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Abstract
We prove the L p-boundedness, for p ∈ (1,∞), of the first order Riesz transform
associated to the flow Laplacian on a homogeneous tree with the canonical flow mea-
sure. This result was previously proved to hold for p ∈ (1, 2] by Hebisch and Steger,
but their approach does not extend to p > 2 as we make clear by proving a negative
endpoint result for p = ∞ for such operator. We also consider a class of “horizontal
Riesz transforms” corresponding to differentiation along horocycles, which inherit
all the boundedness properties of the Riesz transform associated to the flow Lapla-
cian, but for which we are also able to prove a weak type (1, 1) bound for the adjoint
operators, in the spirit of the work by Gaudry and Sjögren in the continuous setting.
The homogeneous tree with the canonical flow measure is a model case of a measure-
metric spacewhich is nondoubling, of exponential growth, does not satisfy theCheeger
isoperimetric inequality, and where the Laplacian does not have spectral gap.
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1 Introduction

Let T be a locally finite tree, which is a connected graph with no cycles where each
vertex x has a finite number q(x) + 1 of neighbours. We identify T with its set of
vertices and equip it with the standard graph distance d, counting the number of edges
along the shortest path connecting two vertices. We fix a reference point o ∈ T and
set |x | := d(x, o). A ray is a half-infinite geodesic, with respect to the distance d,
emanating from o, and the natural boundary ∂T of T is identified with the family of
rays. We choose a mythical ancestor ω∗ ∈ ∂T and consider the horocyclic foliation it
induces on the tree: for each vertex x there exists a unique integer index �(x), which
we call the level of x , indicating to which horocycle the vertex belongs. The level
function is given by �(x) = d(o, x ∧ ω∗) − d(x, x ∧ ω∗), where x ∧ ω∗ denotes the
closest point to x on the rayω∗. For each vertex x we define its predecessor p(x) as the
only neighbour vertex such that �(p(x)) = �(x) + 1, while s(x) will denote the set of
the remaining neighbours, the successors of x , whose level is �(x) − 1. We introduce
a partial order relation on T by writing x ≥ y if d(x, y) = �(x) − �(y).

A flow on T is a function m satisfying the flow condition

m(x) =
∑

y∈s(x)
m(y) ∀x ∈ T . (1.1)

Flows, which are common objects in Operations Research and Computer Science,
turn out to have interesting properties also from a Harmonic Analysis point of view.
Indeed, p-harmonic functions on trees can be characterized as appropriate nonlinear
potentials of flows, see [8]. For a more wide-ranging account on the importance of
flows in Probability and Analysis on trees, we refer the reader to [17].

In this note we are interested in flow measures, which are positive flows. A flow m
is said to be canonical if it distributes mass uniformly among the successors of each
point, i.e., if m(x) = q(x)m(y), for every x ∈ T , y ∈ s(x). Up to normalization, the
canonical flow is unique: we will refer to the one satisfyingm(o) = 1 as the canonical
flow, and denote it with the letter μ.

In the sequel we will deal with the homogeneous tree T = Tq , on which q(x) =
q for some integer q ≥ 2 and every x ∈ Tq , equipped with the canonical flow
measure μ(x) = q�(x). A systematic analysis of “singular integrals” on (T , μ) was
initiated in a remarkable paper by Hebisch and Steger [15], where they developed an
ad hoc Calderón–Zygmund theory and studied the boundedness properties of spectral
multipliers and the Riesz transform associated with a suitable Laplacian L, which
we shall call the flow Laplacian. Specifically, the flow Laplacian L on (T , μ) can be
written as

L = 1

2
∇∗ ∇;

here ∇ denotes the flow gradient on (T , μ), defined by

∇ f (x) = f (x) − f (p(x)) (1.2)
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for all f : T → C and x ∈ T , while ∇∗ denotes the adjoint of ∇ with respect to the
L2(μ)-pairing. The Riesz transformR on (T , μ) can be then defined as

R = ∇L−1/2.

In Sect. 2 a more extensive discussion on the definition of the flow Laplacian is given,
and the arising notion of Riesz transform is compared with other notions appearing in
the literature. In [2, 3] an atomic Hardy space H1(μ) and a space BMO(μ) adapted
to (T , μ) were introduced and studied, and in [24] the characterization of the Hardy
space in terms of the Riesz transform R was proved to fail, i.e., the atomic Hardy
space H1(μ) is strictly contained in the space of integrable functions on (T , μ)whose
Riesz transform is integrable.

In this note we aim at completing the study of the boundedness properties of the
Riesz transformR on (T , μ). By [15, Theorem 2.3] and [3],R is of weak type (1, 1),
bounded on L p(μ) for p ∈ (1, 2], and bounded from H1(μ) to L1(μ): this follows
from the fact that the integral kernel ofR satisfies an “integral Hörmander condition”
adapted to this setting (see (4.6) below). The problem of the L p-boundedness for
p ∈ (2,∞) was left open in [15] and we solve it in the following theorem.

Theorem 1.1 The Riesz transform R is bounded on L p(μ) for p ∈ (1,∞).

Wealso show thatR does notmap L∞(μ) to BMO(μ) (see Proposition 4.4 below).
This fact in particular shows that the integral kernel of the adjoint operator R∗ does
not satisfy the aforementioned integral Hörmander condition, and therefore new ideas
are required in order to prove the boundedness of the Riesz transform on L p(μ),
p ∈ (2,∞).

Our strategy is based on the observation that, since we know from [15] thatR is L p-
bounded for p ∈ (1, 2], the L p-boundedness ofR for p ∈ [2,∞) is equivalent to the
L p-boundedness for p ∈ (1,∞) of the skew-symmetric partR−R∗. As it turns out,
the operatorR−R∗ has a simpler form, which is especially evident when the operator
is lifted from the tree T to the product �×Z, where � = ∂T \ {ω∗} is the “punctured
boundary” of T . Indeed, remarkably, the lifted operator has the form id�⊗(RZ−R∗

Z
),

where RZ is the discrete Riesz transform on Z, while id� is the identity operator on
functions on �. It is well-known [1, 14] thatRZ is a Calderón–Zygmund operator on
Z, whence one easily deduces that id� ⊗ (RZ − R∗

Z
) is L p-bounded on � × Z for

p ∈ (1,∞), and these strong type bounds transfer to R − R∗ too.
As a matter of fact, the same argument also gives the weak type (1, 1) boundedness

of the lifted operator id� ⊗ (RZ − R∗
Z
). However, this information per se does not

appear to yield a corresponding weak type endpoint result for p = 1 for the adjoint
Riesz transform R∗, whose validity remains an open problem.

The study of the first-order Riesz transformR associated with the flow LaplacianL
on the homogeneous tree T can be thought of as a discrete counterpart of the analysis
of first-order Riesz transforms associated with a distinguished Laplacian LG on the
so-called ax + b-groups G, developed in [13, 15, 19, 25, 26]. In the latter context
the natural gradient ∇G is vector-valued, and the operator RG = ∇G L−1/2

G can be
thought of as the vector of Riesz transforms, whose components are the (first-order,
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scalar-valued) Riesz transforms on G; more specifically, corresponding to whether
the component under consideration is in the direction of a or b in the ax + b-group,
one speaks of a vertical or a horizontal Riesz transform on G. We point out that the
discrete Riesz transformR = ∇L−1/2 on T studied in this paper, despite being scalar-
valued, should be thought of as an analogue of the vector of Riesz transforms RG in
the continuous setting, as the flow gradient ∇ is comparable (at least, as far as weak
or strong type bounds are concerned) with the “modulus of the (full) gradient” on T
(see Proposition 2.2 below).

