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Stabilized Single Current Inverse Source
Formulations Based on Steklov–Poincaré Mappings

Paolo Ricci , Graduate Student Member, IEEE, Ermanno Citraro , Graduate Student Member, IEEE,
Adrien Merlini , Senior Member, IEEE, and Francesco P. Andriulli , Fellow, IEEE

Abstract— The inverse source problem in electromagnetics has
proved quite relevant for a large class of applications. When
it is coupled with the equivalence theorem, the sources are
often evaluated as electric and/or magnetic current distributions
on an appropriately chosen equivalent surface. In this context,
in antenna diagnostics, in particular, Love solutions, i.e., solutions
that radiate zero-fields inside the equivalent surface, are often
sought at the cost of an increase of the dimension of the linear
system to be solved. In this work, instead, we present a reduced-
in-size single current formulation of the inverse source problem
that obtains one of the Love currents via a stable discretization
of the Steklov-Poincaré boundary operator leveraging dual func-
tions. The new approach is enriched by theoretical treatments and
by a further low-frequency stabilization of the Steklov-Poincaré
operator based on the quasi-Helmholtz projectors that is the
first of its (i.e., low-frequency stabilization) kind in this field.
The effectiveness and practical relevance of the new schemes are
demonstrated via both theoretical and numerical results.

Index Terms— Boundary-element method, inverse source prob-
lem, Love currents, low-frequency breakdown, Steklov-Poincaré
operator.

I. INTRODUCTION

THE inverse source problem in electromagnetics, i.e., the
recovery of a configuration of sources radiating a given

field, has been adopted in a variety of applications ranging
from antenna diagnostics to near-to-far-field reconstructions
[1], [2], [3]. These sources are often electric and/or mag-
netic current distributions residing on a conveniently placed
equivalent surface that can be tailored to scatter the target
field by virtue of the equivalence theorem. These currents

Manuscript received 5 December 2022; revised 28 June 2023; accepted
12 July 2023. Date of publication 10 August 2023; date of current version
6 October 2023. This work was supported by the European Union (EU) H2020
Research and Innovation Program through the Project COMPETE under the
Marie Skłodowska-Curie Grant 955476; from the European Research Council
(ERC) through the European Union’s Horizon 2020 Research and Innova-
tion Program (Project 321) under Grant 724846; from the Horizon Europe
Research and Innovation Program through the Project CEREBRO under the
European Innovation Council (EIC) Pathfinder Grant 101046748; and from the
Italian Ministry of University and Research through the Program PRIN2017,
EMVISIONING, under Grant 2017HZJXSZ, CUP:E64I190025300, and the
Program FARE, CELER, under Grant R187PMFXA4. (Corresponding author:
Francesco P. Andriulli.)

Paolo Ricci, Ermanno Citraro, and Francesco P. Andriulli are with the
Department of Electronics and Telecommunications, Politecnico di Torino,
10129 Turin, Italy (e-mail: francesco.andriulli@polito.it).

Adrien Merlini is with the Microwave Department, École Nationale
Supérieure Mines-Télécom Atlantique (IMT Atlantique), 29238 Brest, France.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAP.2023.3302748.

Digital Object Identifier 10.1109/TAP.2023.3302748

have traditionally been found within a boundary element
framework on apertures or on arbitrary equivalent surfaces
(see [4], [5]). Among inverse source strategies, single current
solutions, that reconstruct only one family among electric
or magnetic currents, are appealing because of the reduced
dimensions of the linear systems to be solved and because
of their reduced (numerical) nullspace that is limited to the
intrinsic ill-posedness of the problem associated with the
nonradiating modes. These strategies, however, have been
reported to require more care in the solution process if
further physical constraints are not used to ensure a simple
relationship between equivalent currents and fields [6], [7].
On the other hand, the double current formulations have non-
unique solutions due to the presence of non-radiating currents.
Whereas the non-uniqueness can be addressed by selecting a
particular solution [8], [9], [10], the numerical ill-conditioning
of the matrix, inherited by the ill-posed nature of the inverse
problem, remains to be addressed. To this end, truncated singu-
lar value decompositions (TSVDs) or Tikhonov regularizations
have been used to further regularize the problem [2], [11], [12].

