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Abstract

We present a spatial hybrid discrete-continuum modelling framework for the interac-
tion dynamics between tumour cells and cytotoxic T cells, which play a pivotal role in the
immune response against tumours. In this framework, tumour cells and T cells are mod-
elled as individual agents while chemokines that drive the chemotactic movement of T
cells towards the tumour are modelled as a continuum. We formally derive the continuum
counterpart of this model, which is given by a coupled system that comprises an integro-
differential equation for the density of tumour cells, a partial differential equation for the
density of T cells, and a partial differential equation for the concentration of chemokines.
We report on computational results of the hybrid model and show that there is an excellent
quantitative agreement between them and numerical solutions of the corresponding con-
tinuum model. These results shed light on the mechanisms that underlie the emergence of
different levels of infiltration of T cells into the tumour and elucidate how T-cell infiltration
shapes anti-tumour immune response. Moreover, to present a proof of concept for the idea
that, exploiting the computational efficiency of the continuum model, extensive numeri-
cal simulations could be carried out, we investigate the impact of T-cell infiltration on the
response of tumour cells to different types of anti-cancer immunotherapy.
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1 Introduction

1.1 Biological background

Understanding the cellular processes that underlie the early stages of tumour development
and tumour-immune interaction is important to guide the design of effective treatments, es-
pecially immunotherapy [7, 8, 26, 60]. Experimental and clinical evidence indicates that the
immune system plays a critical role in the prevention and eradication of tumours, by detecting
immunogenic tumour cells through mutational or abnormally expressed genes and mounting
an adaptive immune response [16]. In particular, specific immune cells, such as cytotoxic T
cells, are activated in secondary lymphoid organs draining the tumour site. Then, these T cells
migrate to the tumour micro-environment (TME) in an attempt to eliminate the tumour [8, 56].

However, a myriad of immunosuppressive strategies, the so-called immune checkpoints,
help tumour cells acquiring features that allow them to evade immune detection, which may
ultimately result in tumour escape. One important route towards this escape is created as tu-
mour cells highjack the regulatory pathways of the immune system to suppress its functional-
ity [61]. The programmed cell death protein-1 (PD1) and its ligand PD-L1 are amongst these in-
hibitory pathways [28, 32]. Under protracted immune stress, PD-L1 expression can be induced
on tumour cells, leading to T cell exhaustion and resistance to anti-tumour immune action in
many cancers, such as melanoma [64, 72] and non-small cell lung cancer (NSCLC) [55]. More-
over, the engagement of various oncogenic pathways results in the expression of cytokines and
chemokines that mediate the exclusion of T cells from the TME [36] or, alternatively, the re-
pression of factors that facilitate T cell trafficking and infiltration into the tumour [64]. In this
context, the design of immune checkpoint therapies which target regulatory pathways in T
cells to enhance anti-tumour immune responses may be beneficial to the treatment of multiple
types of cancer [28, 36, 62].

The observation that type, density and location of immune cells within the tumour may
be associated with prognosis in different types of cancer led to the development of the ‘im-
munoscore’ as a prognostic marker in cancer patients [5, 19, 20, 21]. The immunoscore pro-
vides a score that increases with the density of CD8+ and CD3+ T cells both in the centre and
at the margin of the tumour. CD3 is a protein complex and T cell co-receptor that is involved
in activating both cytotoxic T cells (CD8+ naive T cells) and T helper cells (CD4+ naive T cells),
and it is therefore the common antigen used to identify both CD4+ and CD8+ T cells. In this
vein, a new immune-based, rather than a cancer-based, classification of tumours that relies
on the immunoscore has been proposed in [20], where the authors have classified tumours in
four categories. The “hot" category comprises tumours which are highly infiltrated by T cells
and thus have a high immunoscore. The category “altered-immunosuppressed" is for tumours
with a small amount of infiltrated T cells. Tumours in the “altered-excluded" category are
characterised by two different regions: their margin is T cell-infiltrated while the centre is not.
Tumours in these two categories have an intermediate immunoscore. Finally, “cold" tumours
have a low immunoscore and are often associated with a poor response to immunotherapies,
since T cells are absent both in the centre of the tumour and at its margin.

1.2 Mathematical modelling background

Mathematical models can support a better understanding of the interaction dynamics between
tumour cells and immune cells [18, 27, 51, 73]. Incorporating in these models the effects of
therapeutic strategies that boost anti-tumour immune response can help predicting the success
of cancer treatment protocols, including immunotherapy protocols.

Mechanistic dynamical-system models formulated as ordinary differential equations (ODEs)
[1, 4, 11, 25, 39, 41, 40, 43, 46, 65, 73] or integro-differential equations (IDEs) [3, 17, 38, 45] have
been developed to investigate the interaction dynamics between tumour and immune cells
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in various scenarios, including immunotherapy. However, these models often rely on the as-
sumption that cells are well-mixed and, therefore, do not take into account spatial dynamics of
tumour and immune cells. As a result, partial differential equation (PDE) models to study the
spatio-temporal dynamics of tumour-immune interactions have also been developed – see for
example [2, 6].

Deterministic continuum models are amenable to both analytical and numerical approaches,
which allow for a more in-depth theoretical understanding of the underlying cellular dynam-
ics. However, they make it more difficult to incorporate the finer details of dynamical interac-
tions between tumour cells and T cells. Moreover, they cannot easily capture the emergence of
population-level phenomena that are driven by stochastic fluctuations in single-cell biophysical
properties, which are relevant in the regime of low cellular densities [44]. Hence, one ideally
wants to derive these models as the appropriate limit of stochastic discrete (i.e. individual-
based) models of the interaction dynamics between tumour cells and T cells. A number of
stochastic discrete models [14, 47, 48] and hybrid discrete-continuum models [37, 52, 42] have
also been used to study the interaction dynamics between tumour and immune cells. In con-
trast to continuum models, these discrete models track the dynamics of single cells, thus per-
mitting the representation of single cell-scale mechanisms, and account for possible stochastic
fluctuations in single-cell biophysical properties. Integrating the results of computational sim-
ulations of stochastic discrete models with the results of analysis and numerical simulation of
their deterministic continuum counterparts makes it possible to identify more clearly the va-
lidity domain of the results obtained, thus leading to more robust biological insights. As a con-
sequence, the derivation of continuum models for the dynamics of cell populations from un-
derlying hybrid models has become an active research field – see, for instance, [10, 12, 13, 34].

1.3 Contents of the article

In this article, we develop a spatial hybrid discrete-continuum model for the interaction dy-
namics between tumour cells and immune cells. In this framework, a stochastic individual-
based model tracking the dynamics of single tumour cells and immune cells is coupled with a
balance equation for the concentration of chemokines (e.g. CXCL9/10) which are secreted by
tumour cells and drive the chemotactic movement of immune cells towards the tumour [19, 24].
While being aware of the fact that a variety of different types of cells and molecules take part
in the immune response against tumours, here we focus on cytotoxic T cells only, since they are
the immune agents that are most commonly stimulated by immunotherapies [30, 68].

In this model, cell dynamics are governed by a set of rules that result in a discrete-time
branching random walk on a regular lattice [31]. Using methods similar to those we have
previously employed in [3, 9, 49], we formally derive the deterministic continuum counter-
part of the hybrid model, which is given by a coupled system that comprises an IDE for the
density of tumour cells, a PDE for the density of T cells, and a PDE for the concentration of
chemokines. We report on computational results of the hybrid model and show that there is an
excellent quantitative agreement between them and numerical solutions of the corresponding
continuum model. These results shed light on the mechanisms that underlie the emergence
of different levels of infiltration of T cells into the tumour and elucidate how T-cell infiltration
shapes anti-tumour immune response. Moreover, to present a proof of concept for the idea that,
exploiting the computational efficiency of the continuum model, extensive numerical simula-
tions could be carried out to identify possible targets to improve the efficacy of anti-cancer
therapy, we investigate the impact of T-cell infiltration on the dynamics of tumour cells under
parameter settings which provide a simplified representation of the action of different types of
immunotherapy.

The article is organised as follows. In Section 2, the hybrid discrete-continuum model is
introduced. In Section 3, the deterministic continuum counterpart of this model is presented
(a formal derivation is provided in Appendix A). In Section 4, computational results of the
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hybrid model are discussed and integrated with numerical solutions of the continuum model.
In Section 5, biological implications of the main findings of this study are summarised and
directions for future research are outlined.

2 Hybrid discrete-continuum model

In our model, each cell is seen as an agent that occupies a position on a lattice, while the con-
centration of chemokines, to which we will refer as “chemoattractant” in the remainder of the
article, is described by a discrete, non-negative function. Each tumour cell can proliferate or
die at certain rates. In the vein of [6, 42, 48], here we focus on tumours in the early stages of
development (i.e. small pre-angiogenic tumours) and, therefore, we neglect the effects of the
movement of tumour cells. As similarly done in [6], we let the chemoattractant be secreted
by tumour cells and undergo both natural decay and linear diffusion. T cells enter the spa-
tial domain where the tumour is located through blood vessels at a rate that is proportional to
the total amount of chemoattractant. Upon entering the domain, T cells undergo undirected,
random movement and chemotactic movement towards regions of higher concentration of the
chemoattractant (i.e. cells migrate towards the tumour), and exert a cytotoxic action against
tumour cells.