In the aforementioned works on ax +b-groups, the L p-boundedness for p ∈ (1, 2]
of the full vector of Riesz transforms RG was established, together with weak type
(1, 1) and H1 → L1 endpoints. However, as far as we know, for p > 2 the only
currently available boundedness result concerns the horizontal Riesz transform on
the smallest ax + b-group, for which Gaudry and Sjögren in [13] proved the L p-
boundedness for all p ∈ (2,∞), as well as the weak type (1, 1) boundedness of the
adjoint operator. In contrast, no analogous results for vertical Riesz transforms appear
to be available, and, a fortiori, the L p-boundedness for p > 2 of the vector of Riesz
transformsRG appears to be so far an open problem.

This comparison with the continuous setting provides further reasons of interest
for our Theorem 1.1, as the L p-boundedness result for p > 2 that we obtain here
appears to have no continuous counterpart in the literature on ax + b-groups. As it
turns out, an approach similar in spirit to the one developed here can be applied to the
study of L p-boundedness properties for p > 2 of Riesz transforms on ax + b-groups,
eventually yielding that RG is indeed L p-bounded for all p ∈ (1,∞); details on this
will appear elsewhere [18].

Motivated by the lack of an endpoint result at p = 1 for the adjoint Riesz transform
R∗, and by the study of the horizontal Riesz transforms in the continuous setting, in
this paper we also consider another class of Riesz transforms on T , which we shall
also call horizontal Riesz transforms. Specifically, for any given bounded function
ε : T → C with the property that

∑

y∈s(x)
ε(y) = 0 ∀x ∈ T ,

we define the associated horizontal gradient ∇ε as

∇ε f (x) = 1

q

∑

y∈s(x)
ε(y) f (y),

and the corresponding horizontal Riesz transform Rε = ∇ε L−1/2. At an intuitive
level, one could think of the flow gradient ∇ in (1.2) as (discrete) differentiation
in the direction of the flow; instead, the horizontal gradient ∇ε differentiates along
horocycles, thus somewhat orthogonally to the flow.

This intuition is correct up to a point, as the flow gradient ∇, as already mentioned,
is comparable to a “full” gradient on T for the purpose of weak or strong bounds;
moreover, the step-2 differences implicit in the definition of ∇ε (notice that distinct
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elements of s(x) are at distance 2 from each other) can be controlled by suitable com-
binations of the step-1 differences in ∇. Correspondingly, any weak or strong (p, p)
bound forR transfers toRε, and the same is true for the respective adjoint operators.
While we are not able to determine whether R∗ is of weak type (1, 1), nevertheless
we manage to establish (see Theorem 5.5 below) that R∗

ε is. Once again, it is not
possible to prove this weak type endpoint result by directly using the aforementioned
Calderón–Zygmund theory on (T , μ), as R∗

ε does not map H1(μ) into L1(μ) when-
ever ε is nontrivial (see Proposition 5.6 below), and an ad hoc approach is needed.
Indeed, the weak type bound for R∗

ε can be thought of as a counterpart of the result
by Gaudry and Sjögren [13] for horizontal Riesz transforms in the continuous setting,
and our proof is significantly inspired by theirs.

It is important to point out that the metric space (T , μ) is an adverse setting to
study the problem. Indeed, in [16], the authors prove that flow measures fail to satisfy
the Cheeger isoperimetric property, and do not satisfy the doubling condition, because
they have exponential growth. It is well known that harmonic analysis in nondoubling
settings presents major difficulties. In particular, extensions of the theory of singular
integrals and of Hardy and BMO spaces have been considered on various metric
measure spaces not satisfying the doubling condition, but fulfilling some measure
growth assumptions or some geometric conditions, such as the isoperimetric property
(see, e.g., [6, 20, 21, 27–29, 31]).

The boundedness of the Riesz transform on graphs has been the object of many
investigations in recent years. In [4, 12, 22, 23] the authors obtained various bound-
edness results for Riesz transforms on graphs satisfying the doubling condition and
some additional conditions, expressed either in terms of properties of the measure or
estimates for the heat kernel. In [7] Celotto andMeda showed that the Riesz transform
associated with the combinatorial Laplacian is bounded from a suitable Hardy type
space to L1 on graphs with the Cheeger isoperimetric property. In the recent paper [9]
the authors obtained the L p-boundedness of Riesz transform for the so-called bounded
Laplacians on any weighted graph and any p ∈ (1,∞); however, the latter results are
proved only under the assumption of positive spectral gap. We remark once again
that (T , μ) is nondoubling and does not satisfy the Cheeger isoperimetric property.
Moreover, the flow Laplacian L, which is a bounded Laplacian in the sense of [9],
does not have spectral gap (see Sect. 2). Hence, none of the above-mentioned results
may be applied in our case.

In [16] the Calderón–Zygmund theory of [15], as well as the Hardy and BMO
spaces of [2, 3], were generalized to trees of bounded degree with arbitrary locally
doubling flows.While the formulation of the problem for more general trees and flows
does not require any additional effort, extending the results presented here to these
more general situations seems far from being trivial, mainly because of the lack of
explicit formulas for the heat kernel. A different approach is probably needed, and we
will possibly tackle this problem in future work.

The paper is organized as follows. In Sect. 2 we introduce the flow LaplacianL, the
Riesz transform R, and we recall a few properties of the heat kernel of L, including
its relation with the heat kernel on Z. In Sect. 3 we discuss the transference result
from � × Z to T . In Sect. 4 we prove the L p-boundedness of the Riesz transform for
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p ∈ (1,∞) and we show a negative endpoint result for R and p = ∞. In Sect. 5 we
introduce and study the boundedness of horizontal Riesz transforms.

Along the paper, if A and B are two sets, we write AB to denote the set of all
functions from B to A. Moreover, if A is a set, we write χA for the characteristic
function of A, and we write idA for the identity map on the set CA of complex-valued
functions on A.

2 The Homogeneous Tree and the Flow Laplacian

In this section we collect all the notation and the preliminary results that will be used
to study the boundedness of Riesz transforms on the homogeneous tree T with the
measure μ.

2.1 Combinatorial and Flow Laplacians

The combinatorial Laplacian on T , which we denote by �, is the probabilistic Lapla-
cian associated to the simple nearest neighbour random walk on T and is defined
by

� f (x) = 1

q + 1

∑

y∼x

(
f (x) − f (y)

) ∀ f ∈ C
T , x ∈ T ;

here ∼ denotes the neighbouring relation between vertices of T . The operator � is
bounded and self-adjoint on L2(#), that is, the L2 space on T with respect to the
counting measure #.

We denote by L the natural Laplacian on (T , μ), which we call the flow Laplacian
and is given by

L f (x) = f (x) − 1

2
√
q

∑

y∼x

μ(y)1/2

μ(x)1/2
f (y) ∀ f ∈ C

T , x ∈ T . (2.1)

This is precisely the Laplacian on T studied in [15]. It is easily seen that the flow
Laplacian can be expressed in terms of the combinatorial Laplacian as follows:

L = 1

1 − b
μ−1/2 (� − bI ) μ1/2, (2.2)

where b = (
√
q − 1)2/(q + 1), and μ1/2 and μ−1/2 are thought of as multiplication

operators. Clearly μ1/2 : L2(μ) → L2(#) is an isomorphism, and it is well known
(see for instance [10]) that b is the bottom of the spectrum of � on L2(#), from which
it immediately follows thatL is self-adjoint on L2(μ) and has no spectral gap. Indeed,
the spectrum of L is precisely [0, 2], see [15, Remark 2.1]. Equation (2.2) plays a
fundamental role in proving our results, because it allows us to exploit some known
formulas for the heat kernel of the combinatorial Laplacian.
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Notice that we can write

L = idT − (	 + 	∗)/2, (2.3)

where 	 : CT → C
T is defined by

	 f (x) = f (p(x)) ∀ f ∈ C
T , x ∈ T ,

while 	∗ is its adjoint with respect to the L2(μ)-pairing, given by

	∗ f (x) = 1

q

∑

y∈s(x)
f (y) ∀ f ∈ C

T , x ∈ T .

