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Abstract

The proposals on opportunistically utilizing Global Navigation Satellite Systems’
(GNSS) signals for environmental monitoring came to light hand in hand with
proposing the GNSS systems themselves. GNSS satellites broadcast signals that can
be exploited for positioning, navigation and timing anywhere and at any time on Earth.
The high temporal and geographic availability of the GNSS satellites, together with
particular properties of the GNSS signals, made them an ideal remote sensing tool.
Here, the satellites are considered as radio signals sources to be utilized by passive
remote sensing sensors. Many applications have been successfully deployed based
on this concept including GNSS-Reflectometry (GNSS-R), and GNSS scintillation.

Today, less than 50 years after the first GNSS satellite was launched and less than
30 years after the first GNSS system was declared fully operational, GNSS systems
contribution to environmental monitoring is evident in our daily life. Opportunistic
use of GNSS signals as remote sensing data sources is already contributing to weather
forecast and environmental hazards monitoring, including hurricanes and floods.
Moreover, the upper atmosphere environment, that is affected by both space and
Earth environmental conditions, is monitored using GNSS signals. Monitoring the
ionospheric conditions is important because it affects directly and indirectly many of
the critical infrastructures on Earth. Scintillation, which is rapid random fluctuations
in the amplitude and phase of radio waves resulting from the signal passing through
plasma density irregularities in the ionosphere, is the most important source of
ionospheric errors that affect GNSS systems in particular.

In this thesis, detecting floods using special GNSS receivers and a technique
known as GNSS–R is discussed. Also, detecting ionospheric perturbed conditions
leading to ionospheric scintillations using another type of special GNSS receivers,
known as Ionospheric Scintillation Monitoring (ISM) receivers, is discussed.



vi

For floods detection, the feasibility of using data from GNSS–R receivers
mounted onboard small Unmanned Aerial Vehicles (UAVs) are investigated. Tak-
ing into account the constraints imposed on/by such platforms, a signal processing
methodology that respects such constraints when processing the signals reflected
by the potential floods is implemented. The method roughly estimates the reflected
signal strength with respect to the noise floor, and it is demonstrated that such rough
estimation is capable of accomplishing the water detection task with high accuracy.
Also, the importance of UAV-based multi-constellation GNSS–R receivers for ac-
curate estimation of water extents is investigated. Moreover, the importance of the
UAV-based GNSS–R sensor calibration is discussed. It is demonstrated that, for
floods detection, the calibration is not strictly necessary. However, for estimating the
amount of reflected power and the height of the water surface (i.e extracting more
parameters of the water/floods), calibrating the sensor is necessary.

For scintillation detection, the utilization of Machine Learning (ML) algorithms
for detecting scintillation in GNSS data to overcome the known limitations of
the scintillation detection metrics is discussed. ML techniques has demonstrated
success in many scientific fields including GNSS signal processing and scintillation
modelling. It is demonstrated that ML models are able to perform better than the
scintillation metrics thresholds in scintillation detection. It is also demonstrated that
ML models can detect scintillation in environments where interference, multipath
in particular, exists. In this regard, 98% detection accuracy, 2% scintillation miss-
detection and 2% scintillation false alarm is demonstrated for a model developed
for equatorial scintillation, while 95% accuracy, 5% scintillation miss detection and
5% scintillation false alarm are demonstrated for high latitude phase scintillation
detection. The abilities of various ML algorithms, with different hyper-parameters,
in carrying out the detection task is also investigated. It is found that bagged
decision trees give superior performance. Finally, various measurements available in
ionospheric scintillation monitoring records as well as in high rate post-correlation
data are investigated. For low latitude scintillation, the signal intensity measurements
at high rate (50 Hz) are essential and sufficient. On the other hand, it is found that
3-minutes Total Electron Content (TEC) data are able to surpass the scintillation
metrics in detecting polar scintillations. This could open the door for unprecedented
expansion in global scintillation monitoring by utilizing a wide range of professional
GNSS receivers, other than the ISM receivers, that are already providing TEC
measurements.
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Chapter 1

Introduction

Environmental factors are known to affect Global Navigation Satellite Systems
(GNSS) signals, including the effects of multipath, electromagnetic interference,
atmospheric delays and ionospheric scintillations [1]. Research on mitigating these
effects, or reducing their impact, has been going on for decades. On the other hand,
many applications look at these effects as an opportunity to monitor the environment
by observing the aforementioned factors. For example, multipath/reflections from
water surfaces can actually be utilized to monitor water bodies and retrieve some of
the water parameters.

GNSS has been utilized for decades in environmental applications. We differ-
entiate here between applications that utilize the geo-location information provided
by GNSS receivers and applications that process the GNSS radio signal itself for
environmental monitoring. The former utilize geo-referencing to tag environmental
measurements. For example, GNSS positioning has been utilized to geo-reference
shorelines and then monitor spatial variation in the coast line to identify coastal
erosion. This utilization of GNSS services for environmental monitoring is not the
focus of this thesis and more information can be found for example in [2] and the
references therein.

On the other hand, processing the GNSS radio signal for environmental appli-
cations, is the focus of this thesis. Here, we monitor the GNSS signal itself to
extract information about the environment. We thus use the GNSS signal as a remote
sensing signal, that interacts with the environment of interest, and therefore it holds
information about this environment. An example of this remote sensing concept is



2 Introduction

the multipath from the water surfaces mentioned above, where the reflected signal in-
teracted with the water body and thus it carries some information about the reflecting
surface.

On this regard, GNSS systems have been utilized as a source of remote sens-
ing signals in many configurations [3] including Radio Occultation (RO), GNSS–
Reflectometry (GNSS–R) and Ionospheric Scintillation sounding. In GNSS RO,
atmospheric profiles (e.g. temperature, height and pressure) are derived from GNSS
signals that are received by a satellite behind the Earth. These signals were refracted
(bend) by the Earth’s atmosphere and thus they hold data about the atmospheric
environment they have passed through. ROs are beyond the scope of this thesis,
but their applications in environmental monitoring are so evident in our life today,
including their contribution to weather forecast and tropical cyclones prediction
services [4].

GNSS–R is a remote sensing concept where GNSS signals reflected by objects
like water and ice are processed to extract measurements about the reflecting surface.
GNSS–R has been operational in various environmental monitoring applications,
including sea surface wind speed retrieval [5–7], river flow estimation [8], soil
moisture retrieval [9, 10], hurricanes monitoring and tracking [11], sea ice remote
sensing [12] and flood inundation monitoring [13–19]. The latter application in
particular will be the focus of Part I of this thesis.

These days, such applications leverage the amount of data available mainly from
the space–borne GNSS–R sensors [20], some of them are part of GNSS–R constel-
lations [21–23], besides air-borne and ground based GNSS–R sensors. In this thesis,
we will be investigating air-borne GNSS–R sensors to support flood monitoring
applications. Here the sensor can be mounted on-board a small Unmanned Aerial
Vehicle (UAV) that flood assessment operations can utilize on demand to assess the
situation during and after floods.

For the ionospheric remote sensing domain, GNSS provide a valuable tool
for studying the upper layers of the atmosphere. GNSS trans–ionospheric signals
carry information about the propagation environment they pass through [24]. Thus,
they have been utilized as signals of opportunity for observing the ionosphere
including monitoring the Total Electron Content (TEC) [25], ionospheric storms [26],
Travelling Ionospheric Disturbance (TID)s [27] and ionospheric electron density
irregularities [28, 29]. This monitoring is essential for understanding the environment
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at our planet’s upper atmosphere, which directly and indirectly affect life on the
lower parts of the atmosphere and vice-versa.

In fact the ionosphere is a complex part of our planet, and the weather and
climate at this layer is affected by both the space above and the atmospheric layers
and lithosphere beneath, making it a really complicated and interesting environment
to study.

In Part II of this thesis we will focus on monitoring and detecting ionospheric
scintillation which occurs when the ionosphere is in disturbed states.

1.1 Problem Definition

The expansion in research on GNSS as signals of opportunity for remote sensing
applications created various opportunities for utilizing these signals, and introduced
challenges for researchers to enable this utilization. In particular, the increase in the
amount of available data collected by the various satellite constellations and ground
monitoring systems invites researchers to benefit from these infrastructures, as well
as introduced challenges in processing these data for new applications that were not
reported in the original plans, or when the data are new to the researchers. Also,
being based on GNSS theory and technology, it is the duty of GNSS researchers to
facilitate the utilization of these data and make them available in higher level more
suitable for scientific utilization.

GNSS–R in particular was first introduced for ocean studies. In these studies the
spatial, temporal resolution is on a level different that those targeted by recent flood
studies that demand meter level resolutions in case of river stretches for example.
Furthermore, in flood scenarios, the data is expected to include more than just
water, for example buildings and cars, not like in the case of oceans, and thus new
demands from the signal processing are introduced. Finally, being proposed to be
implemented on small UAVs, new aspects are to be investigated that were not the
case for space-borne GNSS–R for example the constraints introduced by the small
size of the UAV platforms.

Scintillation data on the other hand has expanded tremendously in the last decade.
With almost 30 years of GNSS-based ionospheric scintillation monitoring, there are
considerably big amount of scintillation data that are attractive for scientific studies
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but challenging to curate. The main reason for this challenge is the fact that GNSS-
based scintillation monitoring is affected by many environmental factors including
interference from the environment and also anomalies in the GNSS satellites and the
receiver itself. This sensitivity of the GNSS signals is the main enabler for utilizing
the signal for opportunistic monitoring of the ionosphere, but also invites extensive
curation of the data before they are used for scientific applications. If we want to
open the door for trusted automated processing of the repositories of ionospheric
scintillation GNSS measurements for ionospheric modelling and scientific research
in general, we need to provide trusted tools for curing the scintillation data that
researchers can utilize. For this reason, we will be focusing on detecting scintillation
in GNSS-based measurements. We will be considering data from commercial
receivers as well as from custom built receivers.

1.2 Objectives and Methodology

The objective of this thesis is to investigate two of the state-of-the-art topics in GNSS
remote sensing for environmental applications: GNSS–R for floods monitoring and
GNSS scintillation detection using Machine Learning (ML). More precisely, the
feasibility of detecting floods using GNSS–R sensors mounted on–board small UAVs
will be investigated. These platforms are frequently used for floods assessment in
general. By including such sensors on–board these platforms, data from GNSS–R
can be integrated with other measurements for floods assessment. GNSS–R is
considered a passive sensor, and its size is relatively small. Thus it can be mounted
easily on–board UAVs. It also works on all weather conditions, and thus it is not
limited by the bad weather states (the UAV might be). For this, we will be processing
GNSS signals received by a GNSS–R sensor custom build for the i–REACT project
that developed solutions for efficient responses to emergencies. The study will
investigate detecting water bodies as small as ponds and artificial lakes for similarity
to water extents in case of floods. Also, simulations will be carried out to analyse
the expected capabilities of multi–constellation GNSS–R (multi–GNSS–R) sensors
in floods detection.

For ionospheric scintillation, we investigate the recent applications of ML al-
gorithms for scintillation detection. The motivation behind using these techniques
rise from the need to overcome some of the limitations of the traditional metrics
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for scintillation detection. Being the result of a phenomenon driven by a complex
process, namely the evolution and decaying of ionospheric electron density irregu-
larity, monitored using a signal that is sensitive to many factors in the propagation
environment, made the scintillation detection task difficult and the metrics suscep-
tible to interference from the environment and the instruments themselves. ML
techniques are well established in modelling systems where the physics underlying
the phenomenon is complex. For this we investigate ML for detecting amplitude and
phase scintillation. We investigate in details the selection of the GNSS measurements
suitable for scintillation detection using ML models, i.e. we investigate the feature
engineering part of the ML modelling cycle. We show statistical results of applying
the developed models on scintillation detection.

1.3 Thesis Contribution and Outline

The main contributions of this thesis can be summarized as follows:

• Assess the feasibility of UAV-based GNSS–R for flood monitoring operations.
The thesis focuses on the UAV-based GNSS–R sensor capability to estimate
the existence of GNSS signals reflected by flood water.

• Simplify the signal processing in order to meet the constraints introduced on/by
the small UAV platforms forseen for this GNSS–R application. In particular,
reflected signal acquisition assisted by the direct signal tracking is proposed. A
metric from the acquisition theory, αmean is adopted as the metric for detecting
water.

• Assess the feasibility of estimating the reflected signal strength and the possi-
bility to achieve flood water detection relying only on processing the reflected
signal, without estimating the exact amount of direct and reflected powers.
The calibration needed in order to estimate the latter was demonstrated.

• Justify the importance of knowledge about the terrain in the area under study
in order to geo–reference the UAV-based GNSS–R sensor measurements to
the reflecting surface.

• Assess the ability of the UAV-based GNSS-R sensor to the estimate the flight
height, the needed sensor internal delay calibration, the foreseen signal pro-
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cessing to refine the flight height estimation, and the feasibility of achieving
flood water detection without the need to implement the flight height estimator.

• Investigating supervised ML techniques for polar and equatorial scintillation
detection. It is demonstrated that a ML model able to achieve this task is
obtainable. In particular, bagged decision trees, which are known in the
literature to succeed in modelling noisy data, was demonstrated to achieve
superior performance for scintillation detection.

• Various ISM receivers measurements were investigated as input features for
the ML model. It is found that, for detecting equatorial scintillation, high rate
(50 Hz) signal intensity measurements are essential. On the other hand, TEC
measurements, which are provided by a wide range of GNSS receivers, not
only ISM receivers, is demonstrated to achieve the best results in detecting high
latitude phase scintillation. This invites future research to consider scintillation
monitoring using GNSS receivers that have higher geographic and temporal
distribution with respect to ISM receivers.

• The feasibility of training a ML model able to distinguish scintillation from
multipth, which is the main impairment that contaminate scintillation mea-
surements mimicking amplitude scintillation, is demonstrated. It is shown
that implementing such model increased the amount of scintillation data that
would have been discarded by conservative multipath avoidance thresholds.

The original GNSS–R sensor used in this work [30] was developed with the objective
of retrieving the moist land water content. The original sensor implements two
down–looking antennas to receive the Left-Hand Circular Polarized (LHCP) and
Right-Hand Circular Polarized (RHCP) reflected GNSS signals. In this work, a
simplified version of the sensor that uses only one down–looking LHCP antenna is
used. All the GNSS–R signal processing proposed as part of this thesis is developed
accordingly.

The scintillation data utilized in this thesis were retrieved from previous scintilla-
tion data collection campaigns. The equatorial scintillation data were collected in
Hanoi as part of the Equatorial Ionosphere Characterization in Asia (ERICA) project
[31, 32]. The Antarctic data is continuously being collected at SANAE IV base as
part of the DemoGRAPE project [33].

The rest of this thesis is organized as follows:
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• In Chapter 2, GNSS is briefly introduced with focus on the aspects that allow
the GNSS signals to be utilized opportunistically for remote sensing. This
includes the systems’ global coverage, the number of available GNSS satel-
lites, and the various signals frequencies. Furthermore, the concept of radio
navigation is introduced and the GNSS radio signal structure is presented.
The Chapter is concluded by presenting the equation of the complex signal
at the output of the GNSS signal processing block. This complex signal is
the basic information that was utilized as input for both the reflectometry and
scintillation analysis that was done in this thesis.

• The body of the thesis is grouped in two parts. Part I (Chapter 3 and 4) for
GNSS–R:

– In Chapter 3 the basic concepts of GNSS–R are covered with focus on
applying these concept to UAV-borne GNSS–R sensors. In particular,
the estimation of the specular point position from the GNSS–R sensor
coordinates is presented. The importance of knowledge about the terrain
in the area under study is justified for detecting floods extends with high
accuracy from UAV-based GNSS–R measurements. The feasibility of
estimating the flight height is presented justifying the need for sensor
internal delay calibration and further signal processing implementation.
The feasibility of detecting water presence using UAV-based GNSS–R
was detailed. The possibility to further estimate the amount of reflected
power from UAV-based GNSS–R was presented, justifying the need for
well calibrating the sensor internal gains.

– The detailed GNSS–R experiment methodology and the results obtained
are shown in Chapter 4. The original sensor developed in [30] is briefly
described. The simplified version of the sensor used in this thesis is
explained. The post processing methodology developed in this thesis is
detailed including the parameter proposed as the metric for estimating the
reflected signal strength. Results of the proposed signal processing are
shown with three case studies of water detection that prove the feasibility
of flood–like water detection. Results of estimating the water extends,
the water surface area, and the benefits of multi–GNSS–R are presented.
The results for the sensor delay calibration are shown.

• Part II (Chapter 5 - 8) for scintillation:
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– GNSS scintillation literature and theoretical background are given in
Chapter 5. A brief introduction about the ionosphere is given, describing
the scintillation effect and why monitoring scintillation is important. The
effects of the ionosphere on GNSS signals are detailed. The metrics for
measuring scintillation are detailed. Then, the GNSS measurements at
the various GNSS receiver stages are introduced justifying their with
potential for scintillation detection. Finally, the scintillation detection
mechanism implemented in the literature are presented.

– The aspects of ML essential for this thesis are introduced in Chapter 6.
The cycle of a ML model from idea to deployment is described. The ML
algorithms utilized in this thesis are introduced. Then the choices on the
ML implementation are justified.

– Chapter 7 shows the methodology and results of high latitude phase
scintillation detection using ML. The data preparation is described and
the input features to the models are introduced. Results of scintillation
detection are presented and the model performance is compared with the
standard scintillation detection methods.

– Chapter 8 is dedicated to the methodology and results of equatorial
amplitude scintillation detection. The data preparation steps are detailed.
Statistics about the data set are presented. The input features to ML
models are introduced. Results from more than 40 trained models are
shown and compared. Results of testing the best obtained model in
operative scenarios are shown.

• The thesis is concluded in Chapter 9 giving a summary of all the results and
final remarks.
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Chapter 2

Global Navigation Satellite Systems

2.1 A Brief History of GNSS

The history of the GNSS systems we know today dates back to the seventies of
the last century when in orbit experiments and validations for the American Global
Positioning System (GPS) and the Soviet/Russian GLobal Orbiting NAvigation
Satellite System (GLONASS) were taking place.

The early GPS experiments launched radio navigation satellites in the period
spanning 1974-1989 as what is known in the literature as Navigation Technology
Satellites (NTS) and Navigation Development Satellites (NDS). A total of 13
satellites were launched in that phase providing global navigation and timing with
limited availability and continuity. These satellites prepared for the successful full
deployment of the system with 24 active satellites in the period of 1989-1995, when
GPS was declared operational. Around the same period, GLONASS system was
developed and launched. GLONASS was also declared fully operational in 1995
with 24 active satellites. Before the end of the millennium, another two GNSS
constellations were already announced, the European Global Navigation Satellite
System (Galileo) [34] and the Chinese BeiDou Navigation Satellite System (BDS or
BeiDou).

Even if the main purpose of GNSS systems is the provision of positioning and
navigation services, opportunistic utilization of the GNSS signals for remote sensing
purposes came to surface even before the GPS and GLONASS systems were declared
fully operational. In 1980, Rino et.al [35] demonstrated the ability to measure ampli-
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tude and phase scintillation indexes using a custom built GPS ionospheric monitoring
receiver. The foreseen global coverage of dual-frequency L-band trans–ionospheric
GPS signals derived the motivation behind the study. By 1993 [36], commercial
GPS receivers for ionospheric scintillation monitoring were presented. Today, GNSS
based ionospheric monitoring is providing various ionospheric monitoring data
including TEC and ionospheric scintillation monitoring metrics. For the latter, hun-
dreds of professional GNSS receivers dedicated for scintillation monitoring, known
as Ionospheric Scintillation Monitoring (ISM) receivers, have been installed over
the globe. These receivers have been providing continuous measurements of the
ionospheric scintillation indexes for the last two decades.

At the same time, studies proposing utilizing GNSS signals as Radio Detection
And Ranging (RADAR) transmitters were first published in 1988 [37], 1993 [38] and
1996 [39] for possible applications in ocean wind surface estimation and altimetry.
By 1997, Garrison et. al [40] proved that they were able to process GPS signals
reflected by ground surfaces using a conventional GPS receiver mounted on-board
an aircraft. By 2003 [41], passive GNSS radar sensors on-board satellites have
been demonstrated proofing the feasibility of the sensor on space-borne platforms
and providing measurements on a global scale. This concept, known as GNSS–R,
has found wide applications in environmental monitoring activities specially ocean
wind estimation and ice monitoring. Today, GNSS–R sensors are installed on fleets
of satellites as well as fixed monitoring stations. On demand and experimental
GNSS–R equipped flights are also available. More deployments are planned and
new applications have been proposed in the last five years.

The objective of this thesis is the investigation of modern techniques for the use
of GNSS for environmental monitoring. In particular, the interest is focused on the
use of advanced techniques for the monitoring of the ionosphere, by using artificial
intelligence algorithms. A second field of applications that has been investigated is
the use of GNSS–R for water detection. This latter has direct application in assessing
the effects of natural disasters originating from Earth, floods in this study.

In the rest of this chapter, a brief summary about the current status of the
GNSS constellations that are operational today is given in order to understand the
abundance in radio sources that inspired the opportunistic use of GNSS signals for
remote sensing applications. Then a description of the signals broadcast by GNSS
satellites is provided to clarify also why utilizing these signals is attractive and
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feasible. Then the basic operational concept of GNSS for navigation purposes is
given (although GNSS signals are not utilized for this purpose here, this section
is essential to understand the basic concept of radio navigation that made all these
applications possible). Finally, the concept of GNSS for remote sensing is detailed
focusing on reflectometry and ionospheric scintillation.

2.2 GNSS Constellations

Deployed to provide navigation signals on a global scale, there are 4 GNSS systems
operational today: Galileo, GPS ( originally Navstar GPS), GLONASS and BeiDou .
There exist also other systems that broadcast navigation signals on regional scale
(Regional Navigation Satellite Systems (RNSS)) including Japan’s QZSS, India’s
IRNSS (also known as NavIC), Europe’s EGNOS, America’s WAAS and China’s
Beidou regional.

The four GNSS constellations are deployed in Medium Earth Orbit (MEO),
except for BeiDou which has satellites also in Inclined Geosynchronous Orbit (IGSO)
and Geostationary Earth Orbit (GEO). The current status of the four constellations is
reported in Table 2.1 [42]. The table shows the status of GPS (As of April 12, 2022
[43]), GLONASS [44], Galileo [45] and BeiDou [46]. Note that early GLONASS-M
satellites only transmit Frequency Division Multiple Access (FDMA) signals on G1
and G2. GLONASS-M and GLONASS-M+ launched after 2014 broadcast a Code
Division Multiple Access (CDMA) signal on G3.

Over the last 20 years alone, the number of operational GNSS satellites have
increased from only 44 satellites in 2002, to 123 satellites as of 2022. as shown in
Figure 2.1 (Figure source [47]). This increase in the number of satellite has direct
benefits not only to the navigation and timing users, but to other applications that
utilize the GNSS signals opportunisticly.

From a user on ground point of view, this high number of satellites in orbit
translates to a high number of visible satellites as seen by a receiver at a given
time. The average number of visible GNSS satellites at any location on Earth is
shown in the map of Figure 2.2 (Figure source: [42]). Figure 2.2a shows the satellite
visibility for the stand alone systems, while Figure 2.2b shows the map for the
multi–constellation GNSS (multi–GNSS) case when all the global constellations are
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Table 2.1 Current status of the four GNSS constellations.

System Orbits Operational Satellites Civil Signals Broadcast

GPS MEO

7 Block IIR L1 C/A
7 Block IIR-M L1 C/A + L2C
12 Block IIF L1 C/A + L2C + L5
4 GPS III/IIIF L1 C/A + L2C + L5 + L1C

GLONASS
MEO

24 GLONASS-M, G1 + G2 + [G3]
2 GLONASS-M+ G1 + G2 + [G3]
2 GLONASS-K1 G1 + G2 + G3 + G2a

Galileo MEO 24 operational E1, E5a, E5b, E5(a + b), and E6

BeiDou

GEO 6
B1I, B2I and B3IMEO 3 BDS-2

IGSO 7
GEO 3

B1I, B1C, B2a, B2b, and B3IMEO 26 BDS-3
IGSO 5

Fig. 2.1 Number of operational GNSS and RNSS satellites per constellation from 1978-2020.



2.2 GNSS Constellations 15

utilized. It can be seen that the number of visible satellites is much higher in the far
east compared to the west because of Beidou’s coverage in this figure, in addition
to the concentrated existence of Japan’s, China’s and India’s regional systems, not
shown in Figure 2.2 but reported in Figure 2.1. Also, in general, the number of
visible satellites near the equator is high compared to the high latitudes because of
the inclination of the GNSS satellites’ orbits. Nevertheless, the number of visible
satellites is always much greater than 16 (4 satellites from each constellation) which
is the minimum number of satellites needed to compute a stand alone positioning
using the various constellations independently.

This high number of satellites results in increased availability and accuracy of
the multi–GNSS navigation service (i.e. when a multi-constellation receiver is used)
because of many factors. First of all, the high number of satellites provides better
geometrical distribution of the satellites in the sky which translates to a smaller
Geometric Delusion of Precision (GDOP) error (the more spread the satellites, the
lower the error). Moreover, in places with reduced sky visibility, e.g. mountains and
urban canyons, the availability of the positioning solution is increased. Regarding
the accuracy, the authors in [48] show that the standard deviation of the positioning
error of an open service receiver working in L1/E1 band decreases from 75 to 40 to
25 to 18 meters when the number of visible satellites increase from 4 to 8 to 12 to 16
relatively.

Another beneficiary of this increased number of GNSS satellites is the field of
remote sensing. For these applications, the increase in the number of radio sources
automatically increases the amount of remote sensing measurements. In these cases,
Figure 2.2 translates to 25-50 simultaneous ionospheric measurements, and the same
number of ground reflections as observed by a receiver. In Section 4.2.1 we discuss
in detail the benefit of multi–GNSS for UAV-based reflectometry. We do not discuss
the benefits of multi–GNSS for scintillation studies as they are beyond the scope
of this work. We refer the reader to [49–51] for examples on why multi–GNSS is
important for receivers working under scintillation conditions, and also for receivers
observing ionospheric irregularities.

Next, we explore the navigation signals transmitted by these satellites and we
explain why are these signals useful for reflectometry and scintillation.
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(a) Stand alone systems cases

(b) Multi-GNSS case.

Fig. 2.2 Map display of the average number of visible satellites for the four GNSS systems.
Sampling interval 5 minutes. cuttoff elevation angle 10◦. Spatial resolution 2.5◦lat,5◦lon
(72×72 grids). Virtual receiver at the centre of each grid at height 25m. Analysis period
(25-31 Oct 2020).
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Fig. 2.3 GNSS navigational frequency bands.

2.3 GNSS Navigation Signals Frequencies

GNSS satellites transmit multiple navigation signals in the frequencies dedicated to
Radio Navigation Satellite Services at the L–band (1-2GHz). These frequencies are
illustrated in Figure 2.3 (image credit [52]) where three bands in particular can be
highlighted:

• L5: between 1164 and 1215 MHz

• L2: between 1215 and 1300 MHz

• L1: between 1559 and 1610 MHz

The different constellations refer to the exact bands they utilize using different
names (for example E5a, E5b, E6 and E1 in the case of Galileo) with the central
frequencies and bandwidths shown in Figure 2.3. Moreover, multiple signals (can
be at the same frequency) are transmitted by each GNSS system. For example, a
GPS satellite transmits 5 signals at 3 different L–band frequencies at the same time.
The complete list of navigation signals transmitted by the different constellations are
shown in Table 2.2 (source: [53]). Some of these signals are restricted to specific
users while others are available for free and commercial use.