For ease of presentation, we let the cells and the chemoattractant be distributed across a
d-dimensional domain Ω, with d = 1 or d = 2. In particular, we consider the case where the
spatial domain is represented by the set Ω := [0, `]d, with ` ∈ R∗+, where R∗+ is the set of positive
real numbers not including zero. The position of the cells and the molecules of chemoattractant
at time t ∈ [0, tf ] ⊂ R+ is modelled by the variable x ∈ [0, `] when d = 1 and by the vector
x = (x, y) ∈ [0, `]2 when d = 2.

We discretise the time variable t and the space variables x and y, respectively, as tk = kτ ,
xi = iχ and yj = jχ, with k ∈ N0 and (i, j) ∈ [0,N ]2 ⊂ N2

0, where N0 is the set of natural
numbers including zero. Here, τ ∈ R∗+ and χ ∈ R∗+ are the time- and space-step, respectively,
and N := 1 + d `χe, where d·e denotes the ceiling function. We will use the notation i ≡ i and
xi ≡ xi when d = 1, and i ≡ (i, j) and xi ≡ (xi, yj) when d = 2.

We denote by nki the density of tumour cells, which is defined as the number of tumour
cells at position xi and at time tk, Nk

i ∈ N0, divided by the size of a lattice site, that is

nki ≡ n(xi, tk) :=
Nk

i

χd
. (2.1)

Furthermore, we denote by cki the density of T cells, which is defined as the number of T
cells at position xi and at time tk, Cki ∈ N0, divided by the size of a lattice site, that is

cki ≡ c(xi, tk) :=
Cki
χd
. (2.2)

Finally, the concentration of chemoattractant on the lattice site i and at time-step k is mod-
elled by the discrete, non-negative function φki ≡ φ(xi, tk).

In the mathematical framework of our model, the quantity

Ik ≡ I(tk) :=
|Ωc|
|Ωtum|

IΩc(tk) +
|Ωm|
|Ωtum|

IΩm(tk) (2.3)

provides a possible simplified measure of the immunoscore I at time tk. In (2.3), IΩc ∈ N0 is
the number of T cells within the set Ωc ⊂ Ω defined as the ‘centre of the tumour’, IΩm ∈ N0

is the number of T cells within the set Ωm ⊂ Ω defined as the ‘margin of the tumour’, and
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Ωtum := Ωc ∪ Ωm is the whole region occupied by the tumour. Here, |(·)| is the measure of the
set (·). Given the initial distribution of tumour cells, we define (cf. Fig. 1)

Ωc := {xi ∈ Ω : ‖xi − xcm‖d < R} and IΩc(tk) :=
∑
i

cki χ
d 1Ωc(xi) (2.4)

while
Ωm := Ωtum \ Ωc and IΩm(tk) :=

∑
i

cki χ
d 1Ωm(xi). (2.5)

Here, xcm ∈ Ω is the initial centre of mass of the tumour, which is computed as

xcm =
1

ρ0
n

∑
i

n0
iχ

dxi, (2.6)

where ρ0
n is the initial number of tumour cells. Moreover, 1Ωm and 1Ωc are the indicator func-

tions of the sets Ωm and Ωc, respectively. Note that, in the definition of sets Ωc and Ωm, we are
supposing that the radius R is fixed and, therefore, the two sets do not change over time. This
is coherent with the fact that, as mentioned earlier, tumour-cell movement is neglected.
Abstracting from the ‘immunoscore’-based classification of tumours recalled in Section 1, through-
out the article we will classify different tumour scenarios depending on the value of I at the
end of numerical simulations, i.e. the quantity

If ≡ I(tf ) =
|Ωc|
|Ωtum|

IΩc(tf ) +
|Ωm|
|Ωtum|

IΩm(tf ). (2.7)

In particular, along the lines of [19], scenarios for which the value of If is low will be classified
as ‘cold tumour scenarios’; scenarios with an intermediate value of If will be classified as
‘altered tumour scenarios’, which will then be further classified as ‘altered-immunosuppressed
tumour scenarios’ or ‘altered-excluded tumour scenarios’ based on the distribution of T cells
at the centre and margin of the tumour; finally, scenarios characterised by a high value of If

will be classified as ‘hot tumour scenarios’. This tumour classification is illustrated by the
schematics presented in Fig. 1.

The strategies used to model the dynamics of the cells and the chemoattractant when d = 1
are described in detail in the following subsections, and are also schematically illustrated in
Fig. 2. Analogous strategies are used in the case where d = 2.

In the remainder of the article, when necessary, the subscripts n, c and φ will be used to
identify the parameters and functions related to the dynamics of tumour cells, T cells and
chemoattractant, respectively.

2.1 Dynamics of tumour cells

We consider a scenario where tumour cells proliferate (i.e. undergo cell division) and die due
to intra-tumour competition as well as to the cytotoxic action of T cells. We assume that a di-
viding tumour cell is replaced by two identical cells that are placed on the same lattice site as
their parent, while a dying cell is removed from the system.

2.1.1 Tumour cell proliferation and death induced by intra-tumour competition

At every time-step k, we allow tumour cells to undergo cell division with probability

ταn > 0, (2.8)

where αn ∈ R∗+ represents the rate of tumour cell proliferation.
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Cold tumour scenario

Altered-immunosuppressed
tumour scenario

Altered-excluded tumour 
scenario

Hot tumour scenario

Ω": margin of the tumour

Ω#: centre of the tumour

immunoscore

Low High

Tumour cell

T cell

Figure 1: Schematics describing the classification of cold, altered-excluded, altered-
immunosuppressed and hot tumour scenarios based on the immunoscore. In the mathemat-
ical framework of our model we classify different tumour scenarios depending on the value of
the immunoscore at the end of numerical simulations, i.e. the quantity defined via (2.7). The
immunoscore is here defined as a weighted sum of the number of T cells in the centre of the
tumour and the number of T cells at the margin of the tumour. In more detail, along the lines
of [19], scenarios for which the value of the immunoscore is low will be classified as ‘cold tu-
mour scenarios’; scenarios with an intermediate value of the immunoscore will be classified as
‘altered tumour scenarios’, which will then be further classified as ‘altered-immunosuppressed
tumour scenarios’ or ‘altered-excluded tumour scenarios’ based on the distribution of T cells
in the centre and at the margin of the tumour; finally, scenarios characterised by a high value
of the immunoscore will be classified as ‘hot tumour scenarios’.
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n

Rules

𝜙

𝜙
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Key

Inflow

Secre
tio

n

Figure 2: Schematics summarising the mechanisms and processes included in the hybrid
discrete-continuum model. The governing rules for the dynamics of tumour cells are here
represented by green solid arrows, the rules for the dynamics of T cells are represented by
blue solid arrows, and the processes underlying the dynamics of the chemoattractant are rep-
resented by grey solid arrows. At each time-step tk, tumour cells divide at rate αn, die due to
intra-tumour competition at rate µnρkn or die due to the cytotoxic action of T cells at rate ζnKk

i .
The quantities ρkn and Kk

i are, respectively, defined via (2.9) and (2.11). Tumour cells also se-
crete the chemoattractant at rate αφ. The chemoattractant diffuses through the domain at rate
βφ and decays at rate κφ. The influx rate of T cells from blood vessels at position xi is mod-
elled by αcrki , with rki defined via (2.17). T cells change their position through a combination of
undirected, random movement and chemotactic movement in response to the chemoattractant
secreted by tumour cells, while tumour cell movement is neglected. Finally, T cells die due to
homeostatic regulation mechanisms at rate µcρkc , with ρkc defined via (2.20).
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In order to capture the effect of cell death induced by intra-tumour competition, we let
tumour cells die at a rate proportional to their number, which is denoted by

ρkn ≡ ρn(tk) :=
∑
i

nki χ, (2.9)

with constant of proportionality µn ∈ R∗+. Hence, between the time-step k and the time-step
k + 1, we let a tumour cell die due to intra-tumour competition with probability

τ µnρ
k
n ≥ 0. (2.10)

2.1.2 Cytotoxic action of T cells against tumour cells

When T cells are sufficiently close to a tumour cell, they release cytotoxic substances which
may lead to the death of the tumour cell [8]. Therefore, building on the modelling strategies
proposed in [6], we let a tumour cell die due to the cytotoxic action of T cells at a rate propor-
tional to the number of T cells in a sufficiently close neighbourhood of the tumour cell. This
models the fact that T cells can interact with a tumour cell up to a certain distance, and that be-
yond such a distance the tumour cell can no longer be induced to death. Hence, we introduce
Kk
i ∈ N0 which represents, at each time-step tk, the number of T cells that can exert a cytotoxic

action against a tumour cell at position xi. In particular, we define Kk
i as

Kk
i ≡ K(xi, tk) :=

∑
p

η(xi, xp; θ)c
k
p χ. (2.11)

The function η is defined as follow

η(x, z; θ) :=

{
1 if |x− z| ≤ θ
0 if |x− z| > θ

for (x, z; θ) ∈ Ω× Ω× (0, |Ω|], (2.12)

where |Ω| denotes the size of the set Ω (i.e. |Ω|= ` if Ω := [0, `]). The quantity Kk
i defined

via (2.11) and (2.12) represents the number of T cells within a distance θ of xi. The parameter
0 < θ ≤ |Ω| regulates the maximum radius of interaction between a tumour cell at position xi
and the T cells in its neighbourhood. Therefore, we define the probability of death of tumour
cells at position xi and time tk due to the cytotoxic action of T cells as

τζnK
k
i ≥ 0. (2.13)

The parameter ζn ∈ R∗+ is linked to the level of efficiency of T cells at eliminating tumour cells.
In particular, lower values of ζn correspond to scenarios in which this cytotoxic action of T cells
is less effective, due for example to a higher expression of PD1 inhibitory receptors and PD-L1
ligands on the surface of T cells and tumour cells [28, 32].

