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Abstract 38 

Achieving environmental sustainability and transition from a linear economy to a circular 39 

economy (CE) highly relies on effective waste management (WM) and how waste is treated as a 40 

potential future resource. This research aims to provide an inclusive map of the scientific 41 

background of WM in the CE context over the last two decades from 2001 to 2020 to identify its 42 

salient research themes and trends, main characteristics, evolution, and potentially valuable 43 

directions for future studies. To achieve that, the following research questions were addressed by 44 

applying a mixed-method approach including bibliometric, text mining, and content analyses: (i) 45 

how has the field of WM research evolved within the CE domain? (ii) what are the salient research 46 

themes and trends of WM in the CE? and (iii) what are the possible directions for future research 47 

on WM within the CE context? As a result, the synthesized bibliometric networks were constructed 48 

and analyzed for a total of 962 journal articles extracted from the Web of Science database to 49 

visualize the main body of literature. Consequently, the seven major research themes of WM in 50 

the CE context were identified as follows: (1) bio-based WM; (2) CE transition; (3) electronic 51 

waste; (4) municipal solid waste; (5) environmental impacts and lifecycle assessment; (6) plastic 52 

waste; and (7) construction and demolition WM. The provided inclusive research landscape of 53 

WM systems, and its prominent highlight patterns can serve as a base for a real-time guideline to 54 

lead further research areas and as a tool to support WM policy-makers and practitioners to support 55 

the CE transition (which aims to minimize the waste generation). Finally, the future research 56 

directions to better position WM research activities within the CE context as a waste minimization 57 

approach are provided. 58 

 59 

Keywords: waste management; circular economy; bibliometric analysis; text mining; content 60 

analysis; environmental sustainability 61 
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Highlights 69 

• The literature on waste management (WM) in the circular economy (CE) was mapped. 70 

• Bibliometric networks were constructed for a total of 962 journal articles. 71 

• The seven major research themes of WM in the CE context were presented. 72 

• Directions for future research on WM towards the CE transition were proposed. 73 
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Abbreviations 77 

CE Circular Economy 

WM Waste Management 

MSW Municipal Solid Waste 

C&D Construction and Demolition 

OFMSW Organic Fraction of Municipal Solid Waste 

WEEE Waste Electrical and Electronic Equipment 

E-waste Electronic Waste 

IT Information Technology 

IoT Internet of Things 

OH One Health 
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1. Introduction 90 

Circular economy (CE), with a particular focus on the waste hierarchy from waste prevention 91 

at the top to disposal at the bottom, intends to close the supply chain loops as much as possible 92 

towards making a sustainable and zero-waste environment (Aghbashlo et al., 2018). The proper 93 

management of waste plays a significant role in supporting environmental sustainability and 94 

human health and transitioning from a linear economy to a CE (Aghbashlo et al., 2019b). 95 

Designing and managing efficient waste management (WM) system as a foundation for the CE 96 

establishment (Di Foggia and Beccarello, 2021) is crucial to achieving better resource management 97 

and more waste prevention (Zeller et al., 2019). 98 

In recent years, extensive research on WM practices corresponding to the CE goals has been 99 

increasingly conducted. Those include but are not limited to developing CE indicators for WM 100 

(Luttenberger, 2020), WM drivers towards a CE (Calderón Márquez and Rutkowski, 2020), 101 

identifying barriers and challenges in the transition to a CE (Zhang et al., 2019), waste hierarchy 102 

index for the CE (Pires and Martinho, 2019), and enablers of E-waste management in a CE 103 

(Sharma et al., 2020). Bibliometric analysis has assisted researchers in dealing with numerous 104 

publications in the WM research arena towards a CE. Accordingly, various research teams have 105 

quantitatively analyzed and mapped the development of different lines of WM in the CE on a 106 

broader outlook, such as municipal solid waste (MSW) management (Tsai et al., 2020), waste 107 

incineration (Xing et al., 2019), and construction and demolition (C&D) waste (Wu et al., 2019). 108 

However, WM activities compliant with the CE principles in practice are still blurred in the 109 

existing studies (Tsai et al., 2020) and remain a challenge for WM policy-makers and CE 110 

practitioners. Consequently, a holistic map of the WM research themes and trends aligned with 111 

CE perspectives is lacking in the literature. 112 

The present research aims to provide a body of knowledge for WM in the CE and its salient 113 

research themes and trends, main characteristics, evolution, and directions for future studies by 114 

scrutinizing the WM literature in the context of CE over the last two decades (2001‒2020). The 115 

provided analysis can serve as a base for a real-time manner guideline for future research in this 116 

area. To achieve the aim of this study, a mixed-method approach, including bibliometric analysis, 117 

text mining, and content analysis, is applied to answer the following research questions: 118 

RQ1. How has the field of WM research evolved within the CE domain? 119 



RQ2. What are the salient research themes and trends of WM in the CE? 120 

RQ3. What are the possible directions for future research on WM towards the CE 121 

transition? 122 

To the best of our knowledge, there is no comprehensive research in the literature that 123 

synthesized bibliometric, text mining, and content analyses concurrently in the field of WM within 124 

the CE context. Therefore, our study is expected to immensely contribute to (i) capturing the 125 

scientific background of WM research in the CE context and identifying its main themes and trends 126 

over the last two decades, (ii) drawing an inclusive research landscape for the WM system and its 127 

prominent highlight patterns, as a tool to support WM policy-makers and practitioners towards a 128 

CE transition, and (iii) providing future research directions in WM that need more investigation to 129 

establish a CE in practice. 130 

The remainder of this paper is structured as follows. Section 2 provides an overview of the 131 

WM practices towards a CE. Section 3 presents the adopted research methodology framework. 132 

The obtained results from the bibliometric analysis, text mining, and content analysis on the WM 133 

literature within the CE domain are discussed in section 4. Implications for research and avenues 134 

for future studies are developed in section 5. Finally, section 6 delivers the conclusions and 135 

research limitations for further development. 136 

 137 

2. Waste management in a circular economy: an overview of opportunities and 138 

challenges 139 

Waste management refers to all the activities and actions required to manage waste from its 140 

inception to its final disposal through the collection, transport, and treatment phases (Rajaeifar et 141 

al., 2017). The appropriate management, mitigation, and valorization of waste are essential for a 142 

sound CE to transform our society towards a sustainable and zero-waste environment (Aghbashlo 143 

et al., 2019a). A proper WM system enables collecting discarded, worn out, and/or obsolete 144 

products to prevent them from being left out in nature and polluting the environment (Nelles et al., 145 

2016). However, such a WM system enables the suitable processing of waste to facilitate their 146 

reinjection in CE loops, thus avoiding the extraction of primary materials (Romero-Hernández and 147 

Romero, 2018). Several authors have indeed highlighted the importance of WM systems as a key 148 

pillar in a CE to realize or make feasible most of the 10R-strategies namely, R0 Refuse/Rethink, 149 



R1 Reduce, R2 Resell/reuse, R3 Repair, R4 Refurbish, R5 Remanufacture, R6 Repurpose, R7 150 

Recycle, R8 Recover, and R9 Re-mine (Reike et al., 2018). Waste and pollution prevention are the 151 

key reasons or objectives of developing a CE (Bilitewski, 2012). The notion of waste is central in 152 

the numerous definitions of a CE: performing a text mining analysis on 70 definitions of a CE, 153 

Saidani et al. (2020) found that waste is the sixth most-cited term in those definitions, after 154 

economy, circular, resources, materials, and economic; and before, system, use, product, value, 155 

production, and recycling. 156 

While the current momentum around the CE concept could foster actions for better managing 157 

waste globally, Zhang et al. (2019) remind that WM systems need to be smarter for a zero-waste 158 