Another feature of interest among inverse source schemes
is their capacity to find equivalent Love currents—that are
directly related to the tangential fields—which is considered
in the literature particularly useful for antenna diagnostics [6],
[12]. The Love currents can be obtained by adding further
constraints to double current formulations [6], [13], [14] or
by filtering any of the solution via Calderón projection [15].
Another interesting approach, leveraging Huygens radiators
and valid for plane waves, has been proposed in [16] to reduce
the size of the Love-constrained problem to that of a single
current formulation, at the price of an approximation.

In this work, we follow a different approach. While still
targeting a single current formulation, we leveraged dual
discretizations to avoid approximating the relationships link-
ing electric and magnetic currents. The contribution of this
article is then twofold: we present a new single current
formulation capable of obtaining Love currents by leveraging
a stable discretization of the Steklov-Poincaré operator [17]
without resorting to any approximations of the electromagnetic
relations. This results in a single current formulation that
delivers one of the Love currents. A similar equation has
been used in a different context in [18] and [19]. Differently
from what has been presented in those contributions, here
we propose a discretization scheme based on dual elements
which achieves optimal conditioning despite a higher cost
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to generate the matrix entries. Moreover, we present the
first frequency stabilization of Steklov-Poincaré operators via
quasi-Helmholtz projectors and we leverage this new result to
stabilize in frequency the new formulations. What we propose
is then, to the best of our knowledge, the first low-frequency
regularization of a full-wave inverse source scheme showing
a high level of accuracy and numerical stability till arbitrarily
low-frequencies.

The article is organized as follows: the main electromagnetic
operators are introduced in Section II, the new formulations
are presented in Section III, whereas Section IV presents
the frequency stabilization of the Steklov-Poincaré operator
and its application to the new equations. Finally, Section V
illustrates the accuracy and stability of the new formulation
through numerical test cases. Section VI concludes the latter.
Very preliminary results from this work were presented in the
conference contribution [20].

II. BACKGROUND AND NOTATION

Let 0 be a 2-D smooth manifold in R3 delimiting the
internal and external domains �− and �+. Consider a
time-harmonic source in �− generating Maxwellian fields in
�−

∪�+ = R3. In light of the equivalence theorem [21], there
exist equivalent current densities M and J on 0 which radiate
in �+ the same fields as the original source and radiate in �−

possibly different electric and magnetic fields; these currents
satisfy

M =
(
E+

− E′−
)
× n̂r (1)

J = n̂r ×
(
H+

− H ′−
)

(2)

where n̂r is the unit normal vector to 0 in r pointing toward
�+, E+, H+ are the original electric and magnetic field in �+

and E′− and H ′− are the new fields in �−. The e−iωt time-
harmonic dependence is assumed and suppressed throughout
the article. Solving the inverse source problem consists in
finding a set of equivalent currents M, J given the electric
and/or magnetic fields’ observations on a 2-D smooth and
simply connected manifold 0m ⊂ �+. These observations are
the output of the actual fields’ measurement which includes
possible probe compensation. We assume a sampling able to
capture the degrees of freedom (defined as in [22]) and thus
satisfy the equivalence theorem. The problem can be solved
naturally by the boundary element method. In this framework,
define the electric field integral operator (EFIO) on 0

Tr f = ik Ts,r f + ik−1 Th,r f (3)

with

Ts,r f = n̂r ×

∫
0

eik|r−r ′|

4π |r − r ′|
f (r ′) dr ′ (4)

Th,r f = n̂r × ∇

∫
0

eik|r−r ′|

4π |r − r ′|
∇s · f (r ′) dr ′ (5)

and the magnetic field integral operator (MFIO) [23]

Kr f = −n̂r × p.v.

