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Abstract
Objective. Brain–computer interfaces (BCIs) exploit computational features from brain signals to
perform a given task. Despite recent neurophysiology and clinical findings indicating the crucial
role of functional interplay between brain and cardiovascular dynamics in locomotion, heartbeat
information remains to be included in common BCI systems. In this study, we exploit the
multidimensional features of directional and functional interplay between electroencephalographic
and heartbeat spectra to classify upper limb movements into three classes. Approach.We gathered
data from 26 healthy volunteers that performed 90 movements; the data were processed using a
recently proposed framework for brain–heart interplay (BHI) assessment based on synthetic
physiological data generation. Extracted BHI features were employed to classify, through sequential
forward selection scheme and k-nearest neighbors algorithm, among resting state and three classes
of movements according to the kind of interaction with objects.Main results. The results
demonstrated that the proposed brain–heart computer interface (BHCI) system could distinguish
between rest and movement classes automatically with an average 90% of accuracy. Significance.
Further, this study provides neurophysiology insights indicating the crucial role of functional
interplay originating at the cortical level onto the heart in the upper limb neural control. The
inclusion of functional BHI insights might substantially improve the neuroscientific knowledge
about motor control, and this may lead to advanced BHCI systems performances.

1. Introduction

1.1. Somatomotor and central autonomic network
dynamics
Physical exercises and locomotion provoke complex
reactions at the autonomous nervous system (ANS)
level [1], and movement-related changes in ANS
dynamics include respiration, heartbeat, and blood
pressure [2]. Indeed, emotionally-driven behaviors,
aggressive/defensive responses, and human physical
performances are characterized by a contextual activ-
ation of both a somatomotor and autonomic neur-
onal pathways, which indicate the continuous brain–
heart coupling underlying physiological conditions
[2]. Further, there are evidences provided by medi-
cine studies of an autonomic-cognitive association

involving patients with cognitive disorders. Interest-
ingly, in [3] authors found that the cognitive process
of ‘expectancy,’ which accompanies motor inhibi-
tion, leads to an autonomic reaction that is vag-
ally driven; similar behaviors have been observed in
‘attention’ tasks. In [4], authors studied this vagal
response and asked if the detected decrease in the
heart rate was caused by a cognitive ‘expectancy’ pro-
cess, or as a result of the motor inhibition and muscle
‘quiescence’ [5].

From anatomical and functional perspectives,
such interactions have been hypothesized as being
caused by the superimposition of two systems with
some common neural circuits at the central nervous
system (CNS); however, a considerable amount of
details remain unknown and largely unexplored. In
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the past, it was believed that the coupling between
the somatomotor and autonomic neural pathways
was achieved by integrating some node that pro-
cesses information from the two systems that were
considered to be independent. Later, multiple stud-
ies discussed the existence of an integrated network
projecting on both autonomic (viscera) and somato-
motor (muscle–skeleton) efferents. Experiments con-
ducted on humans and animals proved the existence
of such a network, which at anatomical level involves
the periaqueductal gray matter, nuclei from medulla,
hypothalamus, and amygdala, all of which have direct
neuronal projections on both the somatomotor and
autonomic systems [2]. This circuitry may have dif-
ferent internal nodes specific to certain activities and
behaviors, and it is similar to the networks involved
in other physiological reflexes. All these regions are
part of the so-called central autonomic network
(CAN) [6–10] that is defined as the anatomical set of
brain areas involved in interactions between the CNS
and the ANS; such a functional interaction is com-
monly defined as the brain–heart interplay (BHI).
Indeed, regions such as the ventral medial prefrontal,
insular, and parietal cortices with limbic structures
including the cingulate cortex, the medial temporal
lobe, the amygdala, and the hippocampus are asso-
ciated with autonomic responses and motor control
[1, 11, 12]. A specific oscillation at 0.1Hz originat-
ing in the midcingulum, a region involved in motor
control functions, has been found to modulate heart
rate [13].

It is also worth mentioning that evidences from
pathological conditions have indicated the import-
ance of some specific cortical regions. Specifically,
[14] reviews the role of ANS in Tourette’s syn-
drome, pointing out that the manifestation of the
tic is often bounded to a sympathetic overactivity
and a lack of inhibition within a cortico-striato-
thalamo-cortical circuit. This is the same region
that is critical for coordination and control of fine
motor actions [14]. Further, it has been proved that
the autonomic system is activated at an early stage
for energy and oxygen recruitment, and for muscle
preparation [1]. The autonomic activation occurs
independently either in the presence of an actual
movement performance or only in a motor imagery
case [15]. All these evidences point to the intense
functional interplay between ANS and somatomotor
cortex.

1.2. Functional brain–heart interplay estimation
The functional interaction between CNS and ANS
has been investigated from a methodological view-
point by employing a variety of signal processing
tools to find a quantitative valuation of how the brain
and heart interact dynamically. Proposed methods
range from measurements adapted to BHI estima-
tion, such as quantification of information transfer

fromone signal to another [16]; nonlinear convergent
cross mapping [17]; estimation of linear and non-
linear cross-system relationship through maximal
information coefficient [18, 19]; joint symbolic ana-
lysis [20]; or inferring causality exploiting Granger
causality index [21]. Moreover, we recently pro-
posed an ad-hoc computational model of the joint
activity of the brain and the heart, represented by
EEG and HRV series, which gave us the opportunity
to quantify their mutual interaction disentangling
the components from two opposite directions
(i.e. from-brain-to-heart and from-heart-to-brain)
in several frequency domains [22]. These exemplary
studies investigated neuro-cardiovascular physiology
under different physiological and pathological
conditions.