Such operators will often appear in the sequel and we shall summarize some of their
properties in the following proposition.

Proposition 2.1 The following hold:

(i) for all f , g ∈ C
T ,

	∗( f 	g) = g	∗ f ;

(ii) 	∗	 = idT ;
(iii) for every p ∈ [1,∞] the operator 	 is an isometric embedding of L p(μ) into

itself, and also an isometric embedding of L1,∞(μ) into itself;
(iv) for every p ∈ [1,∞] the operator 	∗ is bounded on L p(μ) with norm 1 and it

is bounded on L1,∞(μ) with norm at most q.

Proof For all f , g ∈ C
T and x ∈ T ,

	∗( f 	g)(x) = 1

q

∑

y∈s(x)
f (y)	g(y) = 1

q

∑

y∈s(x)
f (y)g(x) = g(x)	∗ f (x),

which proves part (i). Taking f ≡ 1 in the previous identity yields part (ii).
Consider now p ∈ [1,∞) and f ∈ C

T . Then

‖	 f ‖p
L p(μ) =

∑

x∈T
| f (p(x))|p q�(x) =

∑

x∈T
| f (p(x))|p q�(p(x))−1 = ‖ f ‖p

L p(μ),

proving the L p(μ) result of part (iii) in the case where p ∈ [1,∞); the remaining case
p = ∞ is analogous and easier. Furthermore, as μ is a flow measure, for all λ > 0,

μ{|	 f | > λ} = μ(p−1({| f | > λ})) = μ{| f | > λ},

which proves that ‖	 f ‖L1,∞(μ) = ‖ f ‖L1,∞(μ).
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The L p-boundedness statement in part (iv) follows by part (iii) and duality. It
remains to show the L1,∞-boundedness. Given λ > 0 and f in CT we have that

{x ∈ T : |	∗ f (x)| > λ} =
{
x ∈ T :

∣∣∣∣
∑

y∈s(x)
f (y)

∣∣∣∣ > qλ

}

⊆ {x ∈ T : max
y∈s(x) | f (y)| > λ}

=
q⋃

j=1

{x : | f (s j (x))| > λ},

where s j (x), j = 1, . . . , q, is an enumeration of s(x). It follows that

μ({|	∗ f | > λ}) ≤
q∑

j=1

μ{| f ◦ s j | > λ} ≤ qμ{| f | > λ} ≤ q
‖ f ‖L1,∞(μ)

λ
,

because

μ{| f ◦ s j | > λ} =
∑

x∈T
q�(x)χ{| f (s j (x))|>λ} = q

∑

x∈T
q�(s j (x))χ{| f (s j (x))|>λ}.

Hence 	∗ is bounded on L1,∞(μ) with norm at most q. ��

2.2 Gradient and Riesz Transform

The definition of Riesz transform depends on a notion of gradient on graphs, which
is not unambiguous in the literature. Many authors, including Hebisch and Steger in
[15], define the “modulus of the gradient” of a function f ∈ C

T as the vertex function

Df (x) =
∑

y∼x

| f (x) − f (y)| ∀x ∈ T ,

and consequently the “modulus of the Riesz transform” as the sublinear operator
DL−1/2; as usual, fractional powers of the Laplacian are defined by means of the
Spectral Theorem.

Here we find it natural and convenient to define the flow gradient on T as

∇ f (x) = (idT − 	) f (x) = f (x) − f (p(x)) ∀ f ∈ C
T , x ∈ T .

Note that, by (2.3) and Proposition 2.1 (ii),

∇∗ ∇ = (idT − 	∗)(idT − 	) = 2L,

thus the flow gradient ∇ is naturally associated with the flow Laplacian L, in that it
allows one to write the latter in “divergence form”.We then define the Riesz transform
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on (T , μ) as the linear operator

R f (x) = ∇L−1/2 f (x) = L−1/2 f (x) − L−1/2 f (p(x)) ∀ f ∈ C
T , x ∈ T .

We now show that the relevant boundedness properties ofR are equivalent to those
of the operator DL−1/2 studied in [15]. On the basis of the following statement, we
will be allowed to use the boundedness results from [15] for the modulus of the Riesz
transform on (T , μ) as applying toR too.

Proposition 2.2 For every p ∈ [1,∞],

‖∇ f ‖L p(μ) ≤ ‖Df ‖L p(μ) ≤ (1 + q)‖∇ f ‖L p(μ),

and
‖∇ f ‖L1,∞(μ) ≤ ‖Df ‖L1,∞(μ) ≤ (1 + q)2‖∇ f ‖L1,∞(μ).

Proof To prove the above statement for L p norms, recall that μ(x) = qμ(y) if y ∈
s(x); so, when p < ∞,

‖∇ f ‖p
L p(μ) ≤ ‖Df ‖p

L p(μ) ≤ (1 + q)p−1
∑

x∈T

∑

y∼x

| f (x) − f (y)|p μ(x)

= (1 + q)p−1
∑

x∈T

(
| f (x) − f (p(x))|p μ(x)

+ q
∑

y∈s(x)
| f (x) − f (y)|p μ(y)

)

= (1 + q)p‖∇ f ‖p
L p(μ).

The case p = ∞ is analogous and easier.
Finally, on the one hand it is clear that ‖∇ f ‖L1,∞(μ) ≤ ‖Df ‖L1,∞(μ). On the other

hand, for any λ > 0,

{x : |Df (x)| > λ}
⊆

{
x : |∇ f (x)| >

λ

q + 1

}
∪

{
x : ∃y ∈ s(x) : | f (x) − f (y)| >

λ

q + 1

}
,

from which it follows that

λμ({x : |Df (x)| > λ}) ≤ (q + 1)2‖∇ f ‖L1,∞(μ),

as required. ��
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2.3 Laplacian and Riesz Transform onZ

Let �Z denote the discrete Laplacian on Z, namely,

�ZF(n) = F(n) − F(n + 1) + F(n − 1)

2
∀n ∈ Z,

for every F inCZ. Observe that�Z = idZ − (τ1 + τ−1)/2, where τk F(n) = F(n− k)
is the translation by k ∈ Z. We also introduce the discrete (step-1) gradient ∇Z =
idZ − τ−1 and the associated Riesz transform on Z (also known as the “discrete
Hilbert transform”), formally defined as RZ = ∇Z �

−1/2
Z

. We point out that

∇∗
Z

= idZ − τ1 = −τ1∇Z

and

�Z = 1

2
∇∗
Z
∇Z = 1

2

(∇Z + ∇∗
Z

)
. (2.4)

Many of the above identities are analogous to the ones obtained above for the flow
Laplacian and the vertical gradient on T ; this is natural, as Z can be thought of as
the homogeneous tree Tq with q = 1. A crucial difference between the case q = 1
considered here and the case q ≥ 2 discussed above is that the translation operator τ1
on Z is invertible, with inverse τ−1, and in particular τ1 and τ−1 commute; the same
does not hold for the operators	 and	∗ on T = Tq for q ≥ 2. More generally, all the
operators that we introduced on Z (�Z, ∇Z, RZ, and their adjoints) are translation-
invariant and (due to the commutativity of Z) commute pairwise.

Let us now consider the skew-symmetric part R̃Z of the Riesz transform RZ,
namely,

R̃Z = RZ − R∗
Z

= ∇̃Z �
−1/2
Z

,

where

∇̃Z = τ1 − τ−1;

in other words, R̃Z can be also thought of as a first-order Riesz transform on Z,
associated to the skew-symmetric step-2 gradient ∇̃Z.

