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Abstract
Recently, the generalized reversed aging intensity functions have been studied in the
literature revealing to be a tool to characterize distributions, under suitable conditions.
In this paper, some improvements on these functions are given and the relation between
two cumulative distribution functions leading to the same generalization is studied.
In particular, a link with the two-parameters Weibull distributions is found and a new
stochastic order is defined in terms of the generalized reversed aging intensity. This
order is strictly related to the definition of extropy, that is the dual measure of entropy,
and some connections with well-known stochastic orders are analyzed. Finally, the
possibility of introducing the concept of generalized aging intensity is studied also in
terms of cumulative distribution functions with non-positive support.

Keywords Generalized reversed aging intensity · Reversed hazard rate · Generalized
Pareto distribution · Generalized reversed aging intensity order

Mathematics Subject Classification 60E15 · 62N05

1 Introduction

Let X be an absolutely continuous random variable with positive support (0,+∞),
cumulative distribution function (cd f ) F , probability density function (pd f ) f and
survival function (s f ) F . In reliability theory F(x) = P(X ≤ x) is also known as
unreliability function whereas F(x) = 1− F(x) = P(X > x) as reliability function.
In this context a great importance has the hazard rate function (hr ), r(x) = f (x)

F(x)
of
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X , also known as the force of mortality or the failure rate, where X is the survival
model of a life or a system being studied. Hazard rate function can be interpreted as
the instantaneous failure rate occurring just after the time point x , given that the unit
has survived till time x . This definition will cover discrete as well as mixed survival
models.

Moreover, we define cumulative hazard rate (chr ), R(x) = ∫ x
0 r(u)du = − log[1−

F(x)] (where log denotes the natural logarithm) and the classical aging intensity (AI )
function as L(x) = r(x)

1
x R(x)

= −x f (x)
[1−F(x)] log[1−F(x)] being the ratio of instantaneous

hazard rate r(x) to average hazard rate 1
x R(x) and expresses the units average aging

behavior. It analyzes the aging property quantitatively, the larger the aging intensity,
the stronger the tendency of aging (see [12]). For further properties and applications
of the aging intensity functions see [5, 11, 14]. Recently, with the use of the multi-
variate conditional hazard rate functions (see, for instance, [17]), the concept of aging
intensity function has been extended to the multivariate case taking into account the
possibility of observing a dynamic history by the multivariate conditional aging inten-
sity functions [7]. Let us note that F−1(x) = − log[1 − x] is the quantile function of
the standard exponential distribution with cd f F(x) = 1 − exp(−x).

Now we recall the earlier generalization of aging intensity (see, e.g., Szymkowiak
[19]) connected with the generalized Pareto distribution, with non-negative support
and with the following density function

wα(x) =
⎧
⎨

⎩
(1 − αx)

1
α
−1 for

{
x > 0, α < 0,
0 < x < 1

α
, α > 0,

exp(−x) for x > 0, α = 0,

cumulative distribution function

Wα(x) =
⎧
⎨

⎩
1 − (1 − αx)

1
α for

{
x > 0, α < 0,
0 < x < 1

α
, α > 0,

1 − exp(−x) for x > 0, α = 0,

and quantile function

W−1
α (x) =

{ 1
α
[1 − (1 − x)α] for 0 < x < 1, α �= 0,

− log(1 − x) for 0 < x < 1, α = 0.

Therefore, for distribution F with positive support (0,+∞) and density function
f , we receive the following α-generalized chr (see, Barlow and Zwet [3, 4])

RWα,F (x) = (W−1
α ◦ F)(x)

=
{ 1

α
[1 − [1 − F(x)]α] for x > 0, α �= 0

− log[1 − F(x)] for x > 0, α = 0,
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and α-generalized hr and AI functions can be defined as

rWα,F (x) = dRWα,F (x)

dx
= f (x)

wα[(W−1
α ◦ F)(x)] = f (x)

[1 − F(x)]1−α
(1)

LWα,F (x) = rWα,F (x)
1
x RWα,F (x)

=
{

α x f (x)
[1−[1−F(x)]α][1−F(x)]1−α for x > 0, α �= 0

− x f (x)
[1−F(x)] log[1−F(x)] for x > 0, α = 0.