∫
0

∇ ×
eik|r−r ′|

4π |r − r ′|
f (r ′) dr ′ (6)

where k is the wavenumber and r lies on any 2-D manifold
in �+ (possibly 0 or 0m), to which the definition of n̂r is
extended. In the case r ∈ 0 Tr , Kr are denoted by T , K,
respectively. When r ∈ 0m , the radiation operator

R =

[
−Kr Tr
−Tr −Kr

]
(7)

is a linear map between equivalent sources on 0 and observed
tangential fields on 0m , meaning that

R
[
−M
η J

]
=

[
n̂r × E+

ηn̂r × H+

]
(8)

with η =
√

µ/ϵ and ϵ, µ being the permittivity and the perme-
ability of the medium, respectively. The inverse problem aims
at finding unknown current distributions that satisfy (8), or part
of it. Indeed, by selecting a single block of R—either Kr
or Tr—and solving for the corresponding reduced right-hand
side—E+ or H+—four different single current formulations
can be obtained. Alternatively, three double current formula-
tions can be derived by considering the full radiator or one
of its rows only. The latter systems of continuous equations
admit several solutions because multiple equivalent currents
can radiate the same external field in �+ and the physical
meaning of the solution depends on the type of implicit
or explicit additional constraints used to select a particular
solution. The Love currents M L , J L are one of these particular
solutions that are obtained by imposing the fields radiated in
�− to be identically 0 [6]. One way of enforcing this condition
is to leverage the well-known Calderón projector [24]

P−
=

I2 +K −T

T
I
2

+K

 (9)

where I is the identity operator, that can be added to the
system of equations (8) [13] as[

R
P−

]
·

[
−M L

η J L

]
=
[
n̂r × E+, n̂r × ηH+, 0, 0

]T
. (10)

III. CONFORMING DISCRETIZATION OF A
STEKLOV-POINCARÉ-BASED EQUATION

In this section, we introduce a single source method that
enforces the Love condition without increasing the matrix
system size with regard to standard single source formulations.
Starting from the formulation in (10), consider the Love
condition expressed with the inner Calderón projector

P−

[
−M L

η J L

]
= 0. (11)

Clearly, for k different from resonant wavenumbers of 0 [25],
(11) defines a relation between the two Love currents

η JL = −

(
I
2

+K
)−1

T (−M L) (12)

where ((I/2) +K)−1T is the Steklov-Poincaré operator [17].
By replacing (12) in the first row equation of (8), we obtain
the equation(

−Kr − Tr

(
I
2

+K
)−1

T
)

(−M L) = n̂r × E+ (13)
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which is a single source equation that naturally yields the
magnetic Love current M L . If instead of this current, the
electric Love current J L is desired as the first outcome of
the procedure, a similar strategy can be applied obtaining(

Tr +KrT −1
(
I
2

+K
))

(η J L) = n̂r × E+. (14)

An alternative approach to study (13) and (14) leverages the
equivalence theorem, following a similar procedure to the one
presented in chapter 3 of [26]. In this context, (13) and (14)
can be interpreted as the equations obtained after accordingly
changing the material of the internal domain while imposing
the Love condition as described in [27].

To numerically solve (13) and (14), the discretization
scheme will require particular attention. Starting with (13),
the magnetic current is expanded as M L(r) ≈

