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Alternating direction method of multipliers
for polynomial optimization

V. Cerone S. M. Fosson S. Pirrera D. Regruto

Abstract— Multivariate polynomial optimization is a preva-
lent model for a number of engineering problems. From a
mathematical viewpoint, polynomial optimization is challenging
because it is non-convex. The Lasserre’s theory, based on
semidefinite relaxations, provides an effective tool to overcome
this issue and to achieve the global optimum. However, this
approach can be computationally complex for medium and
large scale problems. For this motivation, in this work, we
investigate a local minimization approach, based on the alter-
nating direction method of multipliers, which is low-complex,
straightforward to implement, and prone to decentralization.
The core of the work is the development of the algorithm
tailored to polynomial optimization, along with the proof of its
convergence. Through a numerical example we show a practical
implementation and test the effectiveness of the proposed
algorithm with respect to state-of-the-art methodologies.

I. INTRODUCTION

Polynomial optimization problems (POPs) are concerned
with the minimization of multivariate polynomial functions,
over regions defined by polynomial equations and inequali-
ties. Popular instances of POPs include linear, quadratic and
mixed-integer programming, as well as partition problems
on graphs, such as max-cut; see, e.g., [1] for a list of
examples. Beyond that, a wide class of engineering problems
can be formulated via POPs. Among them, we mention set-
membership estimation and identification [2], [3], data-driven
control [4], hybrid system identification [5], model predic-
tive control [6], [7], and optimal control [8]. More recent
applications include localization in narrowband internet-of-
things [9], routing games [10], and estimation of Lipschitz
constants in deep neural networks [11].

In general, POPs are non-convex and NP-hard, therefore
the search of their global minima is challenging. To this
purpose, solutions based on semidefinite programming (SDP)
relaxations are proposed in the literature. In a nutshell, one
can build a hierarchy of SDP problems that converge to the
optimum under mild assumptions; see [12], [13], [14] for
a complete overview. The SDP approach recast POPs into
convex optimization and this makes the problem affordable.
The development of the related theory is mature and several
software implementations are available, such as GloptiPoly
[15] and SparsePOP [16].

A drawback of the SDP approach is that the size of the
involved matrices at d-degree of the hierarchy is proportional

to
(
n+ d
n

)
, where n is the number of variables of the
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original POP. This becomes computationally prohibitive for
medium and large scale models, in particular when high d
are necessary to achieve the optimal solution. To tackle this
problem, in the recent literature, SDP accelerating strategies
are proposed, that exploit the presence of specific sparsity
structures, such as the running intersection property [17],
chordal sparsity [18], [19], or term sparsity [20]. However,
these sparsity structures are not always present in SDP
relaxations of POPs, as discussed, e.g., in [18]; therefore,
these fast implementations are feasible only for some classes
of POPs.

Given the described shortcomings of global optimization
with SDP, one can relax POPs to the search of local minima
or stationary points. In the literature, substantial attention is
devoted to the local minimization of non-convex problems,
e.g., via gradient-based methods, due also to the rise of deep
learning techniques; we refer the reader to [21] for a recent
survey. Convergence of the algorithms is a delicate point in
this framework, both in terms of guarantees and speed.

In this work, we propose a novel approach to local mini-
mization of POPs, based on the alternating direction method
of multipliers (ADMM, [22]). ADMM is well-known in the
context of convex optimization as an effective algorithm to
minimize composite functionals, even in the presence of non-
differentiable terms. ADMM structure is easy to implement
and prone to decentralization. Its convergence is proven and
analysed, see, e.g, [22], [23]. As to non-convex optimization,
the convergence of ADMM is more critical to analyse and
actually proven for some classes of problems; the main
results are provided in [24], [25].