Obviously, for α = 0, rW0,F (x) = f (x)
1−F(x) , RW0,F (x) = ∫ x

0 rW0,F (u)du, and

LW0,F (x) = − x f (x)
[1−F(x)] log[1−F(x)] are classical hr , chr and AI functions, respectively.

Further on, for distributionG with non-negative support, pd f function g and quan-
tile function G−1, we recall the definitions of G-generalized cumulative hazard rate
(G-generalized chr ),G-generalized hazard rate (G-generalized hr ) andG-generalized
aging intensity (G-generalized AI ) functions (see also, Szymkowiak [19])

RG,F (x) = (G−1 ◦ F)(x), for x > 0,

rG,F (x) = dRG,F (x)

dx
= f (x)

g[(G−1 ◦ F)(x)] , for x > 0,

LG,F (x) = rG(x)
1
x RG(x)

= x f (x)

g[G−1 ◦ F(x)] [(G−1 ◦ F(x)
] , for x > 0. (2)

Let us note that in the above generalizations, analogously to Barlow and Zwet
generalization [3, 4], we compose the quantile functionG−1 with non-negative support
and cumulative distribution function F with positive support.

2 PreviousG-generalization of reversed aging intensity

Now, we define the reversed hazard rate (rhr ), r̆(x) = f (x)
F(x) of X , that has attracted the

attention of researchers and can be thought as the instantaneous failure rate occurring
just before the time point x , given that the unit has not survived longer than time x .
In a certain sense, it is the dual function of hr function and it bears some interesting
features useful in reliability analysis (see also Block and Savits [6] and Finkelstein
[10]). Further on, we recall the definition of the classical reversed cumulative hazard
rate (rchr ) R̆(x) = ∫ ∞

x r̆(u)du = − log F(x) treated as the total amount of failures
accumulated after the time point x , and classical reversed aging intensity function
(RAI ), L̆(x) = r̆(x)

1
x R̆(x)

= −x f (x)
F(x) log[F(x)] being the ratio of instantaneous reversed hazard

rate r̆(x) to its baseline value 1
x R̆(x)which is the proportion between the total amount

of failures accumulated after the time point x and the time x for which the unit is still
survived, see [15]. So, RAI expresses the units average aging behavior: the higher
RAI (it means the higher the instantaneous reversed hazard rate, and the smaller the
total amount of failures accumulated after the time point x , and the higher the time x
for which the unit is still survived), the weaker the tendency of aging.
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Previously, for distribution G with non-negative support, pd f and distribution
F with positive support (0,+∞), Buono, Longobardi and Szymkowiak [9] defined
G-generalized reversed hazard rate (G-generalized rhr ), G-generalized reversed
cumulative hazard rate (G-generalized rchr ), and G-generalized reversed aging
intensity (G-generalized RAI ) functions as

R̆G,F (x) = (G−1 ◦ F)(x), for x > 0,

r̆G,F (x) = −dR̆G,F (x)

dx
= f (x)

g
[
(G−1 ◦ F)(x)

] , for x > 0,

L̆G,F (x) = r̆G,F (x)
1
x R̆G,F (x)

= x f (x)

g
[
(G−1 ◦ F)(x)

] [
(G−1 ◦ F)(x)

] , for x > 0, (3)

where f and F are pd f and s f of F , andG−1 and g are the quantile function and pd f
of G, respectively. Let us note that in these generalizations we compose the quantile
function G−1 with survival function F .

Proposition 2.1 Let G and H be cumulative distribution functions. Suppose both G
and H have non-negative support. The G-generalized RAI function L̆G,F and the
H-generalized RAI function L̆H ,F are proportional if, and only if, there exist two
non-negative constants c and K such that

G(x) = H

(( x

c

)K
)

. (4)

Proof Let G and H be cumulative distribution functions with non-negative supports.
L̆G,F and L̆ H ,F are proportional if, and only if, there exists K > 0 such that

g(G−1(1 − F(x)))G−1(1 − F(x)) = K h(H−1(1 − F(x)))H−1(1 − F(x)), x > 0,

that is equivalent to

g(G−1(x))G−1(x) = K h(H−1(x))H−1(x), 0 < x < 1. (5)

By defining y(x) = G−1(x) and z(x) = H−1(x), (5) can be written as

y(x)

y′(x)
= K

z(x)

z′(x)
, 0 < x < 1,

or, equivalently,

y′(x)
y(x)

= 1

K

z′(x)
z(x)

, 0 < x < 1.