L–band signals are able to penetrate rain, clouds, fog and storms which make
them ideal for providing navigation signals even under severe weather conditions.
However, these signals are affected by vegetation (where their power is attenuated)
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Table 2.2 GNSS Frequencies and Signals.

System Signal Frequency (MHz)

GPS

L1 C/A 1575.42
L1C 1575.42
L2 C 1227.6
L2 P 1227.6
L5 1176.45

GLONASS

L1 C/A 1598.0625-1609.3125
L2 C 1242.9375-1251.6875
L2 P 1242.9375-1251.6875
L3 OC 1202.025

Galileo

E1 1575.42
E5a 1176.45
E5b 1207.14
E5 AltBOC 1191.795
E6 1278.75

BeiDou

B1l 1561.098
B2l 1207.14
B3l 1268.52
B1C 1575.42
B2a 1176.45
B2b 1207.14
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and buildings (where they get diffracted and reflected). This leads to degraded
navigation signals where the open sky conditions are unavailable. Moreover, the
signals in this band are susceptible to passage into the ionosphere which introduces
delays and/or random fluctuations in the L-band received signals when the geospace
is perturbed (see Section 5.4).

Special measures to counteract the corruption of the signals due to ionospheric
propagation and multipath from the surrounding environment (buildings, mountains,
ice, lakes, etc) can be set up at receiver level or post-processing the data. At the same
time, such weakness make the GNSS signals ideal for the remote sensing applications
we are targeting in this thesis, i.e ionospheric scintillation and reflectometry [54] as
will be discussed in Section 5.4 and Section 3.1 respectively.

On the other hand, the motivation behind broadcasting signals at multiple frequen-
cies by each satellite is related to ionospheric propagation errors. The GNSS services
are based on estimating the propagation time of signals from multiple satellites to a
receiver. Since the satellites are orbiting at a height of approximately 20,000 km in
space, their signals pass through the ionosphere and the troposphere before arriving
at a receiver on ground. These mediums introduce changes in the propagation of the
radio wave that, if not accounted for, will introduce errors in the estimation of the
propagation time. The most effective way to eliminate these errors is to use signals
broadcast on multiple frequencies from the same source. This elimination is gener-
ally applied by dual frequency GNSS receivers that are able to mitigate propagation
errors without external aids. For ionospheric sciences, this actually translates to
observing the effect of the ionosphere (the bulk of the information stands into the
aforementioned errors) as will be discussed in Section 5.4. For reflectometry applica-
tions, these multi-frequency signals provide the chance to monitor a phenomenon at
different frequencies. It has demonstrated benefits in many applications specially in
ground-based reflectometry sensors. Multi-frequency GNSS–R is beyond the scope
of this thesis, but recent examples of its implementation can be found for example in
[55, 56].

In conclusion, the GNSS systems provide abundance of signals that are well
suited for ionospheric remote sensing as well as for sensing reflected signals by a
wide category of ground objects including water surfaces.
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2.4 Navigation Using GNSS

In this section a brief description of the operation of the GNSS systems is provided.
In its core, GNSS is a timing instrument that is able to provide precisely timed
signals that can be exploited for cm accuracy measurements as well as a time
transfer accuracy in the order of 1− 2 ns [57]. This capability is the key enabler
for the exploitation of GNSS signals for scientific uses beyond the positioning and
navigation services, for example for geodesy, timing and remote sensing.

In radio navigation, the distance between the 3-dimensional position of the
receiver (PR) and a satellite i (PSi) can be indicated by (2.1):

dSi
R = |PSi −PR|= c(tR − tSi), (2.1)

where c is the speed of light, tsi is the epoch at which the signal left satellite i, and tR
is the epoch at which the signal arrived at the receiver. The position of the satellite is
known as well as the epoch of transmission. The epoch of reception is measured and
thus the only unknown is the position of the receiver. An error of 1µs in measuring
this time difference, translates to approximately 300m error in the estimation of the
distance between a satellite and a receiver. For this reason, GNSS receivers need to
estimate with high accuracy the signal flight time, and also the GNSS systems need
to provide the satellite coordinates and timing with high accuracy.

However, the receiver’s clock is actually not synchronized with the satellite’s
clock. On the other hand, the GNSS satellites are well synchronized among each
other and the overall GNSS system offset from the reference Coordinated Universal
Time (UTC) is known. To achieve this synchronization and reference time keeping,
GNSS systems rely on atomic clocks on-board the satellites.

The GNSS satellites broadcast their Coordinated Universal Time (UTC) time
offset in the navigation message in addition to the epoch of transmission. Because
of the bias in the receiver clock (and other propagation delays), the receiver then
estimates not the actual range, but a pseudo-range from satellite i to the receiver (ρi).
This translates (2.1) to:

ρi = c[(tR − tre f )− (tSi − tre f )]+ εd, (2.2)
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where tre f is the reference UTC time and εd is a term that incorporates the additional
delays due to the ionosphere (as it will be seen in section 5.4), troposphere and the
receiver hardware [57]. The receiver clock offset is unknown and will be estimated
by the receiver as a fourth unknown besides the unknown 3-dimensional coordinates.

Now that we have introduced the measurements that the receiver needs to obtain
in order to estimate the range to a satellite, and the 4 unknowns that it needs to solve,
we next introduce how the positioning and navigation equations are constructed.

The principle of estimating the position of a receiver using GNSS satellites
is illustrated in Figure 2.4. The main job of a GNSS receiver is to estimate the
propagation time τi of the signal from satellite i to the receiver antenna. The satellite
coordinates (xi

s,y
i
s,z

i
s) and time are known, therefore four τi measurements are needed

to estimate the coordinates of the receiver (xR,yR,zR) and the receiver clock offset
(∆τ). Finally, using at least four measured τi values and applying the equation of
distance between two points in 3–Dimensional space, the coordinates and time offset
of the receiver clock with respect to the GNSS time scale can be estimated.
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where ρi is the pseudo-range between satellite i and the receiver, and bi is the extra
range due to the receiver clock bias and the other errors. bn for each satellite is
different from the others because the different satellites’ signal follow different
propagation paths specially during their propagation in the ionosphere.

In fact, in Figure 2.4, it is explicitly illustrated that the GNSS signal passes
through a couple of propagation mediums before it reaches a receiver on Earth.
Thus, τi measured by the receiver does not represent signal travelling with the speed
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Fig. 2.4 Illustration of GNSS based position estimation concept

of light in a straight line between the satellite and the receiver. The bending is
significant when low elevation (less than 15◦ [58]) signals are to be processed, for
example in RO. It will not be the case in this thesis and thus the bending effects
will not be further addressed. Most importantly, the propagation medium affects the
speed of the signal. This eventually affects the estimation of the distance between
the satellite and the receiver. For scintillation, this propagation delay is important
and it will be addressed in Section 5.4. For our GNSS-R application, however, we
will be comparing the delay of the signal received from the satellite with the signal
reflected by the surface. Since the sensor is flying at low latitudes, the atmospheric
propagation delays are equivalent for both signals and thus they will cancel each
other, as will be illustrated in Section 3.3. Thus, for the GNSS–R part, atmospheric
propagation delays will not be further discussed.

Finally, it is important to highlight that many simplifications were applied to
make this topic focused on the applications that this thesis is addressing. These
simplifications do not address for example, and not limited to, relativistic effects,
satellite clock stability, satellite orbital errors, etc [59]. These simplifications are
acceptable for this study because, as will be seen in Chapter 3 and 5, we will focus on
aspects that affect the power of the received signal and/or those that dual frequency
receivers can not totally eliminate.

Next, the principles for how does the GNSS receiver processes the signal to
estimate τi is presented.
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2.4.1 The GNSS Signal

GNSS satellites broadcast communication signals that are designed specifically to
be used for Positioning, Navigation and Timing (PNT). For a generic GNSS signal,
the signal transmitted by satellite i has the structure:

xRF,i(t) =
√

2PT X ci(t) sc(t) di(t) cos(2π fit +θ0), (2.3)

where PT X is the transmitted signal power. ci(t) is the ranging code which is unique
for satellite i. sc(t) is a sub–carrier that modulates some of the modern GNSS signals
(if no sub–carrier is present, sc = 1). di(t) is the navigation data, which is a low rate
message carrying information about the satellite health status in addition to some
parameters that are needed to estimate the range from the receiver to the satellite. fi

is the carrier frequency and θ0 is a random initial phase.

This signal propagates from the satellite to a receiver on Earth passing through
space and the different layers of the atmosphere.

The signal reaches the receiver attenuated, delayed, and with a different phase
with respect to the transmitted signal. The signal described by (2.3) at the receiving
antenna input becomes:

yRF,i(t) =
√

2PRX ,i(t)ci(t − τi(t))sc(t − τi(t))di(t − τi(t))cosγi(t), (2.4)

where PRX ,i(t) is the received power at time t. τi(t) is the time the signal took to
travel from the satellite to the receiver. The signal arrives with frequency and phase
γi(t) = 2π( fi + fD,i)t +θi(t). fD,i is Doppler shift resulting from the relative motion
between the satellite and the receiver. θi(t) is the phase of the received signal at time
t. Received power can be described as [60]:

PRX ,i(t) = PT X LLOS,i(t)Latm,i(t), (2.5)

where PT X is the nominal transmitted power. LLOS,i(t) is the free space loss across
the line of sight range, Latm,i(t) is the power loss due to atmospheric propagation.
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Fig. 2.5 GNSS receiver architecture

2.4.2 The GNSS Receiver

Figure 2.5 shows the general GNSS receivers architecture, without the PNT unit. The
antenna receives the electromagnetic signals from the visible GNSS satellites, and
feeds them at the input of the front–end as electrical signals. The receiver front–end
amplifies the signal power, down–converts the carrier frequency to an intermediate
frequency, and digitizes the received signal. The front–end, on the other hand, adds
undesirable thermal noise to the received signals. The output of the front–end is thus
the digital signal:

yIF [n] = ∑
i∈Vis

yIF,i[n]+η [n], (2.6)

where Vis is the set of visible satellites, and η [n] is the thermal noise. The signal for
satellite i at the output of the front–end yIF,i[n]is:

yIF,i[n] = α

√
2PRX ,i[n] ci[n− τi[n]] di[n− τi[n]]cos φi[n], (2.7)

where α is the power gain introduced by the receiver antenna, front end and digiti-
zation process, and φi[n] is the phase of the signal down–converted to intermediate
frequency. The next step is digital signal processing, where the signal parameters are
estimated.
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2.4.3 GNSS Signal Processing

The core job of a GNSS receiver is to estimate the propagation time of the sig-
nal. It does so by estimating the delay of the code τ̂i[n], and the phase of the
carrier, φ̂i[n] for each of the visible satellites. For simplicity we drop [n] from
{τi[n], τ̂i[n],φi[n], φ̂i[n],PRX ,i[n]} for the rest of the thesis.

To retrieve the signal for satellite i, the receiver multiplies the received signal by
a complex local replica of the satellite’s code and carrier ci[n− τ̂i].e jφ̂i , and filters
out the high frequency component. The resulting signal is:

si[n] = ⟨yIF [n] ci[n− τ̂i]e jφ̂i⟩= A
√

PRX ,i di[n− τi]ci[n− τi]ci[n− τ̂i]e jδ φ̂i +ξ [n],
(2.8)

where ⟨.⟩ is the low pass filter, δ φ̂i = φi− φ̂i, and A is a term that collects the constants
and the amplification factor resulting from the filter and the front–end. ξ includes all
the noise terms including the thermal noise and the signals from the other satellites.

The signal si[n] is processed by the receiver in chunks that are multiples of the
code length, for example multiples of 1ms for GPS L1/CA signal. The receiver
integrates and dumps all the samples in the chunk and outputs two values Ii[m] and
Qi[m]:

ri[m] = Ii[m]+ jQi[m] =
1
L

L

∑
n=1

si[n] = Adi[m−τi]
1
L

L

∑
n=1

B
√

PRX ,ie jδ φ̂i +ε[m], (2.9)

where L is the number of samples in the chunk of signal. B = ci[n− τi] ci[n− τ̂i] ∈
{1,−1}. The real and imaginary parts of ri[m] are known as the in–phase (I) and
quadrature–phase (Q) components of the signal respectively. The amplitude of
ri[m] is thus an estimation of the average received power, multiplied by a receiver
dependent factor, and the navigation message (di[n] ∈ {1,−1}). The quality of this
estimation is affected by the receiver’s capability to estimate τi and φi.

If δ φ̂i = 0 and δ τ̂i = τi − τ̂i = 0, i.e. the receiver is perfectly estimating the
code delay and the carrier phase, and taking into account that 1

L ∑
L
n=1 ci[n− τ] ci[n−

τ̂]|δ τ̂=0 = 1 (properties of ranging codes) , then:

ri[m]|
δ φ̂i=0,δ τ̂i=0 = Adi[m− τi]

1
L

L

∑
n=1

√
PRX ,i + ε[m], (2.10)
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i.e. ri[n]|δ φ̂i=0,δ τ̂i=0 would be a real signal that only contains the navigation message
multiplied by a factor proportional to the average received power. The general
expression for the raw signal intensity is:

SIi,raw[m] =
√

I2
i [m]+Q2

i [m]. (2.11)

GNSS receivers are designed to continuously refine φ̂i and τ̂i keeping I as maxi-
mum as possible and Q almost zero. This tracking capability degrades in presence
of interference like Radio Frequency Intereference (RFI), multipath and scintillation.
What looks like the failure of the receiver to perfectly estimate τ̂i and φ̂i is in fact
also an estimation of the dynamics of the signal as perceived by a GNSS receiver.

In this thesis we focus on this SIi,raw and utilize it for two different applications.
The first is for GNSS–R, where our objective is to observe this value and infer it
to the surface that reflected the signal on the ground. The second application is for
scintillation, where we observe how this signal intensity changes depending on the
condition of the ionosphere that it passes through.

For this reason two different receivers will be used, that provide this same value
but they are for different applications. The GNSS-R receiver is designed to look
at GNSS signals that are reflected by ground objects. It deals in particular with
very weak GNSS signals (weaker than the already weak GNSS signal) and they
implement multiple antennas to monitor the direct and reflected GNSS signals. On
the other hand, ISM receivers implement advanced signal processing techniques to
maintain tracking the signal under challenging scintillation conditions [61]. Both
the GNSS–R receiver and the ISM receiver process the GNSS signal, not to obtain
the receiver position but rather leverage the known position of the receiver to aid
processing the GNSS signal.

The details of processing the GNSS signal for reflectometry and scintillation
monitoring will be detailed in Chapter 3 and 5 respectively.
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GNSS-Reflectometry





Chapter 3

GNSS Reflectometry

3.1 GNSS-Reflectometry Concept

A navigation GNSS receiver uses an antenna to look at the direct signals broadcast
by GNSS satellites. If we point the GNSS antenna towards the ground, and record
the GNSS signals reflected by ground objects, this is called GNSS reflectometry. A
GNSS–R receiver is interested in observing the signals reflected by ground objects.
For this, it implements a down–looking antenna, besides the up–looking antenna, to
observe the reflected GNSS signals.

The concept of the GNSS–R is depicted in Figure 3.1. In this illustration, the
signal from a GNSS satellite gets reflected by water, and is received by an airborne
GNSS sensor. The satellite signal is incident on all the ground area and is strongly
reflected by water with reflection angle equal to the incident angle. Thus, the location
of the receiver determines which ground measurement is observable. By moving the
sensor, for example on a drone along the trajectory illustrated in black dashed lines,
ground measurements are collected from the different reflection points.

From remote sensing perspective, the fact that a GNSS signal was reflected,
indicates that an object that reflects signals in L-band exists. These objects include
water, ice and moist soil, and do not include dry soil and trees for example. We can
estimate the position of this reflecting surface (Section 3.2), the height of the flight
above the reflecting surface (Section 3.3) and the amount of power reflected by the
surface (Section 3.4).
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Fig. 3.1 Illustration of the GNSS–R concept

3.2 The Specular Point

We can estimate the position of the reflecting surface (i.e. the specular point) knowing
the position of the sensor (precisely the GNSS–R antennas), the elevation angle of the
transmitter (the GNSS satellite broadcasting that specific signal), and the topology of
the terrain in the area of interest. Figure 3.2 illustrates the estimation of the position
of the reflecting surface indicated with P in the figure. Here, the satellite elevation
θEL is known, as well as the receiver position (xR,yR,zR). Being a specular point, the
reflection angle θr is equal to the incident angle θi. Therefore, its possible locations
are restricted to the set of points on terrain surface that fulfil the incident/reflection
angles equality. These are the points where the equation of a point in 3-dimentional
with a slope corresponding to the reflected signal intersect with the receiver position.
From 3D Euclidean geometry, we recall the equation of a line with direction vector
#»

ddd = (l,m,n), i.e. the direction of the reflected signal line, that passes through the
specular point (xP,yP,zP), i.e. the known point in the line, is:

x− xP

l
=

y− yP

m
=

z− zP

n
(3.1)
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Thus, if the receiver position (xR,yR,zR) is on the line (3.1) then the signal reflected
by this specular point is indeed received by the GNSS–R sensor. The set of all
specular points for which the receiver fulfils their reflected signal line equation
constitute the set of specular points from a satellite signal (since many points in the
ground can reflect a satellite signal in the direction of the receiver simultaneously
specially in mountains and similar topologies).

The solution of the previous equation is, however, not feasible because of the
unlimited number of specular points that we have to evaluate to construct the set of
reflection points from one satellite at each time step. The problem can be simplified
by assuming that only one specular point exists from each satellite signal. This is
possible if we assume that the terrain is flat in the region of interest for example in
the ocean or a lake. In this case, we can solve (3.1) to find the specular point given
the known location of the GNSS–R sensor, and the known incident angle, i.e:

x− xR

l
=

y− yR

m
=

z− zR

n
(3.2)

The value of (xP,yP,zP) can be estimated from the intersection between the terrain
topology and (3.2).

The approach in the literature to solve (3.2) starts from estimating the specular
point assuming the reflection happened at the Earth ellipsoid, shown with the red
solid line in Figure 3.2 , which is a geometric model that best fits the entire Earth
surface. Therefore, we will be first estimating point E in Figure 3.2. Then this
estimation is refined with the knowledge of the geoid, the purple solid line in Figure
3.2, which is the equipotential surface best fitting the Earth gravity field, to estimate G
in Figure 3.2 [38, 62]. The difference between the geoid and the ellipsoid, indicated
by the purple dashed line in Figure 3.2, is known as the geoid height N. The position
of the specular point is further refined with knowledge of the topology of the terrain
to estimate point P in Figure 3.2. This refinement is essential for inland reflectometry
studies [63] and other applications where accuracy of the specular point estimation is
needed [64]. The difference between the ellipsoid and the specular point on Earth’s
surface, shown in red dashed lines, is known as the ellipsoid height. Finally, the
vertical distance between the geoid and the specular point, shown in dashed blue
lines in Figure 3.2, is known as the orthometric height.
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Fig. 3.2 Estimating the specular point position

In summary, with the help of orthometric terrain heights, Earth geoid and el-
lipsoid, the location of the specular points can be obtained from the satellite and
receiver locations given by GNSS measurements.

3.3 Flight Height Estimation

Figure 3.3 illustrates the concept of height estimation from a geometry point of view.
Here, we can measure the delay of the reflected signal with respect to the direct
signal, and thus we can measure the extra distance travelled by the reflected signal.
This extra distance is a function of the satellite elevation (known) and the height of
the surface (to be estimated) as will be shown in this Section.

In Figure 3.3, since the GNSS satellites (the transmitters) are very far (20,000km)
compared to an airborne GNSS-R receiver (10km for an aeroplane, less that 1km for
a drone), we can assume that the signal ray reaching the direct antenna is parallel
to the signal ray incident on the ground surface. Thus, the wave front reaching the
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up–looking antenna at time t0 reaches the specular point at tS:
tS = t0, θEL = 45◦

tS > t0, θEL > 45◦

tS < t0, θEL < 45◦
(3.3)

Since we are processing GNSS signals, the delay δ between the direct and
reflected signals, t0 and t1 respectively, is measurable as:

δ = t1 − t0 = (t1 − ts)− (t0 − ts)[s] (3.4)

From Figure 3.3, (3.4) can be rewritten in [m] as:

δ = c(t1 − ts)− c(t0 − ts) = y− x[m] (3.5)

where c is the speed of light. x is the distance between the specular point and the
incident wavefront at t = t0. y is the distance between the specular point and the
GNSS–R sensor. The distances x and y are shown in Figure 3.3. From the geometry
illustrated in Figure 3.3, we can estimate the values of x and y:

x = ysin
(

π

2
−2θEL

)
(3.6)

y =
h

sinθEL
(3.7)

where h is the vertical height of he GNSS–R sensor above the specular point and θEL

is the elevation of the satellite as depicted in Figure 3.3. Substituting (3.6) and (3.7)
in (3.5), the height of the flight can be estimated from the delay between the direct
and reflected signals as:

δ = y− x =
h

sinθEL

(
1− sin

(
π

2
−2θEL

))

h =
δ sinθEL

1− sin
(

π

2 −2θEL
) (3.8)

where c is the speed of light, h is the height of the GNSS-R sensor above the reflecting
surface and θEL is the elevation of the satellite as depicted in Figure 3.3.
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Fig. 3.3 Estimating height from GNSS–R measurements

In summary, by measuring the delay δ of the reflected signal with respect to the
direct signal, we can estimate the height of the flight above the reflecting surface.

3.4 Reflected Power Estimation

If we observe the power of the signal broadcast by a satellite as measured by the
up–looking antenna, and the same satellite signal as measured by the down–looking
antenna, we can estimate the amount of power reflected by the ground surface as
follows.

Figure 3.4 illustrates the concept of estimating the reflected power using GNSS–
R. Starting from (2.5), the power of the signal incident on the up–looking antenna
(SD) and the power of the signal incident on the reflecting surface (Si) are:

SD = PT X LLOS,DLatm,D, (3.9)

Si = PT X LLOS,iLatm,i, (3.10)

where PT X is the nominal transmitted power from a satellite. Latm,D and Latm,i are
the power loss due to atmospheric propagation of the direcct and incident signals.
For low altitude flights, since the two signals cross almost the same portion of the
atmosphere, they get attenuated by the same atmospheric environment, and thus the
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atmospheric loss is equal for both signals. LLOS,D and LLOS,i are the free space loss
(the signal attenuation due to the distance travelled by the signal) across the line of
sight given by:

LLOS =

(
4πd

λ

)2

, (3.11)

where d is the distance from the satellite to the receiver/surface and λ is the signal
wavelength. For low altitude flights, for example, if the direct GNSS signal travelled
dD = 20,000km, and the incident signal travelled an extra distance of 2km (i.e
di = dD +0.0001dD), and substituting in (3.11):

LLOS,i =

(
4π

λ

)2

× (1.0001dD)
2 ≈ LLOS,D (3.12)

Therefore, combining (3.9) and (3.10):

Si ≈ SD (3.13)

i.e. the signal incident on the surface has the same power of the signal incident on
the up–looking antenna.

Similarly for the power received by the down–looking antenna SR:

SR = αSiLLOS,RLatm,R (3.14)

where α is the fraction of si that was reflected by the surface, Latm,R is the power
loss due to the atmosphere between the reflecting surface and the sensor. Since the
sensor is flying at low altitude, i.e. in the troposphere, we can assume Latm,R to be
negligible for such a small distance in this environment. For the free space loss
from the specular point to the down–looking antenna LLOS,R, assuming a distance
of dR = 2km travelled by the signal from the specular point to the down–looking
antenna, the free space loss is:

LLOS,R =

(
4π

λ

)2

× (0.0001dD)
2 = LLOS,D ×10−8 (3.15)

i.e. for low altitude flights, the free space loss due to this final signal path is negligible
compared to the loss that has already occurred due to the signal travelling from the
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Fig. 3.4 Estimating the reflected power from GNSS–R measurements

satellite to the up–looking antenna/reflector. Therefore, (3.14) becomes:

SR = αSi ≈ αSD (3.16)

In summary, when the distance from the sensor to the GNSS satellites is much
larger than the distance from the sensor to the reflecting surfaces, we can assume that
power of the direct and incident signals are equal. Therefore, to estimate the reflec-
tivity of a surface, we only need to measure the direct and reflected signal powers
(SD and SR) incident on the up–looking and down–looking antennas respectively.

In the next Section we show how these two measurements are estimated and
calibrated for a GNSS–R sensor.

3.5 The GNSS-R Receiver

In a GNSS-R receiver, two independent GNSS receivers are implemented to receive
the direct and reflected signals. The reason is that the reflecting surface scatters and
absorbs the incident signal resulting in the reflected signal becoming much weaker
than the direct signal. For this reason the reflected signal receiver is in particular
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carefully designed to handle weak GNSS signals. Figure 3.5 shows the detailed
block diagram of the GNSS–R receiver. Here, Ant1, LNA1 and ADC1 are the
antenna, Low-Noise Amplifier (LNA) and Analogue to Digital Converter (ADC),
respectively, for the direct signal channel. Ant2, LNA2 and ADC2 are the antenna,
LNA and ADC, respectively, for the reflected signal channel. The ADC blocks
usually incorporate an Automatic Gain Control (AGC) unit which is responsible
for adjusting the gain of the ADC depending on the signal power. Looking at the
equations of the direct and reflected signals we can understand the effect of these
hardware differences on estimating the reflected power. The direct and reflected
signal powers (RD[n] and RR[n]) at the output of the ADCs are:

RD[n] = GAnt1GLNA1GADC1SD[n− τ1] = ASD[n− τ1] (3.17)

RR[n] = GAnt2GLNA2GADC2SR[n− τ2] = αBSD[n− τ2 − τ] (3.18)

where G is the gain for the various components (Ant, LNA and ADC), τ is the delay
of the reflected signal w.r.t the direct signal, and τ1 and τ2 are the delays introduced
by the direct and reflected receiver channels, i.e. it is the delay at the output of the
receiver w.r.t. the incident signal on the antenna. A and B are terms that incorporate
all the gains on the direct and reflected channels respectively. Finally, α is the
fraction of power reflected by the surface.

In (3.17) and (3.18), α and τ are the two quantities we want to estimate, while
RD[n] and RR[n] are the two quantities we are able to measure at the output of the
ADC. The values of A

B and τ1 − τ2 are obtainable in calibration phase.

The calibration of a GNSS-R sensor generally consists of two phases:

• Lab calibration where the above mentioned values (A
B and τ1 − τ2) are cali-

brated.

• Field calibration where α and τ values estimated by the sensor are validated
against true measurements.

The general idea of the in-lab calibration is to provide the same signal to both the
direct and reflected channels as shown in Figure 3.6. This means the delay between
the direct and reflected signals τ is 0 and the direct and reflected powers are the
same, i.e. α is 1. However, since we need to calibrate the whole sensor including the
antennas, we will need to broadcast the GNSS signals in a controlled environment
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Fig. 3.5 Block diagram of the GNSS-R Receiver hardware

and , most importantly, we need to obtain the LHCP version of the GNSS signal and
feed it to the down-looking antenna.

On the other hand, for the field calibration, we need to know the exact height of
the reflecting objects (to estimate the true delay) and we also need in-situ measure-
ments for the reflectivity of the surfaces.

