Abstract

This manuscript deals with the study of epidemic inference in the framework
of Statistical Physics. Epidemics are treated as stochastic processes on graphs.
The inference task consists in a probabilistic reconstruction of a specific epidemic
cascade (so called planted) using partial and noisy knowledge of the contact net-
work and of individuals’ infection state. The reconstruction process is reframed
in this thesis as the computation of observables over a high-dimensional prob-
ability distribution, known as the posterior. In the Introduction, connections
are drawn between posterior computation and Statistical Physics. Specifically, a
parallel is portrayed between inference and spin glass theory. Special attention is
given to the Nishimori conditions, which play a central role in both Spin Glass
theory and (epidemic) inference. The computation of the epidemic posterior
marginals is shown to be an NP-hard problem (as shown in the manuscript).
Thus, some approximate methods are required. The Causal Variational Ap-
proach is introduced for this purpose. It allows sampling without rejection from
a distribution which approximates the posterior. This method surpasses previ-
ously existing machine learning-based techniques, as well as some Mean-Field
approximations, in terms of accuracy. An attempt to characterize the difficulty
of inference tasks involves computing theoretical bounds on algorithmic perfor-
mance as functions of epidemic parameters. This is the objective of Epidemble,
introduced in Chapter 3 of this manuscript. Epidemble (Epidemic Ensemble)
is a semi-analytical tool based on the Replica Symmetric Cavity Method. This
technique allows to compute, in the limit of large-sized graphs, what a perfect
(exact) algorithm would find. In particular, Epidemble finds the values of sta-
tistical estimators (e.g., Area Under the ROC, Minimum Mean Squared Error,
Maximum Mean Overlap) as functions of epidemic parameters such as infection
rate, patient zero density, and the quantity and quality of clinical tests. These
results are provided in the form of phase diagrams which can be interpreted as
upper bounds to real inference alogrithms’ performances.