The implementation of ADMM for POPs is not straight-
forward, since POPs are non-convex, constrained problems,
while ADMM is originally conceived for convex, uncon-
strained problems. The first contribution of this work is
a suitable reformulation of POPs, on top of which we
develop a novel ADMM-based procedure for POPs, that we
name ADMM4POP. The second contribution is the proof of
the convergence of ADMM4POP for the case of equality
constraints, accounted for in a relaxed way. Furthermore, we
illustrate the implementation of ADMM4POP in some nu-
merical examples and we compare its practical effectiveness
to state-of-the-art global/local minimization methods.

The paper is organized as follows. In Sec. II, we state
the problem and we illustrate how to formulate it to apply
ADMM. In Sec. III, we illustrate the details of the proposed
ADMM4POP algorithm, while in Sec. IV we prove its
convergence. In Sec. V, we propose two numerical examples.
Finally, in Sec. VI we draw some conclusions.



II. PROBLEM FORMULATION

We consider a generic POP:

min
x∈Rn

f(x)

s.t.
gi(x) ≤ 0 i = 1, . . . , l

hi(x) = 0 i = 1, . . . ,m

(1)

where f, gi, hi are multivariate polynomials of the decision
variable x ∈ Rn; see, e.g., [12] for details. The aim of this
work is to develop an ADMM-based method for (1). For
this purpose, first of all, we need to rewrite (1) as an uncon-
strained, composite problem, with some specific properties.
In this section, we illustrate the proposed reformulation.

The first step is to write (1) as a quadratic optimization
problem (QOP). As discussed, e.g., in [26], [27], any POP
can be transformed into a QOP by adding suitable slack vari-
ables. Given a POP, different equivalent QOP representations
are possible, as illustrated in [26, Sec. 2.3]. In the rest of the
paper, given two vectors v, w of equal dimension, we write
v ≤ w to denote the componentwise inequality. Moreover,
we use the notation A ⪰ 0 to indicate that a matrix A is
positive semidefinite.

For our purpose, we consider any transformation that
provides a QOP of this form:

min
x∈Rñ

1

2
x⊤Ax+ a⊤x

s.t.
Bx− b ≤ 0

Cx− c = 0

xixj = xk, (i, j, k) ∈ B

(2)

where x ∈ Rñ, ñ ≥ n, is the augmented vector of decision
variables; A ∈ Rñ,ñ is symmetric and A ⪰ 0; B ∈ Rl,ñ,
C ∈ Rm̃,ñ, a ∈ Rñ, b ∈ Rl, and c ∈ Rm̃. We specify that m̃
is the number of equality constraints after the introduction
of the slack variables. Moreover, B ⊆ {1, . . . , ñ}3 is the set
of 3−tuples (i, j, k) that contains all the indices such that
xixj = xk.

Before illustrating the transformation to obtain (2), we
provide some remarks.

Remark 1: If the transformation returns a QOP where A is
not positive semidefinite, it is sufficient to introduce suitable

quadratic constraints that reduce
1

2
x⊤Ax+ a⊤x to a linear

function, i.e., A = 0.
Remark 2: Without loss of generality, we assume that for

each (i, j, k) ∈ B, the indices i, j and k are mutually
different. If not, it is sufficient to add new slack variables.
For example, in the presence of the constraint x2i = xk,
i.e., (i, i, k) ∈ B, we can define a new variable xj and the
constraint xj = xi to obtain xixj = xk.

Remark 3: Without loss of generality, we assume that
each index i, j, k ∈ {1, . . . , ñ} appears at most once in
each tuple (i, j, k) ∈ B. This is not restrictive because if
an overlap occurs, we can introduce an additional variable

xh, for each repeated variable xi, together with constraints
of the kind xh = xi.

For simplicity, we describe the transformation algorithm
from (1) to (2) through an illustrative example.

Example 1: Let us consider the POP

min
x∈R2

x21x2.

By defining x3 = x21, we obtain minx∈R2 x3x2 s.t. x21 = x3.