In this work (1) we show results of the field calibration, and (2) we focus on
calibrating the delay. The motivation behind those two choices are as follows. For
application in flood detection, it is beneficial to estimate the height of the water and
compare it with the normal water level. At the same time, the true height of the
reflecting surfaces can be obtained from Digital Elevation Models, which are usually
available for post flood events assessment. Furthermore, since our objective is to
detect water existence and its extent, we do not dive into estimating the amount of
reflected power α and thus we will not show results of calibrating A

B . The latter
allows us also to activate the AGC in the front ends, to maximize the received
power, without needing to calibrate the effect of the changing gain of the front ends.
Finally, since we are proposing simple sensors to install in small UAV platforms, we
deliberately simplify the pre-processing and post processing work to be done and we
prove that it is still feasible to obtain the target results.
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Fig. 3.6 GNSS-R Sensor calibration.

3.6 GNSS-R Application in Water Detection

Remote sensing has been used in studying floods for more than 40 years [65], where
data from air- and space-borne optical, thermal and microwave sensors [66] are
exploited to support the different stages of flood risk management [67]. Each of the
sensors categories has advantages and disadvantages, and thus the selection of the
most appropriate type of devices and data for the monitoring of the specific events
can be not easy.

Space-borne data are widely used for flood monitoring providing different spatial
and temporal resolutions. Satellite optical images, although the most straightforward
to interpret, are usually not available during floods because of the cloud cover during
these events [68]. Synthetic Aperture Radar (SAR) techniques on the other hand
overcome this weather limitation, and also provide day/night visibility, [69] but
are challenged to detect inundations in urban areas [70] and under vegetation [71].
The latter is overcome with passive microwave sensors in low microwave frequency
which have better penetration through dense vegetation [72]. GNSS-R falls in
the latter category of passive low frequency radars, and had proven successful in
detecting wetlands during floods (e.g [73]). In general, space-borne remote sensing
data for flood monitoring have the disadvantage of long revisit time (>2.5 days) [74]
and thus they do not provide enough repeating visits needed during these events,
and in worst cases they even miss the peak of the event [75] like in flash flooding
(for example [67]). Also, the satellites with short revisit times have low resolution
(in kilometers), which make them not sensitive enough to detect the details needed
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for floods [76]. Moreover, even the meter level space-borne resolution sensors are
challenged in delineating inundation in headwater regions which require sub-meter
image resolution [71].

From a general perspective, aircraft flights are able to overcome the weather
limitations of optical sensors and the resolution and revisit limitation of space-borne
remote sensing, but they are expensive and sometimes, due to the need of runways
and the difficult topology of the areas, they are not feasible [77]. Moreover, they are
not able to provide the temporal resolution provided today by space-borne sensors
that scan the Earth continuously. In fact, today hybrid data from different space-
and air-borne sensors are fused together to complement each other and provide the
different aspects of global flood monitoring, local detailed inundation maps, temporal
data availability and quick data availability of floods [78, 79]. For comprehensive
literature on floods remote sensing using the various platforms and sensors refer
to [67, 65, 69, 66, 71, 74].

The processing of GNSS signals that are forward-scattered by the ground allows
for using GNSS-R in monitoring the parameters of the Earth’s surface. It is a passive
radar where all the GNSS satellites are the transmitters, and any sensor capable of
processing their reflected GNSS signals is the receiver [3].

GNSS-R advantages include, beside penetration of vegetation cover and re-
silience to clouds and smoke, the frequent global coverage of the transmitters from
multiple constellations which avoids the limitation of current active remote sensing
techniques that rely on a single transmitting satellite [80]. Also, the low cost of the
receivers and the small size of the antennas regardless of the targeted resolution,
makes GNSS-R an interesting sensing technique.

A wide range of applications has been reported in the literature for GNSS-R
including: water basins detection (e.g., [81, 82]), river level monitoring (e.g., [83]),
estimation of the surface roughness and wind retrieval (e.g., [84, 85]), measurement
of the soil moisture (e.g., [86, 87, 63, 88, 89]), altimetry (e.g., [90, 91]), monitoring
the presence of vegetation (e.g., [92, 93]), and estimation of snow/ice thickness (e.g.,
[94]).

GNSS-R sensors have been deployed onboard spaceborne platforms, for example
the GPS reflectometry experiment onboard the UK-Disaster Monitoring Mission
(UK-DMC) [95], the Cyclone Global Navigation Satellite System (CYGNSS) [96],
the International Space Station (ISS) [97] and the UK TechDemoSat-1 mission [98].
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They proved to be a valuable source of remote sensing data for both land [99–
102] and ocean [98] remote sensing. However, space-borne GNSS-R have few
limitations. As of today they provide 0.5–1.0km resolution which is not satisfactory
for detailed inundation maps. Also, due to the nature of the flight trajectories of
satellites, the measurements they produce are in form of surface tracks rather than
instantaneous images [80]. These two limitations can be overcome by air-borne
GNSS-R, and they are addressed in this work by flying a GNSS-R onboard a UAV.

The diffusion of Unmanned Aerial Vehicles today is a result of the great positive
impact it has proven in modern societies [103]. UAVs are offering solutions for
a broad range of applications including support after natural disasters operations
[104] such as floods (e.g., [105]), monitoring of environmental pollution, security
and surveillance, and critical infrastructures diagnostic. UAVs can be equipped
with several types of remote sensing sensors like hyperspectral and optical cam-
eras (e.g., [106]), Synthetic Aperture Radar (SAR) (e.g., [107–109]), and GNSS-R
sensors.

GNSS-based passive radars on-board commercial UAVs introduce constraints
on the size, weight and power consumption of the GNSS-R sensor, especially if a
small commercial quad- or hex- copter carries out the experiment. Many designs
for airborne GNSS-R sensors have been presented in the literature. For example the
sensor presented by Troglia Gamba et al. [30] implements a SDR based GNSS-R on
an ODROID–X2 microprocessor able of receiving both the LHCP and the RHCP
reflected signals using two front–ends streams. Esterhuizen and Akos [110] also
presented a miniaturized receiver based on two GPS L1 front ends and a Nano-ITX
Single Board Computer (SBC) to store raw signal samples, which were analyzed in
post-processing [111]. Marchan-Hernandez et al. [112] on the other hand, designed
an FPGA-based GNSS–R that is capable of computing the Delay Doppler Maps
(DDMs), with update rate of 1 ms.

The majority of the GNSS-based passive radar sensors in the literature are
composed of (1) a zenith pointing RHCP antenna for the reception of the direct
GNSS signals, and (2) a nadir-pointing antenna to receive the ground reflected GNSS
signals. The latter can be LHCP, assuming the reflected signal underwent a complete
polarization flip, or dual polarized.

The work presented in this thesis was done under the I-REACT project [113].
This project investigates solutions that can help improving the response of decision
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makers and also rescuers to extreme events. The overall objective of this study is
to investigate the feasibility of using data collected by UAV-based GNSS-R sensors
to support flood monitoring operations. In particular, we show the ability to detect
the presence of various water bodies on ground using a custom made UAV-based
GNSS-R sensor. We focus on:

1. Investigate the possibility to equip small UAVs with GNSS-based passive radar
capabilities, to be used for water detection in post-mission assessments.

2. Estimate the performance of the GNSS-based passive radar developed by
Troglia Gamba et. al. [30] in monitoring water surfaces on ground, when it is
mounted on board a small UAV. This assessment could set-up a further source
of geospatial data for the system developed in the I-REACT project [113].



Chapter 4

Feasibility of UAV-Based GNSS-R for
Water Detection as a Support to Flood
Monitoring Operations

4.1 UAV-Based Data Collections and Processing

To investigate the feasibility of detecting water surfaces using GNSS-based passive
radar carried on small UAVs, we implemented a GNSS-R sensor complying with the
strict requirements of a UAV payload in terms of weight, size and power consumption.
In post-processing, we targeted water surfaces detection, and for that we optimized
all the parameters needed in order to increase the reliably of water detection from
GNSS signals. GNSS signals are transmitted with RHCP, and the carrier frequency
is in the order of 1 GHz ( 1.150–1.620 GHz). Their polarization is reversed when
a smooth surface reflects them becoming LHCP. If the reflecting surface is non-
specular, the reflected signal will be a mixture of LHCP and RHCP signals. Thus,
it is necessary to use antennas capable of discriminating between the two kinds of
polarization, and selecting the desired one. The synchronous recording of both the
direct and the reflected GNSS signals acts as an accurate geo-referencing mechanism
for the GNSS-R measurements, which is important for post mission assessments.
Figure 4.1 shows the sensor (left) and a photo from one of the data collection
campaigns showing the sensor mounted on-board a UAV (right). In the following
subsections, we will describe the sensor used for data collection, then we will
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(a) The sensor (b) The sensor mounted onboard a UAV

Fig. 4.1 The GNSS–R sensor used in this study, and a picture from one of the data collec-
tion campaigns.

explain the data collection campaigns, after that we will detail the signal processing
procedure, and finally we will introduce the data sets processed in this work.

4.1.1 The Utilized GNSS-R Sensor

In this section, the original version of the GNSS–R sensor used for data collection is
described, then the modifications introduced to achieve the low-complexity version
are explained. The complete details of the sensor were published in [30], however
it is presented briefly here for sake of clarity of the experimental setup and the
post-processing methodology.

The original sensor was designed with the aim of detecting water surfaces and
land water content. It is intended for small UAVs with weight of 3 kg and memory
limit able to store 30 min of data collection. The sensor receives both direct and
reflected GNSS signlas using three separate antennas: (1) an up-looking RHCP
antenna, (2) a down-looking LHCP antenna and (3) a down-looking RHCP antenna.

The sensor features four synchronized RF channels connecting the direct signal
and the LHCP reflected signal to a front end, while the RHCP reflected signal with
the direct signal are connected to another front end. Both front-ends down convert the
direct signals to baseband (BB), while the reflected signals are down converted to an
intermediate frequency (IF) in sake of low noise levels for the already weak reflected
signals. An embedded microprocessor controls the flow of the digital samples of
all channels.
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In this work, in order to reduce the total mass of the payload, a simplified version
of the sensor that embeds (1) the RHCP antenna for the direct signal and (2) the
LHCP antenna for the reflected ray, was used.

4.1.2 Data Collection Campaign

The data collection flights were over different types of water surfaces (rivers, lakes,
ponds, etc.) selected to test the sensor in detecting well known water surfaces.
Nevertheless, these data were considered valuable by this study to challenge the
sensor in detecting flood-similar water presence. The criteria for water detection
were defined as being able to detect small water surfaces, distinguish narrow water
flows and estimating water surfaces area. With that in mind, three test cases were
chosen from the data campaign area:

1. A 0.89 km2 lake with a known basin where we could challenge the ability to
estimate the area covered by water and its boundary.

2. A river stream to challenge detecting narrow water streams.

3. Small ponds of water to challenge the detection of small and unexpected water
content on ground.

Being not flood events, we were able to overlap the GNSS-R measurements on
available orthophotos without the need for field measurements or satellite images
taken on the same dates and time of the test flights.

4.1.3 Post Processing Methodology

Figure 4.2 shows the block diagram of the post-processing steps. First, we processed
the digital samples of the direct RHCP signal using a GNSS software receiver. Here
we extracted the UAV trajectory. We also retrieved the list of satellites in view during
the data collection campaign, as shown in the upper chain of Figure 4.2. Then, we
calculated the lines of specular points on the ground for all the visible satellites for
the whole flight duration, utilizing the receiver trajectory extracted in the previous
step, and the known satellites positions, as shown in the middle chain of Figure 4.2.
We calculated the specular points using the algorithms in [3, 90].



46
Feasibility of UAV-Based GNSS-R for Water Detection as a Support to Flood

Monitoring Operations

Fig. 4.2 Block diagram of the post-processing steps.

We processed samples of the LHCP signal to measure the power reflected by the
surfaces, as shown in the bottom chain of Figure 4.2. We estimated the reflected
power for all the visible satellites, by evaluating the cross-ambiguity function (CAF)
[114] over a reduced search space [115]. The CAF is generally computed and
compared to a threshold to detect the presence of a GNSS satellite signal, and in our
case the detection of a GNSS signal reflected by a ground surface. The CAF was
evaluated over a set of Doppler-delay values that define the search space where the
reflected signal was cross-correlated with a local replica of the code. Figure 4.3a
shows an example of the CAF of a visible satellite using the direct signal, and
Figure 4.3b shows the CAF for the same satellite at the same time using the reflected
signal. It can be noticed that the direct signal as expected has a peak that is well
separated from the noise floor, while the CAF associated to the reflected signal shows
a weaker peak but it is still visible.

We choose the peak-to-noise-floor separation αmean [116] as a measure of the
reflected signal strength:

αmean =
RP

Mc
(4.1)

where RP is the correlation peak value, and Mc is the mean value of the correlation
noise. Mc was calculated from the peak values of the search space obtained cross-
correlating the received signal with an orthogonal code not used by the constellation
for the whole flight duration. The non-coherent integration time was fixed to 10 ms,
and the coherent integration time was 1 ms i.e., we averaged 10 consecutive coherent
integrations of 1 ms long. We evaluated the CAF at various rates: 1, 10 and 20 Hz,
which corresponded to different levels of resolution along the lines of specular points.
In this work we are interested in understanding if this peak corresponds to reflection
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(a) Using the direct signal

(b) Using the reflected signal

Fig. 4.3 Examples of the search space for a visible satellite when (a) evaluated from the
direct signal, and (b) evaluated from the reflected signal.

from a water surface. As will be shown later, when the signal is reflected from water,
αmean will generally be above the threshold we used to discriminate the presence of
reflections.

4.1.4 The Data Sets

In this article, we processed two data sets collected during different flights, with dif-
ferent passes over the test area in different days and different seasons. The first
flight was in December, 2013 and the second flight was in the following May. We
processed both flight data using the same methodology, comparing the results for
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Fig. 4.4 Peak-to-noise-floor separation αmean of the reflected signal for a subset of visible
GPS satellites during (a) flight (1) December, 2013 and (b) flight (2) May, 2014

what concerns water detection on ground. In this section, we describe the data
sets used.

Figure 4.4 shows the peak-to-noise-floor separation αmean of data set (1) and
data set (2), in dB, for a subset of the visible pseudo-random noise (PRN) codes.
We computed αmean at a rate of 20 Hz and we used a first order low pass digital
Butterworth filter with a cutoff frequency of 1 Hz to smooth the measurements.
The x-axis reports the time, in seconds, from the beginning of the data set. It can be
noticed that αmean has a time-variant trend. Focusing on data set (1), some epochs are
characterized by αmean values greater than 5 dB (e.g., 0–400 s), indicating potential
signal reflections. Other epochs, such as those associated to PRN 32 in 600–820
s, have small values that hardly reach 2 dB . Variations can be observed among
satellites, as noticeable for example between 900 s and 1200 s, where αmean values
related to PRN 32 are lower than the values associated to PRN 19 and 3. The same
can be observed on the plot referencing to data set (2) which, however, had higher
reflection values through out the whole flight duration.

In the next section, we reference each of these reflections to their ground reflecting
points, with focus on reflections generated from water.
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4.2 Results and Discussion

In this section we are going to present three case studies, that we have chosen to
emphasise particular features and highlight the potential of UAV based GNSS-R
for monitoring surface water. The first case describes detecting the Avigliana lakes
which are two adjacent lakes in Northern Italy. We took them as reference for
calibrating both the GNSS–R sensor and the post–processing algorithms. The other
two cases relate to smaller and narrower water surfaces, where the performance of
the technique is challenged in detecting unexpected water contents on ground and in
recognizing narrow river streams.

4.2.1 Case-Study I: Lakes

The UAV flew over the Avigliana lakes, which are wide water bodies convenient
for validating the sensor and the post–processing algorithms. The approximate
dimensions of the largest lake is 970 m on the widest east–west direction, and 1200
m on the north–south direction. The sensor passed over the lakes three times: north–
south, south–north, and west–east. The average height of the UAV was 450 m over
the lake surface with average speed of 50 ms-1.

In data set (1) that originated Figure 4.4a, these passes correspond to epochs
170–230 s, 330–390 s and 1560–1620 s. Reflections were observed, as expected,
during these epochs, as shown in Figure 4.5a, which is a zoom view into the epochs
corresponding to the passes over the lakes. The figure shows that for some PRNs the
values of αmean increase up to roughly 10 dB and remain constant for many seconds.
This trend can be noticed for the satellites that have specular points falling on the
lakes and it confirms detecting GNSS signals reflected from the lakes. The periods of
these reflections depend on the lake width, the sensor speed and the satellite-sensor
geometry. Indeed, the value of αmean stays high as long as the specular points are
on water. It can be noticed also that the reflection value corresponding to water
detection differs by some dBs for the different satellites. This is due to the different
received power from the different satellites on the first place, which when reflected
correspond to different surface properties. The same reflections can be noticed
looking at data set (2) where the flight, again, passed over the lakes three times:
north–south, south–north and west–east. The corresponding passes are 600–700
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(b) Data set (2)

Fig. 4.5 Comparison of the peak-to-noise-floor separation of the reflected signal for (a) data
set (1), and (b) data set (2), when the sensor crossed the lakes on the different passes: north
to south (top), south to north (middle), and west to east (bottom).

s, 800–860 s and 1190–1240 s as reported in Figure 4.4b and zoom-viewed in
Figure 4.5b.

This concept can be appreciated in Figure 4.6a,b, which show the specular points
lines of all the PRNs in view, superimposed into orthophotomaps. These maps
correspond to data set (1) and data set (2) respectively. The flight trajectory is
represented by the black dots and it is displayed at a rate of 1Hz. The colored lines
are the specular points of the satellites which showed enhanced values of αmean.
The colors of the specular points reflect on the values of αmean associated to them.
From Figure 4.6, it can be noticed that the boundary between land and water is clearly
distinguishable and it correlates with the orthophotomap. Concentrating on the area
between the two lakes, the steep increments and decays in the values of the peak-
to-noise-floor separation along time, that were commented in Figure 4.5, actually
correspond to the water–land boundaries. The resolution of the water edge detection
is at the order of tens of meters, as expected and reported in similar investigations
available in the scientific literature. This demonstrates the suitability of the GNSS-R
onbaord UAVs in detecting water at a resolution space-borne GNSS-R are not able
to provide at the moment. Note that we processed these measurements at 20 Hz rate,
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with an integration time of 10 ms only. The measurements rate could be set up to
100 Hz to provide an even higher resolution.

Now that we know which reflections were from the lake, we want to have an
insight on the reflected power as a function of the satellite elevation. The reflected
power depends on many factors: the transmitted power by the satellite, the satellite
elevation, the receiving antenna pattern, the properties of the reflecting surface,
among others. Figure 4.7 reports the elevation angle for the reflections observed over
the lake. Each point is averaged from five consecutive seconds during which the
specular points were falling on the lakes. We used samples from both data sets (1)
and (2) to create Figure 4.7. We also reported the PRN associated to each of these
data points. It can be noticed that the reflected power from water roughly increases
linearly with the incident angle (the satellite elevation). It can also be noticed that
although we did not set a cut-off for the elevation angle, the useful measurements
i.e., the measurements from water, were for angles greater than 30 degrees in our
data collection. Measurements from satellites with less then 30◦ simply did not fall
on the lakes during this data collection, and thus did not show significant reflections.

The previous results and discussion prove the possibility of detecting the presence
of water using our low cost, software radio GNSS-R sensor. They also prove that the
edges of water are well detected. In the following sub-sections, we are investigating
the collected data to extract information about the area of the detected water surfaces.
Then, we are analyzing the benefit of multi–GNSS for GNSS–R, by investigating
the improvement in water surface area estimation when multi–GNSS are considered.

Water Surface Area Estimation and Benefit of multi-GNSS

Figure 4.8 reports the lines of specular points for which the value of αmean exceeded
6 dB. Here, we superimposed the specular points into the orthophotomap of the
upper lake and we linked the extreme points in order to form a polygon. This roughly
creates an estimation of the water surface using GNSS-R. This particular encircled
area is 0.822 km2. It is marginally smaller than the true surface of the lake which is
approximately 0.89 km2 as reported in [117].

This estimate of the surface water area is about 7.5% less than the true area. But,
since we are processing only the reflected GPS signals, the accuracy of such an
estimate could be enhanced by taking advantage of multi–GNSS signals.
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(a) data set (1)

(b) data set (2)

Fig. 4.6 GNSS signals specular reflection points superimposed into an orthophotomap.
The colorgrades indicate the measured reflected power αmean.
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Fig. 4.7 The reflected power from the lake αmean VS satellite elevation.
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Fig. 4.8 Estimation of the Northern Avigliana lake surface area using GNSS-R. The red
dotted lines represent the estimated boundary of the lake from the GNSS signals reflected
from the water surface.
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In order to investigate the improvement introduced by Galileo, GLONASS and
BeiDou signals, we simulated a realistic flight trajectory and evaluated the increase
in the number of specular points on the Northern lake. Figure 4.9a reports the sensor
trajectory we choose for the simulation. It passes the Northern lake roughly in
the middle, both on the north–south and west–east directions. We calculated the
lines of specular points for the satellites belonging to the various constellations. We
evaluated this trajectory at 100 and 200 m heights above the Earth surface, which
are typical values for small UAV flights. The reason for simulating two heights is to
ensure that the simulated height of the flight is not biasing the results we obtain, due
to the fact that we are measuring a specific lake area; since the flight height should
be proportional to the size of the targeted water body.

Figure 4.9b–e show samples of the results, with clear enhancement in the number
of specular points lines when constellations are added. Here we report the results of
the 200 m flight height above the Northern lake only. The advantages of considering
multi–GNSS–R were also quantified in terms of the accuracy of the estimation of
the surface area of the Northern lake, evaluated as the ratio between the estimated
area and the true area. Figure 4.9f reports the estimation accuracy versus the number
of visible satellites, which improves when adding more GNSS signals. It can be seen
that the accuracy of the estimation using GPS only remains at about 80% for the two
heights considered for the UAV, but increases to 90% when including Galileo. It
further improves when GLONASS is added, and reaches 98% when Beidou is added.
Notice that the curves for the different heights follow the same trend which supports
our conclusion that the more satellites, the better the area estimation accuracy.

In fact, the high–end multi–GNSS receivers, are already the state-of-the-art
for the majority of the civil applications and their use on–board UAVs is growing.
Indeed, the results presented in this sub–section refer to a particular case study (and
thus they rely on the properties of this water body). Nevertheless, they demonstrate
the expected advantages of processing reflected multi–GNSS signals. Processing
multi–GNSS signals allows increasing the number of specular reflection points over
a certain area. As an example, by, adding Galileo, we expect to double the number of
visible satellites compared to what we could have if we were using GPS alone. At mid
latitudes, the number of visible satellites can be greater than 40 when GLONASS
and Beidou are considered too. This results in increasing the number of polygon
vertices and therefore creates a more accurate estimation of the water surfaces.
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Undoubtedly, the method presented here is an effective and simple way for
estimating surface water. It can be integrated with other sources of data, or even to be
used when orthophotos or maps are not available. Surely any reduction or expansion
in the water surface can be detected when comparing against historic data. Indeed,
utilizing UAV-based GNSS-R sensors, combined with ad hoc processing routines,
proves to be an innovative tool for water monitoring. The results shown here were
obtained computing the specular points at a rate of 20 Hz, but finer resolutions are
attainable with a moderate increase in the complexity.

4.2.2 Case-Study II: River Stretches

The second case study presents detecting and measuring the Dora river stretches,
which have widths that vary between few meters and tens of meters.

The values of αmean for PRN 1 and PRN 32 from data set (1) are reported in
Figure 4.10a, for one pass crossing the river course. These PRNs have been selected
because they show an evident increment of αmean in the observed time window. Using
the same approach followed for the previous case study, we superimpose the lines of
specular points to an orthophotomap in Figure 4.10b. Again, the black points show
the flight trajectory displayed at a rate of 1 Hz. The colored lines are the specular
points displayed with a rate of 20Hz. The values of αmean associated to these specular
points are indicated by the colors of the lines. The reflected signals recorded from
the river can be appreciated from Figure 4.10b, where the boundaries between land
and water correlate well with the orthophotomap, particularly the reflections from
the specular points associated to PRN1 (see the left part of Figure 4.10b). The width
of the river where the specular points are red is approximately 30 m. However,
differences in the reflected power can be noticed by observing αmean values for
different satellites. Here, the values of αmean for PRN32 are lower compared the
values associated to PRN1. This is reasonably due to the different features of the
reflecting surface. While for PRN1 the line of specular points crosses a portion of the
river with sharp transitions between land and water, the same ways as in case study 1
(i.e., the red portion in the figure), the line of specular points related to PRN32 falls
on a portion of the river following an artificial dam. Here the roughness of the water
is different than the other section of the river crossed by PRN1 mentioned above,
with low water depth and stones outcropping on the river level.
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(a) the sensor trajectory (b) GPS only

(c) GPS and Galileo (d) GPS, Galileo, GLONASS
(e) GPS, Galileo, GLONASS,
BEIDOU

Fig. 4.9 Simulation results of multi-GNSS reflections: (a) the sensor trajectory considered,
(b–e) the specular points lines using the different GNSS constellations, (f) the ratio between
the estimated and the real area of the Northern Avigliana lake versus the number of satellites
in view, two different heights of the sensor are considered.
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(b) Map display of the river, with the specular points superimposed on it. The colorgrade indicates
the peak-to-noise-floor separation αmean of the reflected signal.

Fig. 4.10 Example of river width detection taken from data set (1).



58
Feasibility of UAV-Based GNSS-R for Water Detection as a Support to Flood

Monitoring Operations

135 136 137 138 139 140 141 142 143 144 145

time recorded by the receiver [s]

-5

0

5

10

15
m

e
a
n
 [

d
B

]
Reflected signal LHCP peak-to-noise-floor seperation , integration time = 10ms , 20Hz - SMOOTHED

PRN15

PRN28

PRN30

(a) Peak-to-noise-floor-separation αmean of the reflected signals when the specular points were over
the channel for PRN15, PRN28 and PRN32.

(b) Map display of the water channel, with the specular points superimposed on it. The colorgrade
indicates the peak-to-noise-floor separation αmean of the reflected signal

Fig. 4.11 Example of water channel width detection taken from data set (2).

Figure 4.11 reports the reflections from another portion of the river. These were
measured from data set (2). The width of this water channel is approximately 12
m. The sensor and the post-processing methodology are the same, so is the result
(i.e., water channel detection): boundaries of the river stretch can be detected, and its
width eventually estimated.

4.2.3 Case-Study III: Small Artificial Water Basins

The third case study presents the detection of the presence of small water surfaces,
a small lake in the backyard of building and two small adjacent artificial ponds in a
golf court. Starting with the golf court water basins, Figure 4.12a shows the presence
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of reflected signals, in terms of peak-to-noise-floor separation for PRN 11 and PRN
32. These showed an increment of the values that could be associated to reflections.
Following the same approach used for the previous case studies, the specular points
lines were overlapped to the orthophotomap. Figure 4.12b shows that the edges of
the pond approximately correspond to the increase (decrease) of the peak-to-noise-
floor separation. The width of the upper pond is approximately 120 m while the
smaller pond is approximately 35 m. This indicates that GNSS-R, in addition to the
monitoring of lakes and rivers, can enable the detection of small water surfaces.

The reflections from the small backyard lake of Figure 4.13 were recorded on
flight (2). The approximate width of this lake is 45 m. Like in the case of the golf
court basin, the presence of the pond was clearly detected and the width of the lake
is clearly distinguishable processing PRN13. These types of detection can provide
valuable data to the potential application of supporting operations performed after
floods, especially for post-mission analysis and in case images from satellites are
not available.