By integrating, the above equation yields to

log |y(x)| = 1

K
log |z(x)| + c1,
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and then

|y(x)| = c|z(x)| 1
K , (6)

where c > 0 is a constant. By recalling the definitions of y and z, (6) can be written
as

G−1(x) = c(H−1(x))
1
K , (7)

which yields to

G(x) = H

(( x

c

)K
)

,

and the proof is completed.

Corollary 2.1 The only non-negative distributions which give through the generaliza-
tion a RAI function proportional to the classical RAI function are the two parameters
Weibull distributions.

Proof If H(x) = 1− exp(−x), x > 0, i.e., the standard exponential distribution, then
from (4) we deduce that the only distributions which give through the generalization
a RAI function proportional to the classical RAI function are given by

G(x) = 1 − exp

(

−
( x

c

)K
)

,

that is the family of two parameters Weibull distributions.

Corollary 2.2 The only non-negative distributions which give through the generaliza-
tion a RAI function proportional to the classical AI function are the inverse two
parameters Weibull distributions.

Proof If H(x) = exp
(− 1

x

)
, x > 0, i.e., the inverse standard exponential distribution,

then the H -generalized RAI function is given by

L̆ H ,F (x) = −x f (x)

(1 − F(x)) log(1 − F(x))
,

that is the classical AI function. Hence, from (4), the only non-negative distributions
which give through the generalization a RAI function proportional to the classical AI
function are given by

G(x) = exp

(

−
( c

x

)K
)

, (8)

that is the family of inverse two parameters Weibull distributions.
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3 A stochastic order based on generalized reversed aging intensity

In [9], the generalized reversed aging intensity functions were used to define a new
class of orders, namely α-generalized reversed aging intensity orders. More precisely,
these orders are based on the comparison between the α-generalized reversed aging
intensity functions of two non-negative and absolutely continuous random variables.
Hence, the distribution used to obtain the generalized functions is fixed (in that case
in the family of generalized Pareto distribution) and the comparison is among the
variables for which the reversed aging intensity is evaluated. Here, wewant to consider
the problem from a different perspective. In fact, we introduce an order based on the
comparison amongG-generalized reversed aging intensity functions L̆G,F by keeping
fixed F and varying the distribution G used to obtain the generalization.

Definition 1 Let X1 and X2 be non-negative and absolutely continuous random vari-
ables with cumulative distribution function G1 and G2, respectively. X1 is said to be
smaller than X2 in the generalized reversed aging intensity order, X1 ≤GRAI X2,
if L̆G1,F (x) ≤ L̆G2,F (x) for all non-negative and absolutely continuous distribution
functions F and for all x > 0.

In the following, we prove that the above definition can be equivalently formulated
in terms of a comparison based on the probability density function and the quantile
function of the distributions compared in the generalized reversed aging intensity
order.

Proposition 3.1 Let X1 and X2 be non-negative and absolutely continuous random
variables with cumulative distribution function G1 and G2 and probability density
function g1 and g2, respectively. X1 is smaller than X2 in the generalized reversed
aging intensity order, X1 ≤GRAI X2, if and only if

g1
[
G−1

1 (u)
]

· G−1
1 (u) ≥ g2

[
G−1

2 (u)
]

· G−1
2 (u), (9)

for 0 < u < 1.

Proof Let F be any non-negative and absolutely continuous distribution function.
From (3), the G1-generalize reversed aging intensity function of F is expressed as

L̆G1,F (x) = x f (x)

g1
[
(G−1

1 ◦ F)(x)
] [

(G−1
1 ◦ F)(x)

] , for x > 0.