Remark 1. Note that (2.8), (2.10) and (2.13) implicitly require the time-step τ to be sufficiently
small that ταn + τ

(
µnρ

k
n + ζnK

k
i

)
is less than or equal to 1.

2.2 Dynamics of the chemoattractant

We denote by φki the concentration of chemoattractant at position xi and at time tk. The dy-
namic of φki is governed by the following discrete balance equation

φk+1
i = φki + τβφ(Lφk)i + ταφn

k
i − τκφφki , i ∈ [1,N − 1], (2.14)

subject to a suitable initial condition and discrete zero-flux boundary conditions, i.e.

φk0 = φk1 and φkN = φkN−1. (2.15)
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In the balance equation (2.14), L is the second-order central difference operator on the lattice
{xi}i, i.e.

(Lφk)i =
1

χ2

(
φki+1 + φki−1 − 2φki

)
(2.16)

Moreover, the parameter βφ ∈ R∗+ is the diffusion coefficient of the chemoattractant and κφ ∈
R∗+ is the rate at which the chemoattractant undergoes natural decay. Finally, the parameter
αφ ∈ R∗+ represents the per capita production rate of the chemoattractant by tumour cells. The
balance equation (2.14) is simply a standard discretisation of a reaction-diffusion equation of
the type that is commonly used to describe the dynamics of molecular species, see for exam-
ple [50].

2.3 Dynamics of T cells

Following [23], we consider a scenario where T cells are recruited from different sources cor-
responding to blood vessels that are located in the tissue surrounding the tumour. T cells
can change their position according to a combination of undirected, random movement and
chemotactic movement, which are regarded as independent processes. Finally, T cells can die
at a certain rate due to homeostatic regulation mechanisms, and dying cells are removed from
the system. This results in the following rules for the dynamics of T cells.

2.3.1 Inflow and death of T cells

We let ω ⊂ Ω be the set of points in the tissue surrounding the tumour that are occupied by
blood vessels, through which new T cells can enter the domain. Since we do not consider the
formation of new blood vessels, we assume that ω is given and does not change in time. We
denote by rki the term controlling the inflow of T cells from blood vessels, which is defined as

rki ≡ r(xi, tk) := φktot1ω(xi), (2.17)

where 1ω is the indicator function of the set ω and φktot is the total amount of chemoattractant
at time tk, that is,

φktot ≡ φtot(tk) :=
∑
i

φki χ. (2.18)

We then let the influx rate of T cells from blood vessels at position xi and time tk be proportional
to rki with constant of proportionality αc ∈ R∗+. Hence, between the time-step k and the time-
step k + 1, we let a density of T cells equal to

ταcr
k
i ≥ 0 (2.19)

enter a blood vessel at position xi.
Finally, we let T cells die due to homeostatic regulation mechanisms. In analogy with the

case of tumour cells, we suppose the rate of death of T cells to be proportional to the number
of T cells

ρkc ≡ ρc(tk) :=
∑
i

cki χ, (2.20)

with constant of proportionality µc ∈ R∗+. Therefore, between the time-step k and the time-step
k + 1, we let a T cell die with probability

τµcρ
k
c ≥ 0. (2.21)

Remark 2. Note that (2.21) implicitly requires the time-step τ to be sufficiently small that the
corresponding quantity is less than or equal to 1.
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2.3.2 Chemotactic movement of T cells

We now turn to modelling the chemotactic movement of T cells (i.e. the movement of T cells up
the gradient of the chemoattractant φki ). Building on [9], chemotactic movement is here mod-
elled as a biased random walk whereby the movement probabilities depend on the difference
between the concentration of chemoattractant at the site occupied by a T cell and the concen-
tration of chemoattractant at the neighbouring sites. To take into account possible reduction
in cell motility at high cell densities [58, 63, 70], we incorporate into the model volume-filling
effects [59], whereby T cell movement is allowed only to site locations xi where the total cell
density wki := nki + cki is smaller than a threshold value wmax ∈ R∗+, which corresponds to a cell
tight-packing state. Therefore, we modulate the movement probabilities of T cells by a mono-
tonically decreasing function of the total cell density at the neighbouring sites. Specifically, as
similarly done in [71], we define this function as

ψ(wki ) :=

1− wki
wmax

, 0 ≤ wki ≤ wmax,

0, otherwise.
(2.22)

Hence, for a T cell on the lattice site xi and at time step tk, we define:

1. the probability of moving to the lattice site xi−1 (i.e. the probability of moving left) via
chemotaxis as

qkLi := ν ψ(wki−1)
(φki−1 − φki

2φmax

)
+

for i ∈ [1,N ] and qkL0 = 0 (2.23)

where (·)+ denotes the positive part of (·) and φmax ∈ R∗+ is the maximum value which
can be attained by the concentration of the chemoattractant – see comments below defi-
nition (2.25);

2. the probability of moving to the lattice site xi+1 (i.e. the probability of moving right) via
chemotaxis as

qkRi := ν ψ(wki+1)
(φki+1 − φki

2φmax

)
+

for i ∈ [0,N − 1] and qkRN = 0; (2.24)

3. and the probability of not undergoing chemotactic movement as

1− qkLi − qkRi for i ∈ [0,N ]. (2.25)

Here, the parameter ν ∈ R+, with 0 ≤ ν ≤ 1, is directly proportional to the chemotactic
sensitivity of T cells. Dividing by φmax ensures that the values of the quotients in (2.23) and
(2.24) are less than or equal to 1.

2.3.3 Undirected, random movement of T cells

To model the effect of undirected, random movement, we allow T cells to update their position
according to a random walk with movement probability λ ∈ R∗+, where 0 < λ ≤ 1. In particular,
we assume that a T cell on the lattice site xi can move via undirected, random movement into

either the lattice site xi−1 or the lattice site xi+1 with probability
λ

2
. As similarly done in the case

of chemotactic movement, in order to capture a possible reduction in T cell motility at higher
cell densities [58, 63, 70], we modulate the movement probability by a decreasing function of
the density of tumour cells and T cells at the neighbouring sites. In particular, for a T cell on
the lattice site i and at the time-step k, we define:

10



1. the probability of moving to the lattice site i− 1 via undirected, random movement as

T kLi :=
λ

2
ψ(wki−1) for i ∈ [1,N ] and T kL0 = 0; (2.26)

2. the probability of moving to the lattice site i+ 1 via undirected, random movement as

T kRi :=
λ

2
ψ(wki+1) for i ∈ [0,N − 1] and T kRN = 0; (2.27)

3. and the probability of not undergoing undirected, random movement as

1− T kLi − T kRi for i ∈ [0,N ]. (2.28)

In (2.26) and (2.27), the modulating function ψ is defined via (2.22).

3 Corresponding continuum model

Letting the time-step τ → 0 and the space-step χ→ 0 in such a way that

λχ2

2d τ
→ βc ∈ R∗+ and

νχ2

2dφmax τ
→ γc ∈ R∗+ as τ → 0, χ→ 0, (3.1)

using the method employed in [3, 9, 49], it is possible to formally show (see Appendix A) that
the deterministic continuum counterpart of the hybrid model described in Section 2 comprises
the following coupled IDE-PDE-PDE system for the density of tumour cells, n(x, t), the density
of T cells, c(x, t) and the chemoattractant concentration, φ(x, t)

∂tn = αnn− µnρn(t)n− ζnK(x, t)n

∂tc−∇ ·
[
βc ψ(w)∇c− γc ψ(w) c∇φ− βc c ψ′(w)∇w

]
= −µcρc(t)c+ αcr(x, t)

∂tφ− βφ∆φ = αφn− κφφ

w(x, t) := n(x, t) + c(x, t),

(3.2)

where the IDE (3.2)1 is posed on Ω × (0, tf ], while the PDEs (3.2)2 and (3.2)3 are posed on
Ω \ ∂Ω × (0, tf ] and are subject to zero-flux boundary conditions on ∂Ω. The IDE-PDE-PDE
system (3.2) is complemented with the following definitions

K(x, t) :=

∫
Ω
η(x,x′; θ)c(x′, t) dx′, r(x, t) := φtot(t)1ω(x)

ρn(t) :=

∫
Ω
n(x, t) dx, ρc(t) :=

∫
Ω
c(x, t) dx, φtot(t) :=

∫
Ω
φ(x, t) dx.