We record here some useful properties of RZ and R̃Z.

Proposition 2.3 Let kZ and k̃Z be the convolution kernels of RZ and R̃Z. Then

kZ(n) =
√
2

π

1

n + 1/2
, k̃Z(n) = 2

√
2

π

n

n2 − 1/4
(2.5)
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for all n ∈ Z. In particular, kZ and k̃Z are Calderón–Zygmund kernels, i.e., they satisfy
the estimates

|kZ(n)| ≤ C(1 + |n|)−1, |∇ZkZ(n)| ≤ C(1 + |n|)−2, (2.6)

|k̃Z(n)| ≤ C(1 + |n|)−1, |∇Zk̃Z(n)| ≤ C(1 + |n|)−2 (2.7)

for some constant C ∈ (0,∞) and all n ∈ Z. Moreover, the operators RZ and R̃Z

and their adjoints are of weak type (1, 1) and bounded on �p(Z) for all p ∈ (1,∞).

Proof The explicit formula for kZ can be found in [1, Proposition 1]; note that our
RZ coincides with −√

2H+ in the notation of [1]. From the explicit formula, the
estimates (2.6) are immediately verified; alternatively, asZ is commutative and finitely
generated (thus of polynomial growth), one can invoke the more general theory of [14,
pp. 695–696], which also discusses weak type (1, 1) and L p-boundedness properties.
As R̃Z = RZ − R∗

Z
and

k̃Z(n) = kZ(n) − kZ(−n),

the analogous results for R̃Z follow. ��

2.4 Heat Kernels onZ and T

By translation-invariance, the heat semigroup e−t�Z on Z is a convolution operator;
we shall denote by hZt (t > 0) the corresponding convolution kernel on Z.

We nowmove to the homogeneous tree T . Let e−t� and e−tL be the heat semigroups
of the combinatorial Laplacian � and of the flow Laplacian L on T , respectively. We
shall denote by ht and Ht the associated heat kernels on the respective measure spaces
on which the generators are self-adjoint and bounded, i.e.,

e−t� f (x) =
∑

y∈T
ht (x, y) f (y), e−tL f (x) =

∑

y∈T
Ht (x, y) f (y)μ(y). (2.8)

By the Spectral Theorem and (2.2), we obtain the following relation between the
combinatorial and the flow semigroups,

e−tL = μ−1/2ebt/(1−b)e−t�/(1−b)μ1/2. (2.9)

By means of this relation, we can deduce the following formula for Ht from an anal-
ogous known formula for ht .

Proposition 2.4 For all t > 0 and x, y ∈ T ,

Ht (x, y) = q−�(x)/2 Jt (d(x, y)) q−�(y)/2, (2.10)
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where, for all n ∈ N,

Jt (n) =
∞∑

k=0

q−(n+2k)/2 ∇̃Zh
Z

t (n + 2k + 1).

Proof From [10, Proposition 2.5] we know that

ht (x, y) = e−btq−d(x,y)/2
∞∑

k=0

q−k ∇̃Zh
Z

t(1−b)(d(x, y) + 2k + 1), (2.11)

and the desired formula for Ht easily follows from (2.8) and (2.9). ��
An important feature of the heat kernel formula (2.10) is the fact that, apart from the

factor q−(�(x)+�(y))/2, the expression for Ht (x, y) only depends on the distance d(x, y)
between the vertices x and y; this “almost-radiality” of the heat kernel Ht of the flow
Laplacian is a counterpart of the radiality of the heat kernel ht of the combinatorial
Laplacian given in (2.11), which in turn is a consequence of the homogeneity of T .

Another crucial feature of the formula in Proposition 2.4 is the fact that it relates
the heat kernels Ht on T and hZt on Z. As a consequence, by subordination, we can
deduce an expression for the integral kernel of L−1/2, relating it to the convolution
kernel k̃Z of the skew-symmetric part R̃Z of the Riesz transform on Z.

Corollary 2.5 The integral kernel of L−1/2 has the form

KL−1/2(x, y) = q−�(x)/2 G(d(x, y)) q−�(y)/2, (2.12)

where

G(n) =
∞∑

k=0

q−(n+2k)/2 k̃Z(n + 2k + 1). (2.13)

In particular,
qn/2[G(n) − G(n + 2)] = k̃Z(n + 1) (2.14)

for all n ∈ N.

Proof From the subordination formula

L−1/2 = 1√
π

∞∫

0

e−tL dt

t1/2

and (2.10), we deduce that the integral kernel of L−1/2 has the form (2.12), with G
given by

G(n) = 1√
π

∞∫

0

Jt (n)
dt

t1/2
=

∞∑

k=0

q−(n+2k)/2 1√
π

∞∫

0

∇̃Zh
Z

t (n + 2k + 1)
dt

t1/2
.
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The analogous subordination formula applied to �Z in place of L also gives

R̃Z = 1√
π

∞∫

0

∇̃Ze
−t�Z

dt

t1/2
,

that is,

k̃Z = 1√
π

∞∫

0

∇̃Zh
Z

t
dt

t1/2
, (2.15)

and the desired expression (2.13) for G follows. The identity (2.14) is an immediate
consequence of (2.13). ��

As we shall see, the identity in Corollary 2.5 will be crucial for us to deduce
boundedness properties of R from those of RZ. This deduction is made possible by
the transference result discussed in the next section.

3 Punctured Boundary, Disintegration and Transference

Let� = ∂T \{ω∗}, where ω∗ is the mythical ancestor determining the direction of the
flow. For all ω ∈ � and n ∈ Z, we define ωn ∈ T as the only vertex in the geodesic
[ω,ω∗] joiningω toω∗ such that �(ωn) = n. Themapping�×Z � (ω, n) �→ ωn ∈ T
is clearly surjective, and allows us to consider T as a “quotient” of the product �×Z.

Crucially, one can disintegrate the flowmeasureμ along this mapping, and consider
it as the push-forward of a product measure on � × Z. Namely, we can equip � with
the measure ν such that, if we set �x = {ω ∈ � : x ∈ [ω,ω∗]}, then

ν(�x ) = μ(x) = q�(x)

for all x ∈ T (see [11, Sect. 2]) and [30, Formula (3.5)]). An application of Fubini’s
Theorem then readily shows that

∑

x∈T
f (x) μ(x) =

∫

�

∑

n∈Z
f (ωn) dν(ω) (3.1)

for all nonnegative or μ-summable f ∈ C
T (cf. [11, Formula (3.1)]).

We now define the lifting operator � : CT → C
�×Z by

� f (ω, n) = f (ωn) ∀ω ∈ �, n ∈ Z. (3.2)

Proposition 3.1 The following hold:

(i) for every nonnegative or μ-summable f ∈ C
T ,

∑

x∈T
f (x) μ(x) =

∫

�×Z

� f d(ν × #);
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(ii) � is an isometric embedding from L p(μ) to L p(ν × #) for every p ∈ [1,∞],
and also from L1,∞(μ) to L1,∞(ν × #);

(iii) the adjoint map �∗ is given by

�∗g(x) = 1

ν(�x )

∫

�x

g(ω, �(x)) dν(ω);

(iv) �∗ maps L p(ν × #) to L p(μ) with norm equal to 1 for every p ∈ [1,∞], and
moreover �∗� = idT ;

(v) the map ��∗ is not bounded on L1,∞(ν × #).

Proof Property (i) is just a rephrasing of (3.1). Property (ii) follows from (i) and the
fact that |� f |p = �(| f |p) for all p ∈ [1,∞).