Following Remark 1, we notice that A = 1
2

 0 0 0
0 0 1
0 1 0

 is

not positive semi-definite. Therefore, we define x4 = x3x2.
Moreover, according to Remark 2, we define x5 = x1

to transform the constraint x21 = x3 into x1x5 = x3. In
this way, B = {(3, 2, 4), (1, 5, 3)}. To fulfill the non-overlap
assumption described in Remark 3, we add x6 = x3. In
conclusion, we obtain the QOP

min
x∈R5

x4

s.t.
x5 = x1, x6 = x3

xixj = xk, (i, j, k) ∈ B = {(3, 2, 4), (1, 5, 6)}.

Let us define the sets

P .
= {x ∈ Rñ : xixj = xk, ∀(i, j, k) ∈ B}. (3)

and
D .

= {x ∈ Rñ|Bx− b ≤ 0, Cx− c = 0}. (4)

We notice that P is a non-convex semialgebraic set that de-
scribes all the non-convexity of the original problem. Instead,
D is a convex set that includes all the linear constraints of
(2). Given these definitions, we rewrite (2) as

min
x∈D

1

2
x⊤Ax+ a⊤x+ 1P(x) (5)

where 1P(x) denotes the indicator function of P , i.e.,
1P(x) = 0 if x ∈ P , and ∞ otherwise.

III. PROPOSED ALGORITHM: ADMM4POP

In the previous section, we have shown that a generic POP
can be rewritten as a QOP of the form (5). In this section, we
prove that a POP formulated as in (5) is prone to be solved
through ADMM.

In general, ADMM can be applied to composite problems
of kind minx∈Rn F (x)+G(x); see [22] for details and more
general formulations. More specifically, to apply ADMM we
split the problem as follows:

min
x,z∈Rn

F (x) +G(z)

s.t. x = z
(6)

and we consider the augmented Lagrangian

Lρ(x, z) = F (x) +G(z) + ρu⊤(x− z) +
ρ

2
∥x− z∥22 (7)

where ρ > 0 is a scalar penalty parameter and u ∈ Rn is the



scaled dual variable; we refer the reader to [22, Sec. 3.1.1.]
for details on the scaled ADMM. In the following, we denote
by xk, zk and uk the estimates of the variables x, z and u,
respectively, at a generic k-th iteration of the algorithm.

ADMM consists in a loop iterating over three steps:

1) x-update:

xτ+1 = arg min
x∈Rn

Lρ(x, z)

= arg min
x∈Rn

F (x) +
ρ

2
∥x− zτ + uτ∥22.

(8a)

2) z-update:

zτ+1 = arg min
z∈Rn

Lρ(x, z)

= arg min
z∈Rn

G(z) +
ρ

2
∥xτ+1 − z + uτ∥22.

(8b)

3) u-update:

uτ+1 = uτ + xτ+1 − zτ+1. (8c)

Our aim is to apply ADMM to (5). To this purpose, we

decompose (5) as in (6), by setting F (x) =
1

2
x⊤Ax+ a⊤x

and G(z) = 1P(z). Then, we have

min
x∈D,z∈Rñ

1

2
x⊤Ax+ a⊤x+ 1P(z)

s.t. x = z

(9)

and we implement the algorithm as in (8a)-(8b)-(8c). While
step (8c) is trivial, (8a) and (8b) require more computations.

A. x-update step

According to (8a), the x-update applied on (9) is

xτ+1 = arg min
x∈D

1

2
x⊤Ax+ a⊤x+

ρ

2
∥x− zτ + uτ∥22. (10)

This is equivalent to

xτ+1 = arg min
x∈Rñ

1

2
x⊤ (A+ ρIñ)x+ x⊤ [a+ ρ(uτ − zτ )]

s.t.
Bx− b ≤ 0,

Cx− c = 0
(11)

where Iñ is the identity matrix of dimension ñ. This is a
convex quadratic program (QP) and can be solved efficiently
to global optimality.

Moreover, if no inequality constraints are present, the
solution of (11) reduces to the solution of the linear system
of the Karush-Kuhn-Tucker (KKT) conditions:[

A+ ρI C⊤

C 0

] [
xτ+1

µ

]
=

[
ρ(zτ − uτ )− a

c

]
(12)

where µ is the Lagrange multiplier; see [28] for details. In
sections IV and V we also discuss the relaxation of the
equality constraints.