∑Ne
i=1 mi f i (r)

where { f i } are Rao–Wilton–Glisson (RWG) basis functions
(here used without edge normalization) and Ne is the number
of mesh edges. The electric operator T is then tested with
rotated RWG functions [28] which yields the matrix T =

ikTs + ik−1Th , where [Ts]i j = ⟨n̂r × f i , Ts f j ⟩0 , [Th]i j =

⟨n̂r × f i , Th f j ⟩0 , and ⟨a, b⟩0 =
∫
0

a(r) · b(r) dr . As a
consequence, the ((I/2) +K)−1 term must be tested with
rotated-RWGs, and to allow for a non-singular discretization
of the identity, the source functions used for its discretization
must be dual elements [29]—we will use in the following
the Buffa–Christiansen (BC) basis functions, a definition of
which can be found in [29] and [30]. We define the Gram
matrix [G]i j = ⟨n̂r × f i , g j ⟩0 , where {g j (r)} denote the
BC functions and propose as matrix discretization for the
K operator [K]i j = ⟨n̂r × f i ,Kg j ⟩0 . Finally, as a conse-
quence of this choice, the source functions of Tr must be
BC functions, and a possible choice for the testing functions
are rotated-BC basis functions living on 0m . Thus, we define
Tm = ikTs,m + ik−1Th,m where

[
Ts,m

]
i j = ⟨n̂r × gi , Ts,r g j ⟩0m

and
[
Th,m

]
i j = ⟨n̂r × gi , Th,r g j ⟩0m . From the above choices

the discretization of the leftmost Kr is entirely determined
as [Km]i j = ⟨n̂r × gi ,Kr f j ⟩0m . By combining the previous
discretization schemes we obtain the discretized equation(

−Km − Tm(G/2 + K)−1T
)
(−m) = em (15)

where [em]i = ⟨n̂r × gi , n̂r × E+
⟩0m is the discretization of

the observed electric field and m is the vector of solution
coefficients mi . For (14), a similar reasoning leads to(

Tm + KmT−1(
−GT/2 + K

))
(ηj) = εm (16)

with Tm = ikTs,m + ik−1Th,m ,
[
Ts,m

]
i j = ⟨n̂r × f i , Ts,r f j ⟩0m ,[

Th,m
]

i j = ⟨n̂r × f i , Th,r f j ⟩0m , [Km]i j = ⟨n̂r × f i ,Kr g j ⟩0m ,
T = ikTs + ik−1Th , [Ts]i j = ⟨n̂r × gi , Ts g j ⟩0 , [Th]i j = ⟨n̂r ×

gi , Th g j ⟩0 , [K]i j = ⟨n̂r × gi ,Kr f j ⟩0 ,
[
εmi
]

= ⟨n̂r × f i , n̂r ×

E+
⟩0m and j is the vector of coefficients ji of the electric

current expansion J L(r) ≈
∑Ne

i=1 ji f i (r).
The reader should note that using RWG or BC as testing

functions has an important theoretical value and it follows a
consolidated practice in the literature (see [7], [13]). At the
same time, however, it does not lead to formulations that can
be applied directly to a realistic measurement setting to which,

however, it can be extended. In fact, we observe that both the
RWG and the BC testing functions can be used to interpolate
a point-matching scenario. The point-matching strategy can
then be handled similarly to previous works in the literature
(as in [2], [6], [7], and references therein). Moreover, it should
also be noted that it is not necessary to solve both (15) and (16)
to obtain both currents: once one of the two currents has been
computed (discretized with RWGs), the discretization of the
other as a linear combination of BCs can be obtained after back
substitution in (12). In addition, only one current is required
to compute the probed field in the outside region by using (13)
or (14), respectively, following the discretization strategies
delineated above with the sole difference that the leftmost
operators must be evaluated in the point of interest, and not
tested with primal or dual functions. Finally, it is noted that
the introduced single-source formulations need the additional
inversion of first and second kind operators in (16) and (15),
respectively. Thus, the use of (15) should be preferred as
the computational overhead of this formulation would be the
inversion of G/2 + K, which is usually well-conditioned and
therefore leads to better performances when using the standard
iterative solvers present in the literature.

