distribution, each programming cycle
generates a systematic error which affects the output accuracy.

The expected accuracy distribution computed by simulating the systems
with both programming error and non-ideal op-amps is shown in Figure
4.8. How changing the memristor precision affects the output accuracy is
shown in Figs. 4.8(a) and (b) for a 64× 64 crossbar array. The impact of larger
and larger random transition matrices, which range in size from 8 × 8 up to
128× 128, is reported in Figs. 4.8(c) and (d) with a 8–bit precision memristors.
The accuracy is calculated, for each plot, in terms of cosine similarity and
normwise relative error. Each data point is obtained by averaging the results
of 1000 simulations with a fixed random transition matrix and a new sample
perturbation at each run. The reported error bars encompass the distribution
of 95% of each set of simulations and the mean expected accuracy. It is clear
how the output accuracy gets better as the memristor precision increases
both in the open-loop and feedback architectures. Conversely, the global
normwise relative error gets higher in both configurations when the ma-
trix size grows. Other systematic sources of error do not depend on the
cycle-to-cycle variation of programmed memductances. Cosine similarity
has a trend opposite to the normwise relative error, as foreseeable from its
definition (4.43). As cosine similarity saturates for the considered cases, it is
not employed as a metric in the following of this Chapter.

4.7 Case Studies

In the following Section, two applications are proposed with the aim of
demonstrating how the system performs on two quite different use cases.
Both the feedback and open-loop crossbar configurations’ performances are
measured in terms of energy efficiency, accuracy and SNR.
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4.7.1 Mouse in a Maze

One of the typical examples employed to explain of the concepts of a Markov
Chain is the problem of the mouse in a maze (Fig. 4.9(a)). This toy example is
perfect to illustrate the approach to MC problems with a random transition
matrix. The maze is composed of nine rooms and each of them has gates to
access adjacent rooms. At each following step, the mouse selects the room
to visit next basing its choice on the probability columns from the transition
matrix in Fig. 4.9(b). All the rooms are labeled with an integer value from 1 to
9. It is assumed that the mouse starts its exploration from room 3. Given the
transition matrix, it is possible to forecast the position probability distribution
of the mouse in the maze after an arbitrary number of time steps. This can
be achieved by repeatedly applying Eq. (4.4); e.g. in Fig. 4.9(c) the position
probability distribution after 6 steps is reported. The mouse is constrained
to go only from an odd-numbered room to an even-numbered room or the
other way around, no odd-to-odd or even-to-even movements are possible.
Thus, the MC is periodic: for any starting position, even-numbered or odd-
numbered states will alternate. Nonetheless, the mouse can enter all the
rooms in the maze, which implies the MC is irreducible. This latter condition
ensures that the stationary distribution is unique. By solving Eq. (4.7), one can

analytically find p∞ =
[

1
12 , 1

8 , 1
12 , 1

8 , 1
6 , 1

8 , 1
12 , 1

8 , 1
12

]T
, see Fig. 4.9(d). The result

does not match the limiting distribution because the chain is not regular, still
it provides the mean occupation times of each room.

Performance Evaluation

The calculation of the probability distribution after 6 steps is performed via
the open-loop architecture from Fig. 4.1(a) with 8–bits precision memristors
and simulated by the Cadence’s Spectre simulator using the standard corner
conditions, convergence settings, and a temperature of 27◦C. MATLAB is
employed to collect the raw output voltages from the circuit simulation,
normalize the obtained values and iterate the process. In parallel MATLAB
also computes the ideal (true) results used to measure the accuracy of the
system. The obtained probability distribution is shown in Fig. 4.9(c). The
normwise relative error is found to be ≈ 0.82%. The stationary distribu-
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tion computation is performed via the feedback architecture in Fig. 4.1(c)
and the resulting stationary distribution p∞ is shown in Fig. 4.9(d). The
normwise relative error is found to be ≈ 0.61%. Both architectures show
encouraging performance in terms of accuracy, thanks to the modest size
of the application transition matrix. These results can still be improved by
reducing systematic errors via higher precision memristors and/or higher
gain operational amplifiers. Both SNR and energy efficiency random matrix
problem of this kind are here not considered and are evaluated for the next
application which has a larger matrix size.

(a) (b)

0

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80 100

(c)

Fig. 4.10 (a) Adjacency matrix representing the links between the 100 pages of
MathWorks dataset. (b) Transient behavior of the feedback system converging to the
limiting distribution of the chain. (c) Simulated pageranks provided by the feedback
crossbar. Taken from [2] ©2021 IEEE.