B. z-update step

According to (8b), the z-update applied on (9) is

zτ+1 = arg min
z∈Rñ

1P(z) +
ρ

2
∥xτ+1 − z + uτ∥22. (13)

This is equivalent to

zτ+1 = arg min
z∈P

∥z − (xτ+1 + uτ )∥22. (14)

Since P is non-convex, the solution to (14) is not straight-
forward. However, we can exploit the decoupling assumption
discussed in Remark 3 to split the problem into smaller and
affordable sub-problems. More precisely, on the one hand the
quadratic cost in (14) is separable in its components; on the
other hand, according to the decoupling assumption, we can
partition P into separated subsets, each of them representing
a constraint xixj = xk. Let t = 1, . . . , |B| be the ordered
indices of the elements of B, i.e., each (i, j, k) ∈ B is labeled
with a t ∈ {1, . . . , |B|}. Then, we can write

P = P1 × P2 × · · · × P|B| (15)

where

Pt
.
= {(xi, xj , xk) : xixj = xk} for each t = 1, . . . , |B|.

(16)
Hence,

zτ+1 = arg min
z∈P1×···×P|B|

|B|∑
t=1

∥zt − (xτ+1 + uτ )t∥22 (17)

where wt
.
= (wi, wj , wk) for any vector w ∈ Rñ and (i, j, k)

corresponding to the index t.

In conclusion, (17) can be split into |B| sub-problems with
only three variables, i.e.,

(zτ+1)t = arg min
zt∈Pt

∥zt − (xτ+1 + uτ )t∥22. (18)

In other terms, (zτ+1)t is the ℓ2 projection of vt =
(vi, vj , vk)

.
= (xτ+1 + uτ )t ∈ R3 onto Pt. The problems in

(18) are non-convex; however, we can solve them in closed
form. In fact, we have

(zτ+1)t = arg min
zt∈R3

(zi − vi)
2 + (zj − vj)

2 + (zk − vk)
2

s.t. zizj = zk.
(19)

Then, we plug zk = zizj into the cost functional, and
remove the corresponding constraint:

(zτ+1)t = arg min
zt∈R3

(zi − vi)
2 + (zj − vj)

2 + (zizj − vk)
2.

(20)
Now, we can explicitly find the minima by evaluating the
first order conditions: given fv(zi, zj) = (zi − vi)

2 + (zj −
vj)

2 + (zizj − vk)
2, we solve

∇fv(zi, zj) = 2

(
zi − vi + ziz

2
j − zjvk

zj − vj + z2i zj − zivk

)
=

(
0
0

)
(21)



From the first equation, we obtain

zi − vi + ziz
2
j − zjvk = 0 ⇒ zi =

vi + zjvk
1 + z2j

(22)

By replacing (22) into the second equation of (21), we get

zj − vj +

(
vi + zjvk
1 + z2j

)2

zj −
vi + zjvk
1 + z2j

vk =

=
z5j + c4z

4
j + c3z

3
j + c2z

2
j + c1zj + c0(

1 + z2j
)2 = 0

(23)

where

c0 = −vj − vivk, c1 = v2i − v2k + 1,

c2 = vivk − 2vj , c3 = 2, c4 = −vj .
(24)

As 1+z2j ̸= 0, we obtain the candidate solutions by finding
the zeros of a univariate polynomial of degree 5, e.g., by
computing the eigenvalues of the companion matrix[

0 I4
−c0 −c1 . . . − c4

]
. (25)

In this way, we get five candidate solutions, which are either
real or complex and conjugate, and at least one of them
is real. In turn, we evaluate the cost functional on each
real candidate solution, which finally provides the desired
minimum.

We notice that the z-update requires to compute the eigen-
values of a 5× 5 matrix for each bilinear constraint, which
may be burdensome if |B| is large. However, the problem
can be fully parallelized, by exploiting the separability of B;
therefore, in the presence of suitable hardware, the z-update
can be solved very effectively.