IV. QUASI-HELMHOLTZ STABILIZATION

The linear system in (16) inherits the well-known low-
frequency breakdown of the EFIO, that causes, among other
things, the conditioning of the system to grow unbounded
as the frequency decreases [31], [32]; at the same time, the
linear system in (15) will behave, frequency-wise, like an
MFIO requiring low-frequency stabilization to avoid numerical
cancellations due to a different behavior over frequency of
the solenoidal and non-solenoidal components of fields and
solutions [33]. Note that some of the standard inverse source
formulations in the literature may also suffer from similar
low-frequency problems and may benefit from a stabilization
scheme similar to the one proposed below. In this contribution,
however, for the sake of brevity, we will limit the analysis
to the low-frequency stabilization of our new formulations
only. Define Pk = P3H k−1/2

+ iP6k1/2, Pk = P6H k−1/2
+

iP3k1/2, where P6
= 6(6T 6)+6T , P3H

= I − P6 , P3
=

3(3T 3)+3T , P6H
= I − P3 are the quasi-Helmholtz

projectors defined, respectively, in the RWG space and in the
dual BC space, I is the identity matrix, and where 6, 3, are
the star-to-RWG and loop-to-RWG transformation matrices,
the definitions of which can be found in [32]. We indicate with
(·)+ the Moore–Penrose (MP) pseudoinverse operator. These
projectors allow us to separate the components of the solutions
with a different behavior over frequency and to rescale them
to avoid numerical cancellations. We propose the following
regularization schemes for (15) and (16), respectively:

Pk
(
−Km − Tm(G/2 + K)−1T

)
Pkx = Pkem (17)

Pk
(
Tm + KmT−1(

−GT /2 + K
))

Pky = Pkεm (18)

where −m = Pkx and ηj = Pky. The frequency stabil-
ity of the above equations will now be demonstrated in
two steps: the stabilization of the Steklov-Poincaré opera-
tors used in (15), (16) and the one of equations (15), (16)
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themselves. First, we will show that quasi-Helmholtz projec-
tors can successfully regularize the Steklov-Poincaré opera-
tors in both discretizations presented here. This is proven
in (19) and (20), as shown at the bottom of the page,
where we exploited standard cancellation properties of pro-
jectors on solenoidal spaces [23] (i.e., P3H Th = ThP3H

=

P6H Th = ThP6H
= 0) from which Th = P6ThP6

and Th = P3ThP3. In addition in (20), we used the
result ∥P6

(
−GT /2 + K

)−1P3
∥ = O

(
k2
)

which follows from
∥P6

(
−GT /2 + K

)
P3

∥ = O
(
k2
)

(proven in [23, Sec. IV-B1])
after following a similar procedure as the one in [23,
Appendix B]; in (19) the result ∥P3(G/2 + K)−1P6

∥ =

O
(
k2
)

which can be proven in a similar and dual way.
This ends the proof of the stabilization of the Steklov–
Poincaré operator. As a second step, we demonstrate the
frequency regularity of (17) noticing that PkKmPk is fre-
quency stable [33] and that PkTm(G/2 + K)−1TPk =

(PkTmPk)
(
P−1

k (G/2 + K)−1TPk
)

which, following the above
developments and the regularity of PkTmPk , is the prod-
uct of two frequency regular operators and thus is fre-
quency regular. Dually the stability and well-conditioning
of (18) is proven with PkKmT−1

(
−GT /2 + K

)
Pk =

(PkKmPk)
(
P−1

k T−1
(
−GT /2 + K

)
Pk
)

and the frequency reg-
ularity of PkKmPk (on simply-connected geometries),
P−1

k T−1
(
−GT /2 + K

)
Pk , and PkTmPk . We conclude this

section by noticing that the proposed strategies hold for
plane wave sources, but they can be adapted for different
excitations by modifying the coefficients of Pk and Pk in
an analogous way to what would be needed for the EFIO
and the MFIO [34]. The extension to different excitation has
been omitted from this article for the sake of clarity and
brevity. Finally, we highlight that in the implementation of
(17) and (18) we explicitly set to 0 the static component
of the terms P6KmP3, P3KmP6 , P6

(
−GT /2 + K

)
P3, and

P3(G/2 + K)P6 .