4.3 Estimating the Flight Height

In this section we calibrate the delay of the GNSS-R sensor (including the antennas),
and accordingly estimate the height of the flight above water. We then compare the
height estimated from the GNSS–R measurements to the actual height obtained from
DEM.

The calibration delay τCalibration is the difference between the theoretical delay,
given by (3.8) and the measured delay (δτ ):

τCalibration = δτ −
h

sin(θEL)
(1− sin(

π

2
−2θEL))[s] (4.2)

For this calibration, we choose few samples of reflected signals from the various
water bodies in our dataset as shown in Table 4.1. The table shows the PRN and
elevation of the satellite associated with each sample, in addition to the height of
the specular point. We measured the delay of the reflected signal with respect to the
direct one from the CAF. Finally we estimated the calibration curve for the different
elevation angles as shown in Figure 4.14. The x-axis is the elevation. The y-axis is
the calibration delay in seconds (left) and meters (right).
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(c) Image of the two ponds

Fig. 4.12 Example of the detection of an artificial pond taken from data set (1).
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(b) Map display of the backyard-pond, with the specular points superimposed on it. The colorgrade
indicates the peak-to-noise-floor separation αmean of the reflected signal.

Fig. 4.13 Example of the detection of an backyard pond taken from data set (2).

Table 4.1 Calibration points

PRN EL h

01 59 355
03 39 355
04 77 580
04 78 355
11 83 580
11 81 355
19 46 355
32 81 580
32 79 355
19 44 580
01 60 580



62
Feasibility of UAV-Based GNSS-R for Water Detection as a Support to Flood

Monitoring Operations

Fig. 4.14 GNSS-R sensor calibration curve.

To validate this result, we estimate the height of the flight from all the dataset,
where strong reflected power was detected. In Figure 4.15 we show an example
of the reflecting surface height estimation (bottom plot) for PRN3 which had the
elevations shown in the upper plot. The x-axis is the sample number. Here we only
selected the samples where strong reflection was recorded.

To assess the height estimation results, we show in Figure 4.16 the mean square
error (MSE) of the height estimation for all the data collection (all satellites with
reflections from water bodies) versus the average elevation for each satellite. As
expected, for low elevations, the MSE is higher than the high elevations. The reason
for this high error is the simple signal processing mechanism where we did not fine
estimate the correlation peak for the reflected signal. In fact, for a 13MHz sampling
frequency, the correlation peak estimation error for the C/A code with 1ms code
period, 1024 chips per code and 300m per chip is:

±1
2

1024
13e6×1e−3

×300 =±11.8[m]

which explains why the mean square error is taking these values.
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Fig. 4.15 Height estimation results
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Fig. 4.16 MSE of the height estimation for the various elevations.

4.4 Summary

The preliminary results of investigating the feasibility of using data from UAV-based
GNSS-R sensors for water detection and with a potential application in supporting
flood monitoring operations were presented. The GNSS-R sensor used in this work
is a custom made sensor, built using low cost commercial of the shelf components.
It allowed for collecting samples of ground-reflected GNSS signals, which revealed
the presence of water surfaces on ground when post processed.

Three different case studies were investigated through the processing of two
different data sets collected in different seasons. The case studies are: a lake, a river
and artificial water basins. These cases were selected because they challenged
the sensor in detecting flood-like water presence. Performing the data collections
over the lakes (and in general over large water surfaces), we were able to detect
the boundaries between ground and water with few tens of meters accuracy and
to estimate the extension of the water surface. Moreover, It was shown that the
multi–GNSS approach (i.e.: processing of GPS, Galileo, GLONASS and Beidou
signals) could even improve the estimation accuracy, without extra costs on the sensor
hardware, but at the expenses of a moderate increase in the complexity of the software
used in the off-line analysis. The data collections from the UAV based GNSS-R and
the consequent signal processing demonstrated to be effective also for the detection
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of narrower water surfaces, like river stretches and water channels. In addition
to that, small unexpected water presence on the ground were localized including
an artificial pond in a golf court and a backyard pond. The experiments reported
in this work confirmed that the use of GNSS-R onboard UAVs is a valid remote
sensing tool to be used for water detection, and potentially for flood monitoring
operations. However, to extend these results to flood monitoring, weather conditions
affecting both the UAV operations and the water surface roughness need to be
further analyzed. The UAV stability, attitude and orientation are to be considered
because the geo-referencing of the measurements is affected when the RHCP and
the LHCP antennas might be no longer pointing at Zenith and Nadir respectively.
Moreover, investigation of the roughness and wind speed from small and narrow
water bodies could be of interest, in a similar way as GNSS-R has been used for
ocean surface roughness and wind speed measurements e.g in [81, 82, 84, 85].
Furthermore, since flight trajectory optimization is a common practice in UAV-based
data collections, we recommend investigating how GNSS-R measurements will
perform in an optimized data collection scenario. Also investigating the optimization
of the UAV trajectory and the data collection time of the day to achieve optimum
multi–GNSS–R measurements is suggested. Finally, for flood detection in the future,
we recommend also investigating the possibility to integrate data from the digital
elevation model of the terrain with data coming from GNSS-R sensors. Indeed,
GNSS-R should be considered as a valuable source of geospatial data after floods,
for UAV-based reconnaissance of remote areas and for environmental monitoring.
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Chapter 5

GNSS Scintillation

Monitoring and studying the ionospheric environment has been important for decades
for applications that observe and utilize transionospheric signals, like radio astron-
omy, satellite telecommunications and GNSS. It has also been important for terres-
trial communications that rely on the ionosphere for reflecting the signal back to
the ground, like the signals utilized in aviation systems. In recent years, with the
increased dependency on space-based systems in our daily life, monitoring and mod-
elling ionospheric climate and weather has become even more relevant to a wider
range of applications that directly and indirectly get affected by the ionospheric
conditions, including power grids, mobile communications and financial systems.

Opportunistic use of GNSS signals for monitoring the ionosphere is a well es-
tablished domain now with a wide range of ground- and space-based instruments
that monitor the ionosphere with a high temporal and spatial resolutions. GNSS has
been one of the key enablers for the expansion in the infrastructure monitoring the
ionosphere in the last three decades, due to the nature of the well distributed constel-
lations of multi-frequency L-band radio sources (i.e. GNSS satellites) as discussed
in Chapter 2. In fact, GNSS has become the standard method for monitoring the
ionosphere, for example for monitoring TEC, TIDs and the ionospheric effects of
space weather [118].

Studying the ionospheric environment, however, is not easy because of the
complexity of this environment. The ionosphere, situated between the space and
the terrestrial environments, is affected by a wide range of factors from above and
beneath, including Sun conditions, the Earth magnetic field, earthquakes, volcanic
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eruptions and solar eclipses. For such environment, noise and interference on the
measurements can make the monitoring task even more complicated.

This part of the thesis addresses the methods and algorithms for monitoring the
ionosphere exploiting GNSS signals. We focus, in particular, on the scintillation
effect which occurs when the ionosphere presents an irregular distribution of free
electrons. When scintillation occurs, trans-ionospheric signals can be degraded
or even lost. This directly and indirectly affects many of the essential infrastruc-
tures including radio communications [119–121], remote sensing [122] and global
navigation [123].

Monitoring ionospheric scintillations through GNSS signals has been studied for
almost 40 years now. Nevertheless, there are many issues that are still challenging.
First, the metrics for detecting scintillation are sensitive to interference from the
environment around the receiver, including multipath effects (mimicking scintillation
patterns in the received signals) from objects around the receiver [124, 125] and RFI
from intentional and unintentional sources [126, 127]. Furthermore, these metrics
depend on the detrending schemes adopted to retrieve the scintillation indexes. Also,
these metrics do not give definitive measures to classify the severity of the scintil-
lation event in terms of the phenomenum underlying it. In particular, scintillations
are classified usually as weak, moderate and strong based on thresholds set on the
scintillation indexes. These thresholds are not standard, and even the same authors
use different threshold values on different studies [61]. This invites research on
robust scintillation detection mechanisms that can overcome the limitations of the
current detection metrics and methodologies. Moreover, scintillation monitoring
receivers are very expensive, and their distribution around the globe is sparse. Al-
though half of the Earth surface is susceptible to this phenomenon, the number
of scintillation monitors are concentrated in few regions specially those with high
commercial demand for ionospheric data [128, 129]. This invites both maximizing
the utilization of the available scintillation data and also the search for economic
solutions for scintillation monitoring. Furthermore, GNSS based scintillation moni-
toring has been continuously operating for more than 20 years now. This resulted
in huge repositories of various scintillation data in various formats. The automatic
processing of these data, to curate and clean the repositories from non scintillation
related data for example, has not gained the same momentum. This results in great
effort from ionospheric researchers to deal with the GNSS scintillation data. This
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invites research on utilizing state-of-the-art data mining techniques to assist in curing,
exploring and utilizing these data repositories.

In this thesis we tackle these issues together by developing ML models able to
detect GNSS scintillation. We address the two types of scintillation events: polar
scintillation (Chapter 7) and equatorial scintillation (Chapter 8). For the latter,
we distinguish scintillation from multipath in order to address one of the main
contaminators of scintillation measurements. Multipath events are often roughly
filtered by excluding low elevation satellites, which are more likely to be affected
by the phenomenon, from the observations. By implementing smarter criteria and
algorithms for the detection, we can increase the amount of useful scintillation data
by lowering the elevation mask and thus increasing the visible sky. As far as the polar
scintillations are concerned, we investigate alternatives for the scintillation metric
that can be used for scintillation detection. This could open the door for monitoring
scintillation using a wide range of GNSS receivers beside those specially configured
for scintillation monitoring.

In this chapter we describe the ionospheric scintillation and how it affects the
GNSS signal, and thus how the GNSS receiver handles scintillation measurements.
The chapter is organized as follows. First we describe the ionosphere (Section 5.1),
ionospheric scintillation (Section 5.2) and the importance of scintillation monitoring
(Section 5.3). Then the effects of the ionosphere, focusing on the diffraction and
refraction effect, on L-band signals are presented in Section 5.4. Finally, we describe
how state-of-the-art GNSS receivers compute the scintillation indexes (Section
5.5) and the other measurements, that could be related to ionospheric monitoring,
provided by these receivers (Section 5.6). We conclude the Chapter in Section 5.7
by discussing how GNSS scintillation detection is implemented.

5.1 The Ionosphere

The ionosphere is a layer of ionized gases that surrounds the Earth from about 50 to
1000 km above surface. It is constituted by electrons and ions, thus it is a plasma
that is globally neutral. The Sun is the main driver and influencer behind this layer
because the ionization is mainly caused by the Sun’s radiation. As a result:
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• The state of the ionosphere at the day side of the Earth is different from the
night side.

• The state of the ionosphere changes with the seasons.

• The state of the ionosphere depends on the solar conditions.

The electron density in the ionosphere varies along the altitude, with the maxima
and minima of the electron density defining the ionospheric regions and layers: D-,
E-, and F-layers (from Earth up). Figure 5.1 (image credit [130]) shows a sketch of
the ionospheric layers at the day and night sides. The x–axis is the electron density
and the y–axis is the altitude. The electron density and height of the layers differ
from day to night with the D- layer completely disappearing (or merging with the
E-layer) at night and the F-layer splitting into two at the days side. Scintillations are
hypothesized to occur due to disturbances in the E- and F-layers mainly [131].

Being an ionized medium, the ionosphere is affected by the Earth magnetic field.
Therefore, the state of the ionosphere also differs depending on the geomagnetic
latitude.

The day/night effects of the Sun are interesting especially near sunset when
the radiation source disappears and thus the ionization changes. At low latitudes
in particular, the state of the ionosphere after sunset is characterized as disturbed,
and the disturbance can continue for many hours in the night. The ionosphere state
around local sunrise is not as disturbed as the sunset, and few studies reported
noticeable disturbance at that time of the day [132].

On the other hand, the effects of the solar storms on the state of the ionosphere
near the geomagnetic equator and the geomagnetic poles are totally different. Near
the geomagnetic poles, where the geomagnetic field lines are vertical, the ionosphere
is frequently disturbed, while near the geomagnetic equator, the geomagnetic storms
can either enhance or suppress the usually disturbed post-sunset time [133–135].

The state of the ionosphere at mid-latitude is characterized generally as quiet
day and night, however, it can be significantly disturbed during solar storms as
reported for example in [136–138]. It can also be affected by disturbances like those
represented by TIDs [139, 140].
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Fig. 5.1 Day night structure of the ionosphere

5.2 Ionospheric Scintillation

Ionospheric scintillations are rapid random fluctuations in the amplitude and phase
of electromagnetic wave signals as observed by a radio receiver. It happens when the
signals pass through small scale irregularities (with respect to the signal wavelength)
in the electron density distribution of the ionosphere. Scintillation affects trans-
ionospheric radio wave propagation in the range of kHz to GHz including satellite
communications, astronomy observations [141], radar remote sensing, and GNSS
signals.

Ionospheric irregularities are concentrated near the magnetic equator (mainly
observed pre-midnight period), in auroral zone (during the night time period), and in
the polar region (at all local times). Thus, Scintillation happens mainly around these
regions. The mechanism behind the equatorial and polar scintillations are different.
The former is mainly derived by irregularities in the electron density that form after
local sunset when the main source of ionization, the Sun, disappears.

At low latitude the daytime ionosphere presents two electron density maxima,
called crests, on average located at +/−20◦ off the equator, and a minimum located
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in between the crests, the trough. Such configuration is known as the Equatorial Ion-
ization Anomaly (EIA) and it is essentially formed from the removal of ionospheric
plasma from around the equator by the upward ExB drift (motion of charged particles
in a magnetic field) ([142] and references therein). After sunset, Equatorial Plasma
Bubbles (EPB) which are localized depletions in the plasma density, can form. In
their evolution and decay process, small-scale irregularities can form, mainly because
of Rayleigh-Taylor instability, causing scintillations on the radio signals received at
ground. Under geomagnetically perturbed conditions the EIA can be significantly
modified and the formation of the irregularities can increase or suppress. Equatorial
scintillations thus have seasonal (it is more dense at the equinoxes) and diurnal
dependency.

Polar (or high latitude) scintillation is associated to magnetic storms and thus
it shows dependency on space weather and the Sun conditions. Here, ionospheric
irregularities happen due to magnetic storms, when batches of the ionosphere are
pushed from the day side over the polar caps (the projection of the two lobes of
the magnetic tail onto the atmosphere) into the night side creating irregularities
in the ionosphere [143]. The scale sizes of high latitude irregularities range goes
from hundreds of kilometers down to few centimeters. Their structures are utterly
dynamic, with the Interplanetary Magnetic Field (IMF) controlling their convective
motion. In the night-time auroral oval and the cusp, medium to large scale structures
(structures with scales larger than ≈ 50 km) are associated with structured fluxes of
precipitating electrons. Small scale irregularities are typically due to instabilities
and turbulent processes in the cusp, where a tongue of ionization (TOI) is broken
into batches [144]. These structures are unstable and they can produce smaller
irregularities through the current-convective instability or E×B, cascading and wave-
wave interaction. High latitude large-scale structures have long lifetimes and can be
convected long away from their origin places. [145].

5.3 Why Scintillation Monitoring

For navigation, scintillation results in degraded performance of the service and it
might lead to complete loss of the service. This is not acceptable for many applica-
tions where the availability and integrity of the system is crucial. For example, in
power grids and telecommunication networks, where the GNSS signal is utilized for
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Fig. 5.2 Scintillation studies are beneficial for both ionospheric sciences and GNSS systems.

timing purposes, the availability the GNSS service is compelling. In precise posi-
tioning applications, for example in oil&gas and surveying industries, the accuracy
of the systems (sometimes beside availability) are essential.

These users require to be alerted about scintillation occurrence, at least in real-
time, so that they can abort operations or use alternative solutions until the GNSS
signal is reliable again. The possibility to forecast scintillation is further desirable to
help these users schedule operations in advance.

On the other hand, the study of the physical phenomenon behind scintillation
is important for the scientific community. The ionosphere is an important part of
our planet, and constitutes the boundary between space and the lower atmosphere
where life exists. By observing scintillations, we can better understand the physics
of the upper atmosphere, the Sun-Earth interaction and the effects of space weather.
Monitoring scintillations will enable refining the ionospheric models of today with
accurate parameters for the effect of the irregularities.

For the radio telecommunication sciences, understanding scintillation is im-
portant for modelling the trans-ionospheric communication channels and also for
designing communication signals that are robust against scintillations. For GNSS in
particular, understanding scintillation is further important in order to design receivers
robust against their effects and/or to mitigate the effects of the ionosphere on GNSS
measurements.

In summary, studying the ionosphere is mutually beneficial for the ionospheric
sciences and the GNSS community. Knowledge about the physics of the scintillation
phenomenon as well as about the GNSS-based measurement instruments are essential
to achieve this understanding [146, 147]. We illustrate this dependency in Figure
5.2.
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A map display for the frequency of GNSS scintillation occurrence is shown
in Figure 5.3a. The Equatorial disturbance can affect the signal up to 100 days
per year [28]. In the map, it can be seen that large part of South America, Africa
and South East Asia beside the high latitude regions are affected by scintillation.
For comparison, we show in Figure 5.3b a map display of the world population
density [148] as of 20221, where the high frequency of scintillation occurrence
at some of the regions with high population density can be noticed. This affects
the navigation service for a considerable portion of the Earth population, but it
does not motivate monitoring scintillation unless there is an economic derive and
demand behind this. For this reason, we show in Figure 5.3c a map display of the
economic activity per km2, where it can be noticed that the economic activity is
not high for most of the regions with high scintillation occurrence. Although this
might indicate less economic impact for scintillation, it also less motivates installing
scintillation monitoring stations where the demand for scintillation data will be
low. This negatively affect the geographic distribution of ionospheric scintillation
measurements that rely on expensive scintillation monitoring stations, and motivates
the search for alternative scintillation monitoring technologies using other GNSS
infrastructure that are available for broader economic uses for example geodetic
receivers and the IGS network shown in Figure 5.4 (image source [149]).

For this reason, we explore using GNSS measurements other that the standard
scintillation indexes (will be introduced in Section 5.5) for scintillation detection.

5.4 Ionospheric Effects on the GNSS Signals

As mentioned in the GNSS frequencies section (Section 2.3), L-Band was selected
for the GNSS ranging signals because in this band it can provide navigation service
regardless of the weather conditions. We report in Figure 5.5 (image credit [151])
the atmospheric opacity for a wide range of frequencies (we report here in wave-
length) [151]. It can be seen that the atmosphere is transparent for L-Band signals
(wavelength 19cm for L1/CA). In fact, even during scintillation, the GNSS signal
does not suffer from ionospheric absorption. The fluctuation in the signal power
associated with scintillation comes from the signal interfering with itself resulting

1https://ourworldindata.org/world-population-growth

https://ourworldindata.org/world-population-growth
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(a) Recurrence of scintillation at solar maximum [image credit [28]]

(b) World population density, 2022 [image credit: World Population Growth]

(c) World total economic activity in millions of dollars per km2 pixel [image
credit: [150]]

Fig. 5.3 Map display of the scintillation occurrence frequency and relating it to the population
density and economic activity maps

https://ourworldindata.org/world-population-growth
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Fig. 5.4 IGS network with 512 geodetic receivers as of 2019.

in constructive and distructive combination of the signal at the receiver as will be
explained in this section.

If we follow the journey of a GNSS signal from a satellite to a receiver on the
ground, focusing on the propagation through the ionosphere (which represents 5% of
the propagation environment), as depicted in Figure 5.6, we can recall the following
from electromagnetic waves theory. The existence of different media along the ray
path will result in bending the signal, just like the bending effect experienced by
light travelling from air to water. But most importantly, the speed of propagation
of the electromagnetic wave will change. As will be seen in the next paragraphs,
this change of speed has implications that are crucial to GNSS signals processing.
This is called the refractive effect of the medium. The refractive effect will always
be experienced by the GNSS signals as they pass from space to the ionosphere as
well as while exiting from the ionosphere into the troposphere. Above that, when the
electron density of the ionosphere changes, as depicted by the gradient color in the
cartoon, the refraction will change. Furthermore, depending on the size of the media
relative to the wavelength of the ray, the signal might also experience scattering just
like a ray of light scattering by rain drops to form rainbows. The later are called the
diffractive effects of the ionosphere and also it is the most dangerous effect of the
ionosphere on GNSS systems. In Section 5.4.1 and Section 5.4.2 we explain the
refractive and diffractive effects of the ionosphere also known as the deterministic
and stochastic effects, relatively.
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Fig. 5.5 atmospheric opacity.

5.4.1 Refractive Effects

The refractive effect of the ionosphere on GNSS signals mainly affects the delay of
the signals.

From electromagnetic waves propagation physics, we know that the speed of
propagation of a wave within a certain medium depends on the refractive index of
the medium. The refractive index of the ionosphere depends on the electron density,
so that the speed of a radio wave propagating through the ionosphere depends on the
number of free electrons along its path. This speed is related to the speed of light via
the refractive index of the medium (n) defined as:

n =
speed of propagation in vacuum

speed of propagation in the medium
=

c
ν
≥ 1 (5.1)

As a result, the refractive index of the ionosphere (how fast the electromagnetic
wave travels through the ionosphere) changes with the change in the ionization level
along the ionospheric propagation path. This results in two refractive effects of the
ionosphere that are experienced by GNSS signals:

1. Group delay: which results from the signal travelling with a speed slower than
the speed of light, and thus the measured delay (receive time minus transmit
time) being greater that the free-space propagation delay, and thus this extra
delay is recorded as the delay due to the ionosphere.
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Fig. 5.6 Ionospheric Propagation

2. Phase advance: which results from the carrier travelling with a speed slower
than the speed of light. This translates to the wavelength of the signal (the
distance travelled by one cycle of the carrier) becoming smaller (λ = ν

f ) where
ν < c and f is a constant because the frequency (the number of cycles of the
carrier in a second) of the signal transmitted by the satellite is fixed. Since the
distance between the satellite and the receiver is the same regardless of the
speed of propagation, this means for the carrier to travel this distance passing
through the ionosphere it will arrive with more cycles i.e with an advanced
phase. Figure 5.7 illustrates the concept of phase advance.

Form the previous paragraphs, it can be understood that:

• The ionosphere is a dispersive medium: i.e. the effects induced by the iono-
sphere is frequency dependent. This means that the ionospheric delay can be
estimated by observing signals with different frequencies. This is exactly the
reason why satellite based radio navigation systems broadcast their signals in
multiple frequencies as anticipated in Section 2.3.
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Fig. 5.7 Illustration of GNSS signal phase advance due to the ionosphere

• The refractive index for the code is different than the carrier of the GNSS
signal and delays experienced by the code and carrier have different signs.
Thus, we introduce the code index of refraction and phase index of refraction
respectively.

The ionospheric group delay (IP( f )) and phase advance (IL( f )) can be estimated
by integrating the index of refraction along the signal path from the satellite S to the
receiver R as [152] [153]:

IP( f ) =
∫ S

R
(nP( f )−1)dl, (5.2)

IL( f ) =
∫ S

R
(nL( f )−1)dl, (5.3)

where nP and nL( f ) are the group and phase index of refraction respectively. The
evaluation of this integration has been studied by many authors for various ap-
plications (precise positioning, scintillation monitoring, geodesy) under different
ionospheric conditions, at different latitudes, making relevant assumptions on n,
the path between the satellite and the receiver, the signal, the ionosphere hight, the
geomagnetic effects, etc. We adopt here nP and nL evaluated by [152] [153] because
they exclude the sub millimetre terms, which as will be clear in section 5.6, are
beyond the capabilities of GNSS receivers under disturbed ionospheric conditions
when the receivers experience errors that reach tens of centimetres. nP and nL for the
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RHCP GNSS signals are calculated from [152] [153]:

nP( f ) = 1+
f 2
p

2 f 2 +
f 2
p fg cosθ

f 3 +
f 4
p

f 4 , (5.4)

nL( f ) = 1−
f 2
p

2 f 2 −
1
2

f 2
p fg cosθ

f 3 − 1
3

f 4
p

f 4 , (5.5)

where fp is the plasma frequency, fg is the electron gyrofrequency, and θ is the angle
between the geomagnetic field vector and the wave propagation direction.

Plasma frequency, fp, is the frequency at which the electrons in the plasma
naturally oscillate relative to the ions. For the ionosphere, it has typical values
between 2 and 20 MHz [154]. Electron gyrofrequency, fg, is the angular frequency
of the circular motion of an electron in the plane perpendicular to the magnetic field.
fp and fg are computed from:

fp =

√
e2ne

4π2meε0
, (5.6)

and
fg =

|e|B
2πme

, (5.7)

where e = 1.60217662×10−19 c is the electron charge, ne is the electron density,
me = 9.10938356× 10−31kg is the electron mass, ε0 = 8.85× 10−12 F is the free
space permittivity, and B is the geomagnetic induction. Combining (5.2) - (5.7) and
substituting the constants:

IP( f ) =−40.3
f 2

∫ R

S
ne ds− 2.26×1012

f 3

∫ R

S
Bcosθne ds− 2439.42

f 4

∫ R

S
n2

e ds, (5.8)

IL( f ) =
40.3

f 2

∫ R

S
ne ds+

1
2

2.26×1012

f 3

∫ R

S
Bcosθne ds+

1
3

2439.42
f 4

∫ R

S
n2

e ds,

(5.9)
The integral

∫ R
S ne ds along the ray path corresponds to the TEC which is defined as

the number of electrons in a cylinder of 1m2 cross section from a receiver to a satellite.
TEC is one of the parameters that are widely used to characterize the ionosphere.
It is measured in TEC units (TECU) where 1T ECU = 1×1016electrons/m2. The
typical values of TEC are in the range 1−100 TECU, reaching higher values under
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very disturbed ionospheric conditions. Rewriting (5.8) and (5.9) in terms of TEC:

IP( f ) =−40.3T EC
f 2 − 2.26×1012

f 3

∫ R

S
Bcosθne ds− 2439.42

f 4

∫ R

S
n2

e ds, (5.10)

IL( f ) =
40.3T EC

f 2 +
1
2

2.26×1012

f 3

∫ R

S
Bcosθne ds+

1
3

2439.42
f 4

∫ R

S
n2

e ds, (5.11)

The first order delay (40.3T EC
f 2 ), is 0.1625m/T ECU for L1 frequency (1575.42

MHz) for example. Dual frequency GNSS receivers are able to estimate this delay
and thus remove its effect.

The integral
∫ R

S Bcosθne ds, on the other hand, corresponds to integrating the
product of the magnetic field and the electron density which are both varying along
the path of propagation. To calculate the exact value of this second order delay term,
knowledge of the exact distribution of the electron density along the propagation
path in needed. This is generally not available to dual frequency GNSS receivers.
However, by assuming that the ionosphere is a thin layer located at a fixed altitude
(generally 350km), an approximation of this second order delay is achievable with
RMS of 1.25cm.

The last part of (5.10) and (5.11), the third order delay, corresponds only to the
square of the electron density along the signal path. It can be approximated to [155]:

∫ R

S
n2

e ds = ηNmax

∫ R

S
ne ds = ηNmaxT EC, (5.12)

where Nmax is the peak electron density along the signal path and η is the shape
parameter which is a value that counts for the different electron density distributions
along the ray path. Thus, this third order delay is directly affected by the max electron
density in addition to TEC. It can reach 10 centimetres on disturbed ionospheric
conditions.