Algorithm 1 ADMM4POP
1: Initialization: z0, u0 ∈ Rñ

2: for all τ = 1, . . . , Tstop do
3: xτ+1 = arg min

x∈D

1

2
x⊤Ax+ a⊤x+

ρ

2
∥x− zτ + uτ∥22,

via convex QP or KKT conditions, see Sec. III-A
4: For each t = 1, . . . , |B|, (zτ+1)t = argminzt∈R3(zi−

vi)
2+(zj−vj)2+(zizj−vk)2 by explicit computation,

see Sec. III-B
5: uτ+1 = uτ + xτ+1 − zτ+1

6: end for

We summarize the proposed algorithm, denoted as
ADMM4POP, in Algorithm 1.

Concerning the stopping time Tstop, as suggested in [22],
we stop the algorithm when the norms of both primal and
dual residuals ∥xτ −zτ∥ and ∥ρ(zτ−1−zτ )∥ are sufficiently
small.

IV. CONVERGENCE ANALYSIS

Proving the convergence of ADMM in non-convex prob-
lems is a challenging task. In [29], the authors prove the
convergence to a stationary point of single-block ADMM

for a family of non-convex problems. Later, in [24], [25]
extensions to multi-block problems are proposed. In [24],
the terms of the cost functional that are non-convex must
be differentiable to prove the convergence. This is not the
case of (5), where the indicator function of a non-convex
set occurs, which is non-convex and non-smooth. Since in
[29] the authors account for terms that are both non-convex
and non-smooth, we leverage their results to develop the
convergence analysis of ADMM4POP.

We remark that the analysis in [29] is developed for
unconstrained problems; thus, for simplicity, in this work we
recast problem (2) into unconstrained optimization as well,
while we leave the proof of convergence of the constrained
version for future extended work. To this end, in (2), we
assume that there are no inequality constraints Bx ≤ b,
while the equality constraints Cx = c are accounted for
in a relaxed way, i.e., by adding the term γ∥Cx − c∥22 to
the objective function, for some γ > 0. Finally, we keep the
bilinear constraints, because we represent them through the
indicator function, see (5). In conclusion, we consider

min
x∈Rñ

1

2
x⊤Ax+ a⊤x+ γ∥Cx− c∥22 + 1P (x). (26)

As γ∥Cx − c∥22 is quadratic and convex, (26) has the form
of (5); then, we can apply ADMM4POP to it. We refer to
this approach as relaxed ADMM4POP.

For completeness, we summarize a result from [29], which
is the basis for our proof of convergence. Let us consider the
composite problem (6) and its augmented Lagrangian (7),
under the following conditions.

Assumption 1:
A1. F is semi-algebraic, twice continuously differentiable

on Rn with a bounded, positive semidefinite Hessian
∇2F ;

A2. G is a semi-algebraic, proper, lower semicontinuous
function;

A3. there exists 0 < ζ < ρ such that F (x)− 1
2ζ ∥∇F (x)∥

2

is lower bounded;
A4. the design parameter ρ is designed so that ρIn −√

2∇2F (x) ⪰ 0.
We recall that a function is proper if it is finite somewhere
and it does tend to −∞; see, e.g., [29, Sec. 2].

Theorem 1: [29, Theorems 1-2-4] Let us suppose that As-
sumption 1 holds. Then, the sequence (xk, zk, uk) generated
by ADMM converges to a point (x⋆, z⋆, u⋆), and x⋆ is a
stationary point of F (x) +G(x).

Proposition 1: Let us consider (26). The sequence
(xk, zk, uk) generated by relaxed ADMM4POP converges
to a point (x⋆, z⋆, u⋆), and x⋆ is a stationary point of (26).

Proof: Let us consider F (x) =
1

2
x⊤Ax+a⊤x+γ∥Cx−

c∥22 and G(z) = 1P (z). In the following, we prove that all
the points of Assumption 1 are fulfilled, which is sufficient
to prove the thesis.