4.7.2 The Pagerank Algorithm

At the core of Google’s search engine there is a Markov Chain problem [78].
This application and type of MC is quite different from the previous mouse-
in-a-maze example and serves the purpose of exploring the applicability
of the proposed architectures for real world use cases. Pagerank algorithm
has at its core the solution of a MC problem. It considers a random surfing
on the web graph [103]. Each page is assigned a score proportional to the
probability of being visited after a large number of transitions which basically
means computing a MC limiting distribution. Consider a web made of m
pages, an adjacency matrix A can be created by the following process: set
to 1 Aij if node i is linked to node j, and 0 otherwise. At this point, the
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transition matrix W can be obtained from A by normalizing all the entries of
the matrix so that each column sums to 1. All the columns which contain only
zeros (i.e. dangling nodes) are substituted by uniform distribution vectors
so that W is a well-defined stochastic matrix. This way of constructing the
matrix does not ensure the irreducibility of the Markov Chain and thus the
existence of an unique stationary distribution. This may happen if not all
the pages can be reached from any given arbitrary node. A workaround
for this issue which makes the transition matrix irreducible is to allow the
web surfer to navigate from the current web-page to a new random one.
Applying this solution means perturbing the transition matrix W with a
damping factor α which uniformly spreads part of the rank. In formulas
this can be expressed as M = αW + (1 − α)R, where R is the matrix with all
entries equal to 1

m . The obtained matrix M is usually called the Google Matrix
and is computed with α ≈ 0.85. M is also primitive. This latter property
result in two valid interpretations of the Pagerank: mean occupation times
or long-run probabilities.

Performance Evaluation

The feedback architecture from Fig. 4.1(c) is employed to execute the aforein-
troduced Pagerank algorithm with 8–bits precision memristors. With the aim
of producing a realistic comparison with the recent literature, the MathWorks
dataset [104] is used. Fig. 4.10(a) reports the computed adjacency matrix. Ca-
dence/Spectre is employed to perform the circuit simulation. The resulting
time transient simulation of the outputs is reported in Fig. 4.10(b). MATLAB
is used to normalize the obtained results. In Fig. 4.10(c), the resulting pages’
importance score is reported. From the simulations, the normwise relative
error is estimated to be ≈ 4.2%.

The op-amp transistor level implementation, provided in Section 4.6,
is employed to perform the simulations of this application with ≈ 86dB
open-loop gain, 1.1GHz gain-bandwidth-product while consuming 163µW
of power with 0.9V power supply. It can be noted from Fig. 4.10(b) that
the op-amps converge in 552ns within 0.1% error of their final value. The
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Fig. 4.11 Taken from [2] ©2021 IEEE.
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amount of total power dissipated in the system is:

100

∑
i=1

(I2
inRm,i + I2

inRc + Pamp) ≈ 28 mW (4.44)

with Iin being the input current in each row and Rm,i the parallel of the
memristances connected to the i−th row. The analysis shows that > 90% of
the total power is dissipated between the op-amps and the input resistors
Rc. The op-amp’s power dissipation might be improved by employing a
more advanced technology node. Nevertheless, the power efficiency of the
feedback architecture may still be limited due to the requirements of high
gain and GBW.

Equation (4.34) is employed to compute the system SNR for this Pagerank
use case. The SNR mean over the 100 output components is computed to be
32dB, which corresponds to an output bit precision of ≈ 5 bits.

The MathWorks’ transition matrix minimum eigenvalue is found to be
λmin = 0.0028 which is very low and thus it results in a longer convergence
time [102]. Conversely, larger minimum eigenvalues significantly reduces
the convergence time. To make it clear, when programmed with a random
stochastic matrix the feedback circuit converges in just 27 ns which is 20 times
less than the time needed for the MathWorks’ transition matrix. This proves
that the feedback architecture performance is heavily dependent on the
properties of the transition matrix. Furthermore, as shown in Table I, three
additional output bit precision are obtained for a random transition matrix.
The application matrix condition number strongly influences the system
precision. Given a random transition matrix M, the condition number of the
matrix (Im − M + 1m×m) is on average 10 times smaller than the MathWorks’
one. For ill-conditioned matrices (e.g. the one employed to compute the
Pagerank of MathWorks) small perturbations in both the input and the matrix
result in larger errors at the output [81].