CE vision. Moreover, through a systematic review of zero-waste studies published between 1997 159 

and 2014, Zaman (2015) found out that although policy-makers had embraced the zero-waste 160 

concept, there was still a lack of advanced work or applied research in the domains of zero-waste 161 

design, assessment, and evaluation. On this basis, it is of the utmost importance not only to 162 

demonstrate that WM practices can be cost‐saving and revenue‐generating opportunities (Romero-163 

Hernández and Romero, 2018), but also can guide and monitor the activities of companies and 164 

businesses towards more circular and zero-waste practices through appropriate circularity 165 

indicators (Saidani et al., 2019). For instance, Di Maio and Rem (2015) proposed a "circular 166 

economy index" as the ratio of the material value produced by the recycler (market value) by the 167 

intrinsic material value entering the recycling facility. According to the authors, such an index 168 

takes into account the strategic, economic, and environmental aspects of recycling and offers a 169 

manageable amount of information to support decision-making tools. While other indicators or 170 

metrics have been developed recently for a CE in WM, such as the "waste hierarchy index" (Pires 171 

and Martinho, 2019), there is no widely acknowledged, commonly agreed (Zaman, 2015), or 172 

standardized index for WM systems across countries or industrial sectors. 173 

 174 

3. Research methodology 175 

This research used a mixed-method approach that involved both quantitative and qualitative 176 

analyses in scrutinizing the literature of WM in the CE, as presented in sections 3.1 and 3.2. The 177 

overall research design is illustrated in Fig. 1. 178 



 179 

Fig. 1. Research framework design. 180 

 181 

3.1. Data sampling, collection, and cleaning 182 

To ensure sufficient coverage of related publications within the field of study, the Web of 183 

Science (WoS) Core Collection, as one of the most leading sources of scientific publications, was 184 

selected for collecting data in this research. The following search string was used to explore within 185 

the title, abstract and keywords fields: ("waste* manag*" OR "manag* of waste*" OR "manag* 186 

waste*") AND ("circular*" OR "closed loop*"). The initial search was conducted in January 2021 187 

and was limited to peer-reviewed journal articles and reviews in the English language and the 188 

period of 2001–2020. After removing missing values, a total of 962 articles met the selection 189 

criteria and were used as the final sample for the analysis. As a fundamental preparation step for 190 

the keyword-based analyses, the final dataset was cleaned before conducting the bibliometric and 191 

text mining analyses (Ranjbari et al., 2020). In this vein, synonyms such as environmental effect 192 

and environmental impact, or E-waste and electronic waste, were merged. Besides, the unification 193 

of writing styles and merging singular and plural forms of the keywords was done, and keywords 194 

without any explicit meaning for this study's focus, such as "literature review" and "article," were 195 

removed from the dataset to increase the analyses' reliability. 196 
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 197 

3.2. Data analysis 198 

Three analytical methods, including bibliometric, text mining, and content analyses, were 199 

employed in this research to examine the evolution and structure of the research field. 200 

 201 

3.2.1. Bibliometric analysis 202 

 Bibliometric analysis, a quantitative technique and powerful statistical tool to deal with a large 203 

number of publications and scientific literature mapping, has been increasingly used during recent 204 

years in various fields of research, such as CE (Goyal et al., 2020), sustainable development (Du 205 

et al., 2021), and open innovation (Gao et al., 2020). The bibliometric analysis supports researchers 206 

in quickly identifying future research directions within a field of study by providing an inclusive 207 

visualization of relationships among articles, journals, keywords, citations, and co-citations 208 

networks (Feng et al., 2017). VOSviewer version 1.6.16 was used to conduct the bibliometric 209 

analysis (van Eck and Waltman, 2010). Different bibliometric parameters, including publications 210 

evolution over time, citation analysis for core publications and authors, collaboration analysis for 211 

countries and institutions, bibliographic coupling network analysis for data clustering, and finally, 212 

co-word analysis for identifying hotspots were presented in this research to statistically map the 213 

bibliometric information of scientific publications in WM within the CE context over the last two 214 

decades. 215 

3.2.2. Text mining analysis 216 

Text mining technique, a tool for extracting information from an extensive collection of 217 

documents in text form and analyzing research themes and trends (Jung and Lee, 2020), has been 218 

widely employed by researchers in various fields of CE studies. Text mining analysis can 219 

particularly capture semantic structures and phrase patterns that best characterize a vast amount of 220 

text data. A text mining analysis based on a term co-occurrence algorithm was employed in this 221 

research on the concatenation of the titles and abstracts of the publications within the dataset using 222 

VOSviewer version 1.6.16. As a result, the conceptual structure and latent research themes and 223 

trends of the WM literature in the CE domain were identified. 224 

 225 



3.2.3. Content analysis 226 

In line with the research conducted by Schöggl et al. (2020) and Jia and Jiang (2018), a content 227 

analysis, as a complementary qualitative layer, was also carried out in this research to improve the 228 

confidentiality of the results and to provide more in-depth insights for the quantitative findings of 229 

the investigation. In this sense, a qualitative content analysis using the data clustering technique 230 

was conducted for the top 15 most influential articles within each cluster obtained from the 231 

bibliographic coupling analysis to investigate the theoretical orientations in the WM towards the 232 

CE. 233 

 234 

4. Results and Discussion 235 

To clearly address our study's research questions, the results are presented in sections 4.1, 4.2, 236 

and 4.3, corresponding to the respective research questions. 237 

 238 

4.1. Bibliometric mapping of extant studies 239 

The bibliometric analysis indicators are presented in this section to directly address the first 240 

research question: 241 

RQ1. How has the field of WM research evolved within the CE domain? 242 

 243 

4.1.1. Descriptive analysis: publications evolution 244 

Fig. 2 illustrates the publication trend of WM-related research in the CE from 2001 to 2020. 245 

The majority of articles (i.e., 910 out of 962) were published after 2014, accounting for over 94% 246 

of the data sample. It could be concluded that the primary research period in terms of the number 247 

of publications and academic involvement in WM towards a CE would be 2015 to 2020. Consistent 248 

with Reike et al. (2018), this significantly increasing number of scholarly publications in the last 249 

five years denotes that the CE establishment has received growing attention within different 250 

domains, such as WM. 251 

A total of 254 journals have published 962 articles on WM considering CE from 2001 to 2020. 252 

The top 10 journals contain 513 out of 962 items, representing 53% of the publications in the field 253 

of WM corresponding to the CE perspectives, and are shown in Fig. 2. In this regard, Journal of 254 

Cleaner Production played the most dominant role in this field, with 141 out of 962 articles, 255 



constituting approximately 15% of the publications, and was followed by Sustainability, Waste 256 

Management, and Resources, Conservation & Recycling with 91, 75, and 73 articles, respectively. 257 

 258 

 

 
Fig. 2. Publications evolution in terms of number and leading journals over time from 2001–259 

2020. 260 

4.1.2. Citation analysis: core articles and authors 261 

The number of citations received by an article can be considered as a suitable measure for 262 

identifying the most influential publications in a research domain (Merigó et al., 2015). The top 263 

10 highly cited articles within our dataset are shown in Table 1. Six out of 10 highly cited articles 264 

have been published in Journal of Cleaner Production, which denotes this journal's significant 265 

contribution to the transition from a linear economy to a CE. The most cited paper is a 266 

comprehensive review of the CE implementation conducted by Ghisellini et al. (2016), which has 267 

been cited 998 times until January 22, 2021, based on the WoS database. The next highly cited 268 

research works have been carried out by Lieder and Rashid (2016), reviewing CE implementation 269 

in the manufacturing industry and Su et al. (2013), assessing the CE development in China, 270 

respectively. As it can be clearly seen from Table 1, the most cited papers in this research area are 271 

review articles focusing on the CE perspectives and implementation. This may have occurred due 272 
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to two reasons. First, the CE transition, on account of its potential advantages for economic and 273 

environmental regimes, has been the focal point of attention for researchers over the last few years. 274 