1.3. Neuroscience of upper limbmovements
Neuroimaging [23] and electrophysiology tools
[24–26] have been used in the decades to study the
neurophysiology of motor execution and control. In
particular, the upper limb movement has been char-
acterized from a kinematics and dynamics viewpoint
[27–31], and from a neurological and cognitive one
[32, 33]. The analysis has been conducted via experi-
mental paradigms involving four different categories
of motor elicitation: execution, planning, observa-
tion, and imagery [34, 35], with differences provided
by the time length of the stimulation and the artefact-
related issues [36].

In the EEG framework, time-frequency analyses
are effective for identifying parts of motor control
neurophysiology, characterizing scalp regions such as
parietal, premotor, prefrontal, and central neural cor-
tices as the most involved in upper limb movements
tasks [24, 37–39], and in particular, in determining
the α, β, and γ frequency bands [40–44].

Object interaction-based description of upper
limb movements is due to neuroscientific stud-
ies results. Neuro-psychological and behavioral cri-
teria have been established to classify movements
involving the upper limb, and in particular, the hand
[32, 45, 46], into three classes: movements that do not
involve the use of any object (intransitives); move-
ments in which the action is directed towards the
use of a single object (transitives); and finally, move-
ments in which the interaction with the final object
is mediated using another intermediate object (tool-
mediated) [30]. This classification has been already
employed to successfully disentangle the topograph-
ical organization of brain dynamics in functional
studies [47], or to unveil some mechanisms under-
pinning upper limb biomechanics [30].

Heartbeat dynamics have also been investigated
in motor control tasks. Changes in heart rate vari-
ability (HRV) were identified during physical activ-
ity, particularly an abrupt decrease in the high fre-
quency (HF) power, whereas no significant changes
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were found in the ration between low frequency and
HF powers, LF/HF) [48]. These finding were cor-
roborated by analyses performed by [49], where the
authors also discussed on the LF stability during phys-
ical activity which was observed to be absent when
exercises were performed in a sitting or supine pos-
itions [49]. The HRV spectral estimations maintain
their reliability when low-intensity physical exercises
are performed, and they lose information, particu-
larly in the LF band at higher intensities [49, 50].
As a matter of fact, the ANS being triggered by
motor imagery in healthy subjects has been known for
many years [51, 52], and beside what associated with
energy recruitment, the involvement of ANS inmotor
control has been argued being related to the emo-
tional and cognitive significance of the movement
itself, and to a generalized common activation of
CNS and ANS during motor observation and motor
imagery [12].

1.4. Hybrid brain–computer interfaces
We recently proposed an approach using high-density
EEG system to perform a classification task that dis-
entangles three classes of motor imagery movements
divided with respect to their interaction with objects.
We employed a subset of electrodes located bilater-
ally in the parietal, central, and prefrontal lobes, and
focused on only theα,β, and γ bands [36].Weproved
that this information subset was sufficient to perform
classification with recognition accuracy comparable
to those achieved using an entire EEG recording [36]
with a value as high as 78%.

Such approach is the typical one employed in
so-called brain-computer interfaces (BCIs), neural
interfaces not relying on normal physiological brain
pathways to communicate to peripheral nerves and
systems [53]. Although several BCI systems have
been developed and are daily used by patients
worldwide, issues were raised about BCI versatil-
ity [54]. The main two issues are the ‘BCI illit-
eracy’, according to which approximately 20% of
people is not able to reach acceptable perform-
ances with BCI systems based on motor imagery
[54], and the inter subject non-stationarity: BCI sys-
tems are not able to appropriately perform due to
inter-subject differences in terms of brain patterns
[53, 54]. For these reasons, novel BCI approaches
have been proposed by combining classical brain
signals (e.g. EEG), with other series, particularly,
but not limited to, the physiological ones. Such sys-
tems have been defined as ‘hybrid-BCI’ [55], the-
orizing the feasibility of an artificial system consid-
ering heart dynamics as an added feature in BCI
scenario [53, 55].

1.5. Objective of the study
As motor control involves coupled functional activ-
ity in the brain and cardiovascular dynamics, it
is reasonable to hypothesize that a functional BHI

estimation might be crucial for enhancing current
BCI systems. Indeed, to the best of our knowledge, the
functional interplay between the brain and the heart
in motor imagery and, more in general, in motor
control tasks has not been investigated yet. To over-
come this limitation, we aim to investigate the dir-
ectional functional BHI in healthy subjects perform-
ing upper limb motor imagery and move towards
brain-heart computer interface (BHCI) systems. We
show how BHI information can be exploited to
automatically recognize the subject’s interaction with
objects while providing neurophysiological insights.
We built on our previous findings using EEG inform-
ation exclusively [22] and extend the framework at a
brain–heart level, demonstrating that the proposed
BHCI algorithm achieves a recognition accuracy as
high as 95%.