With the aim of comparing the feedback and the open-loop crossbar
architectures on the Pagerank of MathWorks’ network, the Power method
is used in the open-loop configuration. The same transistor level op-amp
implementation from the feedback circuit is adopted also in the case of the
open-loop configuration. In this case, energy efficiency can be improved
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because the open-loop crossbar op-amp has weaker constraints on the gain
or GBW with respect to the feedback crossbar. The total open-loop crossbar
power dissipation is:

100

∑
j=1,k=1

(I2
jkRjk + I2

f R f + Pamp) ≈ 51 mW (4.45)

with Rjk being the resistance of a generic memristor in the crossbar, Ijk the
current through this memristor and and I f the total current through the
feedback resistor. In contrast to the feedback circuit, the open-loop crossbar
time to convergence does not depend on the matrix properties. Accuracy in
terms of normwise relative error is estimated from simulations to be ≈ 0.69%.
The open-loop configuration is ≈ 56dB, which corresponds to 9̃ bits output
precision per iteration. The open-loop crossbar SNR analysis in the case of a
random matrix is also reported in Table I.

Normwise relative error is employed in order to assess the relative sys-
tematic shift between the ideal value computed by a digital system and the
one obtained from the proposed architecture. In order to fairly compare
accuracy and precision, the systematic shift vector x − x̃ from Eq. (4.43) is
substituted by a vector whose total output noise standard deviations are
σTOTi =

√
σ2

pi
+ σ2

Ti
∀i = 1, . . . ,m. The introduced metric measures the rela-

tive dispersion from the ideal output value x. Table I reports the percent
normwise relative errors which, for the open-loop crossbar, refer to a single
iteration.

The Power Method algorithm implementable in the open-loop architec-
ture might be executed in two very different ways:

• via an analog normalization and recovery circuitry.

• via Analog-to-Digital-Conversion (ADC) performing normalization
and recovery steps on a digital system and, afterwards, feeding back
the result in input for the following iteration via Digital-to-Analog-
Converters (DACs).

Registers may be either analog sample and hold circuits or CMOS based
digital implementations, are fundamental in order to apply previous step
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results as input to the next step. In both cases, these additional components
will dissipate power and increase the computation latency. The usage at
each iteration of a digital system introduces quantization noise hence further
reducing the global output precision of the system. The required number
of steps is a function of both the specific application and the target output
accuracy. Table I reports the energy and time cost to compute k iterations via
the open-loop crossbar configuration.

To sum up, the feedback configuration may enable higher energy effi-
ciency thanks to its one-step operation even if this might be limited because
of the time to convergence of the architecture. Another point in favor of the
feedback crossbar solution is its input circuitry which requires a fixed vector
of same magnitude currents and thus results much simpler and more efficient
than the one required by the open-loop crossbar architecture. A drawback
of the feedback crossbar is that it is convenient only for moderately high
output precision computations (around 4 to 8 bits). When higher precision is
required (e.g. (> 9 bits)), the open-loop crossbar solution might return the
desired results after a sufficient number of iterations. Another possibility
would be to use the merge two solutions into a single architecture where a
first estimation of the stationary distribution is computed via the feedback
architecture and few high precision steps are performed by an open-loop
configuration. Both the proposed solutions beat the competing digital sys-
tems on the same task [105] in terms of solutions/s/W as shown in Table
I.

4.8 Conclusion

In this Chapter, the process of using memristor crossbars to solve MC prob-
lems was described. It was shown that the open-loop architecture can im-
plement the iterative computations of the MC k−th distribution, while the
feedback architecture entirely avoids possible convergence issues of iterative
algorithms by computing the stationary distribution in one single step. The
proposed circuit implementations were thoroughly analyzed and, in the
meanwhile, various circuit design trade-offs were introduced. The impact of
matrix size and memristor precision on the output accuracy and precision
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was studied using SNR, output bit precision and normwise relative error
metrics. The MathWorks dataset was used to prove the effectiveness of the
two proposed solutions even for ill-conditioned matrices. The obtained re-
sults show how memristor crossbars based analog accelerators might in the
near future overcome conventional digital computing systems in domains
where the energy efficiency is a key requirement while maintaining at the
same time a competitive output precision.
A possible future extension of this study should try to generalize the pre-
sented results and take into consideration other important non-idealities
such as interconnections and source driver’s parasitic resistance along with
other device parasitics.