In system (3.2), βc ∈ R∗+ defined via (3.1) is the diffusion coefficient (i.e. the motility) of T cells,
while γc ∈ R∗+ defined via (3.1) is the chemotactic sensitivity of T cells to the chemoattractant.

11



Figure 3: Initial conditions. Plots of the density of tumour cells n(x, y, t) (panel (a)), the density
of T cells c(x, y, t) (panel (b)), and the chemoattractant concentration φ(x, y, t) (panel (c)) at
the initial time of the simulations (i.e. at t = 0) for the continuum model. Analogous initial
conditions are used for the hybrid model.

4 Numerical simulations

In this section, we report on computational results of the hybrid discrete-continuum model
along with numerical solutions of the corresponding continuum model given by the IDE-PDE-
PDE system (3.2). First, we establish a baseline scenario in which the level of efficiency of
T cells at eliminating tumour cells (i.e. the parameter ζn) is sufficiently high so as to lead to
tumour eradication. Then, we reduce the level of T cell efficiency in order to avoid tumour
eradication, and we explore the mechanisms that underlie the emergence of different levels of
infiltration of T cells into the tumour, which correspond to cold, altered-immunosuppressed,
altered-excluded and hot tumour scenarios. In particular, we carry out sensitivity analysis to
two parameters that we expect to play a key role in determining the spatial distribution of
T cells: the secretion rate of chemoattractant by tumour cells (i.e. the parameter αφ) and the
threshold value of the total cell density above which T cell movement is impaired (i.e. the
parameter wmax in definition (2.22)). Finally, exploiting the computational efficiency of the con-
tinuum model, we investigate the impact of T-cell infiltration on the dynamics of tumour cells
under parameter settings which provide a simplified representation of the action of different
types of immunotherapy.

4.1 Set-up of numerical simulations

The hybrid and continuum models are parameterised using parameter values retrieved from
the literature, wherever possible. The full list of parameter values and related references are
provided in Table 1. For the numerical simulations we report on, we use the 2D spatial domain
Ω := [0, 1]2. Under the parameter choice of Table 1, this is equivalent to considering a square
region of a 2D cross-section of a tumour tissue of area 1 cm2. Furthermore, to carry out numer-
ical simulations of the hybrid model, we use the space-step χ = 0.016 cm and the time-step
τ = 1×10−4 days. Finally, unless otherwise specified, we choose the final time tf = 15 days. All
simulations are performed in MATLAB [53].

Initial conditions and blood vessel distribution Fig. 3 displays the initial conditions chosen
to carry out numerical simulations. In particular, for the hybrid model we have

n0
ij = 800 exp[−200(iχ− x∗11)2 − 200(jχ− y∗11)2], (4.1)

c0
ij = 60

4∑
p=1

exp[−300(iχ− x∗2p)2 − 300(jχ− y∗2p)2], (4.2)
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and
φ0
ij = 90 exp[−200(iχ− x∗11)2 − 200(jχ− y∗11)2], (4.3)

with (x∗11, y
∗
11) = (0.5, 0.5), (x∗21, y

∗
21) = (0.26, 0.74), (x∗22, y

∗
22) = (0.26, 0.26), (x∗23, y

∗
23) = (0.74, 0.74)

and (x∗24, y
∗
24) = (0.74, 0.26). The points where T cells are initially concentrated are the centres

of the regions where blood vessels are assumed to be located, that is, the set ω in (2.17) is de-
fined as the union of four balls of small radius and centres (x∗21, y

∗
21), (x∗22, y

∗
22), (x∗23, y

∗
23) and

(x∗24, y
∗
24).

Similarly, for the continuum model we have

n(x, y, 0) = 800 exp[−200(x− x∗11)2 − 200(y − y∗11)2], (4.4)

c(x, y, 0) = 60
4∑
p=1

exp[−300(x− x∗2p)2 − 300(y − y∗2p)2], (4.5)

and
φ(x, y, 0) = 90 exp[−200(x− x∗11)2 − 200(y − y∗11)2]. (4.6)

A description of the algorithmic rules that underlie computational simulations of the hybrid
model is provided in Appendix B.1, while the methods employed to numerically solve the
IDE-PDE-PDE system (3.2), subject to suitable initial conditions and no-flux boundary condi-
tions, are detailed in Appendix B.2.

Given the initial conditions of the two models, we compute the coordinates of the centre
of mass of the tumour (xcm, ycm) = (0.5, 0.5), and we define the set Ωc (i.e. the ‘centre of the
tumour’) via definition (2.4) as

Ωc :=

{
xi ≡ (xi, yj) ∈ [0, 1]2 :

√
(xi − xcm)2 + (yj − ycm)2 < 0.144

}
.

The set Ωc corresponds to approximately 65% of the region initially occupied by the tumour
and, therefore, the set Ωm = Ω \ Ωc (i.e. the ‘margin of the tumour’) comprises the remaining
35% of the tumour region.

Parameter values Unless otherwise specified, we use the parameter values listed in Table 1.
Here, the value of the parameter αn is consistent with previous measurement and estimation
studies on the dynamics of tumour cells by [14], who calculated the estimated proliferation
rate of a tumour cell by using the average duplication time of melanoma cells. The values of
the diffusion coefficient βφ and decay rate κφ of the chemoattractant correspond to those used
in [15, 54]. Moreover, the range of values of the secretion rate αφ is consistent with the values
used in [6]. To explore a wide range of biological situations corresponding to different degrees
of immune infiltration, we use an arbitrary range of values for the parameter wmax. Moreover,
on the basis of the considerations drawn in [9], we define φmax := Awmax, where A ∈ R∗+ is a
scaling factor that ensures unit consistency. We verified via preliminary numerical simulations
that, under initial conditions (4.3) and (4.6) for the concentration of the chemoattractant, if
A = 1 then the concentration of chemoattractant remains uniformly smaller than φmax for all
times. Hence, we set φmax = wmax to carry out numerical simulations. Finally, the values of the
parameters λ and ν correspond to values of βc and γc that are consistent with those reported
in [54] and [6], respectively. Given the values of the parameters βc and γc chosen to carry
out numerical simulations of the continuum model, the following definitions are used for the
hybrid model

λ := βc
4τ

χ2
and ν := γc

4φmaxτ

χ2

so that conditions (3.1) are met.
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Table 1: Model parameters and related values used in numerical simulations.
Phenotype Description Value & Units Reference

Domain Space-step in the x and
y direction

χ = 0.016 [cm]

Time-step τ = 10−4 [days]

Final time tf = 15 [days]

Tumour
cells

Cell density at position
x

n(x, t) ≥ 0 [cells/cm2]

Initial number ρn(0) = 45228 [cells]

Proliferation rate αn = 1.5 [1/days] [14]

Rate of death due to
competition between
tumour cells

µn = 1.25 × 10−5 [1/(days
cells)]

Level of efficiency of T
cells

ζn ∈ [0.001, 1] [1/(days cells)]

Radius of interaction
between tumour cells
and T cells

θ = 3× 0.016 [cm]

T cells Cell density at position
x

c(x, t) ≥ 0 [cells/cm2]

Initial number ρc(0) = 8960 [cells]

Prop. const. for influx
rate

αc = 6 [cells/(cm2 days mol)]

Chemotactic sensitiv-
ity (hybrid model)

ν = γc
4φmaxτ
χ2

Chemotactic coef-
ficient (continuum
model)

γc = 10 [cm2/(days mol)] [6]

Random movement
prob. (hybrid model)

λ = βc
4τ
χ2

Diffusion coefficient
(continuum model)

βc = 1× 10−3 [cm2/days] [54]

Total cell density
above which T cell
movement is impaired

wmax = [0.74 × 105, 8.88 ×
105] [cells/cm2]

Rate of death due to
competition between T
cells

µc = 6× 10−6 [1/(days cells)]

Chemoattr. Concentration at posi-
tion x

φ(x, t) ≥ 0 [mol/cm2]

Total amount φtot(t) ≥ 0 [mol]

Diffusion coefficient βφ = 10−1 [cm2/day] [54]

Secretion rate αφ ∈ [0.001, 1.5][mol/(cells
days)]

[6]

Decay rate κφ = 2 [1/days] [15]

Maximum concentra-
tion

φmax = Awmax, with A = 1
[mol/cm2]
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Figure 4: Baseline scenario: evolution of the numbers of tumour cells and T cells, and the
total amount of chemoattractant. Plots of the time evolution of the number of tumour cells
ρn(t), the number of T cells ρc(t), and the total amount of chemoattractant φtot(t) (in the inset)
of the hybrid model (solid, coloured lines) and the continuum model (dotted, black lines) for
a choice of parameters that results in the eradication of the tumour. Here, ζn = 0.004 and all
the other parameters are as in Table 1 with αφ = 1.5 and wmax = 2.96 × 105. The results from
the hybrid model correspond to the average over three simulations and the related variance is
displayed by the coloured areas surrounding the curves.