We now prove property (iii). For every f in CT and g in C�×Z,

∫

�×Z

(� f ) g d(ν × #) =
∫

�

∑

n∈Z
f (ωn) g(ω, n) dν(ω)

=
∑

n∈Z

∑

x : �(x)=n

f (x)
∫

�x

g(ω, n) dν(ω)

=
∑

x∈T
f (x)

1

ν(�x )

∫

�x

g(ω, �(x)) dν(ω) μ(x),

whence we deduce the formula for �∗.
As for part (iv), the L p-boundedness with norm 1 of �∗ follows by duality from

part (ii), and the case p = 2 of the latter also implies that �∗� = idT .
To prove (v), let us fix an element ω ∈ �o (thus ω0 = o), and note that {�ωn }n∈Z

is a strictly increasing sequence of subsets of � with

⋂

n∈Z
�ωn = {ω},

⋃

n∈Z
�ωn = �.

Let Fo : � → R and F : � × Z → C be defined by

Fo =
∑

n≤0

q−nχ�ωn \�ωn−1
, F = Fo ⊗ χ{0}.

It is easy to see that

∫

�

Fo dν =
∑

n≤0

q−nν(�ωn \ �ωn−1) =
∑

n≤0

q−n(qn − qn−1) = +∞.

Moreover, for every λ > 0,

{(ω, n) : |F(ω, n)| > λ} = {ω : Fo(ω) > λ} × {0} = (�ωn(λ)
\ {ω}) × {0},
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where n(λ) = max{n ≤ 0 : n < logq(1/λ)}, so

(ν × #)({(ω, n) : |F(ω, n)| > λ}) = qn(λ) ≤ 1

λ
,

and therefore F ∈ L1,∞(ν × #). Now, for every ω ∈ �o,

��∗F(ω, 0) = �∗F(o) = 1

ν(�o)

∫

�o

Fo dν = +∞,

which implies that ��∗F does not belong to L1,∞(ν × #). This proves (v). ��
An immediate consequence of the boundedness properties of the lifting operator is

the following relation between weak and strong type bounds of operators on T and on
� × Z.

Proposition 3.2 Assume that A and α are linear operators on C
T and C

�×Z respec-
tively.

(i) A is of weak type (1, 1) on (T , μ) if and only if �A�∗ is of weak type (1, 1) on
(� × Z, ν × #), and their norms are the same.

(ii) For any p ∈ [1,∞], A is L p(μ)-bounded if and only if �A�∗ is L p(ν × #)-
bounded, and their norms are the same.

(iii) For any p ∈ [1,∞], if α is L p(ν × #)-bounded, then �∗α� is L p(μ)-bounded,
with norm not greater than that of α.

Proof Part (iii), as well as the “only if” implications in parts (i) and (ii), follow immedi-
ately by the boundedness properties of� and�∗ discussed in Proposition 3.1 (ii)-(iv).
As for the reverse implication in part (i), it is enough to observe that

‖A f ‖L1,∞(μ) = ‖�A�∗� f ‖L1,∞(ν×#) ≤ ‖�A�∗‖L1→L1,∞‖ f ‖L1(μ)

as � is an isometric embedding and �∗� = idT by Proposition 3.1; a completely
analogous argument proves the remaining implication in part (ii). ��
Remark 3.3 The implication in part (iii) of Proposition 3.2 cannot in general be
reversed. Indeed, according to part (ii), �∗α� is L p(μ)-bounded if and only if
��∗α��∗ is L p(ν × #)-bounded; clearly the latter would follow from the L p-
boundedness of α, but is not equivalent to it, as the “averaging operator” ��∗ may
reduce L p norms. Similarly, by part (i), �∗α� is of weak type (1, 1) if and only if
��∗α��∗ is; however ��∗ is unbounded on L1,∞ (see Proposition 3.1 (v)), so the
weak type (1, 1) of α in general does not imply the analogous property for �∗α�.

We now define the shift operator σ : C�×Z → C
�×Z by

σ g(ω, n) = g(ω, n + 1) ∀g ∈ C
�×Z, ω ∈ �, n ∈ Z. (3.3)
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Moreover, for every n ∈ Z we define

	̃n =
{

	n if n ≥ 0,

(	∗)−n if n < 0.
(3.4)

The maps �, σ and 	 form a commutative diagram,

C
�×Z

C
�×Z

C
T

C
T ,

σ

	

� �

as discussed in the following proposition.

Proposition 3.4 The following hold:

(i) σ� = �	;
(ii) 	̃n = �∗σ n� for all n ∈ Z.

Proof Clearly

σ� f (ω, n) = � f (ω, n + 1) = f (ωn+1) = f (p(ωn)) = 	 f (ωn) = �	 f (ω, n)

for all f ∈ C
T , ω ∈ � and n ∈ Z, which proves part (i). Iteration of this identity also

gives

σ n� = �	n

for all n ∈ N. Applying �∗ to both sides of this identity and using the fact that
�∗� = idT (see Proposition 3.1 (iv)) gives

�∗σ n� = 	n,

which proves part (ii) in the case n ∈ N. To complete the proof of part (ii), it is enough
to take adjoints in the latter identity, and use the fact that (σ n)∗ = σ−n , as σ n is a
unitary automorphism of L2(ν × #). ��

In light of the previous proposition, any operator K on CT of the form

K =
∑

n∈Z
k(n) 	̃−n, (3.5)

for some k : Z → C, “lifts” to an operator on C
�×Z of the form

∑

n∈Z
k(n) σ−n = id� ⊗ τ(k),
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where τ(k) is the convolution operator on Z with convolution kernel k, i.e., τ(k) f =
f ∗Z k. In other words, we can write

K = �∗(id� ⊗ τ(k))�.

Therefore boundedness properties of K can be related to boundedness properties of
τ(k) by means of Proposition 3.2 and the following statement, which collects a few
immediate consequences of Fubini’s Theorem.

Lemma 3.5 Let B be a linear operator on CZ.

(i) For any p ∈ [1,∞], B is �p(Z)-bounded if and only if id� ⊗ B is L p(ν × #)-
bounded, and their norms are the same.

(ii) For any p ∈ [1,∞], B is of weak type (1, 1) on Z if and only if id� ⊗ B is of weak
type (1, 1) on � × Z, and their norms are the same.

Recall thatCv p(Z) is the space of all L p-convolutors ofZ, i.e., the convolution ker-
nels of the �p(Z)-bounded translation-invariant operators. By combining the previous
results, we obtain the following statement.

Theorem 3.6 For all p ∈ [1,∞], if k ∈ Cv p(Z) and K is defined by (3.5), then K is
L p(μ)-bounded, with norm at most ‖k‖Cv p .

Remark 3.7 The previous theorem can be thought of as a transference result for L p

bounds from the group Z to the weighted tree (T , μ), which holds despite the fact
that n �→ 	̃n is not a representation of Z on L p(μ), nor does it appear to fit into the
more general framework of “transference couples” described in [5]. It is not clear to
us whether an analogous transference result could hold for weak type (1, 1) bounds:
due to the obstruction discussed in Remark 3.3, the proof given above for strong type
bounds does not appear to extend to the weak type case too.

4 Boundedness Results forR
4.1 Lp-boundedness of the Riesz transformR

We start with an observation about “almost-radial” integral operators on T in the sense
of Sect. 2.4.

Lemma 4.1 Let K be an integral operator on (T , μ) with kernel

K (x, y) = q−�(x)/2 G(d(x, y)) q−�(y)/2,

where G : N → R. Let S denote the composition ∇K. Then,

S − S∗ =
∑

n∈Z
h(n) 	̃−n, (4.1)
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where

h(n) =
{
sgn(n) q(|n|−1)/2 [G(|n| − 1) − G(|n| + 1)] if n �= 0,

0 otherwise,
(4.2)

and 	̃n is defined in (3.4).

Proof Since G is real-valued, K is self-adjoint, so

S − S∗ = ∇K − K∇∗ = −	K + K	∗.