To conclude this discussion about the 1st, 2nd and 3rd order ionospheric delays,
we show in Table 5.1 (Source: [152]) an example of typical delay values that
were observed by [152] on quiet and disturbed ionospheric conditions. We report
the max values observed in addition to the 1 σ value. It can be appreciated that
the delays on disturbed days are an order of magnitude more than on quiet days.
More importantly, the 2nd and 3rd order delays which are not removed by double
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Table 5.1 Higher order Ionospheric delays and Residual Errors.

Quiet day Storm day

Group delay [mm]

68th percentile
1st 15 m 10 m
2nd 5 mm 5 mm
3rd 1 mm 1 mm

Max
1st 35 m 110 m
2nd 25 mm 85 mm
3rd 5 mm 100 mm

Max Residual Double Difference Code Error [mm] 30 185
Max Residual Double Difference Phase Error [mm] 15 75

differencing techniques are not negligible values. In this case 185mm and 75mm
residual code and phase errors, respectively, were observed by the authors.

From positioning point of view, these delays (if not counted for) will result in
errors in estimating the position. However, from the point of view of ionospheric
monitoring, information about the ionosphere can be extracted from observing the
residuals in pseudo-range measurements which act as the extra delay faced by GNSS
signals as they pass through the ionosphere.

5.4.2 Diffractive Effects

The differactive effects of the ionosphere are the reason for the appearance of what
is generally described as "scintillations". Diffraction, the spreading/scattering of
waves as they pass through or around obstacles, occurs when the size of the obstacle
is of the same order of magnitude as the wavelength of the incident wave (i.e. below
Fresnel’s scale).

If the ionosphere is disturbed with irregular distribution of ions, as illustrated in
Figure 5.8, where the different colours of the irregularities indicate different ions
concentration and different irregularities sizes, then the signal will be suffering from
many of the above two effects (delays and phase advance). It will thus undergo
different refractions and diffractions along its path according to the corresponding
refractive index of each ions irregularity they pass through and the size of the
irregularity . The end result will be a wave front that is a combination of many
signals that travelled different paths, on each path it went through many refractions
and diffractions that changed the speed and direction of propagation. It is important
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Fig. 5.8 Illustration of GNSS scintillation.

to mention here that there are no ionospheric absorptions due to the irregularities. At
the receiver, these signals will add constructively and destructively, resulting in a total
signal with randomly and rapidly fluctuating phase and amplitude. This fluctuation
in phase and amplitude is called phase and amplitude scintillation respectively.

From the above description of the scintillation phenomena, we can describe the
final signal emerging from the ionosphere at time t as the sum of many rays of the
satellite signal, each one has its delay and phase as:

ri(t) =
∞

∑
n=0

si
n(τn,φn) (5.13)

where si
n is the signal broadcast by satellite i and followed the path number n

undergoing a delay τn and a phase advance φn. In radio wave propagation terms this
equation can be expressed and then solved using the theory of radio wave propagation
in random media. The vector wave equation can be expressed in the scalar wave
equation form:

∇
2E + k2

0 < ε > [1+ ε1(r, t)]E = 0, (5.14)

where k0 is the wave number in free space (the number of complete wave cycles per
unit distance), < ε > is the average dielectric permittivity, ε1(r, t) is the fluctuating
part of the dielectric permittivity caused by electron density irregularities, and
(r, t) specifies the location of the irregularity is space and time. Equation (5.14), a
differential equation with randomly fluctuating coefficients, forms the basis of the
scintillation theory.
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Using the phase screen model [156], and solving (5.14), the phase φ(r, t) and
amplitude u(r, t) of the wave E can be approximated to [157]:

φ(r, t) =−λ re∆NT (r, t), (5.15)

u(r, t) = A0exp[−iφ(r, t)], (5.16)

where λ is the wave length of the carrier, re is the classical electron radius, and ∆NT

is the fluctuation of the electron content between the transmitter and the receiver.

Being a stochastic phenomena, statistics about the signal like the average, stan-
dard deviation, rms, etc, are the best way to describe the general phenomena. The
standard deviation of the signal amplitude and phase were adopted by the ionospheric
studies community and two indexes were defined: the phase scintillation index σφ

and the amplitude scintillation index S4.

In phase screen theory, The phase scintillation index and amplitude scintillation
index are given by [156]:

σφ =
√

r2
eλ 2 secθ

√
GLCsq−2ν+1

0
Γ(ν −1/2)

4πΓ(ν +1/2)
, (5.17)

S4 =
√

r2
eλ 2 secθ

√
G LCsZν−1/2 Γ([2.5−ν ]/2)√

4πΓ([ν +1/2]/2)(ν −1/2)
, (5.18)

where re is the classical electron radius, λ is the wavelength of the satellite signal, θ

is the satellite zenith angle, G is a factor that relies on the satellite zenith angle and
the axial ratios of the irregularities (equals 1 in the case of isotropic irregularities),
L is the thickness of the irregularity slab, Cs is the turbulence strength parameter
(defined at that height where the phase screen is assumed to be located), q0 is the
outer-scale cutoff wave number, ν is the 3-D spectral index, G is a factor that is a
function of the propagation angles relative to the irregularity principal axis as well
as the axial ratio. Z is the Fresnel-zone parameter.

The first part of (5.17) and (5.18) (
√

λ 2 secθ ) are know values for a satellite.
The second part of the equations encompass the terms that describe the irregularity
(shape, thickness, strength, etc). The standard deviation of the signal phase and
amplitude are among the parameters that can be provided in near–real time by
those GNSS receivers capable to sample the signals at high sampling rates (50 to
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100 Hz) and equipped with an integrated firmware able to derive the indices from
the measurements. The indices can be also derived in post–processing from the
high sampling rate measurements (see Section 5.5). From there, the ionospheric
irregularities’ parameters can be estimated.

5.5 Scintillation Metrics

Measurements of ionospheric scintillation have been continuously collected since
the first artificial satellites in the 1950s, and the preceding radio star measurements
in the 1940s [158]. To interpret these measurements, many theories of radio wave
scattering have been applied [158] [157] and many ionospheric scintillation models
have been developed [159–161].

5.5.1 Amplitude Scintillation Index

The Amplitude scintillation index (S4) is the standard deviation of the detrended
received signal intensity normalized to the average signal intensity [162]. This S4

definition is applicable to any trans-ionospheric communication signal, transmitted
by any satellite at any orbit. When applied to GNSS-based scintillation monitoring,
the terms detrending and signal intensity are not trivial. In the previous section, we
showed that the signal intensity estimated by a GNSS receiver is affected by receiver
dependent noise and gain (2.9). These can be removed by subtracting the noise
value (can be estimated by the receiver) and normalizing the signal intensity. The
signal intensity is also affected by the propagation losses that are induced by factors
other than the irregularities in the ionosphere. Detrending aims to remove the latter
effects. In the following paragraphs we explain how S4 metric is computed taking
into account these effects.

Detrending the Signal Intensity

When detrending the signal intensity, a low pass version of SI is subtracted from
SI with the objective of removing the non scintillation–related components. The
filter applied is usually a sixth order Butterworth low pass filter with 0.1 Hz cutoff
frequency [35, 36], but other detrending methods are also present in the literature.
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For example, [163] exploits the wide and narrow band power, WBP and NBP
respectively, to detrend the signal. NBP, WBP and the detrended signal intensity are
computed as:

WBP =
M

∑
m=1

(I2
m +Q2

m), (5.19)

NBP =
M

∑
m=1

I2
m +

M

∑
m=1

Q2
m. (5.20)

SI =
NBP−WBP
⟨NBP−WBP⟩

, (5.21)

where M is the number of samples in the integration window (20ms is common for
GPS L1/CA signals and for Galileo) and ⟨.⟩ is the average over 60s intervals.

Filtering techniques, other than the sixth order Butterworth filter, claim to give
better estimation of S4 [164, 165], and thus S4 estimation changes with the detrending
method in use [164, 166]. Furthermore, detrending the signal intensity is essential
for Low Earth Orbit (LEO) satellites but it is not mandatory for MEO satellites, such
as GPS and Galileo (as of today), where the slow power variation is not apparent over
short time windows. Nevertheless, most GNSS scintillation monitoring receivers
choose to implement the filter.

In short, detrending the signal intensity is implemented by most scintillation
monitoring receivers, using different techniques, with arguable benefits and known
disadvantages in the case of MEO GNSS signals.

Noise Removal from SI

As discussed and shown in (2.9), the signal intensity value incorporates a noise term
that scintillation monitoring receivers choose to counter in various ways. Some
receivers eliminate the receiver noise from (2.9) before applying the detrending filter
(e.g. [167]). Other receivers choose to remove the receiver noise by subtracting the
predicted S4 due to noise factor from the standard deviation in SI (e.g. [36]). Some
receivers implement neither. In the following paragraphs we show how S4 is finally
calculated.
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Estimation of S4

S4 over observation window Tw is given by [168]:

S4 =

√
⟨SI2⟩−⟨SI⟩2

⟨SI⟩2 , (5.22)

where ⟨.⟩ is the average over Tw and SI is the detrended signal intensity. S4 corre-
sponds then to the amplitude scintillation index of the previous time window. S4 can
also be calculated, taking into account the effect of the ambient noise (if not already
removed from SI), as [36]:

S4 =

√
⟨SI2⟩−⟨SI⟩2

⟨SI⟩2 − 100
C/N0

[1+
500

19C/N0
] (5.23)

where C/N0 is the carrier to noise ratio estimated by the receiver, and the overall
term 100

C/N0
[1+ 500

19C/N0
] corresponds to the noise jitter variance [169, 170].

A good comparison of the calculated S4 by a selection of ISM receivers can
be found in [171]. Here, we just highlight that estimating the noise free signal
intensity and detrending it are not trivial. The type of receiver in use controls how
S4 was calculated. Finally, if I and Q are available, an estimation of intensity of the
fluctuation in the received GNSS signal is obtainable.

In this thesis, and with the use ofML, we investigate if it is possible to detect
scintillation, knowing that all these effects are present in our measurements.

5.5.2 Phase Scintillation Index

For GNSS-based measurements, and radio wave measurements in general, the phase
scintillation index σφ is defined as the variance of the detrended phase. It is computed
from:

σ
2
φ =

∫
∞

fc
Pφ ( f )d f ≈ 2T

(p−1) f p−1
c

=< φ
2 >−< φ >2, (5.24)

where fc is the lowest freq admissible by the system, Pφ is the phase spectrum, T is
the phase spectral power, P is the spectral index, φ is the raw phase, and < . > is
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the detrending operation. This detrending and the previously defined fc have been a
topic of debate among the scientific community for a long time specially for high
latitude scintillations (see [172] and [173]). It is not the objective of this work to
investigate detrending, so we will stick to the method most used in the literature
because this is how the majority of historic scintillation data are presented.

ISM receivers implement the phase detrending in various ways. For example, the
receiver in [167] implements a polynomial fits to remove the high frequency noise,
and uses a third order polynomial subtraction to filter out the low-frequency phase
variations. Then, it applies (5.24) on a 100 s cadence to estimate σφ . However, the
most common way to detrend σφ uses a sixth-order high-pass digital Butterworth
filter with 0.1 Hz cutoff frequency. Then estimating σφ from (5.24) on a 60s cadence.

5.6 Scintillation Signal Processing Outputs

The receiver deals with the GNSS signal in two main stages: acquisition and tracking.
In acquisition, the receiver objective is to detect if the signal is available and if yes, it
roughly estimates the delay and Doppler of the signal. Then the acquired signals are
further processed in the tracking stage where the fine delay and phase of the signal
are estimated.

If the scintillated signal is too weak, the acquisition stage will fail to detect the
signal and thus it will fail to acquire the signal. During the tracking stage, if the
signal to noise ratio of the scintillated signal is below a certain threshold, the receiver
considers the signal too weak to process and quits processing the signal. Otherwise,
if the phase of the signal is fluctuating beyond the tracking ability of the receiver
processing power (i.e the tracking loop bandwidth) the receiver considers this signal
too dynamic and quits processing the signal.

Scintillation monitoring GNSS receivers are carefully designed to handle the
dynamic, noisy and weak scintillation signals in order to guarantee acquiring the
signal and also to avoid the receiver dropping processing the signal. When the
receiver completely fails to keep up with the signal after all, this is called acquisition
failure and tracking loss, it means the loss of valuable scintillation measurements.

The main measurements of an ionospheric scintillation monitoring receiver are
obtained from the outputs of the tracking stage. The immediate outputs of the tracking
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are the signal amplitude (both the in–phase and quadrature–phase components) and
the accumulated phase. These are called the raw measurements, and from there the
amplitude and phase scintillation indexes are obtained. Since we mentioned earlier
that the design of the receiver (and implicitly the tracking ability of the receiver)
affect the measurements, these receiver effects on the indexes computation have to
be calibrated.

The pseudorange is estimated by further processing the raw measurements in
addition to decoding the navigation message and other information e.g the known
receiver position, tropospheric corrections, etc. From this pseudorange measurements
the other ionospheric measurements can be obtained, i.e. TEC.

5.6.1 Example of a Scintillation Event

In this section we present an example of a scintillation event, and how the GNSS
receiver acquires and tracks the signal under this condition.

The data we are using were collected by a software defined radio receiver (SDR)
installed in parallel to a professional ISM receiver in Antarctica (at SANAE IV
station). The two receivers share the same antenna and they were deployed in the
frame of the DemoGRAPE project [33]. The SDR records the GNSS spectrum,
down-converted (from GHz) to an intermediate frequency (few MHz). This is called
the raw signal and it contains the actual GNSS spectrum in digital format without
any signal processing.

At high latitudes, the ionospheric region within the auroral oval is often perturbed,
giving rise also to scintillation events. The oval represents the footprint of the
boundaries between open and closed geomagnetic field lines. The oval location
indicates the zone where electron irregularities are present with electron fluxes
energies varying in a wide range of ∼ 0.1 to ∼ 20 keV in the upper atmosphere [174].
Thus, scintillation is more likely to occur when the satellite signals pass through the
auroral ionosphere.

The data were recorded on 27 September 2020 at 22:31:22 UTC and lasted for 50
minutes. The scintillation monitoring receiver as well as other instruments confirm
that scintillation likely affected some of the GNSS signals at that moment. We report
in Figure 5.9 the Dst index (which is an index of magnetic activity derived from
near-equatorial geomagnetic observations) for the whole month of September 2020
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Fig. 5.9 Dst Index for September 2020.

(Figure source [175]). It can be seen that the index went negative at the end of
September, 27th indicating a geomagnetic storm at that time.

We report in Figure 5.10a and Figure 5.10b the Antarctic auroral oval as predicted
by Feldstein model at 22:00 UTC. The oval between the two solid black circles
indicate the oval when the disturbance level is weak, while the one between the
two red circles indicate the oval under strong disturbance. The dotted black circles
in Figure 5.10a and 5.10b indicate the visible sky from SANAE IV station with
elevation masks 30◦ and 10◦, respectively. Therefore, when the auroral oval overlaps
within this dotted circle, scintillation could be observed by the receiver. But also
inside the inner auroral boundary, the polar cap can host scintillations.

To complete the picture, we show in Figure 5.10c the skyplot reporting the visible
GPS satellites at the time of our measurements. It can be seen that on disturbed
days, a good part of the oval is well within the visibility of SANAE station specially
if the elevation mask is lowered to 15◦. It is important to mention here that (1)
the Feldstein oval underestimates strong disturbance conditions [176], and (2) the
description of the oval is climatological, while the case we are considering is a single
event.

The phase and amplitude scintillation indexes measured by the ISM receiver are
shown in Figure 5.11. The figure report multi–GNSS σφ (radians) and S4 at L1 (top)
and σφ (radians) and S4 at L2/E5a (bottom) for the whole day. The different colours
indicate different satellite signals. It can be seen that strong phase scintillation (up to
1 rad) was observed on many satellite signals from 20:00 UTC until midnight.

Next, we will select some of the scintillated signals and see how the receiver
processes them.
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(a) Auroral Oval. Elevation mask 30◦ (b) Auroral Oval. Elevation mask 15◦

(c) Visible Satellites. Elevation mask 10◦

Fig. 5.10 Feldstein Auroral Oval and the visible GPS satellites from SANAE IV station on
27 Sept 2020 22:00 UTC . Elevation mask 30◦ and 15◦ for Feldstein ovals, and 15◦ for the
visible satellites
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Fig. 5.11 σφ (radians) and S4 for multi–GNSS signals measured by Septentrio PolaRxS
professional ISM receiver at L1 and L2/E5a on 27 Sept 2020 at SANAE IV Antarctic station.
The different colours indicate different satellite signals.
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5.6.2 Acquisition Stage Outputs: CAF

The raw signal recorded by the SDR is the output of the front end, down converted
to an intermediate frequency and digitized. It contains the sum of all the GNSS
(and possibly non-GNSS) signals in the working frequency of the front-end. Being
pseudo-random code-modulated, the spectrum of the GNSS band is basically noise.
To extract information about any of the GNSS satellite signals, we need to decode
the satellite signal, i.e. cross-correlate the signal with the satellite pseudo random
code. For this reason, we will directly move to inspecting a certain satellite and not
the whole spectrum (the latter can be useful for studying RFI for example).

The tool we use for this inspection is the standard cross ambiguity function (CAF)
of the signal acquisition theory plotted in 3D delay doppler map representation. Here,
the spectrum is cross-correlated with all the possible pairs of code delays and carrier
frequencies. In other words, we calculate the amplitude of the complex signal in
(2.9) for all the possible sets of φ̂i, τ̂i. In case of a perfect signal, the result should
be a peak power for the pair δ φ̂i = 0,δ τ̂i and much smaller values for noise. Since
the scintillated signal is self interfering, we do not expect to see a peak as strong as
the ideal case and in strong scintillation cases, we expect the signal peak to be at the
level of the noise floor.

In Figure 5.12a and 5.12b we show the CAF for GPS C/A PRN05 (not affected
by scintillations) and PRN13 (scintillating), respectively, evaluated at 22:40 UTC.
We evaluated the CAF with coherent integration time 1, 3 and 5 ms and in this figure
we are reporting only the case of 3 ms which had better CAF than n=1 (similar result
to other works in the literature, e.g [177]. We also made sure we are not reporting
the CAF at a data bit flip by sliding the evaluation within 20 ms of data and selecting
the best CAF. The top left figure shows the CAF in 3D while the bottom left figure
shows a zoom view to the peak of this CAF. The red plane is the acquisition threshold
estimated by the receiver. The middle top and bottom plots show side views of the
3D CAF. Finally, the right top and bottom plots show the code and doppler domains
of the CAF peak. For the signal not affected by scintillations, the peak of the CAF is
well separated from the noise floor while for the scintillated signal the peak is below
the threshold and there is a chance that this peak is just noise. In the latter case, if the
receiver tries to acquire the signal at this moment, it will declare PRN13 not present.
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(a) PRN05 non scintillating signal

(b) PRN13 scintillating signal

Fig. 5.12 Examples of the CAF for non-scintillated and scintillated signals
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For scintillation studies, although the raw signal carries all the information about
the scintillation that affected the signal, but almost zero studies tried to utilize the
signal at this stage of the receiver to study scintillation, for many reasons. First, the
GNSS signal before removing the PRN code, is basically undistinguishable from
noise, and this is one of the features of CDMA code modulation. Second, and most
importantly, processing the GNSS signal with the CAF is an expensive mathematical
operation requiring evaluation of the cross-correlation millions of times, while in
the next stages of the receiver, only 3 or 5 correlations (depending on the number
of early-late correlators) are performed. For example, in Figure 5.12b the data was
sampled at 13MHz. We implemented 75 Hz Doppler steps covering ±8 KHz Doppler
range. Thus, approximately 1.7 billion cross correlations were evaluated per each
1ms of data to obtain the CAF. This is computationally and memory consuming
operation, that provides a detected peak way less accurate compared to the obtainable
peak in the next stage of the receiver.

Finally, the availability of data is another limiting factor for working with the
acquisition results. To the best of our knowledge, no ISM receiver is providing
CAF as a ready product at the moment (for example most reflectometry receivers
discussed in Part I provide DDM/CAF) as a product. Although many scintillation
repositories are available, they are not as abundant as the other scintillation data as
will be seen in the next paragraphs. Consequently, we will not further process the
GNSS signal at this stage of the receiver.

5.6.3 Tracking Stage Outputs: Raw Measurements

This stage of the receiver fine estimates the delay and phase of the GNSS signal. It
outputs the accumulated phase measurement, besides the I and Q components of the
complex signal as described by (2.9). The typical rate for I and Q depends on the
GNSS signal type, for example for GPS L1 C/A the rate is 50Hz and 20ms coherent
integration is usually implemented. Nevertheless, higher rate raw measurements are
also available. Besides the low demand for computation with respect to acquisition,
these measurements occupy significantly less storage than the raw signal or CAF
measurements, since only three measurements are recorded for each epoch.

Phase scintillation index is estimated directly from the accumulated phase (60 s
of phase measurements is the most common), while the amplitude scintillation
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index is calculated from I and Q (also usually at 1 minute cadence). The delay and
pseudorange are estimated from I & Q in the subsequent PNT unit.

I, Q and the phase are called the raw measurements of the receiver. They provide
the best estimate for the correlation peak. Their accuracy depends on the capability
of the tracking loop to keep up with the signal dynamics. Thus, these measurements
have an extra noise term that reflects on the tracking performance.

In Chapter 8, we will focus on these measurement and apply ML techniques to
detect scintillation using raw measurements.

5.6.4 Scintillation Engine Outputs: Scintillation Metrics

This stage is present in ISM receivers. It is responsible of computing the scintillation
indexes as well as other related ionospheric parameters like TEC. Most of the
literature on the utilization of GNSS measurements for scintillation studies use data
produced by this unit. The indexes provided by this stage are the same indexes that
have been in use among the ionospheric monitoring scientific community and thus it
forms a measurement compatible with measurement from other historic instruments.

However, since the design of the receiver and the signal processing implemented
affects the measurements estimation, as discussed in Section 5.5, the use of these
indexes is not standard. For example, in [171] the authors compared the scintillation
indexes reported by various ISM receivers that were simultaneously monitoring
the same scintillation event and found that they indeed report different values for
the index. This is directly related to the receiver hardware design and the signal
processing implemented. Since not all of the design details of ISM receivers are
available to the end user, specially the commercial ones, then treating the metrics
for generalized applications is challenging. This makes large scale scintillation
studies rely on ISM receivers provided by the same monitoring network or the same
manufacturer.

Above that, ISM receivers scintillation metrics have been criticized in the lit-
erature for raising false scintillation alarms [61, 178]. In particular, the amplitude
scintillation index behaves the same when scintillation as well as multipath occur.
This is expected from signal point of view, because multipath resulting from the
signal rays following different paths caused by reflections and bouncing from objects
around the receiver and then adding up constructively and destructively at the receiver
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antenna, is the same behaviour of scintillation where signal also follows different
paths due to diffraction that happened up in the ionosphere. On the other hand,
the phase scintillation index is criticized for incorporating both the refractive and
diffractive effects of the ionosphere if it was not detrended properly [172]. Finally,
since most of the accumulated scintillation measurements metrics data suffer from
both the previous effects, any attempt to propose new techniques should be able to
compensate these effects or better, utilize these data in spite of their known defects.
The reason for this is, despite of all these defects, they are still valuable data collected
over more than two decades of measurements campaigns.

In Chapter 7, we use the scintillation measurements provided by a Septentrio
PolaRxS ISM receiver. In Appendix A, we list the measurements provided in the
ISM records (i.e. the scintillation engine outputs) which include other scintillation
measurements beside the indexes, evaluated for different GNSS frequencies.

5.6.5 PNT Unit Outputs: Pseudorange Measurements

These are the measurements provided by the positioning, navigation and timing
unit available in all types of GNSS receivers (because these are the measurements
needed to obtain the positioning solution, the main utilization of the GNSS systems).
Although ISM receivers do not need to estimate their positions, they still provide
the pseudorange to the end user. This is useful to estimate the error in estimating
the receiver position from the scintillation–affected signals and compare it with the
known position of the ISM receiver. The main usage for these measurements in
ionospheric studies is calculating TEC, which utilizes range measurements from
different frequencies as described in Section 5.4.1.

The biggest advantage of these measurements is that they are provided by all
GNSS receivers. The challenge of utilizing these measurements for scintillation
monitoring lies in the low quality of these observables when non ISM receives are
utilized. Since the effects of the receiver has to be removed (or estimated) from the
measurements before calculating the scintillation indexes, the wide utilization of
these measurements from non ISM receivers is challenging. Nevertheless, many
studies have conducted experiments on utilizing these measurements from multi-
frequency receivers including professional geodetic receivers [179, 180] and mass
market smartphones [181, 182].
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The move towards utilizing these measurements for scintillation studies will
provide wider and denser geographic distribution of GNSS-based scintillation mea-
surements unprecedented by any of the professional ISM receivers networks. They
are also less expensive than ISM receivers which, for the latter reason, are mainly
installed around the magnetic poles and equator where the demand for scintillation
measurements is the highest.

In Chapter 7 we utilize the TEC values provided by professional ISM receiver
for scintillation detection. We do not consider TEC provided by non-ISM receivers
at the moment because (1) TEC from ISM receivers are abundant already and
deserve thorough investigation as potential features for detecting scintillations using
ML techniques, and (2) if TEC from non-ISM receivers are to be considered for
scintillation detection, we need first to co-locate such a receiver with a reference
ISM receiver and compare the TEC values provided both receivers. This is beyond
the objective of this investigation.

5.7 Scintillation Detection

Now that we have introduced the scintillation phenomena, and how to utilize GNSS
for observing the ionosphere, we discuss how scintillation is actually detected in the
collected remote sensing measurements.

In ionospheric scintillation remote sensing, the focus of this work, the users
(ionospheric scientist) are usually interested in extracting data that are affected by
scintillation among possibly huge collection of GNSS data. To do this, they need to
rely on detection mechanisms that are able to identify scintillation. This motivates
the need for having a reliable scintillation detection method.

Moreover, on the side of designing monitoring stations, it might be required
to collect measurements only when scintillation events happen. This is important
specially for scintillation monitoring stations that collect the raw GNSS samples
(see Section 5.6) and also to monitoring stations with limited data storage and
transfer capabilities (e.g remote monitoring stations). In these stations, a reliable
scintillation detection method is needed to lower the scintillation miss-detection
rate, that leads to loss of valuable scintillation measurements, and also to lower the



100 GNSS Scintillation

false scintillation alarm (that leads to excess use of the storage and communication
resources mentioned earlier).

Furthermore, for real time scintillation monitoring, it is important to rely on
detection schemes that are able to reliably raise scintillation alarms without false
notifications. Real-time monitoring is critical for alerting high end GNSS users of
scintillation risks.

Finally, as scintillation monitoring has been going on for decades, huge reposito-
ries of data has been accumulated over the years. This accumulation enables studies
that analyse data with long time span, but also brings the need for data mining
techniques that are able to handle such data. This motivate the use of data mining
techniques and artificial intelligence to reliably extract information from big data.

5.7.1 Scintillation Indexes Threshold

Historically, the method for scintillation detection relies on thresholds on the scintil-
lation index. In this method, scintillation is declared present if the scintillation index
exceeds a predefined threshold. The thresholds on the indexes are not fixed among
the scientific community with various studies adopting different threshold on the
amplitude and phase scintillation indexes for the different scintillation monitoring
receivers and also for the different scintillation severity. Acceptable threshold on S4

and σφ can be defined as [61]:
S4 > 0.4 strong scintillation

S4 > 0.2 and < 0.4 moderate scintillation

S4 < 0.2 weak-to-no scintillation

(5.25)


σφ > 0.25 strong scintillation

σφ > 0.15 and < 0.25 moderate scintillation

σφ < 0.15 weak-to-no scintillation

(5.26)

However, the GNSS amplitude and phase measurements that are the base for scintil-
lation metrics, are affected not only by scintillation, but the whole GNSS propagation
environment (multipath and interference), the receiver clock anomalies, and the satel-
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lite clock anomalies. The latter effects, if not counted for, can lead to contamination
of the scintillation data extracted to be processed for further ionospheric studies.