And second, implementing CE in practice is still challenging for policy-makers and lacks a clear 275 

guideline for practitioners involved in operation levels. 276 

 277 

Table 1. The top 10 highly cited articles in the WM research towards the CE. 278 

Rank Article title TC* TC/Y** Author(s) Journal  

1 A review on circular economy: the expected 

transition to a balanced interplay of 

environmental and economic systems 

998 166.33 (Ghisellini et 

al., 2016) 

J Clean Prod 

2 Towards circular economy implementation: a 

comprehensive review in the context of 

manufacturing industry 

501 83.50 (Lieder and 

Rashid, 2016) 

J Clean Prod 

3 A review of the circular economy in China: 

moving from rhetoric to implementation 

374 41.56 (Su et al., 

2013) 

J Clean Prod 

4 Concurrent product and closed-loop supply 

chain design with an application to refrigerators 

230 12.11 (Krikke et al., 

2003) 

Int J Prod Res 

5 A review of reverse logistics and closed-loop 

supply chains: a Journal of Cleaner Production 

focus 

204 40.80 (Govindan and 

Soleimani, 

2017) 

J Clean Prod 

6 Sewage sludge disposal strategies for 

sustainable development 

198 39.60 (Kacprzak et 

al., 2017) 

Environ Res 

7 Strategies on implementation of the waste-to-

energy supply chain for the circular economy 

system: a review 

187 26.71 (Pan et al., 

2015) 

J Clean Prod 

8 The history and current applications of the 

circular economy concept 

186 37.20 (Winans et al., 

2017) 

Renew Sust 

Energ Rev 

9 Municipal solid waste management and waste-

to-energy in the context of a circular economy 

and energy recycling in Europe 

178 35.60 (Malinauskaite 

et al., 2017) 

Energy 

10 How do scholars approach the circular 

economy? A systematic literature review 

161 40.25 (Merli et al., 

2018) 

J Clean Prod 

* Total citation; ** Total citation per year 279 
 280 
 281 

The productivity (i.e., the number of publications) and influence (the number of received 282 

citations) of the top authors contributing to the WM research towards the CE are presented in Table 283 

2. Ulgiati, Chisellini, and Cialani are the most influential authors with 1131, 1094, and 998 total 284 

citations, respectively. On the other hand, Smol with 12 articles, Torretta with 11 articles, and 285 

Ferronato with 9 articles are the most productive authors within the study period. Geng with 8 286 

articles and 713 total citations, has appeared in both lists of the top 10 influential and productive 287 

authors, making this researcher a leading author within the CE domain. 288 

 289 
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Table 2. The most influential and productive authors in the WM research towards the CE. 290 

Most influential authors  Most productive authors 

Rank Author  TC* TP**  Rank Author TP TC 

1 Ulgiati, Sergio 1131 4  1 Smol, Marzena 12 268 

2 Ghisellini, Patrizia 1094 3  2 Torretta, Vincenzo 11 158 

3 Cialani, Catia 998 1  3 Ferronato, Navarro 9 158 

4 Geng, Yong 713 8  4 Geng, Yong 8 713 

5 Lieder, Michael 500 1  5 Irabien, Angel 8 101 

6 Rashid, Amir 500 1  6 Purnell, Phil 7 137 

7 Heshmati, Almas 373 1  7 Bialowiec, Andrzej 6 24 

8 Su, Biwei 373 1  8 Koziel, Jacek A. 6 24 

9 Yu, Xiaoman 373 1  9 Zabaniotou, A. 6 109 

10 Smol, Marzena 268 12  10 Zorpas, Antonis A. 6 65 
* Total citation; **Total publication 291 
 292 

4.1.3. Collaboration analysis: institutions and countries 293 

Out of 88 countries and 1248 institutions contributing to our sample, the most contributing 294 

countries and institutions on the subject are illustrated in  295 

Fig. 3. In this figure, the larger each circle is, the higher the number of documents the 296 

corresponding country and institution have. Moreover, the thicker the link between the circles, the 297 

more collaboration has occurred between them. Based on the results, Italy, England, Spain, China, 298 

and the USA are the pioneers in the WM research in the context of CE with 118, 117, 95, 93, and 299 

83 articles, respectively. In terms of collaboration, China, with 126 international collaborations, is 300 

the leading country within the global network on the subject. England with 112, and Italy and the 301 

USA, both with 100 collaboration links, come next in this network. On the contrary, Poland with 302 

25 and Brazil with 22 collaborations have the least developed network among the top 10 303 

contributing countries. 304 

Due to the large number of institutions involved in this study (n= 1248), only the institutions 305 

with at least three articles have been plotted in Figure 3 to better visualize the highly contributing 306 

institutions. Surprisingly, although The Netherlands and Greece are not among the top 10 307 

contributing countries on the subject, the Delft University of Technology from The Netherlands 308 

and Aristotle University of Thessaloniki from Greece are equally the most active institutions with 309 

14 contributions. Polish Academy of Sciences from Poland with 13, University of Cantabria from 310 

Italy, the Technical University of Denmark from Denmark, and Chinese Academy of Sciences 311 

from China all together with 12 articles are the next most contributing institutions. Besides, the 312 

Delft University of Technology, Chinese Academy of Sciences, and Polytechnic of Milan with 36, 313 



31, and 29 collaboration links are the most actively collaborating institutions among all institutions 314 

in this study. 315 

  

  
 316 

Fig. 3. Collaboration network between countries and institutions in the WM research towards the 317 
CE. 318 
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4.1.4. Bibliographic coupling network analysis: data clustering 320 

Data clustering technique to group the articles with analogous characteristics from a sample 321 

for identifying the research orientations (Du et al., 2021) is a typical application of bibliometric 322 

analyses. Bibliographic coupling analysis using VOSviewer was applied to perform data clustering 323 

in our research. Bibliographic coupling links between publications indicate the number of cited 324 

references they have in common (van Eck and Waltman, 2020). A total number of 926 out of 962 325 

articles in our sample was used to construct the bibliographic coupling network, as shown in Fig. 326 

4. According to the results, four clusters of articles were generated, which are shown in different 327 

colors in Fig. 4. 328 

 329 

 330 

Fig. 4. Bibliographic coupling network of WM research towards the CE. 331 

 332 

The four main clusters of articles are CE perspectives on waste hierarchy (cluster 1), CE 333 

conceptualization and implementation (cluster 2), WM within closed-loop supply chains (cluster 334 

3), and CE approach to plastic WM (cluster 4). The top 15 most influential articles of each cluster 335 



are listed in Table 3. The obtained bibliographic coupling clusters and their influential articles will 336 

be addressed in detail in section 4.3 to conduct the qualitative content analysis and uncover the 337 

major themes and research orientations. 338 

 339 

Table 3. The top 15 most influential articles within main clusters of WM research towards the 340 

CE. 341 

Cluster 1: 

CE perspectives on the waste 

hierarchy 

Cluster 2: 

CE conceptualization and 

implementation 

Cluster 3: 

WM within closed-loop supply 

chains 

Cluster 4: 

CE approach to Plastic WM 

Kacprzak et al. (2017) 

Malinauskaite et al. (2017) 

Smol et al. (2015) 

Sandin and Peters (2018) 

Egle et al. (2015) 

Liguori and Faraco (2016) 

Van Ewijk and Stegemann  (2016) 

Haupt et al. (2017) 

Iacovidou et al. (2017b) 

Iacovidou et al. (2017a) 