More explicitly, for every function f on T ,

	K f (x) =
∑

y∈T
q(�(y)−�(p(x)))/2 G(d(p(x), y)) f (y)

=
∑

y∈T
q(�(y)−�(x))/2−1/2 G(d(p(x), y)) f (y),

and

K	∗ f (x) =
∑

y∈T
q(�(y)−�(x))/2−1 G(d(x, y))

∑

z∈s(y)
f (z)

=
∑

z∈T
q(�(p(z))−�(x))/2−1 G(d(x, p(z))) f (z)

=
∑

y∈T
q(�(y)−�(x))/2−1/2 G(d(x, p(y))) f (y),

thus

(S − S∗) f (x) = −
∑

y∈T
q(�(y)−�(x))/2−1/2 [G(d(p(x), y) − G(d(x, p(y)))] f (y),

and clearly G(d(p(x), y) − G(d(x, p(y))) vanishes if x �< y or y �< x . So we can
restrict the sum to the set {y ∈ T : y < x or x < y}.

Define now, for every n ∈ N, the set

sn(x) = {y ≤ x : d(x, y) = n} (4.3)
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of nth-generation descendants of x . Then

−(S − S∗) f (x) =
∑

n>0

q(n−1)/2 [G(n − 1) − G(n + 1)] f (pn(x))

+
∑

n>0

q−(n+1)/2 [G(n + 1) − G(n − 1)]
∑

y∈sn(x)
f (y)

=
∑

n>0

q(n−1)/2 [G(n − 1) − G(n + 1)] (	n − (	∗)n) f (x),

as required. ��
We are now ready to prove our main result, Theorem 1.1.

Proof of Theorem 1.1 By [15, Theorem 2.3] and Proposition 2.2, the Riesz transform
R is bounded on L p(μ) for p ∈ (1, 2]. Recall now from Corollary 2.5 that L−1/2 is
an integral operator with kernel K (x, y) = q−�(x)/2 G(d(x, y)) q−�(y)/2, with G as
in (2.13). By applying Lemma 4.1 to K = L−1/2 we deduce that

R − R∗ = ∇L−1/2 − L−1/2∇∗ =
∑

n∈Z
k̃Z(n) 	̃−n; (4.4)

for the last identity we used (2.14) and (4.2), together with the fact that k̃Z is odd.
Since, by Proposition 2.3, k̃Z is in Cv p(Z) for every p ∈ (1,∞), by Theorem 3.6

we deduce that R − R∗ is bounded on L p(μ) for every p ∈ (1,∞). By difference,
we conclude that R∗ is bounded on L p(μ) for p ∈ (1, 2], or equivalently, that R is
bounded on L p(μ) for p ∈ [2,∞), as required. ��
Remark 4.2 The identity (4.4) shows that, in the notation of Sect. 3,

R − R∗ = �∗(id� ⊗ R̃Z)� = �∗(id� ⊗ (RZ − R∗
Z
))�;

in other words, via the lifting procedure, the skew-symmetric part of R corresponds
to the skew-symmetric part of RZ. As discussed in Remark 3.7, while we know that
RZ and R̃Z are of weak type (1, 1), via our transference strategy we appear not to be
able to prove a weak type (1, 1) result for the operator R∗, which remains an open
problem.

4.2 Negative Endpoint Result forR

Hardy and BMO spaces adapted to the space (T , μ) were introduced and studied in
[2, 3, 16]. These spaces are useful to obtain endpoint results for singular operators for
p = 1 and p = ∞, respectively, thanks to their good interpolation properties.

Let us recall that any subset F of T is called an admissible trapezoid if it is either
a singleton or can be written as

F = Fh′′
h′ (x0) := {x ∈ T : x ≤ x0, �(x0) − h′′ < �(x) ≤ �(x0) − h′},
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where x0 is some vertex and h′, h′′ are two positive integers such that 2 ≤ h′′/h′ ≤ 12.
We denote by F the family of admissible trapezoids. For any F = Fh′′

h′ (x0) ∈ F , we
define F∗ = {x ∈ T : d(x, F) < h′} to be a thickened version of F .

A (1,∞)-atom on (T , μ) is a mean-zero function supported on an admissible
trapezoid F and bounded by μ(F)−1. The atomic Hardy space H1(μ) is the space of
functions g ∈ L1(μ) such that g = ∑

j λ j a j , where the a j are (1,∞)-atoms and {λ j }
is an �1 sequence of complex numbers. The dual space of H1(μ) can be identified with
the space BMO(μ) [16, Theorem 4.10], which is defined as the space of functions
f on T for which supF∈F | f − fF |F < ∞, where fF denotes the integral mean of
a function f on the set F with respect to the measure μ. In particular, there exists a
constant C ∈ (0,∞) such that, for any (1,∞)-atom a,

|〈 f , a〉| =
∣∣∣∣∣
∑

x∈T
f (x) a(x) μ(x)

∣∣∣∣∣ ≤ C‖ f ‖BMO(μ) ∀ f ∈ BMO(μ). (4.5)

Admissible trapezoids are used as base sets for extending the Calderón–Zygmund
theory developed in [15] to trees with locally doubling flowmeasures, playing the role
balls play in the classical theory. In particular, the following lemma holds.

Lemma 4.3 ([16, Theorem5.8])LetK be a linear operator which is bounded on L2(μ)

and admits an integral kernel K .

(i) If the kernel K satisfies the condition

sup
F∈F

sup
y,z∈F

∑

x /∈F∗
|K (x, y) − K (x, z)| μ(x) < +∞, (4.6)

then K extends to an operator which is of weak type (1, 1), bounded from H1(μ)

to L1(μ) and on L p(μ), for p ∈ (1, 2).
(ii) If the kernel K satisfies the condition

sup
F∈F

sup
y,z∈F

∑

x /∈F∗
|K (y, x) − K (z, x)| μ(x) < +∞, (4.7)

thenK extends to an operator which is bounded from L∞(μ) to BMO(μ) and on
L p(μ), for p ∈ (2,∞).

It is known thatR is bounded from H1(μ) to L1(μ) [3, Sect. 4.3]. We show below
that R does not map L∞(μ) into BMO(μ). This can be thought of as a discrete
counterpart to the counterexamples in the continuous setting discussed in [26, Section
4].

Proposition 4.4 The Riesz transform R does not map L∞(μ) into BMO(μ).

Proof By (4.5) it is enough to exhibit a function f ∈ L∞(μ) and a (1,∞)-atom a
such that the dual pairing 〈R f , a〉 is not bounded. Consider the admissible trapezoid
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F = F2
1 (o) = s(o), with μ(F) = 1. Pick x1, x2 ∈ F such that x1 �= x2 and define

the (1,∞)-atom a = δx1 − δx2 . Let f = χ{x : x≤x1}. Then,

〈R f , a〉 = R f (x1) μ(x1) − R f (x2) μ(x2)

= q−1 [L−1/2 f (x1) − L−1/2 f (x2)],

where we used that R = ∇L−1/2 = (idT − 	)L−1/2, μ(x1) = μ(x2) = 1/q and
the cancellation induced from the fact that p(x1) = p(x2). From Corollary 2.5 and the
fact that �(x1) = �(x2) = −1, we then deduce that

〈R f , a〉 = q−1/2
∑

y : y≤x1

q�(y)/2 [G(d(x1, y)) − G(d(x2, y))].