Fig. 1. Field reconstruction error ϵ for the different Love formulations.
The fields are obtained from a combination of Hertzian dipoles oscillating at
f = 5 GHz and noise has been applied to obtain a SN R = 60 dB. The field
observations are performed on a spherical surface of the same center as 0 and
situated 1λ away from 0. The evaluation of ϵ is then performed on spherical
surfaces concentric to 0 with different radii.

V. NUMERICAL RESULTS AND DISCUSSION

A series of tests are now presented to demonstrate recon-
struction, enforcement of the Love condition, and frequency
behavior of the formulation. First the reconstruction capability
of the Steklov-Poincaré approach (15) is tested: it maps
magnetic currents to electric fields, a most relevant setting
for real case scenarios. The electric field of a combination of
Hertzian dipoles at frequency f = 5 GHz is sampled with
ideal probes on a spherical surface 0m at 1λ = 2π/k distance
from a spherical equivalent surface 0 of radius a = 6 cm.
The surfaces 0 and 0m are discretized with an average mesh
edge length of λ/10 as common in the literature. Similarly

P−1
k

(
(G/2 + K)−1T

)
Pk =

(
√

kP6H
+

1

i
√

k
P3

)(
(G/2 + K)−1

(
ikTs +

i
k

Th

))(
1

√
k

P3H
+ i

√
kP6

)
= P6H (G/2 + K)−1(ikTs)P3H

+ ikP6H (G/2 + K)−1(ikTs + ik−1Th
)
P6

+ (ik)−1P3(G/2 + K)−1(ikTs)P3H
+ P3(G/2 + K)−1(ikTs + ik−1Th

)
P6

= −P6H (G/2 + K)−1ThP6
+ P3(G/2 + K)−1TsP3H

+ ik−1P3(G/2 + K)−1P6ThP6
+O(k)

= −P6H (G/2 + K)−1ThP6
+ P3(G/2 + K)−1TsP3H

+O(k) (19)(
P−1

k

(
T−1(

−GT /2 + K
))

Pk
)−1

=

(
√

kP3H
+

1

i
√

k
P6

)((
−GT /2 + K

)−1
(

ikTs +
i
k

Th

))(
1

√
k

P6H
+ i

√
kP3

)
= P3H (

−GT /2 + K
)−1

(ikTs)P6H
+ ikP3H (

−GT /2 + K
)−1(

ikTs + ik−1Th
)
P3

+ (ik)−1P6
(
−GT /2 + K

)−1
(ikTs)P6H

+ P6
(
−GT /2 + K

)−1(
ikTs + ik−1Th

)
P3

= −P3H (
−GT /2 + K

)−1ThP3
+ P6

(
−GT /2 + K

)−1TsP6H

+ ik−1P6
(
−GT /2 + K

)−1P3ThP3
+O(k)

= −P3H (
−GT /2 + K

)−1ThP3
+ P6

(
−GT /2 + K

)−1TsP6H
+O(k) (20)



8162 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 71, NO. 10, OCTOBER 2023

Fig. 2. Modulus of the electric field in a xy planar section of R3: fields are normalized on the maximum value of the reference field and are obtained from
a combination of Hertzian dipoles oscillating at f = 5 GHz.

to what is done in [12], noise is added to the sampled fields
to obtain a signal-to-noise ratio SN R = 60 dB. Our work is
then compared to other Love formulations analyzed in [6], [7],
and [13] which are three of the several possible approaches that
can be found in the literature. The reconstruction capabilities
of the formulations are evaluated on several spherical surfaces
concentric to 0, which we define according to the difference
between their radius and the one of 0. On these surfaces,
we compute the fields et reconstructed by the different for-
mulations and their error ϵ(et ) with respect to the original
noise-less field ere f radiated by the source. The error is defined
as

ϵ(et ) :=

√√√√∑N
n=1 |[et ]n − [ere f ]n|

2∑N
n=1 |[ere f ]n|

2
(21)

where N is here used to represent the number of edges of the
meshes on which the field is tested. The reconstruction errors
obtained in this way in �+ are reported in Fig. 1. We can
observe that in this setting all the considered formulations
manage to reconstruct the field up to the noise level.