Blengini et al. (2012) 

Agudelo-Vera et al. (2011) 

Mata et al. (2018) 

Mayers et al. (2005) 

Nižetić et al. (2019) 

 

Ghisellini et al. (2016)  

Lieder and Rashid (2016) 

Su et al. (2013) 

Pan et al. (2015) 

Winans et al. (2017) 

Merli et al. (2018) 

Reike et al. (2018) 

McDowall et al. (2017) 

Gálvez-Martos et al. (2018) 

Singh and Ordoñez (2016) 

de Jesus and Mendonça (2018) 

Huang et al. (2018) 

Bachmann (2007) 

Kushairi et al. (2018) 

Dong et al. (2013) 

 

Krikke et al. (2003) 

Govindan and Soleimani  (2017) 

Abdallah et al. (2012) 

Lee and Chan (2009) 

Ferronato and Torretta  (2019) 

Islam and Huda (2018) 

Nikolopoulou and Ierapetritou (2012) 

Lu et al. (2015) 

Ferronato et al. (2019) 

Krikke et al. (2013) 

Vahdani et al. (2013) 

Gu et al. (2019) 

Özceylan et al. (2017) 

Pedram et al. (2017) 

Shahbazi et al. (2016) 

 

Brooks et al. (2018) 

Sakai et al. (2011) 

Koop and van Leeuwen (2017) 

Horodytska et al. (2018) 

Van Eygen et al. (2018) 

Jambeck et al. (2018) 

Payne et al. (2019) 

Pomberger et al. (2017) 

Eriksen et al. (2019) 

Prieto (2016) 

Eriksen et al. (2018)  

Iacovidou et al. (2019) 

Faraca and Astrup (2019) 

Foschi and Bonoli (2019) 

RameshKumar et al. (2020) 

 

 342 

4.1.5. Co-word analysis: identifying hotspots 343 

Authors' keywords in the articles can represent the main idea and border of their research. The 344 

co-word analysis based on the co-occurrence of words can support identifying research hotspots 345 

in a particular field of study (Gao et al., 2020). Before conducting the co-occurrence analysis, the 346 

keywords list was cleaned reasonably. In the end, 2641 out of 2889 keywords remained for the 347 

analysis. Excluding the keywords with the co-occurrence frequency below seven (for clearer 348 

visualization), the co-occurrence network of the authors' keywords containing 68 hot keywords is 349 

mapped in Fig. 5. In this map, the bigger the circles are, the more occurrence the keywords have, 350 

and the thicker the links between every two keywords is, the more co-occurrence they have. 351 

Besides, the circles' color corresponds to the average publication year of the articles in which a 352 

keyword occurs. Moving from dark blue to yellow shows that the documents containing the 353 

relevant keywords are more recent on average. 354 

The ten most frequent keywords in our dataset are circular economy, waste management, 355 

recycling, sustainability, lifecycle assessment, municipal solid waste, waste, food waste, industrial 356 

ecology, and material flow analysis. These ten keywords also have the most connection links with 357 

the other keywords in the dataset. As shown in Fig. 5, keywords such as waste hierarchy, lifecycle, 358 

closed-loop supply chain, and resource efficiency are older in terms of the average publication 359 



year. On the other hand, keywords such as waste-to-energy, food waste, bio-refinery, solid waste 360 

management, municipal waste, and developing country have been more recently paid attention to 361 

by scholars. Identifying the most recent active keywords within the WM research area towards a 362 

CE can provide researchers with the research frontiers and most attractive investigation areas in 363 

this field. 364 

 365 

Fig. 5. Co-occurrence network of the keywords. 366 

 367 

4.2. Text mining results: discovering main research themes and trends 368 

The obtained results in this section directly address the second question: 369 

RQ2. What are the salient research themes and trends of WM in the CE? 370 

The text-mining results revealed that extant studies of WM within the CE domain focus on 371 

seven key research themes, as shown in Table 4. The identified dominant themes, including bio-372 

based WM, CE transition, E-waste, MSW, environmental impacts and lifecycle assessment, plastic 373 

waste, and C&D WM, are presented and discussed in this section. 374 

 375 



Table 4. Salient research themes in WM towards the CE. 376 

No. and Label of the 

research theme 
Main terms Exemplary recent references 

1. Bio-based waste 

management 

Biochar, Bioeconomy, Bioenergy, Biofuel, 

Biogas production, Biomass, Biorefinery, 

Byproduct, Circular bioeconomy, 

Composting, Food waste, Food waste 

management, Organic Fraction of 

Municipal Solid Waste (OFMSW), 

Organic waste, Waste valorization 

 

Imbert (2017), Ng et al. (2020), Tsai 

(2020), Zabaniotou and Kamaterou (2019), 

Loizia et al. (2019), Pérez-Camacho and 

Curry (2018), Cecchi and Cavinato (2019), 

Rekleitis et al. (2020), Kakadellis and 

Harris (2020), Elkhalifa et al. (2019) 

2. Circular economy 

transition 

Circular economy, Resource, 

Sustainability, Sustainable development, 

Circularity, Supply chain, Business model, 

Resource recovery, Circular economy 

model, Circular economy practice, 

Circular economy strategy, Sustainable 

Development Goals, Industrial symbiosis, 

Recycle, Waste reduction 

 

Shpak et al. (2020), Lu et al. (2020), 

Alvarez and Ruiz-Puente (2017), Okafor et 

al. (2020), Johansson and Henriksson 

(2020), Priyadarshini and Abhilash (2020) 

3. E-waste 

Behavior, Society, Government, E-waste, 

Consumer, Waste Electrical and Electronic 

Equipment (WEEE), Producer, Incentive, 

Manufacturer, Policymaker, 

Responsibility, Environmental protection, 

Waste disposal, Extended Producer 

Responsibility, WEEE directive 

 

Sharma et al. (2020), Lu et al. (2015), 

Chen et al. (2020), Marke et al. (2020), 

Ottoni et al. (2020), Cole et al. (2019), 

Mayers et al. (2005) 

4. Municipal solid 

waste (MSW) 

Policy, MSW, Waste generation, 

Municipality, European Union, Recycling 

rate, Waste hierarchy, Waste collection, 

Household waste, Biowaste, Circular 

economy package, Packaging waste, 

Waste-to-energy, Secondary raw material, 

Separate collection 

 

Malinauskaite et al. (2017), Kaza et al. 

(2018), Hadidi et al. (2020), Petryk et al. 

(2019), Smol et al. (2020), Abis et al. 

(2020), Morlok et al. (2017), Agovino et 

al. (2019), Valenzuela-Levi (2019), Siddiqi 

et al. (2020), Hadzic et al. (2018) 

5. Environmental 

impacts and 

lifecycle 

assessment 

Environmental impact, Landfill, Disposal, 

Emission, Incineration, Lifecycle 

assessment, Energy recovery, Climate 

change, Greenhouse gas emission, 

Environmental performance, Decision 

making, Recycling process, Material 

recovery, Environmental burden, Global 

Warming Potential 

 

Thomsen et al. (2018), Jensen (2019), 
Peceño et al. (2020), Arushanyan et al. 

(2017), Boldoczki et al. (2020), Sandin 

and Peters (2018), Sauve and Van Acker 

(2020), Cortés et al. (2020), Zeller et al. 

(2020), Kouloumpis et al. (2020), Slorach 

et al. (2019), Gallego-Schmid et al. (2018) 

6. Plastic waste 

Recycling, Recovery, Plastic waste, 

Packaging, Chemical, Value chain, Human 

health, Threat, Prevention, Polymer, 

Rubber, End-of-Life, Recyclability, 

Contaminant, Single-use plastic 

 

Sherwood (2020), Foschi and Bonoli 

(2019), Pazienza and De Lucia (2020), 

Andreasi Bassi et al. (2020), Leissner and 

Ryan-Fogarty (2019), Milios et al. (2018), 

Faraca and Astrup (2019), Eriksen et al. 