Hence, X1 ≤GRAI X2 is equivalent to

x f (x)

g1
[
(G−1

1 ◦ F)(x)
] [

(G−1
1 ◦ F)(x)

] ≤ x f (x)

g2
[
(G−1

2 ◦ F)(x)
] [

(G−1
2 ◦ F)(x)

] ,

for any F and x > 0. The above relation can be equivalently reformulated as

g1
[
(G−1

1 ◦ F)(x)
] [

(G−1
1 ◦ F)(x)

]
≥ g2

[
(G−1

2 ◦ F)(x)
] [

(G−1
2 ◦ F)(x)

]
,
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which, by replacing F(x) with u, is equivalent to the condition in (9).

In the following proposition, we point out a connection between the generalized
reversed aging intensity order and the concept of weighted extropy introduced in [2].
We recall that the extropy was introduced by Lad et al. [13] as a measure of uncer-
tainty dual to the classical Shannon entropy [18]. For a non-negative and absolutely
continuous random variable with pdf f , the entropy and the extropy are defined by

H(X) = −
∫ +∞

0
f (x) log f (x)dx and J (X) = −1

2

∫ +∞

0
f 2(x)dx,

respectively. Recently, several versions of extropy have been defined in the literature
(for more details see [1, 8, 20]). As remarked in [2], the extropy is position free, in the
sense that X and X + b, with b ∈ R, share the same value of uncertainty measured by
the extropy. This led the authors to define the corresponding weighted version, namely
the weighted extropy, which is expressed as

Jw(X) = −1

2

∫ +∞

0
x f 2(x)dx .

Proposition 3.2 Let X1 and X2 be non-negative and absolutely continuous random
variables with cdf G1 and G2, respectively, such that X1 ≤GRAI X2. Then, Jw(X1) ≤
Jw(X2).

Proof FromProposition 3.1,we know that X1 ≤GRAI X2 is equivalent to the condition
in (9) in which both sides are non-negative. Hence, the relation in (9) is preserved by
integrating with respect to u which varies from 0 to 1 obtaining

∫ 1

0
g1

[
G−1

1 (u)
]

· G−1
1 (u)du ≥

∫ 1

0
g2

[
G−1

2 (u)
]

· G−1
2 (u)du.

With the change of variable x = G−1
1 (u) in the LHS integral and x = G−1

2 (u) in the
RHS one, the above relation leads to

∫ +∞

0
xg21(x)dx ≥

∫ +∞

0
xg22(x)dx,

which, multiplying by − 1
2 both sides, gives Jw(X1) ≤ Jw(X2).

In the following example, we consider some distributions that are ordered accord-
ing to the generalized reversed aging intensity order and also give an example of
distribution that are not ordered.

Example 1 Consider four families of distributions of non-negative and absolutely
continuous distributions:

1. Exponential distribution with parameter λ > 0, Exp(λ), and cdf G1(x) = 1 −
exp(−λx);
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Fig. 1 On the left, the plot of the functions gi
[
G−1
i (u)

]
· G−1

i (u), i = 1, 2, 3, 4 in Example 1. On the

right, the case with a different choice for a parameter of the Log-logistic distribution

2. Rayleigh distribution with parameter σ > 0, Rayleigh(σ ), and cdf G2(x) =
1 − exp

(
− x2

2σ 2

)
;

3. Log-logistic distribution with parameters α, β > 0, and cdf G3(x) = 1
1+(x/α)−β ;

4. Lomax distribution with parameters α, λ > 0, and cdf G4(x) = 1 − [
1 + x

λ

]−α
.

Let X1 ∼ Exp(3), X2 ∼ Rayleigh(2), X3 ∼ Log−logistic(3, 1) and X4 ∼ Lomax

(3, 2). In Fig. 1 (left), we plot the functions gi
[
G−1

i (u)
]

· G−1
i (u), i = 1, 2, 3, 4.

Hence, we note that X2 ≤GRAI X1 ≤GRAI X4 ≤GRAI X3. Now, we change the
parameter β of the Log-logistic distribution and consider X̃3 ∼ Log− logistic(3, 3).
By keeping the other distributions fixed, we plot the functions of interest for the
generalized reversed aging intensity order in Fig. 1 (right). Hence, we observe that X̃3
is not comparable with respect to the generalized reversed aging intensity order with
X1 and X2, while it is ordered with X4 as X̃3 ≤GRAI X4.