4.2 Baseline scenario corresponding to tumour eradication

As mentioned earlier, we first establish a baseline scenario where the parameter ζn is high
enough so that T cells are able to eradicate the tumour. The plots in Fig. 4 and Fig. 5 summarise
the results of simulations of the hybrid and continuum models obtained under this scenario.

After initial growth, the number of tumour cells decreases steadily over time until tumour
cells are completely eliminated (cf. Fig. 4). The chemoattractant produced by tumour cells
triggers the inflow of T cells through blood vessels and the movement of T cells towards the
tumour (cf. Fig. 5). Since the value of ζn is sufficiently large, once T cells are close enough
to tumour cells they start eliminating them until eradication (cf. Fig. 5). When the number of
tumour cells decreases, the total amount of chemoattractant decays as well, thus triggering a
reduction in the inflow of T cells, which initiates a decrease in the number of T cells (cf. Fig. 4).

Both Fig. 4 and Fig. 5 indicate that there is an excellent quantitative agreement between
numerical solutions of the continuum model (3.2) and the results of numerical simulations of
the hybrid model.

4.3 Emergence of hot, altered and cold tumour scenarios

We now consider a lower value of the parameter ζn in order to explore biological scenarios in
which the cytotoxic action of T cells is less effective, for example due to high expression of PD1
inhibitory receptors and PD-L1 ligands on the surface of T cells and tumour cells. As mentioned
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Figure 5: Baseline scenario: evolution of the spatial distributions of cells over time. Panels
(a)-(d)-(g) display the plots of the density of tumour cells n(x, y, t) and panels (b)-(e)-(h) display
the plots of the density of T cells c(x, y, t) of the continuum model at three successive time
instants – i.e. t = 1, t = 4, and t = 15. The pink dashed lines highlight the 1D cross-section
corresponding to y = 0.5. Panels (c)-(f)-(i) display the corresponding side on view plot of the
densities of tumour cells n(x, y, t) and T cells c(x, y, t) of the hybrid model (solid, coloured lines)
and continuum model (dotted, black lines) (i.e. at y = 0.5 and t = 1, t = 4, and t = 15). Here,
ζn = 0.004 and all the other parameters are as in Table 1 with αφ = 1.5 and wmax = 2.96× 105.
The results from the hybrid model correspond to the average over three simulations and the
related variance is displayed by the coloured areas surrounding the curves.

earlier, we wish to investigate how the spatial distribution of T cells within the tumour varies
depending on the value of the parameters αφ and wmax. Therefore, we perform numerical
simulations holding all parameters constant but considering different combinations of αφ and
wmax. For each pair of values considered, we stored the resulting dynamics of the densities of
tumour cells and T cells along with the dynamics of the corresponding cell numbers, and the
final value of the immunoscore computed via (2.7). The results obtained are summarised by
the heat maps in Fig. 6 and the plots in Figs. 7-11.

Low immunoscore and emergence of cold tumour scenarios As shown by the blue regions
on the left side of the two heat maps of Fig. 6, for sufficiently small values of αφ, the im-
munoscore is relatively low independently of the value of wmax. This is due to the small con-
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Figure 6: Immunoscore. The heat map in panel (a) displays the value of the immunoscore com-
puted via (2.7) at the end of numerical simulations of the hybrid model for different combina-
tions of αφ and wmax. For each given value of αφ and wmax, the values of the other parameters
are as in Table 1, with ζn = 0.00012. This heat map matches with the corresponding heat map
obtained for the continuum model, which is displayed in panel (b). Sample dynamics of the
numbers and densities of tumour cells and T cells for the values of parameters αφ and wmax

corresponding to the dotted pink squares 1-4 are displayed in the plots of Fig. 7 and Figs. 8-11,
respectively.

centration of chemoattractant present in the domain, which poses limitations to the inflow and
movement of T cells towards the tumour. Hence, in the framework of our model, this parame-
ter range corresponds to the emergence of cold tumour scenarios.

Sample dynamics of the numbers and densities of tumour cells and T cells for the values of
αφ and wmax corresponding to the dotted pink square 1 in Fig. 6 are displayed in the plots in
Fig. 7(a) and Fig. 8. As shown by Fig. 7(a), for sufficiently small values of αφ, the total amount
of chemoattractant in the domain is too small to trigger a sufficiently high inflow of T cells that
can compensate for the loss caused by T cell death. As a result, the number of T cells decreases
over time. Moreover, there is a shallow gradient of the chemoattractant, which results in a slow
movement of T cells towards the tumour. As a result, as shown by Fig. 8(b)-(c), at the end of
simulations, the density of T cells around the tumour is almost zero and T cells are still very
much concentrated in the proximity of the blood vessels (i.e. their entry points).

Intermediate immunoscore and emergence of altered tumour scenarios The light blue re-
gions of the heat maps of Fig. 6 indicate that there are two possible parameter ranges giving
rise to an intermediate immunoscore. The first one corresponds to intermediate values of αφ
along with intermediate to large values of wmax, while the second one corresponds to larger
values of αφ along with small values of wmax. In the framework of our model, altered tumour
scenarios emerge under these parameter ranges.

Sample dynamics of the numbers and densities of tumour cells and T cells for the values
of αφ and wmax corresponding to the dotted pink squares 2 and 3 in Fig. 6 are displayed in
the plots in Fig. 7(b)-(c), Fig. 9 and Fig. 10. The results of Fig. 7(b)-(c) show that increasing
the value of αφ leads to a progressive increase in the total amount of chemoattractant. This in
turn results in an increased inflow of T cells and facilitates the movement of T cells towards the
tumour. The spatial distribution of T cells within the tumour varies depending on the value of
wmax. Fig. 9 shows that smaller values of wmax lead to an accumulation of T cells at the margin
of the tumour, which corresponds to an altered-excluded tumour scenario. On the other hand,
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Figure 7: Sample dynamics of the numbers of tumour cells and T cells in hot, altered-
immunosuppressed, altered-excluded and cold tumour scenarios. Time evolution of the num-
ber of tumour cells ρn(t), the number of T cells ρc(t), and the total amount of chemoattractant
φtot(t) (in the insets) of the hybrid model (solid, coloured lines) and the continuum model (dot-
ted, black lines) for values of αφ and wmax corresponding to the dotted pink squares 1-4 of
Fig. 6. Sufficiently low values of αφ lead to the emergence of cold tumour scenarios (panel
(a)); intermediate values of αφ and sufficiently high values of wmax lead to the emergence of
altered-immunosuppressed tumour scenarios (panel (b)); intermediate values of αφ and suffi-
ciently small values of wmax lead to the emergence of altered-excluded tumour scenarios (panel
(c)); and sufficiently high values of αφ and wmax lead to the emergence of hot tumour scenarios
(panel (d)). To obtain these results, we used the values of the parameters αφ and wmax corre-
sponding to the dotted pink squares 1 (panel (a)), 3 (panel (b)), 2 (panel (c)), and 4 (panel (d)) of
Fig. 6. All the other parameters are as in Table 1, with ζn = 0.00012. The results from the hybrid
model correspond to the average over three simulations and the related variance is displayed
by the coloured areas surrounding the curves.

larger values of wmax promote the infiltration of T cells into the tumour and lead to an altered-
immunosuppressed tumour scenario (see Fig. 10).
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Figure 8: Sample spatial distributions of cells in cold tumour scenarios. Panels (a) and (b)
display, respectively, the densities of tumour cells n(x, y, t) and T cells c(x, y, t) of the contin-
uum model at the end of numerical simulations (i.e. at t = 15) for a choice of parameters that
results in the emergence of a cold tumour scenario (cf. dotted pink square 1 in Fig. 6). The pink
dashed line highlights the 1D cross-section corresponding to y = 0.5. Panel (c) displays the
corresponding side on view plot of the densities of tumour cells n(x, y, t) and T cells c(x, y, t)
of the hybrid model (solid, coloured lines) and continuum model (dotted, black lines) (i.e. at
y = 0.5 and t = 15). Here, ζn = 0.00012, αφ = 0.0015, wmax = 2.96 × 105, and all the other
parameters are as in Table 1. The results from the hybrid model correspond to the average over
three simulations and the related variance is displayed by the coloured areas surrounding the
curves.

High immunoscore and emergence of hot tumour scenarios Finally, as shown by the red
regions on the bottom-right side of Fig. 6, for large values of αφ and wmax, the value of the im-
munoscore is relatively high. In the framework of our model, this parameter range corresponds
to the emergence of hot tumour scenarios.

Sample dynamics of the numbers and densities of tumour cells and T cells for the values of
αφ and wmax corresponding to the dotted pink square 4 in Fig. 6 are displayed in the plots in
Fig. 7(d) and Fig. 11. When αφ is high enough, the larger amount of chemoattractant promotes
the inflow of a larger number of T cells (see Fig. 7(d)). Moreover, Fig. 11 shows that, similarly to
the altered-immunosuppressed tumour scenario, larger values of wmax facilitate the infiltration
of T cells into the tumour. As the number of infiltrated T cells is larger than in the previous
scenarios, the immune action is slightly more efficient and thus leads to a slightly decreased
number of tumour cells (see Fig. 7).