(2018), Eriksen et al. (2019) 



7. Construction and 

Demolition (C&D) 

waste management 

Technology, Raw material, Construction, 

C&D waste, Building, Concrete, 

Construction industry, C&D waste 

management, Sewage sludge ash, 

Industrial waste, Material efficiency, Slag, 

Steel, Energy consumption, Demolition 

Kabirifar et al. (2020), Lederer et al. 

(2020), Jin et al. (2019), Esa et al. (2017), 

Li et al. (2020), Mahpour (2018), Smol et 

al. (2015), Mak et al. (2019) 

 377 

Bio-based WM has appeared as one of the leading research themes of WM in the CE context. 378 

In this regard, food WM poses a significant challenge on the transition from a linear economy to 379 

a CE (Imbert, 2017). The studies related to this research theme mainly focus on valorization and 380 

turning food waste into value-added resources and bioproducts (Imbert, 2017; Ng et al., 2020; 381 

Tsai, 2020; Zabaniotou and Kamaterou, 2019), optimization of energy production through 382 

anaerobic digestion in food WM (Loizia et al., 2019), using the anaerobic biorefinery to contribute 383 

to a regional bioeconomy (Pérez-Camacho and Curry, 2018), smart approaches to food waste final 384 

disposal (Cecchi and Cavinato, 2019), waste biomass from the agricultural-livestock sector 385 

(Rekleitis et al., 2020), lifecycle assessment of bioplastic-based food packaging (Kakadellis and 386 

Harris, 2020), and food waste to biochars through pyrolysis (Elkhalifa et al., 2019). 387 

The second theme pertains to how a linear economy can be transitioned to a CE with a 388 

particular focus on WM practices and activities. Due to the lack of a precise mechanism for 389 

collecting, sorting, and distributing waste, the transition to a CE will be long and complicated 390 

(Shpak et al., 2020). For instance, developing measurement and index systems (Lu et al., 2020), 391 

creating synergies and industrial symbiosis among industrial sectors based on the substitution of 392 

raw materials from waste, sub-products or recycled materials (Álvarez and Ruiz-Puente, 2017), 393 

end-of-life mismanagement and its profound negative ecological implications (Okafor et al., 394 

2020), discursive framing of CE policies (Johansson and Henriksson, 2020), and energy recovery 395 

from waste (Priyadarshini and Abhilash, 2020) have been highlighted in the literature, as some of 396 

the main WM challenges towards implementing a CE. 397 

The significant increasing demand for using electrical and electronic products across the globe 398 

has made proper E-waste management a top priority for developed and developing countries, 399 

particularly those in the CE transition phase (Sharma et al., 2020). E-waste is one of the most 400 

challenging subjects for policy-makers in WM since inappropriate E-waste treatment and recycling 401 

can hugely affect the environment and human health (Lu et al., 2015). Studies categorized in the 402 

E-waste research theme mostly investigate critical barriers and pathways to the implementation of 403 

E-waste formalization management systems (Chen et al., 2020), application of the innovative 404 



circular business models to support E-waste reduction (Marke et al., 2020), E-waste valorization 405 

through developing adequate indicators for E-waste reverse logistics (Ottoni et al., 2020), solutions 406 

and incentives to move up on the top of the waste hierarchy in the E-waste treatment, rather than 407 

recycling (Cole et al., 2019), and the importance of modifying the E-waste directives and policy 408 

guidelines to ensure addressing all lifecycle impacts (Mayers et al., 2005). 409 

Due to the growing population of the world and rising living standards, the consumption of 410 

goods, and consequently, waste generation levels have been considerably increasing over the 411 

recent years (Malinauskaite et al., 2017). For instance, an estimated 2.01 × 109 t of MSW were 412 

generated in the world in 2016, and it is expected to grow to 3.40 × 109 t by 2050 (Kaza et al., 413 

2018), which sounds alarming as a universal issue. The main research articles in the MSW theme 414 

mainly concentrate on 3Rs (reduce, reuse, recycle) practices implementation to influence the 415 

behavior of citizens (Hadidi et al., 2020), proposing incentives for public engagement in the MSW 416 

management (Petryk et al., 2019), providing practical solutions for transformation towards CE 417 

(Smol et al., 2020), increasing the collection rates of recyclables (Morlok et al., 2017), assessing 418 

the synergy between recycling and thermal treatments (Abis et al., 2020), factors influencing 419 

different collection rates and municipal recycling (Agovino et al., 2019; Valenzuela-Levi, 2019), 420 

waste-to-energy systems using MSW to produce energy (Siddiqi et al., 2020), and lifecycle 421 

assessment of solid waste management (Hadzic et al., 2018). 422 

Through employing efficient WM systems, the CE aims to increase resource efficiency and 423 

mitigate the environmental impacts of waste generation. Assessing the environmental implications 424 

of WM practices has always been challenging to provide decision support for policy-makers to 425 

make the optimal decisions regarding commitment to a clean and sustainable environment 426 

(Khoshnevisan et al., 2020). According to the text mining analysis results in our study, the major 427 

challenges of environmental evaluation within WM activities have been highlighted in the 428 

environmental impacts and lifecycle assessment theme. For example, environmental analysis of 429 

integrated organic waste and wastewater management systems (Thomsen et al., 2018), 430 

environmental assessment of different recycling processes (Jensen, 2019; Peceño et al., 2020), 431 

developing lifecycle assessment models for environmental assessment of possible future WM 432 

scenarios (Arushanyan et al., 2017), measuring potential environmental benefits of preparation for 433 

reuse before recycling (Boldoczki et al., 2020), environmental impacts of textile reuse and 434 

recycling (Sandin and Peters, 2018), environmental impacts of MSW landfills (Sauve and Van 435 



Acker, 2020), environmental burdens of composting as a way to achieve a more circular waste 436 

valorization (Cortés et al., 2020), environmental consequences of CE options for biowaste flows 437 

(Zeller et al., 2020), plastic waste effects on climate change (Kouloumpis et al., 2020), 438 

environmental implications of recovering resources from food waste in a CE (Slorach et al., 2019), 439 

and environmental impacts of the entire lifecycle of electrical and electronic waste (Gallego-440 

Schmid et al., 2018), are some of the most critical environmental studies in this research theme. 441 

Due to its extensive applications in the industry and urban life, plastic has made WM face 442 

various challenges and environmental concerns, from marine pollution to limited recycling. The 443 

main addressed subject areas of the plastic waste theme in our study refer to closed-loop recycling 444 

of polymers (Sherwood, 2020), the interaction between plastic value chain stakeholders, and 445 

regulations towards implementing a CE (Foschi and Bonoli, 2019), defining a new plastics 446 

economy in the agriculture sector (Pazienza and De Lucia, 2020), extended producer responsibility 447 

for plastic packaging waste (Andreasi Bassi et al., 2020), challenges and opportunities for 448 

reduction of single-use plastics (Leissner and Ryan-Fogarty, 2019), identifying critical barriers for 449 

plastic recycling across the regional plastics value chain (Milios et al., 2018), evaluation of plastic 450 

recyclability (Faraca and Astrup, 2019), contamination in plastic recycling and the quality of 451 

reprocessed plastics (Eriksen et al., 2018), and circularity-potential assessment of recovery 452 

systems for household plastic waste (Eriksen et al., 2019). 453 

Finally, C&D waste generated throughout the construction cycle has been identified through 454 

the text mining analysis as the last research theme of WM in the CE in our study. The rapid 455 

urbanization in the world has increased the C&D waste (Kabirifar et al., 2020), which is considered 456 

one of the largest waste streams (Lederer et al., 2020). Sustainable treatment of C&D wastes should 457 

be employed globally as an urgent social, environmental, and economic issue (Jin et al., 2019). In 458 

this regard, the scholars have paid close attention to developing strategies for managing C&D 459 

wastes based on CE principles (Esa et al., 2017), application of information technologies in C&D 460 

