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Statistical Mechanics of Inference in Epidemic Spreading
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2Collegio Carlo Alberto, P.za Arbarello 8, 10122, Torino, Italy
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4Dipartimento di Fisica, Università ‘La Sapienza’, P.le A. Moro 5, 00185, Rome, Italy

We investigate the information-theoretical limits of inference tasks in epidemic spreading on graphs
in the thermodynamic limit. The typical inference tasks consist in computing observables of the
posterior distribution of the epidemic model given observations taken from a ground truth (some-
times called planted) random trajectory. We can identify two main sources of quenched disorder:
the graph ensemble and the planted trajectory. The epidemic dynamics however induces non-trivial
long-range correlations among individuals’ states on the latter. This results in non-local correlated
quenched disorder which unfortunately is typically hard to handle. To overcome this difficulty, we
divide the dynamical process into two sets of variables: a set of stochastic independent variables
(representing transmission delays), plus a set of correlated variables (the infection times) that de-
pend deterministically on the first. Treating the former as quenched variables and the latter as
dynamic ones, computing disorder average becomes feasible by means of the Replica Symmetric
cavity method. We give theoretical predictions on the posterior probability distribution of the tra-
jectory of each individual, conditioned to observations on the state of individuals at given times,
focusing on the Susceptible Infectious (SI) model. In the Bayes-optimal condition, i.e. when true
dynamic parameters are known, the inference task is expected to fall in the Replica Symmetric
regime. We indeed provide predictions for the information theoretic limits of various inference
tasks, in form of phase diagrams. We also identify a region, in the Bayes-Optimal setting, with
strong hints of Replica Symmetry Breaking. When true parameters are unknown, we show how a
maximum-likelihood procedure is able to recover them with mostly unaffected performance.

I. INTRODUCTION

Reconstructing information on epidemic spreading
is crucial to develop advanced digital contact trac-
ing strategies in order to mitigate the spreading of
an epidemic. Based on partial information on the
states of individuals at given times, the problem con-
sists in reconstructing the posterior distribution on un-
observed events, such as the initial state of the epi-
demic (the source), or undetected infected individuals.
These inverse problems are known to be challenging,
even for simple dynamics such as the Susceptible Infec-
tious (SI) model. Several methods have been proposed
to tackle inference problems in epidemics, including
Monte Carlo [1–3], heuristic [4], Belief Propagation [5–
8] mean field [6], variational [9, 10], and other [11, 12]
approaches. Although many of these methods have
shown through extensive simulations to reconstruct ef-
ficiently some information on the posterior probability
distribution in specific graphs sizes and ensembles, a
study of the feasibility of inference in epidemic models
is still generally lacking. A notable exception is given by
preprint [8] (which appeared while we were finishing the
present work). Its main aim is to provide a quantitative
study of the feasibility of inference in epidemic spread-
ing on random graphs, in the form of phase diagrams,

∗ matteo.mariani@polito.it

by means of extensive simulations on finite-size systems.
The work focuses on the Bayes optimal setting, and un-
covers interesting hints of failure of optimality, that are
attributed to finite-size effects.

In this work, we focus on the large size (thermo-
dynamic) limit and use the Replica Symmetric cavity
method. Outside the Bayes optimal regime, we study
the performances achieved when hyper-parameters are
inferred. We provide a theoretical analysis of inference
tasks aiming at reconstructing individuals’ trajectories
from the partial knowledge of the state of a fraction of
individuals at a given observation time in the thermo-
dynamic limit, which we also show to be in good agree-
ment with results on moderately large random graphs.
We provide quantitative predictions on the information
contained on the posterior probability given the obser-
vations, varying the characteristics of the epidemic, of
the contact network, and of the observations. Our ap-
proach relies on a study of the properties of the poste-
rior probability measure, for typical contact graphs and
realization of the epidemic spreading, using the Replica
Symmetric (RS) cavity method. We focus in this paper
on the simple SI model [13] , but the strategy is gen-
eral and can be applied to other irreversible spreading
process such as the SIR or SEIR models.