Next, observe that whenever y ≤ x1, we have d(y, x2) = d(y, x1) + 2, and −�(y) =
d(y, x1) + 1, so

〈R f , a〉 = q−1/2
∑

y : y≤x1

q�(y)/2 [G(d(x1, y)) − G(d(x1, y) + 2)]

= q−1
∑

n≥0

qn/2 [G(n) − G(n + 2)]

= q−1
∑

n≥0

k̃Z(n + 1) = +∞,

by (2.14) and (2.5), and we are done. ��

Remark 4.5 ByProposition 4.4,we deduce that the integral kernel ofR does not satisfy
the dual Hörmander condition (4.7). Indeed, otherwise, Lemma 4.3 would imply the
L∞(μ) → BMO(μ) boundedness of R. Notice that this phenomenon is in sharp
contrast with the well known endpoint results for the Euclidean Riesz transforms of
the first order, as well as the ones for the discrete first-order Riesz transforms on Z and
more general finitely generated abelian groups [14, Section 8], and it shows why it was
not possible to use condition (4.7) to study the L p-boundedness ofR for p ∈ (2,∞).

By Proposition 4.4 we deduce thatR∗ is not bounded from H1(μ) to L1(μ). As it
is an open question (see Remark 4.2) whether R∗ is of weak type (1, 1), no positive
endpoint results for p = 1 and R∗ appear to be available. This partially motivates
the introduction in the following section of another natural class of Riesz transforms
associated with the flow Laplacian on (T , μ), for which we are able to prove the L p-
boundedness for p ∈ (1,∞), but also weak type (1, 1) endpoint results both for the
operator and its adjoint.
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5 Horizontal Riesz Transforms

Let ε ∈ C
T be bounded and such that 	∗ε = 0 on T ; in other words, we require that

∑

y∈s(x)
ε(y) = 0 ∀x ∈ T .

For every function f in CT we define the ε-horizontal gradient ∇ε f as

∇ε f (x) = 	∗(ε f )(x) = 1

q

∑

y∈s(x)
ε(y) f (y) ∀x ∈ T .

We summarize some properties of the ε-horizontal gradient in the following proposi-
tion.

Proposition 5.1 The following hold:

(i) ∇∗
ε f = ε 	 f for all f ∈ C

T ;
(ii) ∇ε = ∇ε ∇;
(iii) for any p ∈ [1,∞],

‖∇∗
ε ‖L p(μ)→L p(μ) ≤ ‖ε‖∞,

‖∇∗
ε ‖L1,∞(μ)→L1,∞(μ) ≤ ‖ε‖∞;

(iv) for any p ∈ [1,∞],

‖∇ε‖L p(μ)→L p(μ) ≤ ‖ε‖∞,

‖∇ε‖L1,∞(μ)→L1,∞(μ) ≤ q‖ε‖∞;

(v) Im(∇∗
ε ) ⊥ Im(	);

(vi) for all f , g ∈ C
T and m, n ∈ N,

〈	n∇∗
ε f , 	m∇∗

ε g〉 = δnm〈∇∗
ε f ,∇∗

ε g〉. (5.1)

Proof Part (i) is immediately deduced from the definitions, as

∇∗
ε = (	∗ε)∗ = ε 	,

where ε and ε are thought of as multiplication operators.
As for part (ii), for any function f ∈ C

T , since 	∗ε = 0,

∇ε f (x) = 1

q

∑

y∈s(x)
ε(y)( f (y) − f (x)) = ∇ε∇ f (x).

Part (iii) follows from Proposition 2.1 (iii) and the fact that ∇∗
ε = ε 	. Similarly,

part (iv) follows from Proposition 2.1 (iv) and the fact that ∇ε = 	∗ ε.
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Now, for every function f ∈ C
T ,

∇ε	 f = 	∗(ε 	 f ) = f 	∗ε = 0,

by Proposition 2.1 (i) and the assumption 	∗ε = 0 on ε. This proves part (v).
The orthogonality relation (vi) is a consequence of (v) and the fact that 	 is an

isometric embedding on L2(μ), by Proposition 2.1 (iii). ��
From the above proposition, we obtain an L2-boundedness result for a class of

operators on (T , μ). The following result should be compared to the case p = 2 of
Theorem 3.6, where a similar class of operators is considered. Crucially, here we do
not require that the sequence F in the definition of the operator (see (5.2) below), once
extended by zeros, is an L2-convolutor on Z, but only that it is square-summable. In
other words, here we do not require any cancellations from F ; the required cancella-
tions yielding the L2-boundedness of the resulting operator are instead provided by
the orthogonality relations (5.1).

Proposition 5.2 Let P be the linear operator on L2(μ) defined by

P f =
∑

n≥0

F(n)	n∇∗
ε f (5.2)

for every f ∈ L2(μ), where F ∈ �2(N). Then, P is bounded on L2(μ), with

‖P‖L2(μ)→L2(μ) ≤ ‖F‖�2(N) ‖ε‖∞.

Proof Let f be a function in L2(μ). By (5.1),

‖P f ‖2L2(μ)
=

∑

n≥0

|F(n)|2 ‖∇∗
ε f ‖2L2(μ)

= ‖F‖2
�2(N)

‖∇∗
ε f ‖2L2(μ)

,

hence, by Proposition 5.1,

‖P f ‖L2(μ) ≤ ‖F‖�2(N) ‖ε‖∞ ‖ f ‖L2(μ),

as desired. ��
Interestingly enough, an adaptation of the above strategy also allowsus to deduce the

weak type (1, 1) boundedness of an operator of the form (5.2) from a non-cancellative
assumption on F . The proof of the result below is significantly inspired by that of [13,
Theorem 3].

Theorem 5.3 LetP be as in (5.2)with F ∈ �1,∞(N). Then, for all f ∈ C
T and λ > 0,

μ({|P f | > λ}) ≤ 3 ‖F‖�1,∞(N) ‖ε‖∞
‖ f ‖L1(μ)

λ
. (5.3)
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Proof Note that ∇∗
ε and P depend R-linearly on ε; hence, without loss of generality,

we may assume that ‖ε‖∞ = 1.
Let λ > 0 and f ∈ L1(μ). For any n ∈ N, decompose f = fn + f̃n where

fn = f χ{|F(n) f |>λ}. Then,

μ({|P f | > λ})
≤ μ

({∣∣∣∣
∑

n≥0

F(n)	n∇∗
ε fn

∣∣∣∣ > 0

})
+ μ

({∣∣∣∣
∑

n≥0

F(n)	n∇∗
ε f̃n

∣∣∣∣ > λ

})
. (5.4)

Now, { fn �= 0} = {|F(n) f | > λ} and

{	n∇∗
ε fn �= 0} = p−n{∇∗

ε fn �= 0} = p−n{ε 	 fn �= 0}
⊆ p−n−1{ fn �= 0} = p−n−1{|F(n) f | > λ}, (5.5)

whence

μ

({∣∣∣∣
∑

n≥0

F(n)	n∇∗
ε fn

∣∣∣∣ > 0

})
≤

∑

n≥0

μ({	n∇∗
ε fn �= 0})

≤
∑

n≥0

μ({|F(n) f | > λ});
(5.6)

in the last inequality we used (5.5) and the fact that, since μ is a flow measure,

μ(p−k(E)) = μ(E)

for any E ⊂ T and k ∈ N. On the other hand, by Fubini’s Theorem,

∑

n≥0

μ({|F(n) f | > λ}) =
∑

x∈T
μ(x) #{n ∈ N : |F(n) f (x)| > λ}

≤ ‖F‖�1,∞(N)

λ

∑

x∈T
μ(x) | f (x)|

= ‖F‖�1,∞(N)

λ
‖ f ‖L1(μ).

(5.7)

For the remaining part, Chebyshev’s inequality and (5.1) imply that

μ

({∣∣∣∣
∑

n≥0

F(n)	n∇∗
ε f̃n

∣∣∣∣ > λ

})
≤ 1

λ2

∥∥∥∥
∑

n≥0

F(n)	n∇∗
ε f̃n

∥∥∥∥
2

L2(μ)

= 1

λ2

∑

n,m≥0

F(n)F(m) 〈	n∇∗
ε f̃n, 	

m∇∗
ε f̃m〉 = 1

λ2

∑

n≥0

|F(n)|2‖∇∗
ε f̃n‖2L2(μ)

.