WM (Li et al., 2020), prioritizing barriers to adopt CE in C&D WM (Mahpour, 2018), using 461 

sewage sludge ash in the construction industry as a way towards a CE (Smol et al., 2015), and 462 

behavior and attitudes towards recycling of C&D waste in the community (Mak et al., 2019). 463 

The revealed research themes of WM practices towards a CE obtained from the text mining 464 

analysis on the abstracts of articles within our dataset allow mapping how WM subject areas have 465 

evolved over the years based on their average publication year. Fig. 6 illustrates the timeline of 466 



dominant research themes and their WM subject areas in the CE context over the recent five years. 467 

As shown in Fig. 6, biochar, Organic Fraction of Municipal Solid Waste (OFMSW), plastic waste, 468 

C&D waste, food waste, biofuels, circular bioeconomy, and single-use plastics have been 469 

attracting attention very recently, rather than material cycles, closed-loop supply chain, carbon 470 

emission, industrial ecology, and liquid waste. 471 

 472 

 473 

  Packaging waste   Municipal waste               

      Closed-loop supply chain   End-of-life Climate change              
 Lifecycle perspective  Global warming Organic waste   

    Lifecycle assessment E-waste   Single-use plastic 

    Household waste                 Circular bioeconomy 

 
          Carbon emission Recycling  Biochar     

  Industrial ecology  Waste hierarchy   OFMSW 
        Residual waste                 Waste disposal     Plastic waste 

      Material cycle     Industrial symbiosis        C&D waste 

   Liquid waste  Circular economy        Food waste 
     Waste-to-energy Biofuel     

     Waste collection Municipal solid waste  

 474 

Fig. 6. Timeline of dominant research themes and their WM subject areas in the CE context. 475 

 476 

4.3. Qualitative content analysis of the four clusters: more in-depth results 477 

The data clustering of bibliographic coupling analysis revealed four main clusters of WM 478 

research in the context of CE (Fig. 4 and Table 3). The fifteen most influential articles within each 479 

identified cluster, including CE perspectives on waste hierarchy, CE conceptualization and 480 

implementation, WM within closed-loop supply chains, and CE approach to the WM of plastics, 481 

are scrutinized to conduct the qualitative content analysis of our study in this section. 482 

4.3.1. Cluster 1: CE perspectives on the waste hierarchy 483 

The fifteen most influential articles from the last two decades of research making up this 484 

cluster on "CE perspectives on waste hierarchy" are relatively recent, including two articles 485 

published in 2015, two in 2016, five in 2017, two in 2018, and one in 2019. Journal of Cleaner 486 

Production, with six articles, has the largest representation in this cluster, followed by Journal of 487 

Industrial Ecology, and Bioresource Technology, with two articles each, and then Environmental 488 

 2016 2017 2018 2019 



Research Energy, Resources, Conservation & Recycling, Waste Management, and Journal of 489 

Environmental Management, with one article each. With different affiliations and coming from 490 

diverse countries, various authors are also noticed, with Iacovidou being the only lead author 491 

appearing two times within this cluster. 492 

The first group of articles from this cluster can be drawn, including five articles sharing the 493 

"generic" feature, meaning their findings or the framework and tools they develop could be applied 494 

across sectors and businesses. While Van Ewijk and Stegemann (2016) discuss the barriers and 495 

potential solutions to take waste hierarchy to the next level for achieving absolute reductions in 496 

material throughput, the other authors from this group both question and develop the measuring 497 

and monitoring instruments (Iacovidou et al., 2017a) for WM systems (Haupt et al., 2017) in a CE 498 

perspective (Iacovidou et al., 2017b). More recently, Nižetić et al. (2019) started to discuss the 499 

integration of smart technologies (e.g., smart cities and the Internet of Things) to achieve more 500 

sustainable management of resources and waste. 501 

The second group of articles from this cluster is focused on industrial sectors of high interest. 502 

Among the ten articles from this second group, multiple specific sectors of utmost importance for 503 

the future of enhanced WM practices are highlighted: (i) waste treatment, including sewage sludge 504 

management solutions (Kacprzak et al., 2017; Smol et al., 2015), technologies for recovering 505 

phosphorus from municipal wastewater (Egle et al., 2015), glass recycling (Blengini et al., 2012), 506 

and waste electrical and electronic equipment at end-of-life (Mayers et al., 2005); (ii) textile reuse 507 

and recycling (Sandin and Peters, 2018); (iii) MSW (Malinauskaite et al., 2017) and sustainable 508 

urban planning for augmented resource management and valorization (Agudelo-Vera et al., 2011); 509 

and (iv) concrete examples of waste valorization following the waste hierarchy (Mata et al., 2018), 510 

such as specific lignocellulosic biorefineries converting biomass to bioethanol (Liguori and 511 

Faraco, 2016). 512 

These articles challenge the waste hierarchy to move "from waste to resources" (Kacprzak et 513 

al., 2017) through concrete examples from the field. In fact, different but complementary CE 514 

principles and loops are recommended depending on the industrial sector. For instance, sewage 515 

sludge is increasingly seen as a valuable resource for energy generation (waste-to-energy) or use 516 

in the construction industry, e.g., as feedstock for cement or concrete production (Smol et al., 517 

2015). Yet, these articles also highlight several gaps and margins for improvement to reach zero-518 

waste systems, such as the need for developing more waste-to-energy plants and technologies 519 



(Malinauskaite et al., 2017) or the potential rebound effect and impact transfer caused by 520 

inefficient reverse supply chains to collect and reuse products (Sandin and Peters, 2018), 521 

necessitating optimized or better-dimensioned value chains. 522 

 523 

4.3.2. Cluster 2: CE conceptualization and implementation 524 

The majority of the articles from this cluster are literature review papers, both from a historical 525 

(Winans et al., 2017) and a geographical perspective (Ghisellini et al., 2016; McDowall et al., 526 

2017; Su et al., 2013), as an attempt to conceptualize and clarify the CE (Merli et al., 2018; Reike 527 

et al., 2018), for which an advanced and more integrated WM system is praised and required. 528 

According to the research conducted by Merli et al. (2018), WM recently emerged as the most 529 

relevant sub-concept of CE. In this line, the drivers and barriers of eco-innovation for enhanced 530 

waste management from a CE perspective have been analyzed by de Jesus and Mendonça (2018). 531 

The second group of articles from this cluster addresses the actual implementation of CE 532 

principles in diverse key businesses, e.g., in the building (including both the construction and 533 

demolition phases) industry (Gálvez-Martos et al., 2018), in the manufacturing industry (Lieder 534 

and Rashid, 2016), within industrial symbiosis (Dong et al., 2013) or within the waste-to-energy 535 

supply chain for augmented CE systems (Kushairi et al., 2018; Pan et al., 2015). Discussions on 536 

the best practices from specific industries are particularly valued, such as in the building industry 537 

(Gálvez-Martos et al., 2018) with a particular interest in the management of construction and 538 

demolition waste through CE loops (Huang et al., 2018). Lastly, lessons learned from the 539 

implementation of CE principles within WM systems are also highly valued by researchers and 540 

practitioners (Bachmann, 2007; Pan et al., 2015; Singh and Ordoñez, 2016). It should be noted that 541 

the management of plastic waste, which is also a significant challenge, is not mentioned yet in 542 

clusters 1 and 2 and has its own cluster (cluster 4) and is addressed in sub-section 4.3.4. 543 