2. Materials andmethods

2.1. Experimental dataset
A total of 26 healthy subjects (all right-handed;
16 females and 10 males; average age: 26.6 years)
provided informed consent and volunteered to par-
ticipate in the study. Experiments were conducted in
the laboratories of the University of Pisa. After an ini-
tial 5 min resting state, in which subjects were com-
fortably sit on chair with eyes open and in a steady
position, participants were asked to perform 30 dif-
ferent right upper limb movements, each repeated
three times, resulting in a grand total of 90 differ-
ent executions per subject. The 30 different tasks con-
sidered in this studywere suitably selected to cover the
three main classes discussed in section 1: ten intrans-
itive tasks, e.g. point at something straight ahead
with an outstretched arm with the right index fin-
ger; ten transitive actions, e.g. reach and grasp an
apple, mimic biting and place it back in the initial
position; and finally, ten tool-mediated movements,
e.g. reach and gasp a bottle, mimic pouring water
into a real glass, and place the bottle back in the
initial position. The performance of different move-
ments belonging to each class, instead of more clas-
sical protocol with several repetitions of the same
task, was made necessary since our aim was to focus
on the physiological correlates of the classes, avoiding
movement-specific confounding factors. A graphical
representation of the performed actions is shown in
figure 1.

All movements were carefully explained and
mimed to the participants by an operator at the begin-
ning of the experiment. A quick reminder on the spe-
cific task to be performed was also provided before
each single movement execution. The experimental
procedure comprised the repetition of a three blocks
scheme for each of the 90 movements (see figure 3);
in particular, participants fulfilled a 3 s motor plan-
ning state, whilemaintaining a predefined steady pos-
ition, and then, they performed the actual planned
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Figure 1. Graphical representation of the 30 movements included in the experimental protocol. The first ten actions (blue
background) belong to the intransitive class, movements from the 11th to the 20th constitute the transitive class (green
background), and the last ten images represent the tasks belonging to the tool mediated class (red background).

movement, concluding it in the initial steady position,
which they held for additional 3 s, before moving on
to the next task.

The actual motion execution did not have a pre-
defined time length, and therefore, volunteers were
free to perform the tasks at their own pace (time
range for all movements and subjects was (9–20) s).
To discriminate the three classes of movements from
the resting state, in which subject were not moving
neither planning a movement, we divided the five
minute resting state in 30 non-overlapping segments.
This allowed us to have 30 different repetitions of rest-
ing state to be included in the classification process
(see figure 3).

The experimental protocol was approved by the
Area Nord–Ovest Toscana ethical committee.

Electrophysiological signal were gathered con-
tinuously at a sampling frequency of 500Hz using a
EGI Polygraph Input Box (Electrical Geodesics Inc.
Eugene, OR,USA) that comprises a high-density EEG
system equipped with 128 channels, two-leads ECG,
and a single-lead EMG placed on the neck bases,
to acquire movements artefacts. Concurrently, we
employed a 3Dmotion tracking systemwith an active
marker (Phase Space, PhaseSpace Inc. San Leandro,
CA,USA) to record kinematic data, exploited in other
studies [30]. Exemplary experimental setup is shown
in figure 2.

The analysis pipeline was applied to the initial
3 s motor planning phase preceding each movement
realization, and thus, it is movement-related artifact
free, and most importantly, it focuses on a motor
planning cognitive condition.

2.2. Signal preprocessing
The EEG series were preprocessed by applying the
HAPPE pipeline, which is thoroughly described in
[56]. In brief, a normalized joint probability of the
average log–power from 1 to 70Hz is calculated, and
channels exceeding the external tails of 1% of the

Figure 2. Exemplary experimental setup. High-resolution
EEG sensors and active optical markers are mounted on the
subject for motion tracking.

distribution are marked as bad channels and rejected
for the following analysis.

A spherical interpolation algorithm that exploits
neighbor EEG data was implemented to recover
the rejected channels. The EEG oscillations below
1Hz, and electrical noise at a network frequency of
50Hz and its harmonic at 100Hz were filtered out
by employing multitaper regression [56]. The EEG
artefacts rejection was performed using a wavelet-
enhanced ICA–based algorithm that can detect and
reject muscular and ocular activities and discontinu-
ities. Further, this approach includes the use of a
machine learning algorithm applied to ICA derived
components [56]. Eventually, the EEG series were re-
referenced to the time varying average from all chan-
nels (i.e. average referencing).

From the ECG series, the R-peaks were detected
through the well-known Pan-Tompkins algorithm
[57]. An online error detection and correction
analysis pipeline performing point-process statist-
ics including log-likelihood prediction was imple-
mented on the RR-series, which helped avoid pos-
sible physiological (e.g. ectopic beats) or algorithmic
(e.g. peak mis-detection) artefacts [58]. Finally, the
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Figure 3. Logic scheme of the experimental protocol timeline comprising three repetitions of 30 different tasks, equally divided in
transitive, intransitive, and tool-mediated movements. Each task included a first motor planning phase, an actual movement
recording, and a final steady state in which subject were waiting for the next movement. The highlighted window is the one used
in the analysis.

processed segments were visually inspected before
enrolment for further analyses.

2.2.1. Spectral analysis
The power spectral density (PSD) of each EEG
series was estimated by applying the Welch method.
We employed a Hamming window of 500 samples
(1 s) with a 75% overlap. We extracted the PSD
exploiting the classical EEG frequency ranges splitting
the δ ∈ [1–4Hz), θ∈ [4–8Hz), α∈ [8–12Hz), β ∈
[12–30Hz), and γ ∈ [30–70Hz] frequency bands.