Remark 3. Although the specific colours of the regions of the heat maps in Fig. 6 can vary
according to the values of the other parameters of the model, the behaviours of the spatial
distributions of T cells and tumour cells in the case of hot, altered-immunosuppressed, altered-
excluded and cold tumour scenarios remain qualitatively similar to those shown in Figs. 8-11.
Moreover, the heat maps in Fig. 6, as well as the plots in Fig. 7 and Figs. 8(c)-11(c) demonstrate
that there is an excellent agreement between numerical simulations of the hybrid and contin-
uum models. This testifies to the robustness of the computational results presented here and
the biological insight that they provide.

4.4 Immunotheraphy effects

The results presented in the previous subsection summarise how scenarios corresponding to
different levels of T-cell infiltration into the tumour can emerge under different combinations
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Figure 9: Sample spatial distributions of cells in altered-excluded tumour scenarios. Panels
(a) and (b) display, respectively, the densities of tumour cells n(x, y, t) and T cells c(x, y, t) of the
continuum model at the end of numerical simulations (i.e. at t = 15) for a choice of parameters
that results in the emergence of a altered-excluded tumour scenario (cf. dotted pink square 2 in
Fig. 6). The pink dashed line highlights the 1D cross-section corresponding to y = 0.5. Panel
(c) displays the corresponding side on view plot of the densities of tumour cells n(x, y, t) and T
cells c(x, y, t) of the hybrid model (solid, coloured lines) and continuum model (dotted, black
lines) (i.e. at y = 0.5 and t = 15). Here, ζn = 0.00012, αφ = 0.15, wmax = 2.22 × 105, and
all the other parameters are as in Table 1. The results from the hybrid model correspond to
the average over three simulations and the related variance is displayed by the coloured areas
surrounding the curves.

of the values of the parameters αφ and wmax. We now investigate possible outcomes of im-
munotheraphy in these different scenarios.

In order to do this, we consider the same parameter settings used for the numerical simu-
lations of Fig. 6, but we allow the level of efficiency of T cells at eliminating tumour cells to be
higher (i.e. we increase the value of ζn). This corresponds to a biological scenario in which the
tumour is treated with anti-PD1 monotherapy, which restores immune efficacy [67]. We also
investigate the effects of coupling anti-PD1 therapy with two other therapies. First we explore
the effects of anti-PD1 therapy in combination with another immune checkpoint therapy, i.e.
the anti CTLA-4 therapy [69]. To do so, we perform numerical simulations defining all pa-
rameters as in the case of the anti-PD1 therapy but increasing the influx rate of T cells through
blood vessels (i.e. the value of the parameter αc). Then, we explore the effects of combining
anti-PD1 therapy with chemotherapy, which inhibits tumour cell division, inflames the TME
with tumour antigens, and boosts the activation of T cells [19]. To do so, we perform numerical
simulations defining all parameters as in the scenario of the anti-PD1 therapy but decreasing
the proliferation rate of tumour cells (i.e. the value of the parameter αn) and increasing the
influx rate of T cells through blood vessels (i.e. the value of the parameter αc). The results
obtained are displayed in Fig. 12, which shows a comparison between the numbers of tumour
cells at the end of numerical simulation in the scenario “without treatment” (i.e. with the pa-
rameter values considered in Section 4.3) and the three aforementioned scenarios in which the
effects of different therapeutic protocols are considered.

Exploiting the excellent quantitative agreement between the results of numerical simula-
tions of the hybrid and continuum models presented in the previous subsections, here we carry
out the numerical simulations of the continuum model only, since they require computational
times much smaller than those that would be required by the numerical exploration of the cor-
responding hybrid model. To obtain the results presented in this subsection, we carried out
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Figure 10: Sample spatial distributions of cells in altered-immunosuppressed tumour sce-
narios. Panels (a) and (b) display, respectively, the densities of tumour cells n(x, y, t) and T
cells c(x, y, t) of the continuum model at the end of numerical simulations (i.e. at t = 15) for a
choice of parameters that results in the emergence of a altered-immunosuppressed tumour sce-
nario (cf. dotted pink square 3 in Fig. 6). The pink dashed line highlights the 1D cross-section
corresponding to y = 0.5. Panel (c) displays the corresponding side on view plot of the den-
sities of tumour cells n(x, y, t) and T cells c(x, y, t) of the hybrid model (solid, coloured lines)
and continuum model (dotted, black lines) (i.e. at y = 0.5 and t = 15). Here, ζn = 0.00012,
αφ = 0.15, wmax = 8.88 × 105, and all the other parameters are as in Table 1. The results from
the hybrid model correspond to the average over three simulations and the related variance is
displayed by the coloured areas surrounding the curves.

numerical simulations by using a final time corresponding to 10 days (i.e. tf = 10).

Anti-PD1 monotherapy Fig. 12(b) displays the number of tumour cells at the end of nu-
merical simulations of the continuum model for parameter settings corresponding to anti-PD1
monotherapy (i.e. when only the value of ζn in increased). Comparing these results with those
displayed in Fig. 12(a), we see that, in general, for the same values of parameters αφ and wmax,
increasing the value of ζn leads to a decrease in the number of tumour cells at the end of sim-
ulations. However, when the value of αφ is too small (i.e. in cold tumour scenarios) or when
the value of wmax is too small (i.e. in altered-excluded tumour scenarios), increasing ζn has no
benefit on the action of T cells against tumour cells. Finally, when the values of αφ and wmax

are sufficiently large (i.e. in hot tumour scenarios) anti-PD1 monotherapy is more effective.

Anti-PD1-CTLA4 dual therapy Fig. 12(c) displays the number of tumour cells at the end of
numerical simulations of the continuum model for parameter settings corresponding to anti-
PD1-CTLA4 dual therapy (i.e. when both the value of ζn and the value of αc are increased).
Comparing these results with those displayed in Fig. 12(b), we see that increasing the value of
αc along with the value of ζn improves immune efficacy only when the values of αφ and wmax

are large enough (i.e. in hot tumour scenarios). Moreover, for intermediate values of αφ (i.e.
in altered-immunosuppressed tumour scenarios), increasing the value of αc slightly decreases
the number of tumour cells at the end of simulations. Finally, when the values of αφ or wmax

are too small, increasing αc has no benefit on the action of T cells against tumour cells.

Chemotherapy combined with anti-PD1 therapy Fig. 12(d) displays the number of tumour
cells at the end of numerical simulations of the continuum model for parameter settings corre-
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Figure 11: Sample spatial distributions of cells in hot tumour scenarios. Panels (a) and (b)
display, respectively, the density of tumour cells n(x, y, t) and T cells c(x, y, t) of the continuum
model at the end of numerical simulations (i.e. at t = 15) for a choice of parameters that results
in the emergence of a hot tumour scenario (cf. dotted pink square 4 in Fig. 6). The pink
dashed line highlights the 1D cross-section corresponding to y = 0.5. Panel (c) displays the
corresponding side on view plot of the densities of tumour cells n(x, y, t) and T cells c(x, y, t)
of the hybrid model (solid, coloured lines) and continuum model (dotted, black lines) (i.e. at
y = 0.5 and t = 15). Here, ζn = 0.00012, αφ = 1.5, wmax = 8.88 × 105, and all the other
parameters are as in Table 1. The results from the hybrid model correspond to the average over
three simulations and the related variance is displayed by the coloured areas surrounding the
curves.

sponding to chemotherapy in combination with anti-PD1 therapy (i.e. when the value of αn is
decreased and the values of ζn and αc are increased). Compared to the other heat maps of Fig.
12, these results show that the number of tumour cells decreases even for small values of αφ
or wmax. Moreover, when the values of αφ or wmax are small (i.e. in cold and altered-excluded
tumour scenarios), the numbers of tumour cells at the end of simulations are similar. On the
other hand, from intermediate to large values of αφ and wmax, the numbers of tumour cells at
the end of simulation decrease as the values of these two parameters increase. As expected, the
larger the values of αφ and wmax (i.e. the “hotter" the tumour scenario considered), the more
effective the combined action of chemotherapy and anti-PD1 therapy.
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Figure 12: Immunotherapy effects. Comparison between the numbers of tumour cells ρn(t)
at the end of simulations (i.e. at t = 10) of the continuum model for different values of αφ
and wmax without therapy (panel (a)) and when the effects of different immunotherapies are
incorporated by considering different values of the parameters ζn, αc and αn (panel (b)-(d). In
panel (a), ζn = 0.00012 and the values of the other parameters are as in Table 1. In panel (b),
ζn = 0.001 and the values of the other parameters are as in Table 1. In panel (c), ζn = 0.001,
αc = 12 and the values of the other parameters are as in Table 1. In panel (d), ζn = 0.001,
αc = 12, αn = 0.75 and the values of the other parameters are as in Table 1.