To perform this analysis, we need to compute aver-
ages of the inference task over realizations of a planted
epidemic trajectory (the ground truth), from which ob-
servations are taken. These observations have thus to be
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treated as quenched disordered variables (along with the
variables needed to describe the contact graph). How-
ever, their distribution is non-locally correlated: the
past history of the epidemic spreading induces long-
range correlations between the state of individuals at
the observation time. While the cavity method is well-
suited for models in which variables used to describe the
disorder are independent, applying it on a model with
long-ranged correlated disorder is instead non-trivial.
To circumvent this difficulty, we devised the following
strategy. We separate the planted dynamical process
in two sets of variables: (a) the transmission delays,
which are independent, and (b) infection times and ob-
servations, which are a deterministic function of other
infection times and of transmission delays through a
set of local hard constraints. We treat the first set as
quenched disorder, while the second set, together with
the variables used to describe the inferred trajectory,
are treated as dynamical variables. Although planted
infection times are not truly dynamical variables, their
deterministic dependence on the disorder allows us to
consider them as such without modifying the probabil-
ity distribution. This strategy thus effectively transfers
correlations out of the quenched variables and into the
dynamical ones, allowing a straightforward application
of the Cavity Method.

The paper is organized as follows. In section II we
set up the problem, and present our strategy to adapt
the RS formalism to inference in epidemic spreading.
Results are presented in section III. We start our anal-
ysis in the Bayes-optimal case (section IIIA), where
RS is expected to hold. We provide quantitative es-
timates of the feasibility of inference, including Bayes
estimators, and the Area Under the ROC Curve (AUC).
These RS predictions are in good agreement with the
result of message-passing algorithm on large instances.
We identify a region in the Bayes-optimal setting where
Belief-Propagation algorithm fails to converge, both on
finite-size instances (as already observed in [8]) and in
the thermodynamic (large-size) limit. This observation
is a strong hint for Replica Symmetry Breaking (RSB),
and is also confirmed by a failure of Monte-Carlo al-
gorithm performing the inference task in this regime.
This result is surprising, as it is often argued that be-
ing on the Nishimori line guarantees the absence of dy-
namic Replica Symmetry Breaking [14]. However, and
although Nishimori’s identities are always satisfied in
the Bayes-optimal setting, our observations can be ex-
plained by the fact that the overlap between planted
and inferred trajectories is not necessarily self-averaging
in this problem (that is not gauge invariant). In sec-
tion III B, we explore regimes outside Bayes-optimal
conditions. We identify a regime in which neither Be-
lief Propagation nor the iterative numerical resolution
of the RS cavity equations converge. This suggests the
presence of an RSB transition. When the parameters

of the model are unknown, one can rely on strategies
such as Expectation-Maximisation to infer them. These
strategies are equivalent to imposing the Nishimori con-
ditions. We provide a quantitative study of an iterative
strategy to infer the parameters of the prior in the ther-
modynamical limit. We show that, for a large range of
the prior’s parameters, it is possible to recover similar
accuracy than the one of the Bayes optimal case, even
when starting from initial conditions that are far from
the prior’s parameters. These results are in good agree-
ment with simulations in finite systems.

II. ENSEMBLE STUDY FOR INFERENCE IN
EPIDEMIC SPREADING

A. Epidemic Inference

SI model on graphs. We consider the SI model of
spreading, defined over a graph G = (V,E). At time
t a node i ∈ V can be in two states represented by a
variable xti ∈ {S, I}. At each time step, an infected
node can independently infect each of its susceptible
neighbors ∂i with probabilities λij ∈ [0, 1].

P (x) =

N∏
i=1

[
p(x0i )

T−1∏
t=0

p(xt+1
i |xti, xt∂i)

]
(1)

where x = {xti} for i = 1, . . . , N , t = 0, . . . , T , and

p(xt+1
i = I|xti, xt∂i) = 1− δxt

i,S

∏
j∈∂i

(1− λjiδxt
j ,I

) (2)

The dynamics (2) is irreversible: a given node can only
undergo the transition S → I. Therefore the trajec-
tory in time of an individual can be parameterized
by its infection time ti. We assume that a subset of
the nodes initiate with an infection time ti = 0, i.e.
x0i = I. A realization of the SI process can be univo-
cally expressed in terms of the independent transmis-
sion delays sij ∈ {1, 2, . . . ,∞}, following a geometrical
distribution wij(s) = λij(1 − λij)

s−1. Once the ini-
tial condition {x0i }i∈V and the set of transmission de-
lays {sij , sji}(ij)∈E is fixed, the infection times can be
uniquely determined from the set of equations:

ti = δx0
i ,S

min
j∈∂i

{tj + sji} (3)

We assume that each individual has a probability γ to
be infected at time t = 0, and we assume for simplicity
that the transmission probabilities are site-independent:
λij = λ for all (ij) ∈ E. The distribution of infection
times conditioned on the realization of delays and on
the initial condition can be written:

P (t|{x0i }, {sij , sji}) =
∏
i∈V

ψ∗(ti, t∂i, x
0
i , {sji}j∈∂i)
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FIG. 1. The factor graph construction. On the left there
is an example of contact network among individuals. We
map this onto the factor graph on the right: for each in-
dividual we place a corresponding factor node and for each
edge between two individuals we place the super-variable