By construction of A, it is straightforward to prove that
1

2
x⊤Ax+ a⊤x+ γ∥Cx− c∥22 fulfills A1.
Regarding A2, by definition, 1P is proper. Moreover, it is



semi-algebraic, because P is a semi-algebraic set, and the
indicator function of a semi-algebraic set is semi-algebraic,
see, e.g., [30]. Finally, the indicator function of a set is lower
semi-continuous if the set is closed; then, we need to show
that P is closed. For this purpose, let t be the index of (i, j, k)
as defined in Sec. II and let us define

Qt
.
=
{
z ∈ Rñ : zizj = zk

}
. (27)

We remark that Qt is different from Pt defined in (15).
In particular, it holds P =

⋃
t∈B Qt. Since Qt =

{z : −zizj + zk ≤ 0}∪{z : zizj − zk ≤ 0} and since zizj−
zk and −zizj + zk are continuous functions, their sub-level
sets are closed. As a consequence Qt is an intersection of
closed sets, hence it is closed. In turn, P is a union of closed
sets, hence it is closed. Then, we conclude that 1P is lower
semi-continuous.

Finally, A3 holds because, in our problem, F (x) −
1
2ζ ∥∇F (x)∥

2 is convex if we suitably design ρ > ζ >

∥A+γC⊤C∥2. In particular, if we set ρ >
√
2∥A+γC⊤C∥2,

A4 is satisfied as well. ■

V. NUMERICAL EXPERIMENTS

In this section we propose two numerical experiments
to test the effectiveness of the proposed ADMM4POP
and to validate the theoretical convergence results. For
ADMM4POP, we implement both the constrained version
and the relaxed one, which is guaranteed to converge by
Proposition 1. However, the constrained version as well is
convergent in our experiments.

We compare ADMM4POP to two state-of-the-art meth-
ods, namely the interior-point method (IPM) and the SDP
approach [12]. IPM is a local algorithm like ADMM4POP.
All the experiments are performed with MATLAB R2021b,
on a PC with AMD Ryzen 7 1700 8-Core CPU @ 3.00
GHz and 16 GB RAM. We implement IPM through the
function fmincon in the MATLAB Optimization Toolbox,
while we use the SparsePOP package [16] to implement the
SDP method.

In the first experiment, we consider the following POP:

min
x∈R3

x21x
2
2 + x21 + q1x1 + x22 + x2x3 + q2x2 + x23 + q3x3

s.t.
x2x3 + x1 = 10

where q1 ∈ [4, 6], q2 ∈ [−8,−6], and q3 ∈ [1, 3] are
generated uniformly at random. We reformulate the problem
as in (2). First, we replace x4 = x2x3 and x5 = x1x2. Then,
we define x6 = x2 to fulfill the splitting condition of Remark
3. In conclusion, we obtain

min
x∈R6

x25 + x21 + q1x1 + x22 + x4 + q2x2 + x23 + q3x3

s.t.
x4 + x1 = 10, x6 = x2

xixj = xk, (i, j, k) ∈ B = {(2, 3, 4), (1, 6, 5)}

which is in the form (5). In particular, it is straightforward
to verify that the quadratic cost functional is convex.

The stop threshold for ADMM4POP is set so that the
obtained accuracy is comparable to that one of IPM. We
randomly initialize all the variables with standard Gaussian
distribution. We set ρ = 2, and γ = 103 for relaxed
ADMM4POP. In this experiment, SDP with relaxation order
2 always achieves the global minimum, thus it is used as
reference.

In Table I, we report the results over 500 random runs,
in terms of accuracy and runtime statistics. We evaluate the
error as the ℓ2 distance from the SDP solution, which is
considered as ground truth. Both ADMM4POP and IPM sub-
stantially achieve the desired global minimum. As expected,
in the relaxed version of ADMM4POP the error is slightly
larger; however, the gap is not relevant in practice, that is, the
global minimizer is identified with sufficient accuracy. As to
the runtime, we can see that ADMM4POP is significantly
faster than IPM and SDP.