By expert visual inspection, and consulting GNSS data from different days and
satellites, scintillation can be discriminated from the other impairments affecting the
scintillation metric as follows. We show next how these impairments can be detected
using the scintillation indexes, and thus we show how they can be discriminated
from scintillation.

Multipath Detection Using Scintillation Indexes

In a fixed scintillation monitoring receiver, multipath can be detected by observing
repetitive scintillation indexes inflation that have a geospatial pattern. If S4 for a
certain satellite signal inflates every time the satellite is at a certain azimuth and
elevation with respect to the receiver, we suspect that the signal fluctuates due an
obstacle in the environment around the receiver. Scintillation is random by definition
and, although we expect to observe it at certain ionospheric conditions, we do not
expect the repetitive nature at the same location and time on consecutive days.

Thus, to distinguish if the cause beneath the scintillation index inflation is multi-
path, we can compare the indexes for several days and observe when the scintillation
index is inflated. in Chapter 8 we show an example of multipath like S4 inflation.

Receiver Oscillator Errors Detection

It happens that the oscillators (on the receivers and the satellites) experience noise
for short periods. These result in generating noisy carriers at the receiver and thus
the carrier removal operation of the receiver leaves a residual phase. This residual
phase translates to inflation in the σφ as observed by an ISM receiver.

Since it happens at the receiver oscillator, this phase noise affects the processing
of all the GNSS signals in view. Thus, it can be detected by observing σφ of all the
processed signals, and if phase inflations occurred at all the signals at the same time,
then this is declared as receiver oscillator anomaly.
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Satellite Clock Errors Detection

Contrary to the receiver oscillator anomalies, the satellite oscillator anomalies signa-
ture is that a phase index inflation is observed at all the signals of a certain satellite
with the same magnitude, but not all the visible satellites at the same time. To
distinguish it from scintillation, as discussed in Section 5.4, ionospheric effects on
the phase are frequency dependent, and thus they do not affect similarly the signals of
a satellite at multiple frequencies. Thus by consulting σφ from a satellite at multiple
frequencies, and making sure that it is not a receiver clock anomaly, satellite clock
errors are detectable.

In summary, to detect the anomalies in the GNSS scintillation measurements, we
compare the scintillation indexes from:

• Several consecutive days,

• All the visible satellites, and

• Multiple GNSS frequencies.

Although this yields accurate scintillation detection, it is not feasible for neither
real time application, nor large amounts of data. At the same time, a simple threshold
on the scintillation index is not reliable.

In particular, a threshold on the indexes leads to loss in identifying scintillation at
the edges of the index inflation, i.e. at the beginning and end of the index disturbance,
and when the signal experiences irregularities that cause strong then weak then
strong etc scintillations.

Nevertheless, the scintillation index threshold can be beneficial as a rough detec-
tor for scintillation events. For example, we can use a simple threshold to quickly
identify all the data with potential scintillation measurements. Then, further process-
ing can be done to identify if scintillation was the cause behind the index inflation,
by visual inspection (as shown in Figure 5.13) or by implementing a mechanism
able to distinguish scintillation from the anomalies as was implemented in [183] and
[184] (and the recent improved version of the latter [185]).

These limitations in the traditional metrics lead to investigating alternative meth-
ods for scintillation detection (other than the simple threshold on the metrics) and
also to investigating other metrics for scintillation detection.
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Fig. 5.13 Scintillation detection using the indexes

5.7.2 Other Detection Mechanisms

ISM receivers rely on elevation mask, beside multipath rejecting antennas, to elimi-
nate all the potential multipath contaminated measurements, accepting the loss of a
good portion of the sky visibility.

In [186], the authors proposed to overcome this by implementing a smart eleva-
tion mask where only portions of the sky with known multipath are masked. 35-45%
gain in the collected scintillation data was demonstrated. However, such techniques
requires surveying the station area and generating a mask for each installed station.
Moreover, like the consecutive days data check, this mask is not sensitive to mobile
object and changes to the environment around the receiver.

Another approach was implemented in [187], where multi measurements were
consulted to eliminate multipath. By combining the elevation angle, signal to noise
ratio, with the scintillation index. Similar to the elevation mask, this method reduced
the visible sky even more than the original threshold on the elevation angle. The
gain of this method is the low false scintillation alarm rate.

Then came the Artificial Intelligence (AI) and ML approach. With the success
demonstrated by the various ML models in various fields of science including GNSS
signals processing and also scintillation studies, these techniques found their way to
scintillation detection as well.

ML techniques has demonstrated superior performance to human in the fields
of classification and anomaly detection in general. For example, in classifying
images and detecting malware. In the last two decades, with the advancements in
computation power and in the increased availability of data in all fields of science,
ML has found applications in almost every field of life.

In GNSS receivers in general, ML has been utilized for [188] multipath detection
[189], shadow matching [190], GNSS–R [191], RFI source classification [192],
spoofing detection [193], and scintillation forecasting [194, 195] and detection [196–
201, 185].
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Finally, focusing on the topic of this thesis, scintillation detection, ML has been
applied to detect both amplitude and phase scintillation, in order to overcome the
limitations of the techniques discussed earlier in this Section.

In Chapter 6, we briefly introduce ML, and how it is utilized for scintillation
detection.

In conclusion, the need for reliable scintillation detection techniques able to
handle huge repositories of data is needed to enable mining the repositories of
scintillation data that are available to the scientific community today. This, combined
with the arguable reliability of the scintillation detection based on a threshold on
the traditional scintillation indexes, demands the search for alternative detection
methods compatible with the available data today. In particular, the ML techniques
have gained interest in the last decade due to their success in the many GNSS and
non-GNSS fields, ionospheric science in general, and GNSS-based scintillation
detection in particular. For this, we focus on the latter and investigate phase and
amplitude scintillation detection using ML models.



Chapter 6

A Brief Introduction to Machine
Learning

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that includes
techniques and algorithms which learn from data and improve from experience
[202]. AI, the big umbrella under which ML lies, in itself is a science and technology
discipline that incorporates a collection of techniques that emulate learning, reasoning
and self-correction (thus the name intelligence) to develop solutions for computers,
robotics and machines in general (thus the term artificial). AI consists of a wide range
of sub-categories including computer vision, robotics, natural language processing,
and ML. Being related to data discovery, AI techniques have been closely linked
to Data Mining (DM) and Data Science (DS) in general. Figure 6.1 (adapted from
[203]) illustrates the relationship between AI, ML, DM and DS. We included in
this illustration also Deep Learning (DL), a subset of ML techniques that utilize
Neural Network (NN) architectures and has been achieving exceptional results in
the last few years, leveraging the advanced affordable computing resources and the
increasing availability of huge amounts of data.

ML has gained success in a wide range of applications including remote sens-
ing, telecommunications and scientific fields. Their ability to learn without prior
knowledge about the underlying physical phenomenon attracted their use in science
and engineering specially when it is complex to model the physics that generated
the data. A ML model can discover patterns in the data, or predict values of some
variables based on measurements and previous data.
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Fig. 6.1 The relationship between Data Science (DS), Data Mining (DM), Artificial Intelli-
gence (AI), Machine Learning (ML) and Deep Learning (DL).

In this Section, we briefly introduce the concept of ML and discuss the ML
algorithms that are used in this thesis.

6.1 Understanding the ML Task

When ML is utilized, the aim is to obtain a model that learns from the data how
to perform the task, for example how to detect scintillation. An important task to
obtain the model is to perform the model training, which requires expertise in the
application domain, ionospheric sciences for example. Then, this model needs to be
validated, similar to any model used in the scientific community. The outcome of the
ML training process is a data driven model that predicts the future outcomes from the
input data. For the scintillation detection task depicted in Figure 5.13, ML replaces
the processing flow into the new form depicted in Figure 6.2 where we replace the
threshold and expert inspection of the data with one ML model block that takes the
ISM receiver outputs and predicts if scintillation occurred. The methodology to
obtain this model is explained in Section 6.2.

There are many ways to categorize ML techniques. Based on the availability of
the input data at the time of training the model, the learning can be offline, online
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Fig. 6.2 Scintillation detection using ML models

or active as illustrated in Figure 6.3a (adapted from [203–205]). Here, the data
that the model needs might not be available before hand, for example in online
advertisements, where data arrive as the user is browsing a website. For our study,
we will be using repositories of scintillation data, and we will extract the input
features beforehand. Thus we will focus only on offline learning.

Moreover, depending on how much labelled data are provided to the ML algo-
rithm, ML techniques can be divided into supervised, semi-supervised, reinforcement
and unsupervised learning as illustrated in Figure 6.3b (adapted from [203–205]). In
supervised learning (see Section 6.3), we inform the ML algorithm about the target
outputs we expect the algorithm to predict. Thus, the model fits the data somehow
to obtain the desired output. Supervised ML predicts the class corresponding to the
input data if the output is categorical data, or performs regression if it has to predict
a numerical value.

Unsupervised learning on the other hand expects the ML model to explore the
data and understand how these data are related or how they can be grouped together.
In unsupervised ML, the task of the model is either clustering the data that are similar,
or reducing dimensionality and thus indicating which data are redundant to each
other.

In between supervised and unsupervised ML, semi-supervised learning. Here,
the label of some of the data is made available to the algorithm. Thus the algorithm
receives a priori guidelines on what clusters it is expected to find.

6.2 Machine Learning Modelling Cycle

To develop a ML model, certain steps has to be followed before the model is declared
operational. These steps are illustrated in Figure 6.4 (adapted from [203]) and
explained in the following subsections.
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(a) based on time of data availability

(b) Based on output label availability

Fig. 6.3 Machine Learning Model selection.
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6.2.1 Feature Engineering

Feature engineering, also known as feature discovery and feature extraction, is the
process of selecting, transofrming and manipulating features, also knows as attributes,
from the raw data using domain knowledge in order to improve the learning of the
models (the data is thus represented by feature vectors x ∈ Rn). Components of
Feature Engineering include:

• Data cleaning, where corrupted samples and outliers are removed from the
data set. This step is essential to ensure that the model will not be trained
on corrupted data. Since the ML model is data-driven model, the quality
of the model relies on the quality of the data set. For example in GNSS
scintillation data, cycle slips and oscilator anomalies might be considered as
outliers and thus removed from the data. However, they can also be considered
as valuable inputs if the objective of the model is to detect outliers in the
measurements. A careful definition of the objective of the model and the
problem statement is stressed here because of its importance in developing a
model able to accomplish the task. In this thesis, since we are processing data
off-line from repositories of GNSS scintillation, we consider cycle slips and
oscillator anomalies as outliers and we remove them from the datasets. For
future implementations we recommend considering them as valuable data and
train the model to recognize them. The latter is important for implementing
the detection mechanism in real-time scintillation monitoring receivers where
the detection model should be able to handle this type of outliers.

• Data normalization to limit the range that the data set values can take. This is
important for some ML algorithms, like the k-Nearest Neighbours (k-NN) (see
Section 6.3.2), and not essential for other algorithms, like the trees (see Section
6.3.3). The k-NN in particular replies on evaluating the distance between
samples in the feature sets domains and thus it is important to guarantee that
no feature will dominate the evaluation of the distance because its values take
wider range than the other features. Normalization is a good practice in ML
generally and we adopt it in preparing all the data for ML modelling..

• Transformation, where the data are presented in other domains that best repre-
sents the data for example in frequency domain. The choice of the transfor-
mation required domain knowledge where experience on the transforms that



110 A Brief Introduction to Machine Learning

Fig. 6.4 Machine Learning Modelling Cycle.

best suit the data is needed. For our scintillation detection models, we did not
implement any feature transformation and relied on the features as provided
by the receivers.

6.2.2 Model Evaluation

Figure 6.5 shows the confusion matrix, a popular method to visualize ML models
performance, for a multi-class classification model. Here we hypothize that the
model gives 4 class labels (scintillation, multipath, oscillator anomaly and clean
GNSS signal). Since our interest is detecting scintillation we consider the positive
class to be scintillation, and the other three classes to be negative. We define the
following terms:

• True positive (TP): the true label is positive (i.e. scintillation), and the model
correctly predicts the label to be positive.

• True negative (TN): the true label is negative (i.e. no scintillation), and the
model correctly predicts the label to be negative.

• False alarm (FA): the model wrongly predicts scintillation (i.e. raises scintilla-
tion alarm) but the true label is not positive.

• Miss detection (MD): the true label is positive but the model does not detect it
(i.e. wrongly labels the data as negative).

• Don’t care predictions (X): these are the miss classifications that we do not
care about in this application. For example, when multipath is classified as
oscillator anomaly or clean signal.
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Fig. 6.5 confusion matrix for a multi-label scintillation detector

The accuracy, scintillation miss detection and false scintillation alarm metrics
are defined as follows:

• Accuracy is the ratio of the number of correctly classified samples to the total
number of samples.

Accuracy =
T P+T N1+T N2+T N3
Total number of samples

• Scintillation Miss detection rate is the ratio of the number of scintillation
samples wrongly classified to the total number of scintillation samples.

Scintillation miss detection =
MD1+MD2+MD3

T P+MD1+MD2+MD3

• False scintillation alarm is the ratio of the number of samples wrongly classified
as scintillation to the total number of samples classified as scintillation.

Scintillation false alarm rate =
FA1+FA2+FA3

T P+FA1+FA2+FA3
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Fig. 6.6 Illustration of the hyperplanes separating two classes ’+’ and ’-’.

6.3 Supervised Learning Overview

Overviews of the algorithms considered for scintillation detection (i.e. classification)
in this work are given in this Section.

6.3.1 SVM Algorithm

Support Vector Machines (SVM) algorithm, one of the most influential supervised
learning approach associated with kernel trick, aims to classify the samples using a
separating hyperplane and it output a class identity [206].

The basic idea of SVM classification is to use the training set to learn the best
separating hyperplane in the sample space that can separate samples of the different
classes. Figure 6.6 (Figure source [207]) shows a 2–D illustration of the multiple
hyperplanes that can separate the samples in the two classes denoted as ’+’ and
’-’. The best separating hyperplane can be defined as the one with the most robust
classification results strongest generalization ability [207].

A separating hyperplane y = f (w,b) in the sample space can be expressed as the
linear function [207]:
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Fig. 6.7 Illustration of the hyperplanes separating two classes ’+’ and ’-’.

y = f (w,b) = wT x+b = 0, (6.1)

where w is the normal vector that controls the direction of the hyperplane, and b (the
bias) is the distance between the hyperplane and the origin.

For a hyperplane that can correctly classify the training samples, there exist
wT xi +b > 0 when yi =+1, and wT xi +b < 0 when yi =−1. These hyperplane are
called support vectors. Figure 6.7 (Figure source [207]) shows an example of SVM
for two-class classification. The total distance between the two support vectors is
called the margin γ . Finding the separating hyperplane with the maximum margin is
equivalent to finding the parameters w and b that maximize γ .

If the training samples are not linearly separable in the sample space, then the
samples xi can me mapped from the original feature space to a higher dimensional
feature space, ϕ(x), where the samples become linearly separable. In this case,
maximizing γ involves the calculation of ϕ(xi)

T ϕ(x j). Since the mapped feature
space can have high dimensionality, it can be computationally difficult to estimate
ϕ(xi)

T ϕ(x j) directly. This can be avoided by assuming that there exists a function
in the following form:

κ(xi,x j) = ⟨ϕ(xi),ϕ(x j)⟩= ϕ(xi)
T

ϕ(x j), (6.2)
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i.e. the inner product of xi and x j in the feature space can be calculated in the sample
space using the function κ(., .) [207].

Since the best kernel function for a certain dataset in unknown, the choice of the
kernel is the greatest uncertainty in applying SVM. Some common kernel functions
include the linear, the Gaussian and the polynomial kernels.

In cases where the samples are linearly separable, the linear kernel function can
be used, defined as:

κ(xi,x j) = xT
i x j (6.3)

where the kernel function κ provides a mapping from the instance space to a feature
space associated the kernel. Hence, it enables to find another hyperplane in the
kernel space and to achieve non–linear separation in the feature space [208].

The most commonly used kernel is the Gaussian kernel, also known as Radial
Basis Function (RBF), defined as:

κ(xi,x j) = exp

(
−
∥∥xi − x j

∥∥2

2σ2

)
= exp

(
−γ
∥∥xi − x j

∥∥2
) (6.4)

where σ > 0 is the width of the kernel and it has to be properly selected. If it gets
closer to zero, it might cause over-fitting. However, a bigger value of σ might lead
to under-fitting and ends up with classifying all the instances into one class [208].
Selection of kernel scale parameter γ in the RBF has the similar issues as well.

Another well-known kernel function is the polynomial:

κ(xi,x j) =
(
1+ xT

i x j
)p

(6.5)

where d ≥ 1 is the degree of the polynomial, and addition of 1 provides in-homogeneity.

Finally, The class predictions are made using the function [206]:

y = f (x) = b+
Ns

∑
i=1

wi κ(x,xi) (6.6)
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Fig. 6.8 k-NN classification concept and example 1.

where f (x) describes the approximate relationship between input x and corresponding
target output values y. xi is a sample of training input data-set given

{
x1,x2, · · · ,xNs

}
where xi ∈ Rn. b is the parameter of the optimum hyperplane shown in Figure 6.7.

6.3.2 k-NN Algorithm

k-NN is a type of non-probabilities supervised algorithm and it is generally used for
classification or regression.

Given a positive integer k and a sample x, the classifier first identifies k points in
the training data closest to x. At test time, it calculates the distances between x and
all training data. The class is thus found by maximizing the number of neighbours
with the same label. Figure 6.8 (Figure source [207]) illustrated the concept of k-NN
classification where the class label changes from ’+’ to ’-’ to ’+’ by increasing the
value of k from 1 to 3 to 5 respectively.

k-NN algorithm looks at the close neighbourhood of the input example in the
feature space and labels it that as seen in this close neighborhood [209]. In other
words, a test sample (x(i)) is classified considering majority class of its neighbours:

y = argmax
t(i)

k

∑
r=1

d(x(i), t(r)) (6.7)

where t(i) is a class label and d is the distance metric. The algorithm is generalized
through a distance metric to measure the distance or similarity between training
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𝑘 = 3
𝑘 = 1

Fig. 6.9 k-NN classification concept and example 2.

samples and test examples. Figure 6.9 shows another example of k-NN classification
cases for k = 1 and k = 3, where k is the number of training examples closest to the
considered input sample.

As it is observed in Figure 6.9, if k > 1, there are multiple training samples
describing an example input test sample that is shown as a blue triangle mark. When
k = 1, it creates a locally constant surface computed cell-by-cell in which the feature
space is divided. There are various distance metrics and one of them used for
real-valued vector spaces is Minkowski distance [210]:

d(xi,x j) =

(
l

∑
i=1

∣∣xi − x j
∣∣r)1/r

(6.8)

where l is the number of dimensions. xi and x j are the data points. When p = 1 it
is Manhattan distance and if p is set to 2, Euclidean distance that is most popular
among distance metrics is got. It represents the root of the sum of the square of
differences in vectors [210]. Euclidean distance can be weighted

d(xi,x j) =

√
m

∑
i=1

wi
(
xi − x j

)2
, (6.9)

where wi is the weight that influences the distance of instance xi = [xi1,xi2, · · · ,xim]

to the nearest neighbor instance x j = [x j1,x j2, · · · ,x jm]. wi represents the feature
weighting that consists of m weight coefficient for m features. Furthermore, a
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distance weighted k-NN can also be applied directly in (6.7) before distance function
d(x(i), t(r)). One of the widely applied weighting is the inverse squared distance.

Cosine distance that is also called angular distance is a type of similarity measure
[210]:

d(xi,x j) =
x⃗i · x⃗ j

∥⃗xi∥
∥∥x⃗ j
∥∥ , (6.10)

where · represents the dot product between two vectors and it is normalized by their
magnitude.

The choice of the distance metric and the value of k should be made carefully.
In order have powerful k-NN classification, a proper value for k should be selected.
If it is set too small, k-NN becomes sensitive to class noise. However, selecting k
too large leads to include many neighbor points and hence increases the bias. A
performance comparison of selected different k values and distance metrics in terms
of scintillation detection accuracy through carried out experimental tests is discussed
in Section 7.2.

6.3.3 Decision Tree Learning

Decision tree learning is based on tree structures, defined by recursively partitioning
the input space, as depicted in Figure 6.10. Decision tree is an acyclic graph in which
each branching node a decision is made by examining a specific feature vector and
depending on the decision the right or left branch is followed [209]. In other words,
the learning takes place along the branches and nodes by means of applied functions
for the decision criteria in each node [198].

A classifier can be represented by C(S,x) where x is the input point and S is the
training data having a set of labelled data:

S def
= {(xi,yi)}N

i=1 (6.11)

where it also denotes the start node that contains all examples [209].
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R1

R2

R3

R4

R5

Fig. 6.10 An example of feature space partitioning in decision tree.

6.4 Ensemble Learning

ML methods sometimes are not able to obtain adequate performances when dealing
with complex data, like noisy imbalanced high-dimensional data. In such cases, these
methods might fail to capture the underlying multiple characteristics and structures
of the data [211].

Ensemble learning methods exploit multiple ML algorithms to produce many
predictive models based on diverse features, and fuse results of individual models
using a selected voting mechanisms. By doing this, ensemble learning aims to
achieve better performances than that obtained by the individual child algorithms.
Increasing the complexity of the ensemble model decreases the model error until
reaching a certain complexity, after it the error just increases as shown in Figure
6.11 (Figure source [211]). The trends of the variance, however,is opposite and it
increases with the increase in the complexity of the ensemble. Thus, increasing the
complexity of the ensemble is not always the way to achieve better models, but a
balance between bias and variance is what we search for [211].

Ensemble learning combines a group of ML algorithms into one final model.
This way, the knowledge of each algorithm is complimented and effectively utilized
to gain superior performance for the overall ensemble. Figure 6.12 (adapted from
[212]) illustrates the main idea of a typical ensemble classification model, which
consists of two steps: (1) generating classification results using multiple classifiers
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Fig. 6.11 The relationship between learning curve and model complexity.

Fig. 6.12 The workflow of ensemble learning.

(called base learners), and (2) integrating multiple results into a consistency function
to get the final result with voting schemes. The widely-used ensemble classification
methods include bagged trees, AdaBoost, gradient boosting, random forest and
random subspace [211].

The term Bagged trees comes from Bootstrap aggregation. It was introduced in
1996 [213] to reduce the variance of statistical learning methods, by building separate
prediction models using subsets of the training set, i.e. bootstrapping the data. Then
the average of all the models outputs in case of regression, or the voting result in
case of classification, is taken as the final output of the model. Since each sub–model
(or sub–tree) is trained using a subset of the training data, the remaining data of
each subset (referred to as out-of-bag OOB observations) are used for validating
that trained sub-model. This way, bagged trees usually increase the classification
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trees accuracy, but on the other hand we loose the interpretability advantage of
decision trees. We fixed the number of sub–trees to 30 through out this work to avoid
investigating the optimum number of sub–trees.

Bagging trees utilize an ensemble technique that creates a classifier from training
a number of tree classifiers. Bagging trees classify by majority vote

C(x) = Majority Vote
{

C
(

S(b),x
)}B

b=1
(6.12)

where B is the number of decision trees in the ensemble.

Boosting is another ensemble technique that classifies by weighted majority vote

C(x) = sign

[
M

∑
m=1

wmCm(x)

]
(6.13)

where M is the number of decision trees in the ensemble.

The tree structure should be pruned to an optimal size through evaluations of
cross-validation results.

Ensemble methods are considered the state-of-the art solution for many ML
challenges. The objective is to compensate the errors of a single learner by other
learners, and to reach an overall better prediction performance of the ensemble
with respect to the single inducers [214]. The reasons behind this improvement of
ensemble methods performance can be summarized as [214]:

• Overfitting avoidance: When only few data are available, a ML algorithm
is likely to find enough hypothesis to predict perfectly all the training data
but making poor generalization of the prediction. Averaging different hypoth-
esis reduces the risk of overfitting and thus improves the overall predictive
capability.

• local minimum avoidance: ensemble learners decrease the risk of obtaining a
local minimum, that base learners might easily get stuck on.

• Extended search space: when the optimal classifier is outside the space of any
single model, combining different models is equivalent to extending the search
and hence better fitting the data.
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6.5 Machine Learning for GNSS-based Scintillation
Detection

From the discussion of the properties of the scintillation phenomenon (Section
5.2), the GNSS receiver measurements (Section 5.6), and the introduction to ML
techniques, we summarize the drivers that motivated investigating ML techniques to
tackle measurements from GNSS receivers to detect scintillation as follows:

• Scintillation, being a phenomenon with complex physics underlying it, is fore-
seen to benefit from ML techniques with their capabilities to handle complex
measurements (eg. multipath affected scintillation measurements), similar to
the other disciplines of science that successfully exploited these techniques to
advance their understanding of the relevant phenomena.

• Scintillation events, being random and occasional (almost rare among the data
continuously collected by scintillation monitoring stations) are the type of
events that ML techniques are excellent in detecting with their data discovery
and prediction capabilities. ML can be well trained to discover patterns in the
data that might now be as frequent as other classes present in the data.

• Scintillation, being a phenomenon of interest for many users that require
warning for occurrence (and even forecasting in advance), without a reliable
mechanism for such warning, is still in search for a detection mechanism
and thus ML with their anomaly detection capabilities can take part in this
undergoing search for a detection mechanism.

• GNSS-based data, being measured using a signal that is susceptible to many
environmental factors besides scintillation, that have properties difficult to
process using mathematical models alone, are suited for data driven models.

• GNSS measurements, being sensitive to anomalies in the hardware of the
transmitters and the receivers, are suitable candidates for ML techniques that
are capable of handling noisy data.

• With the increase in the amount of scintillation measurements, they have
become suitable to be exploited by ML techniques that require abundant data
in first place to work successfully.
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• Also, the abundant amount of scintillation data covering the last 2-3 solar
cycles, invites exploring the data with ML techniques that are able to discover
hidden structures in data that span such long periods and have complex physics.

Referring to the ML modelling cycle in Figure 6.4, we follow the journey of
a model from data preparation to prediction. For data preparation, we focus on
the feature engineering. The objective is to explore the features available from the
GNSS-based scintillation receivers (discussed in Section 5.6) only. We will not
include features from other instruments, like the Dst index, for the following reasons:

• The features available from the GNSS receivers are already abundant with
measurements in multiple frequencies for various applications (positioning,
TEC, scintillation indexes, etc). Thus, a thorough investigation of GNSS-only
features is needed.

• All the anomlies we are distinguishing in this receiver (multipath and oscillaor
anomalies) are actually GNSS anomlies. Thus, investigating the GNSS signal
itself for more understanding of the signature of these anomalies on the GNSS
scintillation measurements is needed. Since the physics underlying the various
effects are different, we challenge the ML models to be able to distinguish that
these are different clusters/classes.

• By relying on GNSS measurements only, we target developing models that do
not need to consult external measurements to process GNSS data, for exam-
ple external databases for retrieving the geomagnetic indexes and the space
weather conditions. This important for autonomous operation of scintillation
detection specially for real-time scintillation detection.