In the following example, we show that the generalized reversed aging intensity
order is not implied by and does not imply the usual stochastic order. We recall that
X1 is said to be smaller than X2 in the usual stochastic order, X1 ≤st X2, if F̄X1(x) ≤
F̄X2(x) for all x . For further details on the classical stochastic orders see Shaked and
Shanthikumar [16].

Example 2 Consider the four random variables X1, X2, X3, X4 as in Example 1. In
Fig. 2 (left), we plot the survival functions of these random variables. Hence we can
observe some relations in terms of the usual stochastic order as X1 ≤st X4 ≤st X3
and X1 ≤st X2, while X2 is not comparable in the usual stochastic order with X3
and X4. From Example 1, we know that X2 ≤GRAI X4 ≤GRAI X3 and so the
generalized reversed aging intensity order does not imply the usual stochastic order.
Moreover, by considering again the random variable X̃3 as in Example 1, we obtain
the survival functions plotted in Fig. 2 (right). With this choice of the parameter β, we
have X2 ≤st X̃3, but as remarked in Example 1 these variables are not comparable in
the generalized reversed aging intensity order. Hence, the usual stochastic order does
not imply the generalized reversed aging intensity order.
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Fig. 2 The survival functions of the variables X1, X2, X3, X4 in Example 2 (left). The survival functions
of the variables X1, X2, X̃3, X4 in Example 2 (right)

In the following proposition, we show that the usual stochastic order combined with
the generalized reversed aging intensity order implies a relation on the order based on
extropy.

Proposition 3.3 Let X1 and X2 be non-negative and absolutely continuous random
variables with cdf G1 and G2, respectively, such that X1 ≤st X2 and X1 ≤GRAI X2.
Then, J (X1) ≤ J (X2).

Proof Note that the usual stochastic order X1 ≤st X2 can be equivalently formulated as
G1(x) ≥ G2(x) for x > 0 or G−1

1 (u) ≤ G−1
2 (u) for u ∈ (0, 1). From X1 ≤GRAI X2,

it follows

g1
[
G−1

1 (u)
]

· G−1
1 (u) ≥ g2

[
G−1

2 (u)
]

· G−1
2 (u),

for 0 < u < 1, where all the factors in LHS and RHS are non-negative. Hence, from
X1 ≤st X2, we readily obtain

g2
[
G−1

2 (u)
]

· G−1
2 (u) ≥ g2

[
G−1

2 (u)
]

· G−1
1 (u) (10)

and combining the previous relations

g1
[
G−1

1 (u)
]

≥ g2
[
G−1

2 (u)
]
, (11)

for 0 < u < 1. The relation in (11) is preserved by integrating with respect to u
varying from 0 to 1, leading to

∫ 1

0
g1

[
G−1

1 (u)
]

≥
∫ 1

0
g2

[
G−1

2 (u)
]
.
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With a change of variable similar to that used in the proof of Proposition 3.2, we obtain

∫ +∞

0
g21(x)dx ≥

∫ +∞

0
g22(x)dx,

and so J (X1) ≤ J (X2).

As the generalized reversed aging intensity order does not imply the usual stochastic
order, it does not imply all the orders that imply the usual one, as, for instance, the
reversed hazard rate and the likelihood ratio orders. Nevertheless, it could be implied
by some of these orders. In the following example, we show that the likelihood ratio
order and the reversed hazard rate order do not imply the generalized reversed aging
intensity order. We recall that X1 is said to be smaller than X2 in the likelihood ratio
order, X1 ≤lr X2, if fX1(x)/ fX2(x) is non-increasing in x , and in the reversed hazard
rate order, X1 ≤rh X2, if r̆X1(x) ≤ r̆X2(x) for all x .

Example 3 Consider the random variables X2 and X̃3 given in Examples 1 and 2. It
is easy to show that X2 ≤lr X̃3, and consequently X2 ≤rh X̃3. Hence, the likelihood
ratio order and the reversed hazard rate order do not imply the generalized reversed
aging rate order as these variables are not comparable in that order.