 544 

4.3.3. Cluster 3: WM within closed-loop supply chains 545 

While waste mismanagement can lead to serious environmental issues, such as marine litter, 546 

air, soil and water contamination, and hazardous waste leakage (Ferronato and Torretta, 2019), the 547 

implementation of a CE can improve current solid waste management activities in developing 548 

economies based on the principles of effective waste valorization and recycling (Ferronato et al., 549 

2019). To achieve material efficiency and reduce virgin material and industrial waste volumes 550 



towards the CE transition, it is necessary to manage various barriers such as budgetary, 551 

information, management, employee, engineering, and communication within the supply chain 552 

(Shahbazi et al., 2016). An integrated WM system benefits from a closed-loop supply chain and 553 

reverse logistics simultaneously (Islam and Huda, 2018; Pedram et al., 2017). The closed-loop 554 

supply chain approach integrates both forward and reverse supply chains with a particular focus 555 

on end-of-life products in the most environmentally friendly manner possible (Govindan and 556 

Soleimani, 2017). 557 

The significant impact of product design in terms of modularity, reparability, and recyclability 558 

within the closed-loop supply chain network structure on the waste functions was highlighted by 559 

Krikke et al. (2003). In this regard, reuse at a module level was identified as the most beneficial 560 

recovery option, followed by material recycling and thermal disposal as the next best choices 561 

(Krikke et al., 2003). Sustainable optimal design and planning for chemical processes and supply 562 

chains focusing on energy efficiency and WM to minimize waste and energy requirements and 563 

guarantee long-term sustainability is a significant challenge in supply chain management 564 

(Nikolopoulou and Ierapetritou, 2012). Besides, a proper returns management not only in a specific 565 

stage but also in the full lifecycle of products, as a key driver of value creation rather than a cost 566 

of the business in closed-loop supply chains, can save the environment and support resource 567 

efficiency (Krikke et al., 2013). The application of online mobile platforms within the supply chain 568 

of MSW, where recycling practitioners or individuals can make appointments for on-site waste 569 

collection, was evaluated as beneficial by Gu et al. (2019) in terms of overall environmental 570 

performance for WM systems. Effective designing of closed-loop supply chains under uncertainty 571 

is a highly complex and challenging task because of the interconnection of many factors such as 572 

product variety, the short lifecycle of products, increased outsourcing possibilities, and 573 

globalization of businesses (Vahdani et al., 2013). Lee and Chan (2009) developed an optimization 574 

model to minimize the total reverse logistics cost and high utilization rate of collection points for 575 

product returns, which improves the efficiency of logistics operations and supports reasonable 576 

recycling economically and ecologically. Moreover, a closed-loop supply chain network was 577 

designed by Özceylan et al. (2017) considering the end-of-life vehicles treatment, including 578 

reverse operations such as shredding, recycling, dismantling, and landfilling to reintegrate the 579 

reverse material flows into forwarding supply chains. 580 



Recently, WM systems have been facing the challenge of E-waste, as one of the main end-of-581 

life products within the closed-loop supply chains, due to its severe adverse environmental and 582 

human health impacts. Policy-makers and WM practitioners dealing with E-waste should 583 

particularly consider all the disposition alternatives (i.e., recycling, remanufacturing, reuse and 584 

repair) in an integrated manner within the closed-loop supply chain network design (Islam and 585 

Huda, 2018). However, despite the increasing legal pressure on E-waste treatment policies, 586 

efficient E-waste management due to the lack of an effective collection system and public 587 

participation, as well as lax enforcement of regulations, is still in its infancy (Abdallah et al., 2012; 588 

Lu et al., 2015). 589 

 590 

4.3.4. Cluster 4: CE approach to plastic WM 591 

Increasing environmental concerns regarding the accumulation of plastic waste in the natural 592 

environment have pushed policy-makers to develop renewable alternatives and suitable WM 593 

strategies during recent years (Payne et al., 2019). The European Commission has strongly 594 

contributed to regulate production and consumption patterns on plastic and packaging in a CE to 595 

support sustainability along the entire plastic value chain from producers to waste collectors and 596 

recyclers (Foschi and Bonoli, 2019). Moreover, increasing the plastic recycling rate for both plastic 597 

packaging and plastic from household waste has been highlighted as a priority in the European 598 

Union strategy towards a CE (Eriksen et al., 2018). Adopting a new plastic economy based on the 599 

CE principles, as an alternative to the linear economy, has gained momentum (Ellen MacArthur 600 

Foundation, 2016) to reduce plastic waste and mitigate its damage to the environment and wildlife. 601 

By applying a CE approach, plastic products are designed to be reused or recycled to reduce plastic 602 

leakage into the environment before waste mismanagement occurs (Jambeck et al., 2018). As an 603 

environmentally friendly alternative for fossil-based plastics, designing sustainable bioplastics 604 

opens up opportunities to reduce carbon footprint at the production level and overcome resource 605 

depletion by relying on the development of valorization protocols of renewable resources 606 

(RameshKumar et al., 2020). 607 

Payne et al. (2019) highlighted the significant role of using chemical recycling instead of 608 

mechanical recycling for biodegradable plastics, such as polylactic acid, due to this approach's 609 

potential for further integration of polylactic acid into a circular economy. Faraca and Astrup 610 

(2019), in their study on plastic recyclability, highlighted the direct link between detailed 611 



characteristics of plastic waste and recycling and showed that the recyclability of "High Quality" 612 

plastic waste was 12–35% higher than "Low Quality" application. China's recent ban (late 2017) 613 

on imports of low-quality recyclates has significantly affected the WM systems, which denotes the 614 

importance of quality of resources at different parts of the materials, components, and products 615 

characteristics lifecycle to facilitate the transitions towards resource efficiency (Iacovidou et al., 616 

2019). Van Eygen et al. (2018) denoted that setting recycling targets for plastic packaging in line 617 

with the recycling process's actual output and maintaining the quality of output product is 618 

necessary to 1) improve the circularity of plastic packaging and resource efficiency and 2) assess 619 

the performance of the waste management system accurately. Moreover, closing the plastic loop 620 

using mass-based recycling targets towards a CE transition is still challenging, and the focus of 621 

WM strategies should be on decreasing impurities and losses through product design and 622 

technological advancements (Eriksen et al., 2019) and minimizing the material degradation during 623 

mechanical processes (Horodytska et al., 2018). The urgent need for regulating the standardized 624 

labeling and sorting instructions for WM of bio-based plastics by governmental policy-makers and 625 

material producers was outlined by Prieto (2016) to facilitate the CE transition. However, although 626 

CE and sufficient recycling have been touted to managing plastic waste, over 50% of the plastic 627 

waste has been exported to hundreds of countries across the world, which denotes the necessity of 628 

adopting new policies to deal with the importation and exportation of plastic waste (Brooks et al., 629 

2018). Besides, hazardous waste requires more managerial consideration for the circulation use of 630 

resources and increasing resource efficiency in developing a CE that targets waste reduction and 631 

turning waste into a resource (Koop and van Leeuwen, 2017; Sakai et al., 2011). 632 

 633 

5. Implications for research: directions for future studies 634 

According to the insights provided by the bibliometric, text mining, and qualitative content 635 

analyses conducted, implications for future studies are presented in this section to address the third 636 

research question: 637 

 638 

RQ3. What are the possible directions for future research on WM towards the CE transition? 639 