(5.8)
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We now observe that, for all n ∈ N,

∇∗
ε f̃n = ε 	 f̃n = ε (	 f ) χ{|F(n)	 f |≤λ};

hence |∇∗
ε f̃n| ≤ |	 f | χ{|F(n)	 f |≤λ} (recall that ‖ε‖∞ = 1), and therefore

‖∇∗
ε f̃n‖2L2(μ)

=
∑

x∈T
μ(x) |∇∗

ε f̃n(x)|2 ≤
∑

x :	 f (x) �=0

μ(x) |	 f (x)|2χ{|F(n)	|≤λ}(x).

Thus
∑

n≥0

|F(n)|2‖∇∗
ε f̃n‖2L2(μ)

≤
∑

x :	 f (x) �=0

μ(x) |	 f (x)|2
∑

n : |F(n)	 f (x)|≤λ

|F(n)|2

≤ 2λ‖F‖�1,∞(N)

∑

x∈T
μ(x) |	 f (x)|

= 2λ‖F‖�1,∞(N) ‖	 f ‖L1(μ);
(5.9)

in the last inequality we used the fact that, for γ = λ/|	 f (x)|,

∑

n≥0

|F(n)|2χ{|F(n)|≤γ } =
∞∫

0

#{n ∈ N : |F(n)|2χ{|F(n)|≤γ } > α} dα

≤
γ 2∫

0

#{n ∈ N : |F(n)| > α1/2} dα

≤ ‖F‖�1,∞(N)

γ 2∫

0

α−1/2 dα

= 2γ ‖F‖�1,∞(N).

The desired estimate follows by combining (5.4), (5.6), (5.7), (5.8) and (5.9). ��
The relevance of the above bounds is made clear by the following computation,

which should be compared to Lemma 4.1.

Lemma 5.4 Let K be an integral operator on (T , μ) whose integral kernel has the
form

K (x, y) = q−�(x)/2 G(d(x, y)) q−�(y)/2

for some G : N → C. Then,

K∇∗
ε =

∑

n≥0

qn/2 [G(n) − G(n + 2)] 	n ∇∗
ε .
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Proof For all f ∈ C
T and x ∈ T ,

K∇∗
ε f (x) =

∑

y :p(y)>x

q−�(x)/2 G(d(x, y)) q�(y)/2 ε(y) f (p(y))

+
∑

y :p(y) �>x

q−�(x)/2 G(d(x, y)) q�(y)/2 ε(y) f (p(y)).
(5.10)

The second sum in (5.10) is equal to zero: indeed, if p(y) �> x , then d(x, y) =
d(x, p(y)) + 1, thus

∑

y :p(y) �>x

q−�(x)/2 G(d(x, y)) q�(y)/2 ε(y) f (p(y))

=
∑

z : z �>x

q−�(x)/2 G(d(x, z) + 1) q(�(z)−1)/2 f (z)
∑

y∈s(z)
ε(y)

and 	∗ε = 0. It follows that

K∇∗
ε f (x) =

∑

z : z≥x

q−�(x)/2

⎡

⎣
∑

y :p(y)=p(z)

G(d(x, y)) ε(y)

⎤

⎦ q�(z)/2 f (p(z)). (5.11)

We now observe that, for all z, y ∈ T , if z ≥ x and z �= y ∈ s(p(z)), then d(x, y) =
d(x, z) + 2, and moreover

∑

y∈s(p(z)),y �=z

ε(y) = −ε(z),

because 	∗ε = 0; as a consequence,

∑

y :p(y)=p(z)

G(d(x, y)) ε(y) = ε(z) [G(d(x, z)) − G(d(x, z) + 2)].

From (5.11) we then deduce that

K∇∗
ε f (x) =

∑

z : z≥x

q−�(x)/2 [G(d(x, z)) − G(d(x, z) + 2)] q�(z)/2 ε(z) f (p(z))

=
∑

n≥0

qn/2 [G(n) − G(n + 2)] ∇∗
ε f (pn(x)),

as desired. ��
As discussed in the introduction, we define the ε-horizontal Riesz transform by

Rε = ∇ε L−1/2.
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From Proposition 5.1 (ii) we deduce that

Rε = ∇ε R.

Since ∇ε is bounded on L1,∞(μ) and on L p(μ) for every p ∈ [1,∞] (see Proposition
5.1 (iii)), any weak type (1, 1) and L p-boundedness property for R transfers to Rε.
In particular, from Theorem 1.1 we deduce that Rε is bounded on L p(μ) for every
p ∈ (1,∞). Moreover, sinceR is of weak type (1, 1),Rε is also of weak type (1, 1).

An analogous argument applies to the adjoint operators R∗ and R∗
ε = R∗∇∗

ε , as
∇∗

ε is L p(μ)-bounded for all p ∈ [1,∞] (see Proposition 5.1 (iv)). Recall that we do
not know (see Remark 4.2) whether R∗ is of weak type (1, 1). Nevertheless, we are
able to prove a weaker result, namely, the weak type (1, 1) boundedness ofR∗

ε , which
can be considered as a discrete counterpart of [13, Theorem 1].

Theorem 5.5 The operator R∗
ε is of weak type (1, 1).

Proof In light of Corollary 2.5, we can apply Lemma 5.4 with K = L−1/2 and G
given by (2.13); thus, by (2.14),

R∗
ε = L−1/2∇∗

ε =
∑

n≥0

k̃Z(n + 1)	n∇∗
ε . (5.12)

On the other hand, by (2.7), k̃Z(1 + ·)|N belongs to �1,∞(N), so the desired bound
follows by Theorem 5.3. ��

We point out that, as was the case for the Riesz transformR (see Remark 4.5), the
previous weak type endpoint result cannot be deduced by showing that the integral
kernel of Rε satisfies the dual Hörmander condition (4.7). This is a consequence of
the following negative endpoint result for the horizontal Riesz transforms, analogous
to the one for R discussed in Sect. 4.2.

Proposition 5.6 If ε is not identically zero, thenR∗
ε does not map H1(μ) into L1(μ).

Proof As ε �≡ 0, there exists x1 ∈ T such that ε|s(x1) �≡ 0. Let x̄ = p(x1) and take
x2 ∈ s(x̄)\{x1}.

Much as in the proof of Proposition 4.4, consider the admissible trapezoid F =
F2
1 (x̄) = s(x̄), and define the (1,∞)-atom a = μ(F)−1(δx1 − δx2) supported in F .

Then, ∇∗
ε a = ε 	a by Proposition 5.1. In particular, for any y ∈ s(x1), ∇∗

ε a(y) =
μ(F)−1 ε(y), and therefore ∇∗

ε a �≡ 0, because ε|s(x1) �≡ 0.
From the identity ∇∗

ε a = ε 	a we also deduce that supp(∇∗
ε a) ⊆ s2(x̄), and

therefore supp(	n∇∗
ε a) ⊆ sn+2(x̄); here we are using the notation sn(x) from (4.3).

In particular, the supports of the functions 	n∇∗
ε a, n ∈ N, are pairwise disjoint. As

	 preserves L1(μ)-norms (see Proposition 2.1), from (5.12) we conclude that

‖R∗
εa‖L1(μ) =

∑

n≥0

k̃Z(n + 1)‖	n∇∗
ε a‖L1(μ) = ‖∇∗

ε a‖L1(μ)

∑

n≥0

k̃Z(n + 1) = +∞,

where we used Proposition 2.3 and the fact that ∇∗
ε a �≡ 0. ��
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