4 ModifiedG-generalized reversed aging intensity function

Recently, we wonder if our previous definition of G-generalized RAI function (3),
where we composed quantile functionG−1 with survival function F , can be improved,
analogously to argumentation given by Barlow and Zwet [3, 4], as the composition
of quantile function G−1 with cumulative distribution function F (see also, formula
(2)).

Therefore, we propose the following modified α-generalization of reversed aging
intensity function using the negative generalized Pareto distribution, with negative
support and with the following density function

vα(x) =
⎧
⎨

⎩
(1 + αx)

1
α
−1 for

{
x < 0, α < 0,
− 1

α
< x < 0, α > 0,

exp(x) for x < 0, α = 0,

cumulative distribution function

Vα(x) =
⎧
⎨

⎩
(1 + αx)

1
α for

{
x < 0, α < 0,
− 1

α
< x < 0, α > 0,

exp(x) for x < 0, α = 0,

and quantile function

V−1
α (x) =

{ 1
α

(xα − 1) for 0 < x < 1, α �= 0,
log(x) for 0 < x < 1, α = 0.
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Then, by analogy to formula (1), for distribution F with positive support (0,+∞) and
density f , we can define α-generalized rhr

◦
rVα,F (x) = f (x)

vα[(V−1
α ◦ F)(x)] (12)

=

⎧
⎪⎨

⎪⎩

f (x)
[
1+α

[
1
α (F(x)α−1)

]] 1
α −1

for x > 0, α �= 0

f (x)
F(x) for x > 0, α = 0

= f (x)

[F(x)]1−α
for x > 0.

Further on, since (V−1
α ◦ F)(+∞) = 0, α-generalized crhr can be determined as

◦
RVα,F (x) =

∫ +∞

x

◦
rVα,F (u)du =

∫ +∞

x

f (u)

vα[(V−1
α ◦ F)(u)]du = (V−1

α ◦ F)(u)|+∞
x

= (V−1
α ◦ F)(+∞) − (V−1

α ◦ F)(x) = −(V−1
α ◦ F)(x) (13)

=
{ 1

α
[1 − [F(x)]α] for x > 0, α �= 0

− log[F(x)] for x > 0, α = 0

On the other hand, since
◦
RVα,F (+∞) = −(V−1

α ◦ F)(+∞) = 0, to determine
◦
rVα,F (x) given

◦
RVα,F (x), we can use such a formula

◦
rVα,F (x) = d

∫ +∞
x

◦
rVα,F (u)du

dx
= d

◦
RVα,F (+∞)

dx
− d

◦
RVα,F (x)

dx

= −d
◦
RVα,F (x)

dx
= d(V−1

α ◦ F)(x)

dx
= f (x)

vα[(V−1
α ◦ F)(x)] .

Finally, α-generalized RAI function can be defined as the ratio of the instantaneous

reversed hazard rate
◦
rVα,F (x) to its baseline value 1

x

◦
RVα,F (x)

◦
LVα,F (x) =

◦
rVα,F (x)

1
x

◦
RVα,F (x)

=
{

α x f (x)
[1−[F(x)]α][F(x)]1−α for x > 0, α �= 0

− x f (x)
F(x) log[F(x)] for x > 0, α = 0.

Obviously, for α = 0,
◦
rV0,F (x) = f (x)

P(X≤x) ,
◦
RV0,F (x) = ∫ +∞

x
◦
rV0,F (u)du, and

◦
LV0,F (x) = − x f (x)

F(x) log[F(x)] are classical rhr , crhr and RAI functions, respectively.
Consequently, for distribution G with non-positive support, density function g and

quantile function G−1, and for distribution F with positive support (0,+∞) and
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density function f , by analogy to formula (12), we can define modifiedG-generalized
rhr

◦
rG,F (x) = f (x)

g[(G−1 ◦ F)(x)] for x > 0.

Further on, by analogy to formula (13), modified G-generalized crhr can be
determined as

◦
RG,F (x) = −(G−1 ◦ F)(x) for x > 0,

and modified G-generalized RAI function as

◦
LG,F (x) =

◦
rG,F (x)

1
x

◦
RG,F (x)

= − x f (x)

g[(G−1 ◦ F)(x)](G−1 ◦ F)(x)
for x > 0.