Then, to verify the Love condition, we check whether the
internal fields radiated by equivalent currents obtained are zero
(within the discretization error) inside the equivalent surface.
Results are shown in Fig. 2 where the magnitude of the
radiated electric field is displayed on the plane z = 0 for the
different formulations and qualitatively confirm that all Love
formulations find

∑Ne
i=1 mi f i ≈ M L = −n̂r × E+ on 0. The

better Love condition achieved by the zero-field enforcement
method can be attributed to the stronger constraining of the
system. Still, a better Love constraining does not imply a better
reconstruction of the external fields, as the internal and the
external problems are decoupled.

To evaluate the low-frequency behavior of (17), we fix the
geometries 0 and 0m and we decrease the frequency to f =

5×10−20 Hz. The reader should note that, differently from the
previous one, the importance of this test is a purely theoretical
one. By stably reconstructing a quasi-static setting, in fact,
we show that the impact of our new technology encompasses
low-frequency scenarios, that, however, will require specific
measurement settings [35]. The application of this scheme to
these scenarios, however, will be the topic of specific future
investigations.

Moreover, as a right-hand side, we use the fields scattered
by a perfect electric conductor (PEC) illuminated by a plane
wave. The EFIO is used to evaluate the electric currents on a

Fig. 3. Field reconstruction error ϵ for the different Love formulations. The
equivalent currents and the field samplings are defined on the same meshes
used in Fig. 1. The fields are scattered from a 1 cm-radius PEC sphere con-
centric to 0 illuminated by a plane wave oscillating at f = 5 × 10−20 Hz.

spherical surface 0s , concentric to 0 and with a radius of 1 cm,
discretized with a triangle mesh composed of 120 edges. The
magnetic currents are here not considered as 0s is assumed to
be a PEC object. Also in this case quasi-Helmoltz projectors
are exploited to cure the low-frequency breakdown, resulting
in

PkTPky = Pkei (22)

where ei is the incident field obtained from a plane wave
and tested on 0s using RWG basis functions. This equation
can be solved by means of standard techniques [23], which
include the extraction of the static contribution of the plane
wave and the cancellation of Th in solenoidal spaces. The
solution of (22) can then be used to scatter the fields on 0m

and on the previously test spheres, whose distance from 0 has
not been changed with respect to the previous test. Finally,
we employ these fields in an analogous way to what we did in
Fig. 1 to study the reconstruction capabilities of the considered
formulations also in this setting. As expected, the results in
Fig. 3 show that our formulation is the only one still able to
correctly reconstruct the field, as the low-frequency breakdown
and the numerical cancellations are successfully handled.
Similarly to the previous test, by studying the magnitude of
the electric field on the plane z = 0 we can observe in Fig. 4
that our formulation is still able to enforce the Love condition.
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Fig. 4. Modulus of the electric field in a xy planar section of R3: fields are normalized on the maximum value of the reference field and are obtained from
a 1 cm-radius PEC sphere concentric to 0, excited by a plane wave oscillating at f = 5 × 10−20 Hz.

VI. CONCLUSION

We have presented a new single current approach that natu-
rally yields Love solutions of the inverse source problem and
we have shown that the Love condition is satisfied. Although
the presented strategy is currently considered for nonresonant
settings, the extension to the resonant setting is possible and
will be the focus of further investigations. The technique is
enriched by the first frequency stabilization of the Steklov-
Poincaré operator via quasi-Helmholtz projectors then used
to stabilize the new formulation till arbitrary low frequency.
This was then confirmed both by theoretical treatments and
by numerical results.
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