For PSD extraction from HRV series, we
employed a smoothed pseudo-Wigner–Ville distri-
bution method (SPWVD) [59], which estimates PSD
with a relatively low variance, and it has independ-
ent control of the filtering in the time and frequency
domains [60]. In brief, WV can be defined as the
Fourier transform of the continuous autocorrelation
function, which is also referred to as the central cov-
ariance function [59].

For each motor task, we estimated the PSD in 3 s
while anticipating the actualmovement performance;
thus, we focused our analysis on the cognitive motor
planning phase.

2.3. Estimation of functional brain–heart interplay
We quantify the functional BHI using the synthetic
data generation model, proposed in [22]. Formally,
the model represents the EEG series according to the
oscillators devised in [61]:

EEG(tn) =
K∑
j=1

aj(tn)sin(ωjtn +ϕj) (1)

where K = 5, j∈ {δ, θ,α,β, γ}, ωj is the main oscilla-
tion associated with each EEG frequency band, and
the amplitudes aj(tn) are modeled through a first-
order autoregressive (AR) model with an exogenous
input:

aj(tn) = ηjaj(tn−1)+ ξj(tn−1)

+Ψj

(
tn−1|PBC(tn−1),CBC→j(tn−1)

)
(2)

where BC ∈
{
LF= (0.04,0.15)Hz,HF= (0.15,

0.4)Hz
}
, ηj is a constant for the AR process, ξj(tn−1)

is a Gaussian white noise term, PBC(tn−1) is the PSD
calculated in the BC band from the HRV series at time
tn− 1, and CBC→j ≡ CHeart→Brain is the actual coupling
strength in the direction from-heart-to-brain, spe-
cifically at the BC frequency band for HRV series
and at the j band for the EEG series. It is then pos-
sible to define the heart-to-brain coupling function as
follows:

Ψj(tn−1) = CBC→j(tn−1)× PBC(tn−1|HC
t ′) (3)

with heartbeat historyHC
t ′ .

The RR series are modeled by using the integrate
and pulse frequency modulation model proposed in
[62]:

RR(t) =
N∑

k=1

δ ′(t− tk) (4)

where δ ′ indicates a Dirac delta function, t is the con-
tinuous time, and tk is the time of the kth heartbeat
occurrence identified as follows:

1=

ˆ tk+1

tk

[HR+m(t)]dt (5)

where HR is the mean heart rate expressed in Hz. The
m(t) function represents an autonomic activity func-
tion, which is defined as

m(tn) = CLF(tn) sin(ωLFtn)+CHF(tn) sin(ωHFtn)
(6)
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Table 1. BHI indices extracted through the model.

Index From Band To Band

CBrainj→HeartBC
Brain δ, θ,α,β, γ Heart LF, HF

CHeartBC→Brainj Heart LF, HF Brain δ, θ,α,β, γ

CLF(tn) = CLF0 +ΨLF

(
tn−1|Pj(tn−1),Cj→LF(tn−1)

)
(7)

CHF(tn) = CHF0 +ΨHF

(
tn−1|Pj(tn−1),Cj→HF(tn−1)

)
(8)

where ωLF and ωHF are the main oscillations associ-
ated with each HRV frequency band, Pj(tn−1) repres-
ents the PSD in the j band from the EEG series at time
tn− 1, CLF0 , and CHF0 are constant terms associated
with the LF and HF bands, and Cj→BC ≡ CBrain→Heart.

The brain-to-heart coupling function ΨBC(tn−1)
is defined as follows:

ΨBC(tn−1) = Cj→BC(tn−1)× Pj(tn−1|HB
t ′′) (9)

where BC and j as in (2); HB
t ′′ is the brain activity

history. Thus, CBC→j represents the actual coupling
index in the direction from-brain-to-heart, specific-
ally from the BC frequency band of HRV series, to the
j band of the EEG.

To summarize, the time-varying directional BHI
biomarkers are CBC→j(tn) and Cj→BC(tn), which rep-
resent the instantaneous estimation of the heart-to-
brain and the brain-to-heart interactions, respect-
ively. The key idea behind this model design is that
the electrophysiological activities of the two systems
are not independent one from the other, and the
introduced coupling termsmediate such interactions.
For example, a positive value of the Cδ→LF(tn) would
indicate that the δ band of the EEG at time tn is exert-
ing a positive influence (i.e. leading to a linearly pro-
portional increase) in the PSD of the HRV series in
the LF-band.

The derivation of the entire family of BHI bio-
markers through inverse model formulation has been
described in [22], and a easy-to-use MATLAB imple-
mentation is freely available at [63]. Through this
framework, we derived directional BHI indices listed
in table 1.

2.4. Statistical analysis
We investigated significant group-wise changes
between the four experimental cases, i.e. resting
state, and intransitive, intransitives, and tool medi-
ated actions. To this end, a between-session stat-
istical comparison was performed for each BHI
index, namely LF→brain,HF→brain, brain→LF, and
brain→HF, through a Friedman non-parametric test
for paired samples. Experimental tasks belonging to
the same class were grouped and a median value was

extracted for each subject. Thus, a single median for
each subject was calculated across the 30 instances
of actions belonging to each class (i.e. 10 move-
ments× 3 repetition). Significance was chosen at
5%, and p-value correction for multiple comparison
was performed through a permutation test with 1000
permutations. A cluster-mass permutation correction
was applied to assess the physiological plausibility of
the results [64]. All the results are plotted as topo-
graphic distributions of significant p-values from
the associated tests. The subject-wise median values
for all experimental phases, on which the statistical
tests have been performed, have been represented
as well.