5 Discussion and research perspectives

5.1 Discussion

The results that we have presented demonstrate that the level of efficiency of T cells at eliminat-
ing tumour cells (i.e. the parameter ζn) plays a key role in tumour-immune competition. In fact,
when the value of ζn is large enough, our results indicate that tumour eradication can occur,
while lower values of ζn may result in tumour cell survival. This is consistent with experimen-
tal and clinical data which point to a key role of immune check-points in immunosuppressing
T-cell responses. In fact, the presence of immunosuppressive components in the TME, such as
PD1 inhibitory receptors and PD-L1 ligands, decreases the efficiency of T cells at eliminating
tumour cells, and can ultimately result in tumour escape [30, 68].

Moreover, our numerical results indicate that when tumour eradication does not occur (i.e.
when the value of ζn is sufficiently small), the secretion rate of the chemoattractant by tumour
cells (i.e. the parameter αφ) and the threshold value of the total cell density above which T cell
movement is impaired (i.e. the parameter wmax) have a strong impact on the level of infiltration
of T cells into the tumour, and different combinations of the values of these parameters bring
about the emergence of four immune-based tumour scenarios. Hot tumour scenarios emerge
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for high values of αφ and wmax, and are characterised by a large number of T cells in the cen-
tre of the tumour. By displaying a high degree of T cell infiltration, these tumour scenarios
provide a fertile ground for immune checkpoint therapies. Altered tumour scenarios emerge
for intermediate values of αφ, and reflect the intrinsic ability of the immune system to effec-
tively mount a T-cell-mediated immune response and the ability of tumour cells to partially
escape such a response. This can either be due to an insufficient number of infiltrated T cells
(the immunosuppressed tumour scenarios, which emerge for intermediate to large values of
wmax) or to the presence of physical barriers that hinder T cell infiltration (the excluded tumour
scenarios, which emerge for small values of wmax). Finally, cold tumour scenarios emerge for
sufficiently small values of αφ and wmax. These tumour scenarios are characterised by an insuf-
ficient number of T cells both in the centre of the tumour and at its margin, and are invariably
associated with poor prognosis.

We also explored how the outcomes of different immunotherapy protocols can vary in such
immune-based tumour scenarios. In particular, our results suggest that increasing the level
of efficiency of T cells (i.e. the value of the parameter ζn), which is associated to the effects
of anti-PD1 monotherapy, is not sufficient for treating all types of tumour scenarios, and it is
particularly ineffective in altered-excluded and cold tumour scenarios. This finding is coherent
with experimental observations indicating that anti-PD1 monotherapy is effective only in the
context of hot or altered-immunosuppressed tumours, as a certain number of T cells is already
infiltrated into the tumour [19].

Moreover, the results of our model indicate that, in these two categories of tumours, increas-
ing both the level of efficiency of T cells and their influx rate (i.e. the value of the parameters ζn
and αc), which are associated with the combined effects of anti-PD1 and anti-CTLA4 therapy,
may lead to a better therapeutic outcome. This conclusion is also supported by experimental
work showing that anti-PD1-CTLA4 dual therapy may be successful in treating advanced-stage
melanoma [74], renal-cell carcinoma [57] and non-small-cell lung cancer (NSCLC) [29], result-
ing in regulatory approval. However, our results suggest that prognosis in altered-excluded
and cold tumour scenarios may not benefit from the combined effects of these two immune
checkpoint inhibitors. Nevertheless, our results indicate that therapeutic strategies promoting
the infiltration of T cells could turn altered-excluded tumours into altered-immunosuppressed
or hot tumours, helping to decrease the resistance of tumours to the combination of anti-PD1
and anti-CTLA4 therapy. This finding is coherent with experimental observations suggesting
that a synergistic effect can be achieved by combining anti-angiogenic therapies, which act on
vascular abnormalities facilitating T-cell infiltration, with immune checkpoint therapies [66].

Finally, the outputs of our model suggest that increasing both the level of efficiency of T cells
and their influx rate through blood vessels (i.e. the values of the parameters ζn and αc) and de-
creasing the proliferation rate of tumour cells (i.e. the parameter αn), which may represent the
combination of anti-PD1 therapy with chemotherapy, a stronger immune response may be in-
duced. In fact, a proposed approach to overcome the lack of a pre-existing immune response
consists in combining a priming therapy that enhances T cell responses (such as chemother-
apy) with the removal of co-inhibitory signals (through approaches such as immune check-
point therapies) [19]. For example, the success of the combination of anti-PD1 therapy with
chemotherapy in metastatic NSCLC has demonstrated the strength of this dual approach [22].

5.2 Research perspectives

We conclude with an outlook on possible extensions of the present work. While here we fo-
cused on the role of the secretion rate of the chemoattractant by tumour cells and the threshold
value of the total cell density above which T cell movement is impaired, it would be interesting
to investigate how other model parameters (e.g. the chemotactic sensitivity of T cells) may af-
fect the level of infiltration of T cells into the tumour. Carrying out a more extensive exploration
of the model parameter space would ultimately allow more robust biological conclusions to be
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drawn.
Moreover, our hybrid modelling framework for the spatial dynamics of tumour cells and

cytotoxic T cells, along with the formal derivation of the corresponding continuum model,
can be developed further in several ways. For instance, a key factor of the immune response
is that T cells express a unique repertoire of T cell receptors (TCRs) [16], and are capable of
detecting and eliminating tumour cells by recognising specific cancer-associated antigens. The
model presented here does not include this aspect, but it could easily be extended to do so by
introducing, for instance, a variable representing the antigens expressed by tumour cells and
the TCR expressed by T cells. This would make it possible to take explicitly into account the
effects of both spatial and antigen-specific interactions between tumour cells and T cells, as
similarly done in [35, 42, 47, 48], and then study the effects of antigen presentation or intra-
tumour heterogeneity on immune surveillance.

Only a simplified representation of the action of different types of immunotherapy was
considered in this work, but it would be important to carry out a more detailed study of the
impact of T-cell infiltration on the dynamics of tumour cells under different immunotherapeu-
tic protocols. In particular, by using optimal control methods for the continuum model, we
could investigate the best delivery schedule of therapeutic agents (i.e. the best delivery times
and dosages) that make it possible to minimise the number of tumour cells at the end of the
treatment and achieve the best therapeutic outcomes [33]. These are all lines of research that
we will be pursuing in the near future.
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Appendices

A Formal derivation of the continuum model

Building on the methods employed in [9], we carry out a formal derivation of the deterministic
continuum model given by the IDE-PDE-PDE system (3.2) for d = 1. Similar methods can be
used in the case where d = 2.
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A.1 Formal derivation of the IDE for the density of tumour cells n(x, t)

When tumour cell dynamics are governed by the rules described in Sections 2.1.1 and 2.1.2,
considering i ∈ [0,N ], between time-steps k and k + 1 the principle of mass balance gives the
following difference equation for the tumour cell density nki :

nk+1
i =

[
2 ταn + 1− τ(αn + ζnK

k
i + µnρ

k
n

]
nki . (A.1)

Using the fact that the following relations hold for τ and χ sufficiently small

tk ≈ t, tk+1 ≈ t+ τ, xi ≈ x, xi±1 ≈ x± χ, (A.2)

nki ≈ n(x, t), nk+1
i ≈ n(x, t+ τ), cki ≈ c(x, t), (A.3)

ρkn ≈ ρn(t) :=

∫
Ω
n(x, t) dx, Kk

i ≈ K(x, t) :=

∫
Ω
η(x, x′; θ)c(x′, t) dx′, (A.4)

where the function η is defined via (2.12), equation (A.1) can be formally rewritten in the ap-
proximate form

n(x, t+ τ)− n(x, t) = τ (αn − ζnK(x, t)− µnρn(t))n(x, t). (A.5)

If, in addiction, the function n(x, t) is continuously differentiable with respect to the variable t,
starting from equation (A.5), and letting the time-step τ → 0, one formally obtains the following
IDE for the tumour cell density n(x, t):

∂tn(x, t) = αnn(x, t)− µnρn(t)n(x, t)− ζnK(x, t)n(x, t) (x, t) ∈ Ω× (0, tf ].

A.2 Formal derivation of the PDE for the density of T cells c(x, t)

When T cell dynamics are governed by the rules described in Section 2.3, considering i ∈ [1,N−
1], between time-steps k and k + 1 the principle of mass balance gives the following difference
equation for the T cell density cki :

ck+1
i = cki (1− τ µcρkc ) + τ αcr

k
i

+
λ

2
ψ(wki )

(
cki+1 + cki−1

)
− λ

2

(
ψ(wki−1) + ψ(wki+1)

)
cki

+
ν

2φmax
ψ(wki )

[(
φki − φki−1

)
+
cki−1

]
+

ν

2φmax
ψ(wki )

[(
φki − φki+1)

)
+
cki+1

]
− ν

2φmax
ψ(wki+1)

[(
φki+1 − φki

)
+
cki

]
− ν

2φmax
ψ(wki−1)

[(
φki−1 − φki

)
+
cki

]
.