Tij = (τ
(j)
i , τ

(i)
j , t

(j)
i , t

(i)
j ) containing the planted and the in-

ferred trajectories of both individuals. This construction
increases the complexity of the BP messages, but allows
to obtain a disentangled factor graph map (without short
loops), which mirrors the contact network.

with t∂i = {tj , j ∈ ∂i}, and where ψ∗ enforces the above
constraint on the infection times:

ψ∗ = I[ti = δx0
i ,S

min
j∈∂i

{tj + sji}] (4)

with I[A] the indicator function of the event A. Once
averaged over the transmission delays and over the ini-
tial condition, we obtain the following distribution of
times:

P (t) =
∏
i∈V

ψ(ti, t∂i) (5)

where:

ψ =
∑
x0
i

γ(x0i )
∑

{sji}j∈∂i

ψ∗(ti, t∂i, x
0
i , {sji}j∈∂i)

∏
j∈∂i

w(sji)

and γ(x) = γI[x = I] + (1− γ)I[x = S].
Inferring individual’s trajectories from partial obser-

vations. In the inference problem, we assume that
some information O = {Om}m=1,...,M is given on the
trajectory by the result ofM independent medical tests.
The probability of observations P (O|t) factorizes over
the set of tests:

P (O|t) =
M∏
m=1

ρ(Om|tim) . (6)

Each test gives information about the state σm ∈ {I,S}
of an individual im at a given time θm ∈ {0, 1, . . . , T}
with a false rate fr ∈ [0, 1]. We can thus write each ob-
servation as Om = (im, θm, σm, fr). The probability of
observation conditioned to the infection time is there-
fore:

ρ(Om|tim) = (1− fr)I[xθmim = σm] + frI[xθmim ̸= σm] (7)

Here for simplicity we assume frm ≡ fr constant which
implies identical false positive and negative rates. Using
Bayes rule, the posterior probability of infection times
is:

P (t|O) =
P (t)P (O|t)
P (O)

(8)

with P (t) given in (5).
Bayes optimal setting. In the Bayes optimal setting,

the parameters (λ, γ, fr) of the epidemic spreading pro-
cess are known in the inference task. This means that
the parameters (λ, γ, fr) used in the posterior proba-
bility (8) are the same than the true parameters used
to generate the observations. However in many cases,
values of the parameters are unknown, and need to be
inferred. In such a case, we denote by (λ∗, γ∗, fr∗) (resp.

λI , γI , frI) the parameters used to generate the obser-
vations (resp. to infer the infection times).

B. Ensemble average

Our objective is to estimate how well observables on
the true (or planted) infection trajectory τ are approx-
imated by those of the inferred trajectory t, which fol-
lows the posterior distribution given the observations
O. We shall characterize the properties of the posterior
distribution (8) on a random ensemble of contact graphs
and realisation of the epidemic spreading. An instance
will be defined by a contact graph G, a ground truth
trajectory τ and a set of observation O sampled from
the distribution P (O|τ). Three graph ensembles are
considered: random regular (RR), Erdös-Rényi (ER)
(defined for example in [15]), and graph ensemble with
a truncated fat tailed (FT) degree distribution. We will
be interested in the large size limit n→ ∞, with n the
number of individuals, at fixed degree distribution. In
this limit, graph instances of the above-mentioned en-
sembles are locally tree-like, allowing us to exploit the
cavity method in order to determine the typical prop-
erties of the measure (8).

Correlated observations. A technical difficulty arises
when one tries to apply the cavity method directly
to the posterior distribution (8). This distribution
is defined for a given realisation of the observations
O = {Om}m=1...M . Observations O have to be treated
as quenched (disorder). While the cavity method is
well-suited for local, independent random disorder, the
past history of the epidemic spreading has introduced
non-trivial long-range correlations between the observa-
tions {Om}. To overcome this difficulty, we rely on the
set of hard constraints (4) on the planted times that
we recall here: τi = δx0

i ,S
minj∈∂i{τj + sji}. These

constraints are expressed in terms of independent ran-
dom variables: the local delays sij and the initial-time
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state x0i . In fact, knowing these two sets of variables, it
is possible to determine each (planted) infection time:
for fixed delays {sij , sji}(ij)∈E and seeds {x0i }i∈V , the
planted times are fixed to be the unique solution of the
set of constraints (4). Our strategy is therefore to treat
these local variables as disorder (quenched) variables,
and consider instead the planted time as constrained
dynamical (annealed) variable. To treat the noise in
the observations, we also define the set of error bits
{εm}m=1,...,M , with εm = I[σm ̸= xθmim ]. We denote