2.5. Classification algorithm
We implemented a four-class K-nearest neighbor
(K-NN) classifier that has been largely employed in
previous studies [65, 66]. K-NN is a supervised non
parametric algorithm that from a series of labeled
training samples finds K points x(r), r= 1, ..., k that
have the lowest distance (in the simplest case Euc-
lidean; however, it can use other distance defin-
itions) to any specific query observation x0. The
classification of the query observation x0 is then
provided by the most frequent class among the
K-neighbors.

In classification tasks, overfitting problems are
always a risk that needs to be avoided; this risk is
even higher when a high number of features is used
to train a relatively limited number of observations.
In this study, we choose to overcome this issue by
performing a dimensionality reduction through prin-
cipal component (PC) analysis, and by running a clas-
sification algorithm with an increasing number of
PCs (set according to the increasing variance ratio)
according to a classical sequential forward selection
(SFS) scheme [67]. We did not use the validation set
to perform PCA; it was implemented only on the
training set, and thus, it follows that the validation
set was transformed into PCs using weights calcu-
lated only from the same training set used by the
classifier.

We employed a specific cross-validation (CV)
scheme to assure the out-of-sample prediction accur-
acy of the system and avoid potential bias. Since
the resting class does not have different movements,
but only 30 repetition of the same resting condi-
tion, those 30 segments were divided in ten folds of
three repetitions each, thus allowing the algorithm
to have four classes completely balanced in each
fold. The CV pipeline was iteratively repeated ten
times, each made of a dataset division in the test-
ing set, which comprised all repetitions for all sub-
jects of one action for each class (i.e. a total of 26
subjects× 3 repetitions× 4 classes ≃ 312 points),
whereas the training set included the remaining data
(i.e. a total of 9 folds× 26 subjects× 3 repetitions× 4
classes ≃ 2808 points). The input feature set was
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Figure 4. Block scheme of the data analysis and classification pipeline.

split iteratively into a validation set and a training
set (see figure 4). In particular, we repeated classi-
fication trials with a different features set, provided
by the increasing number of PCs enrolled at each
iteration; further, at each iteration, we derived the
final accuracy using the CV procedure and averaging
across the ten repetitions. The employed CV pro-
cedure takes inspiration from both the K-fold [68]
and leave-one-out (LOO) [69] algorithms. Analog-
ously to K-fold, our CV pipeline divides the data-
set into ten folds, leaving one out for validation
set and exploiting the rest as training set, but the
folds are divided in order to assure that three repe-
titions of an action for each class are contained in
each fold, in each CV repetition one action of each
class is left out (in analogy with LOO). This proced-
ure allows for the out-of-sample prediction accuracy
of the system and avoid potential bias, maintaining
the balance among classes both in the training and
testing sets.

As already discussed, this study employs BHI
indices to automatically recognize classes belonging
to a series of movements that the subjects were going
to perform. BHI indices are derived from the time
window before actual movement execution wherein
participants were supposed to plan the following
action. In particular, the changes here are evaluated
in terms of classification accuracy with respect to the
direction of the BHI, i.e. from-brain-to-heart or vice
versa.

We investigated how BHI directionality and HRV
frequency band affect motion classification tasks, and
considered four different input datasets:

• BHI fromHRV-LF band of cardiac activity to brain:
LF→brain.

• BHI from HRV-HF band of cardiac activity to
brain: HF→brain.

• BHI frombrain toHRV-LF band of cardiac activity:
brain→LF.

• BHI from brain to HRV-HF band of cardiac activ-
ity: brain→HF.

Figure 5. The 33 electrodes selected as a subset of interest in
one of the proposed studies are marked (section 3).

For each of these datasets, a feature vector is cre-
ated for extracting the median across the time of the
BHI estimates for each channel. To reduce the feature
space of the machine learning classification task, and
thus optimize performances, we selected a subset of
EEG bands and electrodes as follows.

In accordance with previous studies [24, 37–
39, 70, 71], electrode reduction was performed by
selecting only the central, parietal, and prefrontal
regions, i.e. a comprehensive amount of 33 electrodes,
(figure 5). For the EEG frequency bands, we limited
our analysis to the α, β, and γ ranges, which are com-
monly considered informative in motor-related tasks
[40, 43, 72]. This reduction allowed us to have a total
amount of 99 features (33 channels× 3 frequency
bands). Both choices were based on the procedure
exploited in our previous study that employs the
same dataset with only EEG-derived features [36].
The feature reduction was applied for a future viable
implementation, i.e. in a possible BCI scenario where
physical and eventually economic constraints pose
limits on the number of electrodes used for a wearable
implementation.
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Figure 6. Topographic map of directional BHI indices extracted during motion planning phase of intransitive movements as the
median across subjects and actions. Each topoplot represents a specific combination of EEG- and HRV- frequency ranges in one
of the directions from-heart-to-brain (first two rows), and from-brain-to-heart (last two rows). Each colorbar refers to the entire
row where it is placed.