Error Runtime (ms)
mean mean min max

SDP – 63.5 59.0 88.5
IPM 2.5× 10−5 12.3 7.7 21.8

ADMM4POP cns 6.5× 10−5 1.6 1.5 7.9
ADMM4POP rel 4.2× 10−4 1.7 1.6 8.9

TABLE I
FIRST EXPERIMENT: CONSTRAINED POP; STATISTICS OVER 500

RANDOM RUNS. ADMM4POP IS IMPLEMENTED IN BOTH CONSTRAINED

(CNS) AND RELAXED (REL) VERSIONS.

In the second experiment, we deal with a system identifica-
tion problem. We consider the discrete-time dynamic system
y(k + 1) = αy(k) + βu(k + 1), k = 0, . . . ,K, and we aim
at recovering the parameters α and β given the knowledge
of the input u ∈ RK and noisy measurements of the output
w
.
= y+η, where η ∈ RK represents the noise. In particular,

we minimize the simulation error ℓ2-norm, i.e. we solve

min
y∈RK

∥y − w∥22

s.t.
y(k + 1) = αy(k) + βu(k + 1) k = 1, . . . ,K − 1.

As illustrated in Sec. II, we define the slack vari-
ables ψk = α and ξk = ψky(k) for k =
1, . . . ,K − 1, to decouple the bilinear constraints. Thus,
θ = (α, β, y(1), . . . , y(K), ψ1, . . . , ψK−1, ξ1, . . . , ξK−1) ∈
R2+K+2(K−1) is the total vector of variables, and B =
{(2 + h, 2 +K + h, 1 + 2K + h), h = 1, . . . ,K − 1}.

We perform 500 random runs, with α, β ∈ (−1,−0.5) ∪
(0.5, 1) generated uniformly at random; η is a white Gaussian
noise with variance 10−4. The variables are initialized with
Gaussian distribution. In each run, we measure K = 500 out-
put samples, the total number of variables being significantly
larger with respect to the first experiment. For ADMM4POP,
we set ρ = 1 and γ = 10. For the SDP approach, we set the
relaxation order to 2, which is observed to be sufficient to
achieve the global minimum.



Error Runtime (s)
Mean mean min max

SDP 6.1× 10−4 10.16 5.87 22.99
IPM 3.2× 10−4 3.97 1.34 36.73

ADMM4POP cns 3.6× 10−4 2.53 0.76 21.45
ADMM4POP rel 3.9× 10−4 0.62 0.40 1.61

TABLE II
SECOND EXPERIMENT: SYSTEM IDENTIFICATION; STATISTICS OVER 500
RANDOM RUNS. ADMM4POP IS IMPLEMENTED IN BOTH CONSTRAINED

(CNS) AND RELAXED (REL) VERSIONS.

In Table II, we collect the results. We define the error as
the ℓ2 distance between the estimates and the true parameters
α, β. All the considered algorithms identify the correct
parameters, with similar accuracy. Regarding the runtime,
ADMM4POP is faster than the other algorithms, with a more
evident improvement in the relaxed version.

We remark that, in the proposed experiments, we perform
the decoupled projections (18) sequentially, which leaves
room for further enhancement via parallelization, in particu-
lar in view of larger dimension problems.

VI. CONCLUSIONS

In this work, we develop ADMM4POP, a low-complex
strategy to implement the alternating direction method
of multipliers for local minimization of polynomial op-
timization problems. By developing a suitable formula-
tion of the problem, we prove that we can easily imple-
ment ADMM4POP for polynomial optimization, both in
constrained and relaxed versions. Moreover, we prove its
convergence to a stationary point in the relaxed versions.
Through numerical examples, we show that ADMM4POP
achieves the global minimum of polynomial problems with
reduced run time with respect to state-of-the-art methods. As
ADMM4POP is prone to decentralization, future work will
envisage the parallelization of the proposed method and its
application to large scale polynomial problems.
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