• Finally, since the GNSS signal is rich with propagation environment, and it
is already sensitive to the scintillation phenomenon, we focus on expanding
the investigation of the signature of scintillation on the signal, and focus on
different aspects of the GNSS measurements to derive the scintillation detector.

Among the ML disciplines, in this thesis we will focus on supervised ML tech-
niques, and not unsupervised for the following reasons:

• Unsupervised clustering requires deep investigation of the results of the clus-
tering task to understand why certain groups of data were clustered together.
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This usually is aided by visual inspection and other similar techniques. For
scintillation, following such inspection method, and due to the complex phe-
nomenon that required us to check many data sources and visualize the data
in many formats, this lead us to gradually label the data, after such extensive
inspections, with the multipath and oscillator anomalies classes besides scintil-
lation. At the end the amount of available labelled data was enough to follow
the supervised learning paradigms which we show in this thesis. We do not
show results from the investigation of unsupervised ML techniques because
the subsequent model validation and deployment steps were not followed.

• Unsupervised dimensionality reduction, was not critical for the the scintillation
detection task using data stored in scintillation repositories. Nevertheless,
for deploying the ML-based detectors in future GNSS-based scintillation
monitoring stations, such techniques are worth investigation to adapt with
limited computation and storage resources at receiver level. For this thesis,
such techniques will not be investigated.

Finally, among the supervised ML techniques, we will not consider DL for the
following reasons:

• DL required much more data that the other supervised ML techniques. This
indeed requires labelling for a considerably large training set.

• Although DL has proven to be the game changer in ML in many applications,
we choose to investigate the capabilities of the other ML techniques as a first
step and explore their capability to do this task. Indeed, DL techniques are
the next step to expand and improve upon the current capabilities that will be
shown in the results obtained in this thesis.



Chapter 7

Detecting Phase Scintillation at High
Latitudes Using Ionospheric
Scintillation Monitoring Records and
Machine Learning Techniques

In this Chapter, we present a bagged tree model able to detect phase scintillation
at high latitudes with 95% accuracy, 5% scintillation miss-detection and 5% scin-
tillation false alarm. The input to the model is a series of 3 minutes of TEC, 3
minutes of the change in TEC (dTEC), and the satellite elevation. These values are
extracted from Ionospheric Scintillation Monitoring Record (ISMR) logged by ISM
receivers. We compare the performance of this model to Support Vector Machine
(SVM) models, k-Nearest Neighbors (k-NN) models, and also to other decision tree
models. Furthermore, we assess the ability of the TEC and dTEC features to detect
scintillation independently of the scintillation indexes. For this, we compare the
above decision trees, kNN and SVM models to the same models but trained using
scintillation indexes as additional inputs. Moreover, we show the results of testing
the proposed model using a novel data set. Finally, we compare the accuracy of the
ML model to the performance of a detector based on the phase scintillation index σφ

threshold.
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7.1 Introduction

ISM receivers have been continuously recording ionospheric measurements for the
last couple of decades. This resulted in a rich repository of ISMR data, which are
logged at 1 minute rate, as well as other records with higher logging rate (for example
raw correlator outputs are typically logged at 50 Hz or 100 Hz and raw Intermediate
Frequency (IF) GNSS signals are logged at several MHz).

For such a high volume of data, automatic detection of scintillation is necessary,
and in fact it has always been implemented by ISM receivers and ionospheric
studies’ researchers. However, phase scintillation detection, and GNSS scintillation
in general, has not been a trivial task because of the scintillation-like anomalies that
affect the scintillation indexes. Satellite and receiver clock anomalies, and multipath
are the main sources for false scintillation alarms in GNSS measurements [61].

In recent years, ML models to detect phase scintillation have been proposed in
the literature. For example, in [201], the high-rate raw correlator measurements from
ISM receivers are utilized to train ML models able to detect phase scintillation and the
performance of SVM-based implementations for phase and amplitude scintillation
detection is evaluated. In [215], amplitude and phase scintillation indexes provided
in ISMR files are utilized to carry out the detection task. In this Chapter we utilize
the other measurements in ISMR files to detect phase scintillation. We investigate
the feasibility of detecting phase scintillation relying on TEC and the rate of change
of TEC over time (dTEC).

The motivation behind using ISMR data is that they are available with almost
continuous monitoring for decades. That makes them a rich resource of scintillation
monitoring data. In this Chapter we focus on exploiting TEC and dTEC measure-
ments calculated from dual frequency pseudorange measurements and carrier phase
measurements, respectively. Furthermore, besides SVM [215] and decision tree
[198][197] learning methods, the usage of k-NN algorithm for phase scintillation
detection is investigated through a comparative performance analysis. Because,
beforehand it’s quite hard to choose directly the correct method in most cases in
high dimensional spaces on the selection of SVM, k-NN, and decision trees for the
classification problems. Most of the time, a validation data-set is used to not only
optimize hyperparameters of the algorithms but also to choose between algorithms,
as is investigated in this work.
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7.2 Implementation and Test Results

ISMR data collected in Antarctica was utilized to train and test the ML models. In
this section we describe the data preparation for the ML task. Then we present the
ML models obtained in this Chapter. Finally we show and discuss the testing results
of testing these models.

7.2.1 Data Preparation

The data utilized to train, validate and test the models were collected at the South
African Antarctic research base (SANAE IV, 71.67 S, 2.84 W) using a Septentrio
PolaRxS Receiver between 23-29 August 2018. These days were selected because
on 26-27 August 2018 phase scintillation occurred at high latitudes due to a G3
geomagnetic storm [216].

The data was manually labelled using visual inspection after consulting data
from consecutive days (to check for multipath), data from all visible satellites (to
check for receiver clock errors), and data from different frequency bands (to check
for satellite clock errors). To read more about checking for multipath and oscillator
anomalies refer to [197] and [184] respectively. The data is labelled as scintillated
if the phase measurements were randomly fluctuating, but no multipath or clock
anomaly was observed during the anomaly check mentioned above. Otherwise, the
data was labelled as non-scintillated. Approximately 16,000 labelled samples were
extracted, of which 50% were scintillated. The samples were randomly split into
training and testing sets, with 70% of the data in the training set. Again, 50% of
the training set was scintillation. Validation using 5-fold cross-validation was also
implemented during the training phase.

Two sets of attributes were considered for training the ML models:

• F1: contains a 3-minutes series of TEC, dTEC and elevation values. A sliding
window step of 1 minute was implemented. In other words, the label is given
at a rate of 1 minute, and we evaluate 3 minutes of data to give the label. TEC
and dTEC are logged in ISMR files every 15s.
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Fig. 7.1 Data preparation.

• F2: contains all the measurements related to L1 CA signal in the ISMR file,
also grouped in blocks of 3-minutes overlapping measurements, with sliding
window step of 1 minute.

Figure 7.1 depicts how the 3-minute overlapping window was prepared. In this
figure, we showed only 3 features for demonstration purpose, but the concept is
general.

In [217], the analysis carried out through collected data shows that the mean
duration of the phase scintillation events in the polar region is 5.6 minutes. In this
work, so as not to miss the below average duration scintillation events, time-window
is adjusted to 3 minutes through an experimental analysis. Furthermore, the tests
carried out applying an extended time window (e.g. 5-min) has not provided a
significant improvement in the accuracy.

7.2.2 The Machine Learning Models

Table 7.1 summarizes the applied ML models having different settings. The first
column shows the general ML models name. The second column shows the name of
the variation of the model. By model variation we mean different hyperparameter
settings of the model. The third column describes the model variation indicating the
hyperparameters values.
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Table 7.1 The Machine Learning models considered

Model Variation Description

Decision
Tree

Learning

Fine Max number of splits = 100
Medium Max number of splits = 20
Coarse Max number of splits = 4

Bagged
Ensemble method: Bag,
Number of learners = 30

Max number of splits = No limit

Boosted
Ensemble method: AdaBoost

Number of learners = 30
Max number of splits = 20

SVM

Linear Kernel function: Linear
Quadratic Kernel function: Quadratic

Cubic Kernel function. Cubic

Fine
Kernel function: Gaussian

Kernel Scale =
√

(n)/4
where n is the number of predictors

Medium
Kernel function: Gaussian

Kernel Scale =
√

(n)

Coarse
Kernel function: Gaussian

Kernel Scale = 4
√

(n)

k-NN

Fine
Distance metric: Euclidean
Number of neighbors = 1

Medium
Distance metric: Euclidean
Number of neighbors = 10

Coarse
Distance Metric: Euclidean
Number of neighbors = 100

Cosine
Distance metric: Cosine

Number of neighbors = 10

Cubic
Distance metric: Minkowski
Number of neighbors = 10

Weighted
Distance metric: Euclidean
Number of neighbors = 10

Distance weight : Square inverse
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Fig. 7.2 Results of training and testing the models using feature set F1.

7.2.3 Experimental Test Results

Figure 7.2 reports the results of training and testing the models using feature set F1,
while Figure 7.3 reports the results of training and testing the models using Feature
set F2. The x-axis reports the models. The solid and dashed blue lines report the
training and testing accuracy, respectively. The solid and dashed red lines report the
miss-detection and false alarm rate respectively for the scintillation class.

Focusing on the bagged tree models (BaggedT) in Figure 7.2 and Figure 7.3,
the results show that it is possible to obtain a model with 95% accuracy, 5% false
alarm, and 5% scintillation miss detection, relying on TEC, dTEC and satellite
elevation measurements alone (i.e. F1). Moreover, using F2 which includes all
ISMR measurements did not give superior results to using F1 only. This indicates
that TEC and dTEC are utilizable to detect phase scintillation without the need
for phase scintillation indexes. Furthermore, many of the ML models achieved
comparable good results in terms of accuracy, however the bagged tree demonstrated
the highest accuracy.

The k-NN models in general reported lower accuracy and higher scintillation
miss-detection than the trees. The decrease observed in the accuracy of coarse k-NN
is expected since the number of neighbors might be accepted as the limit considering
the rule of thumb k <

√
(m), where m is the number of training examples. At
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Fig. 7.3 Results of training and testing the models using feature set F2.

the same time, the cosine distance function, which is used when the magnitude
between vectors does not matter but the orientation, could track better the trend of
the scintillation indices (i.e., consecutive decrease/increase).

Finally, the SVM models, except the cubic SVM, reported a performance com-
parable to the trees. A drop in the accuracy of the cubic SVM is expected at an
acceptable range observed in F1 and F2, considering the possibility that higher-
degree polynomial might lead to over-fitting in the training test set. However, the
same is not valid in cubic k-NN, because the classification output is computed
through the majority class in that case. Furthermore, Manhattan distance has not
been applied since it would work as thresholding.

7.2.4 Comparison with Standard Method

We compare the performance of the bagged tree model trained with F1 to the
performance of a standard method in the literature; the threshold on the phase
scintillation metric σφ . For the Septentrio PolaRx5S Receiver installed at SANAE IV
station, a threshold of σφ = 0.15 rad is acceptable to detect moderate scintillation.
To detect weak scintillation, lower threshold value is needed. For this reason, we
tested different threshold values: 0.05, 0.1 and 0.15 rad as shown in Table 7.2. In
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Table 7.2 Comparing the performance of the bagged tree model to standard threshold method

Method Miss
detection [%]

False alarm [%] Accuracy [%]

Threshold=0.05 27.8 16.5 79.0
Threshold=0.10 57.2 3.2 70.7
Threshold=0.15 71.4 1.3 64.1

Bagged Tree Model 5.2 5.4 94.7

the table we report the scintillation miss-detection and false alarm beside the overall
accuracy. We can see that with the threshold technique, the accuracy is below 80%
while with the bagged tree model it reaches ∼ 95%. The improvement comes mainly
from the significantly low miss-detection rate of the ML model (5.2%) compared to
27.8% for the best case in threshold method. The false alarm is slightly higher than
a 0.1 rad threshold, but it is acceptable when looking at the overall accuracy.

7.3 Summary

In this Chapter we touch on the feasibility of using TEC, an ionospheric metric that
is provided by dual- and multi-frequency receivers, for detecting scintillation. We
use ML techniques to achieve the detection task.

We compare the performance of SVM, k-NN and Tree models trained to detect
high latitude phase scintillation. We propose relying on series of 3-minutes TEC
and dTEC measurements extracted directly from ISMR files to train the models.
We compare these models to models trained with 3-minute samples that contain all
L1CA related measurements in the ISMR records, in addition to the TEC and dTEC
values. Finally, we show examples of testing the models with a novel data set.

We show that bagged trees relying on 3-minutes of TEC and dTEC measurements
are able to detect phase scintillation with 95% accuracy, 5% scintillation miss
detection and 5% scintillation false alarm.

The potential of this result is to question if it is possible to train a ML model
to infer the value of the phase scintillation index from TEC measurements. This
could open the door for utilizing professional receivers (like the IGS network) for
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estimating the scintillation index from the TEC measurements that they already
provide. Such GNSS networks, have wider geographic distribution than the ISM
receivers as of today, higher data availability and longer history of ionospheric
measurements. Thus, utilizing data from these receivers to measure scintillations, or
at least detect scintillations occurrence, could significantly increase the geographic
and temporal availability of scintillation measurements.



Chapter 8

A Machine Learning Approach to
Distinguish Between Scintillation and
Multipath in GNSS Signals

This chapter presents a ML approach to distinguish between ionospheric scintillation
and multipath in GNSS-based scintillation monitoring data. First, we investigate
the feasibility of the classification task using measurements provided by various
commercial and software–defined scintillation monitoring receivers. In particular
we differentiate between receivers that log measurements at low rate (i.e. they log
scintillation metrics and observables) and high rate (i.e. correlator outputs). We find
that the high rate correlator measurements are enough to carryout the classification
task with high accuracy, without relying on scintillation indexes. This was further
investigated by training another twenty four models based on combinations of
features derived from the receiver correlation stage outputs alone. These features
were also investigated for different averaging windows ranging between 1 and 180
seconds. The results of the model with the best performance are presented. The
overall accuracy of the model is 96% with 2% miss-detection rate and a negligible
false alarm rate for the scintillation class in particular. The gain in the amount of
scintillation data is up to 17.5% that would have been discarded if an elevation mask
of 30◦ was implemented.
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8.1 Introduction

Being based on the assessment of the variations of the amplitude and phase of the
signals, scintillation indices are triggered by causes other than scintillation, which
make these detection schemes suffer from false alarms. Thus, after the detection,
further inspection of scintillation suspected the data is needed to verify if the source
that triggered the indexes was scintillation or not. Multipath, which results from
signal reflection and refraction by the environment around the receiver, is the most
common and the most dangerous cause because it inflates S4 index in a similar way
to scintillation [178, 61]. In the literature, there are few techniques to avoid multipath
in scintillation monitoring data. The first, which is the most reliable, depends on
characterizing the environment around the scintillation monitoring receiver and thus
mapping the sources of multipath and consequenctly excluding the data contaminated
by these sources [178, 186]. This method is location-dependent and has to be
repeated for every monitoring station. Another drawback of this method is that it
is not sensitive to changes of the surrounding environment, that may occur. The
second technique relies on eliminating data below an elevation threshold where most
data with potential multipath contamination exist. This method has two drawbacks:
i) it results in reduced visibility of the sky [187] and thus reduces the amount of
useful scintillation data up to 35-45% [186], and ii) it actually does not guarantee
multipath free samples by assuming all the signals above the elevation threshold are
multipath free. A common elevation threshold is 30◦ and, as will be shown in the
results Section, sometimes multipath signals exceed that threshold resulting in false
scintillation alarms. In this Chapter, we target those two drawbacks by developing a
ML model, able to distinguish between multipath and scintillation in scintillation
monitoring data.

The boom in using ML techniques in the last decade found its way to both
scintillation forecast and GNSS–based scintillation detection activities. The use
of ML techniques to predict near–future ionospheric scintillation occurrences was
pioneered in 2010 [218]. The proposed ML model relied on data from GNSS
receivers and Digital Portable Sound (DPS) Digisondes installed in Brazil to forecast
the ionospheric scintillation index S4 for up to one day ahead. The bagged regression
tree model developed also takes as inputs: i) the time of the day, ii) Kp data from
World Data Center for Geomagnetism in Kyoto, and iii) the F10.7 solar flux with
a resolution of 1 day obtained from National Geophysical Data Center. Since then,
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many articles investigated developing ML based models to predict ionospheric
scintillations based on GNSS measurements and/or non–GNSS based measurements
(e.g [219, 194, 220]).

On the other hand, detecting ionospheric scintillations is of great interest for
GNSS–based scintillation monitoring activities. The ability to detect scintillation
based on GNSS measurements alone is particularly favored because it eliminates
the need for installing multiple instruments and/or for aiding the instruments with
external data. In [200] and [201] support vector machines were trained to detect
amplitude and phase scintillations respectively, while in [198] a decision tree was
adopted for the classification task. Recently, [199] used Convolutional Neural
Networks to accomplish the same task. All these models report high detection
accuracy. However, in these models multipath effects were not considered, and
thus the developed models were not trained to detect multipath. This limited the
potential of implementing the models in operative scenarios where multipath is for
sure expected to exist.

In this Chapter, we investigate the possibility to distinguish between multipath
and scintillation using ML models. Our objective is to rely only on measurements
provided by GNSS receivers. The motivations behind this objective are:

1. The GNSS signal has proved to be a powerful remote sensing tool with
successful deployment in many enviornmental applications. We stress this
advantage in challenging the ML model to process the GNSS signal alone
and differentiate between scintillations that happen up in the ionosphere, and
multipath that happens in the vicinity of the receiver.

2. Since the mechanisms causing scintillation and multipath are different, their
effects on the signal are also different. Unfortunately, the scintillation indexes
are not able to differentiate between these two effects. Thus, we want to
search for another metric/method/technique able to carry out this task and
distinguish between the two effects. In other words, we want to search for a
scintillation detection method that is selective and sensitive to scintillations,
even if multipath is present in the environment. Indeed if we could not achieve
a satisfactory ML model that relies only on GNSS measurements, we will have
to consider other alternative methods and data.
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3. We would like to reduce/cut the need for external data sources that might
require the model to consult instruments or data sources other than the GNSS
receiver. Fusing such external measurements might lead to denying the model
from working in real time in the future. It also might put constraints on
the installation of the model in monitoring stations at locations with limited
budgets and/or internet connection.

Furthermore, we consider the possibility of achieving this objective of distin-
guishing scintillation from multipath based on different measurements sets provided
by commercial and software–defined scintillation monitoring receivers. The motiva-
tion behind this consideration is that different measurements are available based on
the type of receiver and/or the configuration of the receiver output measurements.
We differentiate between receivers that provide measurements with high logging
rate (50Hz for example) and other receivers that provide the measurements at lower
logging rate (1Hz for example). In particular, we consider if the user is able to access
the correlators measurements I and Q or not. Here we assume the end user has more
options on the measurements they can extract, and we propose solutions that exploit
this advantage.

Finally, we highlight that our objective is to detect scintillation, and to distinguish
it from multipath in particular. For this reason, we tolerate if the model will not be
able to distinguish between multipath and clean signals.

8.2 Data Preparation

In this Section we describe the data we used in this work. We focus on how these
data were prepared for the ML task.

8.2.1 The Data Set

Approximately 45 hours of data captured in Hanoi, Vietnam in 2015 are exploited
to train, test and validate the ML models trained in this chapter. The data were
collected in March, April, July and October 2015 in Hanoi, Vietnam, as part of the
ERICA project [31, 32]. The data collection contains days with strong, moderate and
weak–to–no scintillation. Moreover, some of the data collections coincide with days
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where geomagnetic storms were recorded. The occurrence of geomagnetic storms
was checked by consulting Space Weather Services [221] and Solar Influences Data
Analysis Center [222].

We used a software defined GNSS receiver (SDR) to process the data and extract
the post-correlation outputs of the tracking loop, i.e. the in–phase I and quadrature-
phase Q outputs, at a rate of 50Hz for all the visible GPS satellites. The SDR also
estimates the raw signal intensity SI, the amplitude scintillation metric S4 and the
carrier to noise ratio C/N0. It also calculates the azimuth (θAZ) and elevation (θEL)
of the satellite.

We group the data into 3 categories: training data, testing data, and operative
scenarios data.

8.2.2 Training and Testing Data Labelling

To label the data we compare data from consecutive days for a satellite to identify
signal distortions induced by multipath. As discussed in Section 5.7, in presence of
multipath the S4 value is inflated taking values in order usually between the weak to
moderate scintillation threshold with a spatio-temporal pattern. For GPS signals for
example, looking at the S4 behaviour over several days, if the multipath is generated
by a static obstacle, we notice the same pattern each sidereal day (day minus 4
minutes). Therefore, if S4 is inflated and takes a similar trend in multiple days, this
is an indication of multipath presence. If S4 is inflated without sidereal repetition,
we label it as scintillation. Finally, we label a sample as clean if the S4 index is not
inflated.

To avoid including in the training and testing data signals that are affected by
both multipath and scintillation at the same time, we label multipath data from days
with reported no scintillation. Thus, in the training and testing data we only include
data we could confidently label as either multipath or scintillation. As a result of
such a strict labelling methodology, and to make sure we have balanced classes,
we have a total of 14.5 hours of manually labelled data for each class: multipath,
scintillation and clean. We used 10 hours for training and the remaining 4.5 hours
for testing the models.
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8.2.3 Statistics of the Training and Testing Data Sets

In this Section, we examine the statistical distribution of the features in the data that
we have selected to train and test the ML models. This investigation is important for
ML data preparation to ensure that the data that were selected are actually represen-
tative of their classes. More details about the good practices for data preparation can
be found in [223]. For example, when we check that we have clean signals that were
collected at various elevations, we ensure that we are not selecting clean signals only
from high elevation and thus implicitly leading the model to give higher probability
of multipath for signals with low elevation or low signal to noise ratio for example.
By doing this representative data selection, we ensure that the model will look at the
properties of the multipath/scintillation affected signal in general and the changes
that happen to the signal rather than the location of the signal in the sky. The same
applies for scintillation, where we want to ensure including scintillation samples at
low elevations in particular in the training set. We will carry out this investigation by
examining the histograms of S4, C/N0, SI and θEL, shown in Figure 8.1 and Figure
8.2 and discussed below.

S4 and C/N0

The first plot to investigate, shown in Figure 8.1, is the bivariate histogram for S4

and C/N0 of the training set . The x–axis shows C/N0 and the y–axis shows S4.
The blue color is for scintillation, red for multipath and green for the clean signals.
As expected from clean signals, they are all with S4 values below 0.15 and they
do not drop to the very low C/N0 values that are associated to degraded signals.
For scintillation and multipath classes however, we see considerable overlapping
between their histograms. In our training set, scintillation values are everywhere on
S4 scale indicating various severity of the scintillation events from weak to strong
scintillations. They are also spread on all C/N0 values indicating severe fluctuations
in the signal intensity that lead to weak as well as enhanced signal to noise ratios. On
the other hand, multipath signals have smaller values of C/N0 compared to the clean
signals, because multipath signals are degraded signals with signal to noise ratios
typically lower than the expected values. On S4 scale, we have values up to S4 = 0.5
which will certainly pass the S4 threshold of scintillation monitoring stations.
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Fig. 8.1 Histogram of S4 and C/N0 of the training set.

Signal Intensity (SI) and Satellite Elevation (EL)

The second bivariate histogram to investigate, shown in Figure 8.2, is for the elevation
angle (EL) [◦] and signal intensity (SI) of the training set. The x–axis plots SI while
the y–axis plots EL. Again, the blue color is for scintillation, red for multipath and
green for the clean signals. In this histogram, the clean signals and the multipath
signals occupy different areas of the EL–SI space, while the scintillation class is
widely spread all over the space. The signal intensity increases consistently with
elevation for clean signals as they should be. While for scintillation, enhanced and
degraded signal intensities are found at all elevations as a result of constructive and
destructive signal interference. The multipath class is centred at low elevations but it
reached up to 40◦ in this data set. This is above the elevation cut-off angles adopted
in literature.

In conclusion, the training data set looks representative of the range of values
that the signals can occupy in terms of θEL, C/N0, SI and S4. We are confident to
use this data set to train our ML models.
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Fig. 8.2 Histogram of the elevation angle and SI of the training set.

8.2.4 Machine Learning Attributes

In this Chapter, we consider three options for the GNSS receivers that provide the
scintillation measurements. The first one is a receiver that logs {SI,S4,C/N0,θAZ,θEL}
with a slow rate. We choose 1 Hz, but the main assumption is not to compute further
statistics (average, variance, etc) from the measurements because it is already at a
low rate. The second is a receiver that provides the same measurements above with a
high logging rate (50 Hz). The third is a receiver that provides I and Q in addition
to the above values at 50 Hz. For the later two types of receivers, we calculate the
following additional values from the 50 Hz logs to use them as input features for the
ML models.

From the definition of scintillation as fluctuations in signal intensity (and phase)
we decide to use features that can capture fluctuations in general as inputs to train
the ML algorithm. Thus we choose the average signal intensity, the variance in the
signal intensity and the covariance between I and Q over a time window. We choose
to adopt the raw signal intensity given by (2.11) without further processing it with
detrending or noise removal. The average value of the signal intensity is calculated
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from SIi[n] values over the previous time window of N samples as:

SIi =
1
N

N

∑
n=1

SIi[n] (8.1)

Similarly, the variance of the signal intensity is calculated over the same time window
as:

σSI,i =
1

N −1

N

∑
n=1

(SIi[n]−SIi)
2 (8.2)

In the case of the covariance, we choose to calculate the covariance between I2 and
Q2 instead of I and Q to avoid the effect of the data bits that we have not removed
from the received signal (eq.2.9), and thus the covariance was calculated as:

covi(I2,Q2) =
1

N −1

N

∑
n=1

(Ii[n]2 − I2
i )(Qi[n]2 −Q2

i ) (8.3)

where I2
i and Q2

i are the average values of I2 and Q2 calculated over the same time
window.

The value of the averaging time window Tw will be fixed to 1 minute for the
investigation done in Section 8.4, and in Section 8.5 we present an investigation into
effect of the averaging window on the performance of the ML models.

8.3 Selection of the Machine Learning Algorithm

Since we have labelled data, and we want to train a ML model to perform a classifi-
cation task, we choose a supervised ML model, a classification learner in particular,
to train our models. In this Chapter we do not compare different types of ML al-
gorithms, but rather fix the ML algorithm and focus on investigating the type of
measurements that will allow obtaining a model able to distinguish scintillation from
multipath. This will also facilitate focusing the discussion on the useful measure-
ments to distinguish scintillation from multipath. We thus investigate one type of
models in this work, and leave investigating the best classification model or ensemble
model for future work.
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We choose the Bagged trees model [224] because in Chapter 7 it has been proven
to give superior performance compared to the other tree, SVM and k-NN models
that we have tested (see Table 7.1).

Figure 8.3 illustrated the task the ML model should achieve. The model takes the
input features that were prepared from the outputs of an ISM receiver, and outputs
whether the data represent scintillation–affected, multipath–affected or clean GNSS
signals.

Fig. 8.3 Illustration of the task of the ML model to be developed.

8.4 Training Models Based on Different Receivers
Logging Rates

In this Section we train 8 ML models based on assumptions about the logging rate of
the available scintillation data from the receiver. These assumptions come from the
fact that different receivers log the data at different rates. Even for the same receiver,
sometimes it is possible to configure the receiver to output the data at custom rates.
Since one of our objectives is to develop models that will assist researchers curating
scintillation data repositories, we take into consideration that the repositories might
contain data with different rates. Furthermore, such investigation sheds the light on
the feasibility to carry out the data cleaning on data sets with low/sub-sampled rate.
Such sub–sampling is beneficial in exploring the data repositories and identifying the
outliers if present by retrieving data at lower rate which also implies faster scanning
for the data repositories.