3. Results

3.1. BHI topographic distribution
A topographical representation of extracted BHI
indices across the whole scalp (90 EEG electrodes) is
presented for each class in figures 6–9, respectively.
Some remarkable differences seems to be present
considering the resting state BHI topographical dis-
tribution with respect to the other three classes of
actions, all performing motor planning tasks. The
figures qualitatively show high similarity among the
three classes involving motor planning in the topo-
graphic distribution of BHI indices across the scalp
for each combination of EEG and HRV frequency
ranges and direction considered, even if the tool
mediated class have higher BHI values in the direction
from-heart-to-brain. The distributions have consid-
erably evident discrepancies in the two opposite dir-
ections; particularly in the brain-to-heart indices,
which consider the HRV-LF band, and they have
always lower values than the other combinations,
both in terms of absolute values and signs. The neg-
ative sign represents an inverse relationship between
the EEG-PSDs and the HRV activity, which implies
that an increase in the EEG activity in a given band
will entail a decreased power in the HRV-LF band.
Conversely, all other BHI indices hold a positive sign,
which implies an accordance in the brain and heart
behavior.

The heart-to-brain indices depict an overall high
similarity between the two consideredHRV frequency
ranges. In these distributions, an overall ascending
radial gradient going from the central brain regions
to the most peripheral electrodes in the frontal,
occipital, and temporal ones seem to characterize
all heart-to-brain BHI indices for all four classes of
action represented by the first two rows in figures 6–9.
In particular, θ EEG band hold the lowest values
across the EEG spectrum, while the β band has the
highest, and specifically, the bilateral occipital and
right frontal areas. The α and γ bands, instead show
different behavior in the four classes of movements,
the former being very low for the three motor plan-
ning classes, whereas it seems as high as the β band
in the resting trials. The latter behaves in the oppos-
ite way, being relatively high in the motor plan-
ning phases and remarkably decreasing in the resting
phase.

In the opposite direction, i.e. from-brain-to-
heart, the two HRV-derived frequency bands show
considerably different behavior, both in terms of
absolute values of BHI estimation, and in terms of
relative topographic distribution. Indeed, the brain-
to-HF indices always have considerably higher values
with respect to the brain-to-LF indices, as mentioned
previously. Moreover, in the brain-to-LF indices, the
θ and α EEG bands have the lowest values in their
row in figures 6–8; whereas this role is for the α

8
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Figure 7. Topographic map of directional BHI indices extracted during the motion planning phase of transitive movements, as
the median across subjects and actions. Each topoplot represents a specific combination of EEG- and HRV- frequency ranges in
one of the directions from-heart-to-brain (first two rows) and from-brain-to-heart (last two rows). Each colorbar refers to the
entire row where it is placed.

Figure 8. Topographic map of directional BHI indices extracted during motion planning phase of tool mediated movements, as
the median across subjects and actions. Each topoplot represents a specific combination of EEG- and HRV- frequency range, in
one of the directions from-heart-to-brain (first two rows), and from-brain-to-heart (last two rows). Each colorbar refers to the
entire row where it is placed.

9
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Figure 9. Topographic map of directional BHI indices extracted during resting state, as the median across subjects and actions.
Each topoplot represents a specific combination of EEG- and HRV- frequency range, in one of the directions from-heart-to-brain
(first two rows), and from-brain-to-heart (last two rows). Each colorbar refers to the entire row where it is placed.

and β bands in figure 9. The color bars of the last
row in these figures indicate that the θ and α EEG
bands in the brain-to-HF indices highlight the highest
BHI estimates, assuming a different range of values in
comparison with the other three bands in the motor
planning faces (see figures 6–8). At a first glance,
the two HRV bands seem to show opposite beha-
vior with respect to the five EEG bands in the motor
planning phase; however, it must be noticed that in
the brain-to-LF combinations, the BHI indices have
a negative sign, and thus, it means that in terms of
absolute values, the θ and α EEG bands show the
strongest BHI estimates again (see figures 6–8). In
the resting state (figure 9) a more smooth distri-
bution is depicted, with the highest values among
the four classes. In this case the θ and γ bands show
the higher values, whereas theα and β bands hold the
lowers.

In figure 10 the results from the group-wise
statistical comparison are shown. No difference
between the four classes were found in theHF→brain
and brain→LF combinations. Considering the
LF→brain, many significant regions are depicted in
the θ, α and β bands in similar scalp areas. More
specifically, these significant clusters are found in
the frontal, left (contralateral) prefrontal, central and
dorso parietal right (ipsilateral) regions. Regarding
the brain→HF combinations, clusters in the dorso-
temporal and occipital lobes are found in the δ band,

whereas almost the entire scalp is found significant in
considering the γ EEG band.

3.2. Classification results
Experimental results are expressed as accuracy trends
with respect to the number of selected PCs and are
differentiated by movements classes. Figure 11 shows
the classification results using LF→brain indices. The
pink dashed line represents the true positives rates
for resting state segments (rest); blue dashed line
refers to the true positives achieved for intransitive
movements (intr); green, the percentage of transit-
ive movements that were well-classified (tran); and
cyan, the tool-mediated movements correctly classi-
fied (t.m.). The balanced accuracy (averaged among
positive rates of the four classes) is reported using a
continuous red line. The same color code is used in
the following representations. The true positive index
of the rest class is beyond 80% from 15 principal
components (PCs). The other three classes always
show an accuracy lower than the first (maximum at
≈75%). The maximum accuracy achieved consider-
ing the average among classes is 76.82%, using 38 PCs
out of the initial 99. The classifier needs at least 15 fea-
tures to achieve an acceptable accuracy beyond 70%
on average; further, it ismuch lowerwith less PCs, and
it decreases when more than 40 features are enrolled.
This decreasing trend is attributed to the recogni-
tion of the intransitive classes, whereas the rest class