by D = {{x0i }i∈V , {εm}Mm=1, {sij , sji}(ij)∈E} the set of
all disordered variables. At fixed disorder, the set of
planted times τ and observations O is uniquely deter-
mined. Averaging over the disordered variables is there-
fore equivalent to average over the set of observations:
with this strategy we can perform the quenched aver-
age over correlated observations. Obviously, the price
to pay with this approach is to treat planted times as
annealed variables. As a result, the BP messages are
over a couple of times (τi, ti) instead of a single time
ti, increasing the complexity in the resolution of the RS
equation with population dynamics (see appendix A for
further details).

A graphical model for the joint distribution over
planted and inferred trajectories. The joint probability
of the planted times τ , of the observations O = {Om}
and of the inferred times t conditioned on the disorder
D is:

P (t,O, τ |D) =
1

P (O)
P (τ |D)P (O|D, τ)P (O|t)P (t|D)

(9)

where in the last line we have again noted that the
posterior distribution on the inferred times t depends
only on the observations. The first term in the product
is:

P (τ |D) =
∏
i∈V

ψ∗(τi, τ∂i;x
0
i , {sji}j∈∂i)

with ψ∗ given in (4). The second term in the product is
the probability of having observation O = {Om} given
the planted times τ and the disorder D:

P (O|D, τ) =
M∏
m=1

(
(1− εm)δσm,x

θm
im

+ εm(1− δσm,x
θm
im

)
)
.

The third and the fourth terms are respectively given
in (6) and (5). Finally, the denominator

P (O) =
∑
t

P (t)P (O|t)

can be seen as a complicated function of the observa-
tions O, but since the observations are a deterministic

function of the disorder, we will denote it as a function
of the latter:

P (O) = Z(D)

Finally, we obtain the joint probability distribution
of planted and inferred times τ , t conditioned on the
disorder in the form of a graphical model:

P (τ , t|D) =
1

Z(D)

∏
i∈V

ψ∗(τi, τ∂i ;x
0
i , {sji}j∈∂i)

× ψ(ti, t∂i)ξ(τi, ti; {εm}im=i)

(10)

with:

ξ(τi, ti; {εm}im=i) =
∏

m:im=i

ρ(Om|tim). (11)

Note that when the error probability is zero: fr = 0
so a single observation reads Om = (im, θm, σm, 0),
the error variables are always εm = 0 (no corruption),

and ρ(Om|tim) = I[σm = xθmim ]. The coupling term
ξ(τi, ti; {εm}im=i) between inferred and planted times
in the joint probability becomes:

ξ(τi, ti) =
∏

Om:im=i

I[xθmim = σm]

C. Nishimori conditions and Replica Symmetry.

There is a general argument that hints at the ab-
sence of replica symmetry breaking in the Bayes optimal
case [14, 16]. However, it is not clear that this property
holds in general. The argument is a consequence of the
Nishimori conditions, that we reformulate here in our
setting. Consider a given realization of the observa-
tions O, and two configurations t1, t2 sampled indepen-
dently from the posterior distribution PI(t|O), where
the subscript I refers to the set of hyper-parameters
λI , γI , frI used in the inference process. Let f(t1, t2)
be an arbitrary function of two configurations, and
⟨f(t1, t2)⟩ =

∑
t1,t2

f(t1, t2)PI(t1|O)PI(t2|O) its aver-

age over the posterior distribution. Averaging over the
observations O, we get:

EO[⟨f(t1, t2)⟩] =
∑
O
P∗(O)⟨f(t1, t2)⟩

=
∑
O

∑
t1,t2

P∗(O)f(t1, t2)PI(t1|O)PI(t2|O)

=
∑

t1,O,t2

P∗(O)
PI(t1)PI(O|t1)

PI(O)
PI(t2|O)f(t1, t2)

(12)

where in the third line we used the Bayes law for
PI(t1|O), and where the superscript ∗ refers to the set
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of planted hyper-parameters λ∗, γ∗, fr∗ used in the gen-
eration of the observables. In the Bayes optimal setting,
the two sets of hyper-parameters coincide (λ∗, γ∗, fr∗) =

(λI , γI , frI). We therefore obtain the equality:

EO[f(t1, t2)] =
∑
τ,O,t

P∗(τ)P∗(O|τ)P∗(t|O)f(τ , t)