Chapter 5

Conclusions

5.1 Summary

The first modeling effort in Chapter 1 of this thesis has been devoted to Phase
Change Memories. PCMs are rising in prominence as CMOS technology
alternatives which are starting being employed as fundamental elements for
implementing the MVM operation in neuromorphic computing, as alterna-
tive to NAND flash for mass storage designs and even as tunable elements
for reconfigurable circuits. In this manuscript, the development has been
reported of a novel state-dependent Ohm’s Law to describe the dynami-
cal evolution of the PCM devices’ geometrical state variable (amorphous
thickness) during the WRITE operation. This stem from the observation of
the intriguing complex dynamics of Phase Change Memories. A simulation
model was developed starting from physics models available in the literature
as well as newly collected laboratory measurements on nanometric PCM
device of the mushroom kind. The Dynamic Route Maps were computed
for the first order dynamics of the device during the write operation which
gradually drives the device from the initial RESET state to a low resistance
state. The DRM were also experimentally measured by meas of the succes-
sive application of write pulses interleaved with read pulses. This represents
a noteworthy empirical verification and has supported the establishment
of an accurate 1-st order model to describe PCM dynamics. One important
information learnt from the DRMs for PCM is the meticulous design of SET
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pulses to govern the evolution of the amorphous dome thickness and thus
the cell low-field resistance. From the knowledge gained in this study, suit-
able SET pulses can be selected to modulate dissipation in analog electronic
circuits.

The second modeling effort in Chapter 2 of this thesis has been focused
on Resistive Random Access Memories. Firstly a simplified analytical model
of second order ReRAM memristors was derived. This is formed by only
two variables (memductance and internal temperature) which are directly
relatable to the state variables used in certain advanced biophysical models,
in particular the synaptic efficacy and the calcium concentration. Thanks to
its capability of forecasting the memductance evolution for multiple com-
binations of input spikes, this model was employed to investigate single
memristors’ synaptic properties and the overall dynamics of memristor
spiking networks. The synaptic response of ReRAMs to stimulation was
examined at different frequencies for different protocols: cycles of spike pairs,
triplets, and quadruplets. The knowledge gained from this study shows that:

• The most relevant synaptic characteristics of ReRAMs (extensible to
many second-order memristors) can be readily studied and forecasted.

• The proposed compact model can capture many synaptic behaviors
why can not be correctly reproduced by standard spike pair based
STDP models.

In Chapter 3 this ReRAM model has found application on the modeling
of memristor-based Spiking Neural Networks. SNNs have been character-
ized as they were discrete nonlinear dynamic systems, with memductances
selected as state variables and pre and postsynaptic spikes as inputs and out-
puts. The state equations governing the memductance evolution have been
derived, and it has also been proven that the network response to periodic
presynaptic inputs can be easily determined by computing the equilibria of
the system and discussing their stability properties.

The other good example of neuromorphic computing platform presented
in Chapter 3 is the memristor-based Recurrent Neural Network to be trained
by meas of two different generalizations of the backpropagation algorithm.
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The dynamical evolution of this memristor–based RNN has been analyzed
in detail. In situ learning rules, such ash Equilibrium Propagation, enable
the memristor–based artificial neural network to continuously adapt and
adjust the synaptic weights. This all while skipping the loss function’s
gradient direct computation. The results of simulation put it clear that both
methods strongly outperform conventional solution for corrupted-pattern
reconstruction problems. Equilibrium Propagation showed to perform well
also on classification tasks.

The last part of Chapter 3 focuses on a more conventional linear algebra
hardware accelerator. Firstly, how to solve MC problems using memristor
crossbars was clarified. From the study has been found that the open-loop
crossbar architecture may implement iterative computations and also find
the probability distribution after k steps in a sequence. On the opposite, the
feedback crossbar architecture directly computes the stationary distribution
problem thus avoiding all the possible convergence issues which may arise
in iterative algorithms. The circuit was carefully analyzed and a various
circuit trade-offs were discussed. SNR, output bit precision and normwise
error were estimated in order to measure the impact of of memristor bit
precision and matrix size on output accuracy and precision. The capabilities
of the modeled architectures were proven on the MathWorks dataset which
provides a real-world ill-conditioned matrix. It turned out that memristive
crossbars are good candidates to take over conventional digital computing
in terms of energy efficiency while retaining a competitive output precision
for certain classes of specific applications.

5.2 Outlook

On the PCM modeling side, a future effort could focus on the integration
of the proposed physics-based compact model into actual automatic design
tools for programmable analog circuits. Another research direction would be
to exploit the obtained Dynamic Route Maps for designing a broad class of
input stimuli which may result more effective and convenient for program-
ming PCM devices.
On the ReRAM modeling side, a promising research direction would be to
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employ the proposed second-order model along with some theoretical and
numerical advanced nonlinear dynamic techniques in order to thoroughly
investigate the response of memristor-based spiking neural networks to arbi-
trary presynaptic inputs and the underlying learning mechanisms.
Concerning the implementation of artificial recurrent neural networks, addi-
tional work is needed in order to find the memristive technology that works
for the online training phase via Equilibrium Propagation algorithm.
Concerning memristor-based hardware accelerators for linear algebra prob-
lems, in upcoming publications, the presented will be generalized and also
other important non-idealities (wire and source driver resistances etc) will
be incorporated into the modeling.
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