10
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Figure 10. Topographic map of corrected p-values from statistical group-wise Friedman test for paired samples. The test has been
applied on the four classes of recordings (i.e. intransitives vs transitives vs tool mediated vs rest). Each topoplot represents a
specific combination of EEG- and HRV- frequency range, in one of the directions from-heart-to-brain (first two rows), and
from-brain-to-heart (last two rows). Green areas represent not significant electrodes, whereas red areas represent corrected
p-values statistically significant. Multiple comparison were accounted through permutation tests.
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Figure 11. Classification accuracy with respect to the number of principal components (PCs) of the LF→Brain BHI indices
considered as input features. The four colored dashed lines denote the single true positives rate for each of the four classes
separately, and the continuous red line represents their average accuracy. The black dotted vertical line highlights the point where
the maximum average accuracy is achieved.

shows a plateau that is approximately constant bey-
ond ten features. This is possibly because of a mis-
classification between the last two classes (i.e. trans-
itive and tool mediated) that are more similar with
respect to the others (both include the use of an object
differently from the rest and intransitive, which is an
object-free movement). Even if a 76.82% accuracy is

not an optimum result in terms of general classifica-
tion performance of a machine learning application,
it is a satisfactory result in the context of BHI-derived
analysis and classification, particularly among similar
classes.

Figure 12 shows the classification results using
HF→brain indices. The figure is considerably similar

11



J. Neural Eng. 18 (2021) 046002 V Catrambone et al

0 10 20 30 40 50 60 70 80 90
# PCs

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 %

HF  Brain

rest intr tran t.m. mean

Figure 12. Classification accuracy with respect to the number of PCs of the HF→Brain BHI indices taken as input features. The
four colored dashed lines stand for the single true positives rate for each of the four classes separately, the continuous red line
represents their average accuracy. The black dotted vertical line highlights the point where the maximum average accuracy is
achieved.

Figure 13. Classification accuracy with respect to the number of PCs of the Brain→LF BHI indices taken as input features. The
four colored dashed lines stand for the single true positives rate for each of the four classes separately, the continuous red line
represents their average accuracy. The black dotted vertical line highlights the point where the maximum average accuracy is
achieved.

to the preceding one, in terms of both maximal
accuracies and trends with respect to the number
of employed PCs. The maximum percentage of cor-
rected classifications is reached for the rest trials
(89.841%), whereas the maximum average accur-
acy achieved is 77.17% with 40 features. Thus, the
maximal accuracy is quite higher than the previous
classification w.r.t. the rest class; however, it is only
slightly higher considering the average. The decreas-
ing course of the true positive rates for the third
and fourth class (i.e. transitive and tool mediated) is
still present, even if with a lower slope with respect
to figure 11. General classification results obtained

withHF→brain BHI indicesmatch the ones obtained
by substituting the LF band to the HF band of
the HRV.

Figure 13 shows the classification results employ-
ing brain→LF indices. Excellent accuracies are
obtained for all four true positives rates, one for each
class separately, higher than 85% with more than 17
features. The average rate among them reaches its
maximum with 32 PCs and it is equal to 91.27%. The
general maximum is achieved in the second class
(i.e. intransitives movements), and it is 95.24%.
Very high classification results are obtained with
15 features that exceed 80%; with more than
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Figure 14. Classification accuracy with respect to the number of PCs of the Brain→HF BHI indices taken as input features. The
four colored dashed lines stand for the single true positives rate for each of the four classes separately, the continuous red line
represents their average accuracy. The black dotted vertical line highlights the point where the maximum average accuracy is
achieved.

Figure 15. Classification accuracy with respect to the number of PCs considered as input features. The four colored lines indicate
the average performance achieved using a different BHI index in the four class classification algorithm.

20 PCs, the accuracy seems to remain almost
constant. The gap between the true positives
rates of the four classes are shorter with respect
to the previous two figures (i.e. figures 11
and 12), and they overlap with more than 40
features.

Figure 14 shows the classification results employ-
ing brain→HF indices. The figure is considerably
similar to the preceding one (figure 13), particularly
in terms of trends with respect to the number of
employed PCs. Indeed, the maximum percentage of

corrected classifications is 98.4% for the rest class,
whereas the maximum average accuracy is 95.32%
with 42 features. Thus, the maximal accuracy is the
highest among all classifications, both in terms of
average accuracy and maximum values.

Finally, a comparison among the four datasets
employed for classification is shown in figure 15,
where a difference is clearly noticeable. In particu-
lar, the brain-to-heart indices lead to a considerably
more performing classifier with respect to the oppos-
ite BHI direction. The HRV-HF band allows a slightly
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higher classification accuracy in the brain-to-heart
combination, whereas no remarkable differences are
highlighted in the opposite case.

4. Discussion

4.1. BHI estimates as novel BCI features and BHCI
systems
To pave the way toward future hybrid BCI applic-
ations, theorized by [53, 55], the proposed analysis
pipeline employs BHI estimates to classify intrans-
itive, transitive, and tool-mediated movements. The
BHI phenomenon is widely known to be involved
in the physiologic body processing of emotions
[18–21, 73–77], and it has been suggested that the
emotional states could affect the BCI performances
[78]; furthermore, the development of an emotional-
BCI has already been proposed [79]. We prove that
it is possible to categorizes upper limb movements,
which is a typical BCI application, employing only
BHI-derived features; thus, we suggest including BHI
quantification in BCI systems.