Proposition 4.1 Let G and H be cumulative distribution functions. Suppose G has
non-negative support and H has non-positive support. The G-generalized RAI func-

tion L̆G,F and the modified H-generalized RAI function
◦
LH ,F are proportional if,

and only if, there exist two non-negative constants c and K such that

G(x) = 1 − H

(

−
( x

c

)K
)

. (14)

Proof Let G and H be cumulative distribution functions with non-negative and non-
positive support, respectively. TheG-generalized RAI function L̆G,F and themodified

H -generalized RAI function
◦
LH ,F are proportional if, and only if, there exists K > 0

such that

g(G−1(1 − F(x)))G−1(1 − F(x)) = −K h(H−1(F(x)))H−1(F(x)), x > 0,

that is equivalent to

g(G−1(x))G−1(x) = −K h(H−1(1 − x))H−1(1 − x), 0 < x < 1. (15)

By defining y(x) = G−1(x) and z(x) = H−1(1 − x), (15) can be written as

y(x)

y′(x)
= K

z(x)

z′(x)
, 0 < x < 1,

or, equivalently,

y′(x)
y(x)

= 1

K

z′(x)
z(x)

, 0 < x < 1.
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By integrating, the above equation yields to

log |y(x)| = 1

K
log |z(x)| + c1,

and then

|y(x)| = c|z(x)| 1
K , (16)

where c > 0 is a constant. By recalling the definitions of y and z, (16) can be written
as

G−1(x) = c
(
−H−1(1 − x)

) 1
K

, (17)

which yields to

G(x) = 1 − H

(

−
( x

c

)K
)

,

and the proof is completed.

Corollary 4.1 Observe that for c = 1 and K = 1, (14) reduces to

G(x) = 1 − H(−x),

i.e., if G is the cd f of a non-negative random variable Z and H the cd f of −Z, then
they conduce to the same generalization of the RAI function.

Proposition 4.2 Let G and H be cumulative distribution functions. Suppose both G

and H have non-positive support. The modified G-generalized RAI function
◦
LG,F

and the modified H-generalized RAI function
◦
LH ,F are proportional if, and only if,

there exist two non-negative constants c and K such that

G(x) = H

(

−
(
− x

c

)K
)

. (18)

Proof Let G and H be cumulative distribution functions with non-positive support.

The modified G-generalized RAI function
◦
LG,F and the modified H -generalized

RAI function
◦
LH ,F are proportional if, and only if, there exists K > 0 such that

g[(G−1 ◦ F)(x)](G−1 ◦ F)(x) = K h[(H−1 ◦ F)(x)](H−1 ◦ F)(x), x > 0

that is equivalent to

g(G−1(x))G−1(x) = K h(H−1(x))H−1(x), 0 < x < 1. (19)
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By defining y(x) = G−1(x) and z(x) = H−1(x), (19) can be written as

y(x)

y′(x)
= K

z(x)

z′(x)
, 0 < x < 1,

or, equivalently,

y′(x)
y(x)

= 1

K

z′(x)
z(x)

, 0 < x < 1.

By integrating, the above equation yields to

log |y(x)| = 1

K
log |z(x)| + c1,

and then

|y(x)| = c|z(x)| 1
K , (20)

where c > 0 is a constant. By recalling the definitions of y and z, (20) can be written
as

− G−1(x) = c(−H−1(x))
1
K , (21)

which yields to

G(x) = H

(

−
(
− x

c

)K
)

,

and the proof is completed.

Corollary 4.2 The only non-positive distributions which give through the modified
generalization a RAI function proportional to the classical RAI function are the two
parameters negative Weibull distributions.

Proof If H(x) = exp(x), x < 0, i.e., the standard negative exponential distribution,
then from (18) we deduce that the only distributions which give through the modified
generalization a RAI function proportional to the classical RAI function are given
by

G(x) = exp

(

−
(
− x

c

)K
)

,

that is the family of two parameters negative Weibull distributions.
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