(A.6)

Using the fact that relations (A.2)-(A.4) and the following relations

cki ≈ c(x, t), cki±1 ≈ c(x± χ), ρkc ≈ ρc(t) :=

∫
Ω
c(x, t) dx,

φki ≈ φ(x, t), φk+1
i ≈ φ(x, t+ τ), φki±1 ≈ φ(x± χ),

wki ≈ w(x, t), with w(x, t) = n(x, t) + c(x, t), wki±1 ≈ w(x± χ),
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rki ≈ r(x, t) := φtot(t)1ω(x), with φtot(t) :=

∫
Ω
φ(x, t) dx

hold for τ and χ sufficiently small, equation (A.6) can be formally rewritten in the approximate
form

c(x, t+ τ) = c(x, t)(1− τ µcρc(t)) + τ αcr(x, t)

+
λ

2
ψ(w(x, t))

(
c(x+ χ, t) + c(x− χ, t)

)
− λ

2

(
ψ(w(x− χ, t)) + ψ(w(x+ χ, t))

)
c(x, t)

+
ν

2φmax
ψ(w(x, t))

[(
φ(x, t)− φ(x− χ, t)

)
+
c(x− χ, t)

]
+

ν

2φmax
ψ(w(x, t))

[(
φ(x, t)− φ(x+ χ, t)

)
+
c(x+ χ, t)

]
− ν

2φmax
ψ(w(x+ χ, t))

[(
φ(x+ χ, t)− φ(x, t)

)
+
c(x, t)

]
− ν

2φmax
ψ(w(x− χ, t))

[(
φ(x− χ, t)− φ(x, t)

)
+
c(x, t)

]
.

Building on the methods employed in [9], letting τ → 0 and χ→ 0 in such a way that

λ

2

χ2

τ
→ βc ∈ R+

∗ and
ν

2φmax

χ2

τ
→ γc ∈ R+

∗ as τ → 0, χ→ 0,

after a little algebra, considering (x, t) ∈ Ω \ ∂Ω× (0, tf ], we find

∂tc− ∂x
[
βcψ(w)∂xc− γcψ(w)c∂xφ− βccψ′(w)∂xw

]
= −µcρc(t)c+ αcr

where ψ is given by (2.22) and w := n + c. Moreover, zero-flux boundary conditions easily
follow from the fact that T-cell moves that require moving out of the spatial domain are not
allowed.

A.3 Formal derivation of the balance equation for the chemoattractant concentra-
tion φ(x, t)

The formal derivation of the balance equation for the chemoattractant concentration φ(x, t) is
obtained using the methods employed in [9].

B Details of numerical simulations

The numerical simulations of our hybrid and continuum models are carried out on a two-
dimensional domain and are performed in MATLAB.

B.1 Details of numerical simulations of the hybrid model

The flowchart in Fig. 13 illustrates the general computational procedure to carry out simula-
tions of the hybrid model in one-dimensional settings, while the flowchart in Fig. 14 provides
further details of the computational procedure to simulate cell dynamics in one-dimensional
settings. Analogous strategies are used in two-dimensional settings. All random numbers
mentioned in Fig. 14 are real numbers drawn from the standard uniform distribution on the
interval (0, 1), which in our case are obtained using the built-in MATLAB function RAND.

As summarised by Fig. 14, at any time-step, each T cell undergoes a three-phase process:
Phase A) undirected, random movement according to the probabilities defined via (2.26) and
(2.27); Phase B) chemotaxis according to the probabilities defined via (2.23) and (2.24); Phase
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Figure 13: Flowchart illustrating the computational procedure to simulate the hybrid model in
one-dimensional settings. A detailed summary of steps 2) and 3) is provided by the flowchart
in Fig. 14. A similar procedure is used in two-dimensional settings.

C) death according to the probabilities defined via (2.17) and (2.21). We let then each tumour
cell proliferate with the probability defined via (2.8), die due to intra-tumour competition with
the probability defined via (2.10), or die due to immune action with the probability defined via
(2.13). Finally, the tumour cell density at every lattice site is computed via (2.1) and inserted
into (2.14) in order to update the concentration of the chemoattractant.

In a two-dimensional setting, the positions of the single T cells are updated following a
procedure analogous to that illustrated in Figs. 13 and 14, with the only differences being that:
T cells are allowed to move up and down as well; the concentration of the chemoattractant is
updated through the two-dimensional analogue of (2.14), where the operator L is defined as
the finite-difference Laplacian on a two-dimensional regular lattice of step χ; the tumour and
T cell densities are respectively computed via (2.1) and (2.2).

B.2 Details of numerical simulations of the continuum model

To construct numerical solutions of the IDE-PDE-PDE system (3.2), we use a uniform discreti-
sation consisting of N2 = 3721 points of the square Ω := [0, 1]2 as the computational do-
main of the independent variable x ≡ (x, y) (i.e. (xi, yj) = (i∆x, j∆x) with ∆x = 0.016 and
i, j = 0, . . . , N) Moreover, we choose the time step ∆t = 10−4 and, unless stated otherwise,
we perform numerical simulations for 15 × 104 time-steps (i.e. the final time of simulations is
tf = 15).
The method for constructing numerical solutions of the IDE-PDE-PDE system (3.2) is based on
a finite difference scheme whereby the discretised dependent variables are

nki,j := n(xi, yj , tk), cki,j := c(xi, yj , tk) and φki,j := φ(xi, yj , tk).
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Figure 14: Flowchart illustrating the detailed computational procedure followed to update the
positions of every T cell, as well as the fate of each tumour cell and T cell in one-dimensional
settings. Analogous strategies are used in two-dimensional domains.
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We solve numerically the IDE (3.2)1 for n and the PDE (3.2)3 for φ using the following schemes

nk+1
i,j − nki,j

∆t
=
(
αn − µnρkn − ζnKk

i,j

)
nki,j i, j = 0, . . . , N,

and
φk+1
i,j − φki,j

∆t
=βφ

φki−1,j + φki+1,j − 2φki,j
(∆x)2

+ βφ
φki,j−1 + φki,j+1 − 2φki,j

(∆x)2

+ αφn
k
i,j − κφφki,j , i, j = 1, . . . , N − 1,

and impose zero-flux boundary conditions for φ by letting

φk+1
0,j = φk+1

1,j and φk+1
N,j = φk+1

N−1,j , j = 0, . . . , N

φk+1
i,0 = φk+1

i,1 and φk+1
i,N = φk+1

i,N−1, i = 0, . . . , N

Moreover, we solve numerically the PDE (3.2)2 for c using the following explicit scheme, which
is the same as the one used in [9],

ck+1
i,j − cki,j

∆t
−
F k
i+ 1

2
,j

+ F k
i− 1

2
,j

∆x
−
F k
i,j+ 1

2

+ F k
i,j− 1

2

∆x
= r(φki,j)− µcρkc cki,j

for i, j = 0, . . . , N , where

F k
i+ 1

2
,j

:= βcψ(wk
i+ 1

2
,j

)
cki+1,j − cki,j

∆x
− βccki+ 1

2
,j
ψ′(wk

i+ 1
2
,j

)
wki+1,j − wki,j

∆x

− bk,+
i+ 1

2
,j
cki,jψ(wki+1,j) + bk,−

i+ 1
2
,j
cki+1,jψ(wki,j), i = 0, . . . N − 1, j = 0, . . . N,

F k
i,j+ 1

2

:= βcψ(wk
i,j+ 1

2

)
cki,j+1 − cki,j

∆x
− βccki,j+ 1

2

ψ′(wk
i,j+ 1

2

)
wki,j+1 − wki,j

∆x

− bk,+
i,j+ 1

2

cki,jψ(wki,j+1) + bk,−
i,j+ 1

2

ck+1
i,j+1ψ(wki,j), i = 0, . . . N, j = 0, . . . N − 1,

with

wk
i+ 1

2
,j

:=
wki+1,j + wki,j

2
, wk

i,j+ 1
2

:=
wki,j+1 + wki,j

2
,

ck
i+ 1

2
,j

:=
cki+1,j + cki,j

2
, ck

i,j+ 1
2

:=
cki,j+1 + cki,j

2
,

bk
i+ 1

2
,j

:= γc
φki+1,j − φki,j

∆x
, bk,+

i+ 1
2
,j

= max
(

0, bk
i+ 1

2
,j

)
, bk,−

i+ 1
2
,j

= max
(

0,−bk
i+ 1

2
,j

)
and

bk
i,j+ 1

2

:= γc
φki,j+1 − φki,j

∆x
, bk,+

i,j+ 1
2

= max
(

0, bk
i,j+ 1

2

)
, bk,−

i,j+ 1
2

= max
(

0,−bk
i,j+ 1

2

)
The discrete fluxes F k

i− 1
2
,j

for i = 1, . . . , N, j = 0, . . . , N and F k
i,j− 1

2

for i = 0, . . . , N, j =

1, . . . , N are defined in an analogous way, and we impose zero-flux boundary conditions by
using the definitions

F k
0− 1

2
,j

:= 0 and F k
N+ 1

2
,j

:= 0, for j = 0, . . . , N,

F k
i,0− 1

2

:= 0 and F k
i,N+ 1

2

:= 0, for i = 0, . . . , N.
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