8.4.1 Machine Learning Attributes

Table 8.1 summarizes all the features that we use in this section to train the 8 models
to distinguish between scintillation and multipath based on the assumed 3 types of
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receivers, dropping the subscript i for the satellite number from the measurements
described by (8.1), (8.3) and (8.2). Combinations of these features will be used as
inputs to the various models as will be explained. The value of the averaging time
window was fixed to 1 minute for the this part of the experiments.

I Q C/N0 S4 AZ EL SI SI σSI cov(I2,Q2)

Table 8.1 Features (Attributes) to be considered for training

8.4.2 Training the Machine Learning Models

Table 8.2 reports the eight combinations of measurement groups that we want
to investigate. The first column shows the name of the model trained with each
measurement group. The second column lists the measurements that are utilized
by each ML model. The last column gives a brief description of the measurements
group.

MDL1 is for a receiver where the measurements F1 are logged with a low rate.
MDL2 on the other hand, works for receivers that log the measurements F2 with a
high rate. MDL3 represents receivers where I and Q are available for the end user.

The other 5 feature sets shown in Table 8.2 represent variations of the above
mentioned 3 feature groups, where each one tests a certain combination of measure-
ments. MDL4 tests if a ML model that does not rely on {S4,C/N0,θAZ,θEL} can
be developed. This is important because the calculation of S4, as we discussed in
Section 5.5, depends on the receiver manufacturer. Also, the estimation of C/N0

depends on the receiver. The azimuth and elevation angles on the other hand are
strongly biased towards multipath in the environment. Since all of the obstacles in
this data set are fixed (or at least they were present in the data set for consecutive
days), they can lead the model to understand that multipath can be identified with
high accuracy based on the direction of the satellite in the sky. MDL5 and MDL6 test
if excluding the azimuth and elevation will affect training the models for receivers
with high and low logging rates respectively. MDL7 tests what performance a model
trained only on the azimuth and elevation can achieve. This model is similar to
mapping the obstacles in a scintillation monitoring site. Finally, MDL8 tests what
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Table 8.2 The trained models for the considered low and high logging receivers and the
Feature set (i.e. input measurements) considered for each model.

Model Inputs to Model (Feature set) Feature set description

MDL1 F1 = {S4,C/N0,AZ,EL}+{SI} All features from a receiver with
low logging rate

MDL2 F2 = {S4,C/N0,AZ,EL} +
{SI,SI,σSI}

All features from a receiver with
high logging rate, I and Q are not
available

MDL3 F3 = {S4,C/N0,AZ,EL} +
{SI,SI,σSI}+{I,Q,cov(I2,Q2)}

All features from a receiver with
high logging rate, I and Q are avail-
able

MDL4 F4 = {Sl,SI,σSI} +
{I,Q,cov(I2,Q2)}

Excluding {S4,C/N0,AZ,EL}
from the feature set of a receiver
with high logging rate

MDL5 F5 = {S4,C/N0}+ {SI,SI,σSI}+
{I,Q,cov(I2,Q2)}

Excluding {AZ,EL} from the fea-
ture set of a receiver with high log-
ging rate

MDL6 F6 = {S4,C/N0}+{SI} Excluding {AZ,EL} from the fea-
ture set of a receiver with low log-
ging rate

MDL7 F7 = {AZ,EL} Feature set to test the power of
{AZ,EL} in training the model

MDL8 F8 = {S4} Feature set to test the power of S4
in training the model

performance a model trained only on S4 can achieve. This model is similar to finding
the optimum S4 threshold.

8.4.3 Performance of the Trained Models

Figure 8.4 reports the performances of the 8 bagged trees models that were trained
using the training set described in section 8.2 . The x–axis indicates the model
number as shown in Table 8.2. The y–axis on the left reports the overall accuracy
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Fig. 8.4 Performances of the models trained based on the feature sets listed in Table 8.2

of the model in percentage, and the right y–axis shows both the miss detection and
false alarm rates in percentage for the scintillation class in particular.

The blue solid line shows the accuracy achieved by the models during the training
phase. It can be seen that all the models reported high accuracy (above 95%) at
this phase except RX8 which achieved 85% only. To verify that the models can
also achieve this high accuracy in other scenarios, the models were tested with an
independent testing set (the testing set described in Section 8.2), from the same
monitoring receiver in Hanoi. From this testing we report:

• The testing accuracy (blue dashed line) which is the ratio of the number of
correctly classified samples to the total number of samples.

• Scintillation miss detection rate (the red solid line) which is the ratio of the
number of scintillation samples wrongly classified to the total number of
scintillation samples.

• False scintillation alarm (red dashed line) which is the ratio of the number
of samples wrongly classified as scintillation to the total number of samples
classified as scintillation.
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8.4.4 Comparison of the Models’ Performances

Below we summarize the results reported in Figure 8.4 for the models listed in Table
8.2:

• The first 3 models have high (above 90%) training and testing accuracy (blue
lines), as well as acceptable (below 10%) miss-detection and false alarm rates
(red lines). The deviation between the accuracy reported by the training phase
and the testing phase are not huge enough (limited to 7% deviation between the
accuracy reported during the model training and the one reported during the
model testing) to suspect over–fitting. This indicates that for each of the three
types of receivers we are investigating, a ML model to distinguish between
scintillation and multipath can be developed using the measurements available
from each receiver in addition to the ones that can be calculated from the
available receiver outputs. Moreover, adding the variance and the average
features to MDL2 outputs enhanced the testing accuracy as well as the miss
detection rate with respect to MDL1. This means that a receiver with high
logging rate has an advantage over the ones that log {SI,S4,C/N0} at low
rates.

• The performance of MDL3 that logs I and Q measurements is not better than
MDL2 that does not include these measurements. In particular, the testing
accuracy, miss detection and false alarm are similar for both models. This
indicates that the availability of I and Q as an input to the ML model might
not be an advantage as long as the receiver is logging SI at a high rate.

• The availability of {S4,C/N0,AZ,El} might not be necessary as indicated
from the performance of MDL4 which takes as input I and Q that were logged
at a high rate but doesn’t consider {S4,C/N0,EL,AZ} as inputs to the ML
model. MDL4 actually has higher testing accuracy than the previous 3 models,
and lower miss detection rate. From this result, we confirm that if a receiver
logs only I and Q at a high rate, this should be sufficient to extract features
that will train a model to distinguish between scintillation and multipath,
without relying on {S4,C/N0,AZ,EL}. However, we still need to investigate
if a receiver that logs only SI at a high rate is sufficient, rather than logging
I and Q. Of course, if the receiver has a low logging rate, excluding all the
4 measurements {S4,C/N0,AZ,EL} from the model training will leave only
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one feature SI which is not enough to perform the classification task. For such
receivers, MDL4 is not feasible.

• To investigate the importance of azimuth and elevation measurements, we
look at MDL5 and MDL6 which exclude {AZ,EL} from the measurements
set provided by receivers that log at high and low rate respectively. For the
former, the performance of the model was not degraded with respect to MDL3.
For the slow logging receiver on the other hand, excluding {AZ,EL} from
the measurements set, left the model inputs to be only {S4,C/N0,SI}, and the
accuracy of the model degraded to 90% while the scintillation miss detection
rate jumped from 9 to 21% with respect to MDL1. This indicates that, while
{AZ,EL} might not be important for receivers with high logging rate, they can
enhance the performance of models developed for receivers with slow logging
rate.

• MDL7 gives a further hint on the effect of the location dependent measure-
ments azimuth and elevation by training a model that takes as inputs only
{AZ,EL}. Here we see that MDL7 is able to achieve a high training accuracy,
100% actually, but fails the testing with accuracy of 55% only (blue dashed
line). This indicates that the model was over-fit to the training data. Also the
miss detection and false alarm rates are high (40% and 60% respectively),
which is closer to a random guess made by the model. This poor performance
is expected because such a model might learn where multipath comes from
most of the time (i.e. fixed obstacles) but it can not differentiate between
scintillation and clean signals based on where the signal comes from in the
sky.

• Finally, MDL8, which utilized S4 only, was able to learn the best threshold on
S4 that will yield the highest accuracy. The training and testing accuracies are
85% and 90% respectively, while the miss detection and false alarm rates are
below 10%. This good performance is expected from the metric adopted by
the literature for scintillation detection, but as seen from the other models, it
can be improved when combined with other measurements, and it can even be
omitted.

In conclusion, for the three types of receivers we are considering, which represent
both commercial and software-defined receivers, ML models can be developed to
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distinguish between scintillation and multipath. However, the receivers that log the
signal intensity with a high rate have better potential than those that log scintillation
measurements at a slow rate. The former can utilize the average SI and the variance
in SI as extra features with respect to the slow logging receivers. Moreover, for fast
logging receivers, {S4,C/N0,AZ,EL} proved to be not crucial for the classification
task. However, it is not clear yet if a receiver that logs I and Q has an advantage.
Therefore, we devote the next section to answering this question. We consider only
receivers that log measurements at 50 Hz and we exclude {S4,C/N0,AZ,EL} from
the features set.

8.5 Training Models for Receivers with High Logging
Rate

In this section we further investigate the ML models for receivers that log measure-
ments at 50 Hz. The objective is to compare models for receivers that log I and Q,
and those that log raw SI instead. We start from MDL4 described in Table 8.2 that
has the best performance despite of excluding the measurements {S4,C/N0,AZ,EL}.
The measurements we consider in this section are {SI,SI,σSI,cov(I2,Q2)}. We
test 4 combinations of these measurements. We also investigate the choice of the
value for the time window (Tw) over which the average, variance and covariance
are calculated. We conclude the section showing results for testing the best of these
models in different scenarios.

8.5.1 Machine Learning Features

The choice of the averaging time window considered for calculating the average,
variance and co-variance features given by (8.1), (8.3) and (8.2) respectively, is
investigated in this section. The considered values of the averaging windows Tw ∈
{1,10,30,60,90,180}s, where 60 s is the typical time window used in literature to
calculate S4, while 180 s is the duration of a scintillation sample used by authors in
similar studies [200]. So, we investigate the averaging windows around those two
values.
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Table 8.3 The trained models for fast logging receivers and the Features (measurements)
considered for each

Model Features
Averaging Window
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Model2 F2 = {SI,SI,σSI}

Model3 F3 = {SI,σSI,cov(I2,Q2)}

Model4 F4 = {SI,σSI}

The feature sets we are investigating in this Section are shown in Table 8.3. The
first column shows the model number. The features for each model are listed in the
second column. Model1 and Model3 are applicable to receivers that log I and Q,
while Model2 and Model4 can be applied if the receiver is logging I and Q or logs
SI directly but in high rate.

We trained 24 bagged tree classifiers, with 30 learners each, using the training
set of ∼ 36,000 samples for each class as follows. First we formed the combination
sets of sub–features shown in Table 8.3. We then prepared the training set 6 times,
each time by calculating the average, variance and co–variance using the averag-
ing windows of Tw ∈ {1,10,30,60,90,180} seconds. Therefore, the training for a
Modelx was carried using feature group Fx where x ∈ {1,2,3,4}. This Modelx had
been investigated for 6 different values of Tw previously introduced.

8.5.2 The Trained Models

In this section we report the results of testing the 24 models with the testing set. For
scintillation detection, we are interested in two metrics: how many clean/multipath
data were wrongly labelled as scintillation (false alarm), and how many scintillation
data were wrongly classified as clean/multipath (miss–detection). We report here the
testing accuracy (to give the big picture about the overall performance of the model)
and the scintillation miss detection rate. We omit reporting the training accuracy and
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the scintillation false alarm rate because they were around 99% and 0% respectively
for all the 24 models.

Figure 8.5 shows the overall testing accuracy (up) and the miss–detection rate
of the scintillation class in particular (bottom) for the 24 models. The different
line colors correspond to the 4 different feature sets listed in Table 8.3. The x–axis
corresponds the 6 values of Tw considered. The results shown in Figure 8.5 can be
summarized as follows:

• All the models, except for Model1 (blue) has similar performance in terms of
accuracy and miss detection rate.

• Models with Tw = 30,60,90s gave comparable good performance, with accu-
racy above 95% and miss detection rate below 2%.

• Model3 (yellow) that is based on receivers that log I and Q has marginally
better accuracy than the other two receivers that do not log I and Q (red and
purple).

• Although Model4 (purple) only uses two measurements to perform the classi-
fication task, it still has almost the same performance of RX4 which gave the
best testing accuracy in the previous section as well as Model3 which has the
best accuracy in this section.

From this we draw the conclusion that if the receiver is logging SI at a high rate,
this measurement is enough to train a ML model to distinguish between scintillation,
multipath and clean GNSS signals using the average SI and the variance in SI over
Tw between 30 and 90 seconds. Also, if I and Q are provided to the end user, this
slightly increases the overall accuracy of the model, but it is not crucial.

In the next section we show further results of testing these models. For this
purpose, we show only the results for Model3, which has the highest overall accuracy,
and we refer to it as the model. We also use the 60 s averaging window variation of
the model, since it is the value in use in literature for calculating S4.

8.5.3 Further Testing of Model3

In this Section we show with more details the results of testing Model3 using the
novel testing set. Then, we demonstrate Model3’s capabilities in distinguishing
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Fig. 8.5 Overall accuracy (up) and scintillation miss–detection (bottom) for the models in
Table 8.3 trained with data with different Tw.

between scintillation and multipath using two scenarios i) detecting scintillation at
low elevations, and ii) detecting multipath at above elevation threshold. These two
scenarios challenge the model, because the first is the scintillation data that usually
get discarded by the elevation angle threshold, while the second is the multipath data
that raise false alarms in scintillation monitoring stations. We conclude the section
by showing statistical results of a further testing of the model that we have done in
operative scenarios.

Confusion Matrix for Model3

Figure 8.6 reports the confusion matrix obtained from testing Model3 using the
testing set. The rows represent the true (manual) label of the samples, while the
columns are the label given by Model3. It can be seen that the model gave no false
alarm for scintillation. The miss-detection rate of scintillation is particularly low,
with only 1.9% of the scintillation data miss-detected. The 0.0% false alarm for the
scintillation class indicates that the model only labels a sample as scintillation if it
is truly scintillation. This could be beneficial for post analysis of scintillation data,
and for data storage systems with low false alarms. However, the model wrongly
classified multipath as clean signals with miss detection rate of 7.4%. Since our
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Fig. 8.6 The confusion Matrix of the testing dataset using Model3.

objective is to detect scintillation, and to distinguish scintillation from multipath in
particular, this mix between the clean and multipath signals was acceptable for this
work, and further investigating it can be the objective of a future work. Overall, the
testing of the model with novel data verifies the trained model, and thus we can rely
on it to distinguish multipath from scintillation in operative scenarios.

Detecting Scintillation at Low Elevation

Figure 8.7 shows an example of detecting scintillation at low elevation for GPS
signal PRN30. This signal was not part of the training or testing sets. Here, the
signal intensity is rapidly fluctuating (2nd plot from top), leading to high S4 (4th

plot from top). However, the elevation of this signal is below 30◦ (bottom plot) and
thus this data will probably be discarded by a scintillation monitoring station that
relies on elevation masks to avoid multipath. The manual label for all this data set
is scintillation, after consulting data from consecutive days. Our model correctly
classifies this data as scintillation as shown in the top plot of Figure 8.7, with a couple
of miss–classified signals as multipath. Using our model, scintillation monitoring
could gain more scintillation data by including low elevation measurements. In
fact, in our testing dataset, by including low elevation data, we gained 17.5% more
scintillation data that would have been discarded by a 30◦ elevation mask.



8.5 Training Models for Receivers with High Logging Rate 153

Fig. 8.7 Detecting Scintillation at Low Elevation.

Detecting Multipath at Above Elevation Threshold

In Figure 8.8 we show an example of a multipath signal. Here, the S4 index is inflated
(second plot from bottom) due to multipath up to an elevation angle of 35◦ (bottom
plot) at 14:33 UTC. In fact, our model suspects all the data up to 14:45 UTC to
be multipath affected (top plot), which means the slight enhancement on S4 at 40◦

elevation is due to multipath. Using the model will thus reduce false scintillation
alarms. This in return will lead to better automation of scintillation monitoring
activities and better management of scintillation data repositories.

Statistical Results of Operative Scenarios.

Now that we have tested the model using labelled data, we want to test how it will
perform in real operative scenarios. In operative scenarios we will provide the whole
log file as it was generated by the receiver to the model. The log files we have
can be up to four hours. One log file is generated per each visible satellite in the
observation window. The satellite signal might suffer multipath as the satellite is
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Fig. 8.8 Detecting Multipath.

rising (or setting), then the signal becomes clean as the satellite rises above the
obstacles. Scintillation might affect the signal at any elevation. The model will
decide the label second by second for the whole file. Forty seven log files were
picked for this operative scenarios testing set, and labelled using the ML model.
The results were then visually inspected to verify the results. Discarding the miss-
classification between multipath affected and clean signals, we found that only two
of the scintillation events were wrongly classified as multipath, while no multipath
events raised false scintillation alarms. This agrees with the model performance
reported above.

In Figure 8.9 we report one of the two miss detected scintillation events which
is PRN06 on March, 14th. This is a strong scintillation event that started when the
satellite was at low elevation, followed by moderate-to-low scintillation. On the top
plot we report the second by second label given by the model. The model was able
to capture the strong scintillation event, but not the moderate scintillation which
was wrongly classified as multipath. However, on the same data set there were
moderate-to-low scintillations and they were all correctly classified as scintillation.
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Fig. 8.9 Example of scintillation miss detection.

8.6 Summary

In this chapter, we showed that ML models can be trained to distinguish between
scintillation, multipath and clean GNSS signals for scintillation monitoring receivers
that log the measurements at low rate as well as for receivers that log at high rate. The
measurements considered are {SI,S4,C/N0,AZ,EL} for the slow logging receiver,
and {SI,S4,C/N0,AZ,EL, I,Q,SI,σSI,cov(I2,Q2)} for the fast logging one. We
showed that in particular for the latter, models that do not rely on {S4,C/N0,AZ,EL}
can achieve the best performance.

Furthermore, we investigated if fast logging receivers that log I and Q have
advantage over the ones that do not log I and Q. We found that if I and Q are
available, the covariance between I2 and Q2 can be an extra feature that will increase
the accuracy of the model. However, this enhancement in the accuracy is not big
enough to give receivers that log I and Q great advantage over receivers that do not
log I and Q. For the latter, the average and variance of the signal intensity are enough
to distinguish between scintillation and multipath. The averaging window was also
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investigated, and found that averaging windows between 30-90 s give comparable
good performance.

The accuracy of our best model, which uses as inputs {SI,σSI,cov(I2,Q2)} calcu-
lated over 60s time window, is 96% with miss–detection rate on the scintillation class
less than 2% and no false alarms when tested with a novel data set. In this dataset,
17.5% scintillation data gain was observed, resulting from including scintillation data
that would have been discarded by a 30◦ elevation mask. Moreover, two examples of
challenging the model at low elevations were shown, one for detecting scintillation
at low elevations, and the other for identifying multipath signals that would have
triggered a false alarm for a 30◦ elevation threshold system. Finally, the model was
tested in operative scenario with data from 5 days in March, April and October. Here
the model labelled the data, second by second, for all the visible satellites. By visual
inspection, we found that the model still achieved 95.7% accuracy for this test,which
further validated the model.
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Chapter 9

Conclusions and Final Remarks

Two state-of-the-art utilizations of GNSS signals for environmental monitoring were
discussed in this thesis. The first is utilizing GNSS–R for floods assessment using
UAV-borne GNSS–R sensors and the second is applying ML techniques for detecting
ionospheric scintillations.

For GNSS–R, data from a custom built GNSS–R sensor were utilized to in-
vestigate the feasibility of using such sensors in flood detection. The findings and
recommendations are summarized as follows:

• The signal processing methodology, which was developed in this work to be
implemented on sensors that will be mounted on–board small platforms, was
detailed. The reflected signal processing was aided with Doppler and delay
measurements from the direct signal processing. The peak of the reflected
signal above the noise floor was roughly estimated. The signal processing
methodology was shown to be adequate for detecting water from such sensors.

• Comparison between water detection identified by the GNSS–R and orthopho-
tomaps was provided as a qualitative investigation of the methods applied. It
was shown that data from GNSS–R sensors have good agreement with maps
and the water edges in particular are well detected by the GNSS–R sensor.

• As a quantitative metric, the accuracy in estimating the water extends from
GNSS–R measurements was analysed and compared to the ground truth data.
It was found that the estimated area is 7.5% less than the ground truth. Such
metric could be improved by optimizing the flight trajectory. Flight trajectory
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optimization is a common practice in UAVs and it was out of the scope of this
work. The estimation can be improved also using multi–GNSS signals.

• The advantages of using multi–GNSS in GNSS–R were investigated by ob-
serving the improvement in water area estimation with the increase in the
number of visible satellites. For this, a simulation that increases the number of
utilized signals, to simulate increasing the utilized GNSS constellations by the
sensor, was performed. It was shown that 98% accuracy in estimating the water
surface area is achievable with multi–GNSS. Here, again the flight trajectory
was not optimized, however such optimization is expected to be beneficial
for future studies for two reasons. The first is that the geometry distribution
of the satellites in the sky might indicate optimized data collection at certain
times. The second is the shape of the water body might require planning the
UAV trajectory in a way that maximized the specular points locations to fall
on certain water bodies (for example rivers).

• The feasibility of estimating the flight height above terrain utilizing the GNSS–
R data was investigated. Such investigation is important for estimating the
change in the water height in floods detection. It was shown that for such
measurement, the height above the reflecting surface, the sensor has to be
calibrated. For the water detection task the calibration was not needed.

• For the height estimation applications, it was also demonstrated that the signal
processing technique needs to fine estimate the delay of the reflected sig-
nal. Such fine estimation was not needed for the water detection task, and a
simplified GNSS–R receiver proved to be adequate for the detection task.

• Finally, for estimating the amount of the reflected power, calibrating the sensor
is essential, as demonstrated in this work, and it was beyond the planned
experiments on this sensor.

For scintillation, data from ionospheric scintillation monitoring receivers were
utilized to train ML models able to detect scintillation with accuracy that exceeds the
traditional metrics performance. Equatorial and polar scintillations were considered
separately. The results and recommendations of this work are summarized as follows:

• A collection of the widely used supervised ML algorithms that has shown
good performance in ML modelling literature were explored. Three algorithms
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(decision trees, SVMs and k-NN) were considered. Ensemble techniques
as well as various models’ hyper–parameters tunings were investigated (in
total, 17 ML models were compared). The comparison was carried out on
polar scintillation data and it was found that the bagged trees give superior
performance among all the models with 95% accuracy, 5% scintillation miss
detection, and 5% scintillation false alarm. From this investigation, the bagged
tree was adopted as the method to train the models for detecting equatorial
scintillation too.

• Various GNSS measurements were investigated as inputs to the ML models.
For the polar scintillations, the data contained in the ionospheric scintillation
monitoring records were investigated. It was found that TEC measurements
are capable of detecting scintillation when the ML is trained on samples of
3–minutes of TEC data. TEC gave better results than the scintillation metrics
themselves. This result invites investigating TEC measurements from non-ISM
receivers for detecting scintillations. Such receivers will open the door for
exploring data from GNSS networks wider than the ISM receivers networks.

• For equatorial scintillation, data contained in the ISM records as well as
post-correlation measurements available at high rate from commercial ISM
receivers and from SDR receivers were investigated. Cases where multipath
is known to affect the scintillation data were considered. It was found that
for such scenarios, the high rate post-correlation data are better than the
scintillation metrics in detecting scintillation. In particular, the bagged tree
model trained for these data is able to detect scintillation with 96% accuracy,
2% scintillation miss detection and 2% scintillation false alarm.

• Finally, It was demonstrated that such models trained to detect scintillation
even in presence of interference from the environment, multipath in this
case, are able to increase the amount of useful scintillation data by detecting
scintillations that are usually discarded by the conservative elevation masks. A
total of 17% scintillation data gain in the data set was achieved.
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Appendix A

Septentrio PolaRx5S ISM record

Table A.1 Septentrio PolaRx5S ISM record

x2ndlocktime Sig2 Lock time used for the TEC computation (seconds)
averagel1 Sig1 Average C/N0 over the last minute (dB-Hz)

avg_c_n0_l2c Sig2 Average C/N0 over the last minute (dB-Hz)
avg_c_n0_l5 Sig3 Average C/N0 over the last minute (dB-Hz)

avgccd_l2c Sig2 AvgCCD (meters)
avgccd_l5 Sig3 AvgCCD (meters)
avgccdl1 Sig1 AvgCCD (meters)

avgcn2freqtec Sig2 Averaged C/N0 used for the TEC computation (dB-Hz)
azimuth Azimuth

correctionS4_L2C Sig2 S4 thermal noise Correction
corrections4_l5 Sig3 S4 thermal noise Correction
corrections4l1 Sig1 S4 thermal noise Correction

dtec0 dTEC from TOW-15s to TOW (TECU)
dtec30_15 dTEC from TOW-30s to TOW-15s (TECU)
dtec45_30 dTEC from TOW-45s to TOW-30s (TECU)
dtec60_45 dTEC from TOW-60s to TOW-45s (TECU)

elevation Elevation
locktime_l2c Sig2 lock time (seconds)
locktime_l5 Sig3 lock time (seconds)
locktimel1 Sig1 lock time (seconds)

p_l2c Sig2 p phase spectral slope
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p_l5 Sig3 p phase spectral slope
phi01_l2c Sig2 Phi01 (radians)
phi01_l5 Sig3 Phi01 (radians)

phi01l1 Sig1 Phi01
phi03_l2c Sig2 Phi03 (radians)
phi03_l5 Sig3 Phi03 (radians)

phi03l1 Sig1 Phi03
phi10_l2c Sig2 Phi10 (radians)
phi10_l5 Sig3 Phi10 (radians)

phi10l1 Sig1 Phi10
phi30_l2c Sig2 Phi30 (radians)
phi30_l5 Sig3 Phi30 (radians)

phi30l1 Sig1 Phi30
phi60_l2c Sig2 Phi60 (radians)
phi60_l5 Sig3 Phi60 (radians)

phi60l1slant Sig1 Phi60
pl1 Sig1 p (spectral slope of detrended phase)

rxstate RxState
s4_l2_slant Sig2 S4
s4_l5_slant Sig3 Total S4

si_l1_29 Sig1 SI Index
si_l1_30 Sig1 SI Index (dB)

si_l2c_43 Sig2 SI Index
si_l2c_44 Sig2 SI Index (dB)
si_l5_57 Sig3 SI Index
si_l5_58 Sig3 SI Index (dB)

sigmaccd_l2c Sig2 SigmaCCD (meters)
sigmaccd_l5 Sig3 SigmaCCD (meters)
sigmaccdl1 Sig1 SigmaCCD (meters)

svid SVID
t_l1 T on Sig1 (rad^2/Hz)

t_l2c T on Sig2 (rad^2/Hz)
t_l5 T on Sig3 (rad^2/Hz)
tec0 TEC at TOW (TECU)

tec15 TEC at TOW-15s (TECU)
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tec30 TEC at TOW-30s (TECU)
tec45 TEC at TOW-45s (TECU)

totals4l1 Sig1 Total S4
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