After careful consideration, four lines of research were identified as potential research gaps 640 

and directions for future studies to better position the WM research agenda in line with the CE 641 

perspectives, sustainable environment, and human well-being as follows. 642 



 643 

• The possibility of using Information Technology (IT) tools with the advent of the Internet 644 

of Things (IoT) and Industry 4.0 has provided promising opportunities to improve the 645 

global WM systems towards a cleaner environment and sustainable CE transition, in 646 

particular in developed countries (Fatimah et al., 2020). For instance, developing a smart 647 

reverse system for efficient E-waste management based on interactive online maps of users' 648 

requests as an intelligent IT tool (Shevchenko et al., 2021), and applying IoT devices to 649 

monitor human activities and alert the WM centers to support taking appropriate actions 650 

(Alqahtani et al., 2020), are some examples of incorporating IoT-based tools into the 651 

current WM systems. However, research in this area is still in its infancy, and developing 652 

an inclusive, sustainable, and smart WM mechanism reinforced by IT tools and IoT 653 

facilities, especially in developing and less-developed countries, is still missing. Therefore, 654 

focusing on designing smart WM systems by expanding the application of IoT-based tools 655 

and devices to specifically contribute to (i) efficient waste collection and separation; (ii) 656 

supporting the long-term sustainability from environmental, social, and economic points 657 

of view; (iii) encouraging WM activities and practices from recycling to move up to the 658 

top of the waste hierarchy; and (iv) minimizing the adverse environmental implications, is 659 

a timely and promising direction for future research in the WM domain towards the CE 660 

transition. 661 

• As depicted in Fig. 6, two main WM-related research streams have attracted attention 662 

recently. First, the biosphere side of a CE – with the keywords "biochar", "food waste", 663 

"biofuels", "circular bioeconomy" – presents significant research challenges that need to 664 

be addressed to reach a zero-waste agri-food ecosystem. Second, plastic WM (see cluster 665 

4 in Table 3) and, more recently, the issue of single-use plastics have received more 666 

attention recently in the context of COVID-19 (Klemeš et al., 2020), where new trade-offs 667 

between environmental sustainability and health safety of waste and product recovery 668 

occur. Such trade-offs still have to be addressed, solved, or optimized by researchers. In 669 

this line, the resilience of reverse supply chains is a topic of the utmost importance in 670 

response to the disruptions and shortages caused by the pandemic (Singh et al., 2020; Yu 671 

et al., 2020). The unprecedented COVID-19 situation has led several sectors to both 672 

unsustainable WM and many disruptions all along the supply chain (Ranjbari et al., 2021; 673 



You et al., 2020). While several authors (Sarkis et al., 2020; Wuyts et al., 2020) initiated 674 

the discussion on lessons learned from the COVID-19 crisis for transitioning to sustainable 675 

supply and production, further research is encouraged in the field of WM. 676 

• Healthcare waste, as a matter of great concern for the environment, health, and well-being 677 

due to its infectious and hazardous nature (Chauhan et al., 2021), needs more sustainable 678 

and safe management. Voudrias (2018) argues that adopting a CE model for the current 679 

healthcare WM as a whole would be unlikely. Putting the CE in place, dealing with 680 

different streams of healthcare waste such as medical, clinical, and pharmaceuticals wastes 681 

would also be challenging and need more effort and engagement by interdisciplinary 682 

sectors. The main reason is that reusing, recycling, and recovering materials in this sector 683 

are concerned with infectious, toxic, and hazardous sources, which expose the community 684 

to health risks. According to the results of this study, the literature of WM towards 685 

implementing the CE strategies lacks reliable and comprehensive research considering 686 

waste generated by the healthcare sector. The existing studies in this domain are mainly 687 

limited to suitable treatment methods for the safe disposal of healthcare waste (Chauhan et 688 

al., 2021; Singh et al., 2021). Developing an inclusive CE model to incorporate different 689 

activities and practices of healthcare WM, in particular by (i) exploring technological 690 

advancement for recycling and recovery of healthcare waste, (ii) drafting national plans for 691 

minimizing the waste generated and implementing the reuse strategy for non-hazardous 692 

healthcare waste, and (iii) designing closed-loop supply chains for healthcare WM, is 693 

highly recommended for further investigations in the future. 694 

• As a conceptual and operational framework, the One Health (OH) approach aims to 695 

integrate the collaborative efforts between interdependent sectors to link human health, 696 

food-producing organisms, and the environment (Frazzoli and Mantovani, 2019) to achieve 697 

optimal health for human, animals, and the environment. Although a considerable amount 698 

of research has been conducted on the environmental impacts of different WM activities, 699 

such as MSW landfills (Sauve and Van Acker, 2020), textile reuse and recycling (Sandin 700 

and Peters, 2018), and recovering resources from food waste (Slorach et al., 2019), human 701 

well-being and animal health, have been paid less attention. In particular, there is minimal 702 

research considering the OH framework in the WM practices (Oliveira et al., 2019). 703 

Therefore, conducting well-established research projects to involve the OH framework in 704 



the waste hierarchy and planning and policy-making in the macro, meso, and micro levels 705 

of WM systems for disease prevention and health promotion is highly recommended for 706 

future research. 707 

 708 

6. Conclusions 709 

This study aimed to provide an inclusive map of WM research in the context of CE over the 710 

last two decades by (i) mapping the evolution of the field over time; (ii) identifying the main 711 

research themes and trends; and (iii) offering possible directions for future research to better 712 

position the WM practices towards a CE. To achieve this, a mixed-method approach was followed 713 

by conducting bibliometric, text mining, and content analyses on a total of 962 peer-reviewed 714 

journal articles extracted from the WoS database, published from 2001 to 2020. 715 

The obtained results unfolded four main clusters of WM research in the CE context, including 716 

CE perspectives on waste hierarchy, CE conceptualization and implementation, WM within 717 

closed-loop supply chains, and CE approach to Plastic WM. Besides, seven dominant research 718 

themes of WM practices within the CE context, including bio-based WM, CE transition, E-waste, 719 

MSW, environmental impacts and lifecycle assessment, plastic waste, and C&D WM, were 720 

identified. Subject areas, such as OFMSW, plastic waste, C&D waste, food waste, biofuels, 721 

circular bioeconomy, and single-use plastics, have attracted attention very recently, rather than 722 

material cycles closed-loop supply chain, carbon emission, industrial ecology, and liquid waste. 723 

The main findings of the present study shed light on the WM research agenda and considerably 724 

contribute to the positioning of WM activities and practices aligned with the CE principles in the 725 

future. The provided inclusive research landscape of WM systems, and its prominent highlight 726 

patterns can serve as a base for a real-time guideline to lead further research areas and as a tool to 727 

support WM policy-makers and practitioners to support the CE transition (which aims to minimize 728 

the waste generation). Finally, four specific directions for the future research agenda of WM to 729 

support the CE establishment, sustainable environment, and human well-being were proposed. The 730 

provided research directions for the future particularly help with (i) establishing smart, sustainable 731 

WM mechanisms employing IT tools and IoT-based facilities, (ii) alleviating the COVID-19 732 

pandemic implications for plastic waste, (iii) developing a CE model for healthcare waste, and (iv) 733 

converging the joint efforts of multidisciplinary sectors towards the optimal health for human, 734 

animals, and the environment based on the OH approach. 735 



This research is bound to have its limitations too. First, we clustered the research themes of 736 

our dataset based on the bibliographic coupling of articles. Using other data clustering techniques, 737 

such as co-citation analysis of articles, is recommended to further develop and compare the results. 738 

Second, we considered only the WoS database in this study. Extracting valuable data from other 739 

well-known scientific databases, such as Scopus, could provide more information in future 740 

bibliometric analyses. And finally, our sample was chosen only among articles published in the 741 

English language. Further investigation into non-English articles in this domain is recommended 742 

to harmonize the research findings. 743 
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