The proposed study exploited the motor plan-
ning phase to anticipate actual motor execution. This
approach has been widely used to investigate a crucial
cognitive process related tomotor control [35, 80, 81],
which has a dual advantage of being fundamentally
free from motor-related artifacts, and, most import-
antly in BCI scenarios, it precedes the beginning
of the actual motor performance. This allow us to
exploit useful information to modulate a motor con-
trol strategy.

4.2. BHI directionality
This study provides insights in the directionality of
the BHI phenomenon. Results shown in figure 15
summarize the classifications obtained from the four
different combinations of HRV bands and the direc-
tionality between the brain and the heart. Further,
this figure shows that the from-brain-to-heart dir-
ection leads to considerably better results in terms
of accuracy, and it exceeds what obtained for the
opposite direction by approximately 20%. Moreover,
slight differences were reported between the twoHRV
frequency bands considered in the direction from
the brain to the heart, in which the HF band of
the HRV leads to better results; whereas no detect-
able differences were observed in the opposite dir-
ection. This result suggests that the way in which
the brain processes the interaction with an object
strongly affects the communication between the brain
and the heart, and, in particular, in the motion
planning phase. As a speculation, our results might
suggests that the BHI actually change during dif-
ferent kind of motor imagery tasks, and that, in
this case, the phenomenon is mainly driven by the
CNS. We might conjecture that the importance of

the interplay from brain to heart is related to the
energy demand or to a finer motor control that is
planned.

Furthermore, investigating how to employ the
BHI estimates in a BCI application, our results sug-
gest considering the directionality of the BHI and
to prefer, in this context, the from-brain-to-heart
measurements.

4.3. Classification results
Our classification algorithm scored a maximum
accuracy of 95.32% for classifying resting state,
intransitive, transitive, and tool mediated move-
ments, which is an outstanding results using only BHI
indices, particularly in the direction from the brain to
the vagal HRV frequencies in the HF range. As shown
in figures 11–14, resting state is always themost recog-
nized class, whereas movements that do not include
the use of an object are always better classified than
the other two categories. These results are in agree-
ment with [47] and [36, 82, 83], and they are reason-
ably linked to the fact that two classes involving object
interaction (transitive and tool mediated) are more
similar to each other, particularly in terms of neural
dynamics underlying the processing. Previous studies
using brain dynamics information exclusively showed
a classification accuracy of ∼80% for a three-class
recognition problem including transitive, intransit-
ive, and tool-mediated movements [36, 47]. Such
studies highlighted the importance of specific scalp
regions and EEG oscillations in specific frequency
bands, which constitute the foundations of the feature
engineering and selection stage of the proposed BHCI
systems.

The significant increase in classification accuracy
associated with BHCI with respect to the more stand-
ard, EEG-based BCI proposed in [36] may be due
to different factors including the exploitation of con-
current EEG and ECG-HRV information, as well as
the use of ad-hoc pre-processing and processing pro-
cedures needed for the quantification of functional,
directional brain-heart interplay. Note also that, dif-
ferently from [36, 47], this study includes the pro-
cessing and classification of data gathered in resting
state conditions. The feature reduction scheme allows
us to obtain the maximum accuracy with almost 40
PCs, even if only 20 PCs were sufficient to obtain
90% of the average accuracy; thus, they sensibly
reduce the computational cost of the classification
algorithm.

The literature review [24, 37–39, 70, 71] indic-
ates that we need to choose a subset of features a-
priori, both in terms of EEG electrodes, selecting
those in central, parietal, and prefrontal areas of both
hemispheres, and frequency bands, selecting the α,
β and γ bands. Furthermore, we implemented a
feature selection strategy based on PCA and a SFS
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scheme. This reductive approach is a key element in
real-application systems, where there is a strong quest
for wearability and processing acceleration.

5. Conclusion

In this study, we demonstrated that a novel BHI-
based classification analysis is effective to automat-
ically recognize different upper limb movements.
We recorded EEG and HRV signals during a motor
planning paradigm performed by 26 participants.
The experimental protocol consisted of resting state
along with 30 actions, each repeated three times,
with the actions belonging to three motion cat-
egories previously described in literature, and clas-
sified based on their interaction with the objects,
i.e. intransitive, transitive, and tool-mediated. Pre-
vious functional neurological studies and motion
tracking ones investigated brain activity and motor
synergies related to each of these three classes [47].
Moreover, the EEG derived features were already
employed in classifying these three categories of
movements, highlighting gender related differences
[36]. However, to the best of our knowledge, no
evidence on BHI data has been provided under this
regard, and the classes were not compared to resting
state.

Although the functional BHI computation
algorithms need to be optimized for a real BCI
scenario, this study represents the first attempt
in recognizing movements employing only BHI
derived features. Future endeavors will be direc-
ted toward the optimization of the algorithmic
complexity associated with a BHI estimation from
EEG and ECG series, targeting a brain-heart com-
puter interface implementation working online.
Moreover, a study on classification interpretability
aiming to identify which frequency bands and EEG
electrodes are most informative will be pursued as
well; this will help devising further feature reduction
strategies, as well as providing novel neuroscientific
insights on brain- body motor control processes.
Further investigations are necessary to character-
ize BHI physiological and pathological phenomen-
ology in motion-related paradigms, also consider-
ing gender differences and other brain dynamics
sources.
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