= E[f(τ , t)]
(13)

with τ a planted configuration, and t a random sample
of the posterior. The quenched average EO is over the
set of observations O. Note that in our case, we aver-
age instead over the set of disordered variables D: as
explained above this is equivalent to average over obser-
vations O, since O is a deterministic function of D. The
equality (13) is true in particular when the function f
is taken to be the overlap between two configurations.
In words, it states that the average of the overlap q be-
tween two configurations sampled independently from
the posterior, is equal to the average of the overlap q∗

between the planted configuration and a random sam-
ple from the posterior. Applying this equality to higher
moments of the overlap, it is actually possible to show
that the two distributions are equal. In models with
gauge invariance, such as the planted spin glass studied
in [14, 16], the overlap q∗ coincides with the magnetiza-
tion. It can be argued that the magnetization is a self-
averaging quantity, and therefore that the overlap q is
also self-averaging on the Nishimori line. This argument
allows to conclude that the probability distribution of
the overlap q is trivial, and therefore that there is no
replica symmetry breaking phase in the Bayes optimal
setting. In the case of epidemics, it is less clear that the
overlap q∗ between the planted configuration and a ran-
dom sample of the posterior is a self-averaging quantity.
In fact, we observed a region (for small seed probability
γ and large transmission rate λ), which presents signs
of a failure of optimality, signalled by a lack of conver-
gence of Belief-Propagation in the thermodynamic limit
(see section III, where we conjecture that this is due to
replica symmetry breaking). A similar observation is
made in [8] on finite size instances.

D. Belief-Propagation equations for the
joint-probability

The factor graph associated with the probability dis-
tribution (10) contains short loops which compromise
the use of BP. In order to remove these short loops,

we introduce the auxiliary variables (τ
(j)
i , τ

(i)
j , t

(j)
i , t

(i)
j )

on each edge (ij) ∈ E of the factor graph, which are

the copied times τ
(j)
i = τi, and t

(j)
i = ti for all j ∈ ∂i.

Let Tij = (τ
(j)
i , τ

(i)
j , t

(j)
i , t

(i)
j ) be the tuple gathering the

copied times on edge (ij) ∈ E. The probability distri-
bution on these auxiliary variables is:

P ({Tij}(ij)∈E |D) =
1

Z(D)

∏
i∈V

Ψ({Til}l∈∂i;Di) (14)

where Di = {{sli}l∈∂i, x0i , {εm}im=i} is the disorder as-
sociated with vertex i ∈ V , and with:

Ψ({Til}l∈∂i;Di) =

ξ(τ
(j)
i , t

(j)
i ; ci)ψ

∗(τ
(j)
i , τ

(i)
∂i ; {sli}l∈∂i, x

0
i )×

×ψ(t(j)i , t
(i)
∂i )

∏
l∈∂i\j

δ
t
(j)
i ,t

(l)
i
δ
τ
(j)
i ,τ

(l)
i

(15)

where j ∈ ∂i is a given neighbour of i. The factor
graph associated with this probability distribution now
mirrors the original graph G = (V,E) of contact be-
tween individuals, as shown in Figure 1. The variable
vertices live on the edges (ij) ∈ E, and the factor ver-
tices associated with the function Ψ live on the original
vertex set V . We introduce the Belief Propagation (BP)
message µi→Ψj

on each edge (ij) ∈ E as the marginal
probability law of Tij in the amputated graph in which
node j has been removed. The set of BP messages obey
a set of self-consistent equations:

µi→Ψj (Tij) =

=
1

zΨi→j

∑
{Til}k∈∂i\j

Ψ({Til}l∈∂i;Di)
∏

k∈∂i\j

µk→Ψi
(Tik)

(16)

were zΨi→j is a normalization factor. These equations
are exact when the contact graph G = (V,E) is a tree.
In practice, the BP method is also used as a heuristic
on random sparse instance. Introducing a horizon time

T , the random variable Tij = (τ
(j)
i , τ

(i)
j , t

(j)
i , t

(i)
j ) lives

in a space of size O(T 4). We see in appendix A how
to simplify the BP equations (16), and obtain a set of
equivalent equations defined over modified BP messages
living in a smaller space.

E. Estimators

To quantify the feasibility of inference tasks, some
estimators are defined in this paragraph and studied in
the Results section III. In view of that, it is useful to
define Pi,t(x

∗,t
i , xti) as the marginal probability of having

the planted state x∗,ti and the inferred state xti of one
individual i ∈ V at a given time t ∈ {0, 1, . . . , T}.
Maximum Mean Overlap The overlap at a given

time t between the planted configuration x∗,t and an
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estimator x̂t is Ot(x
∗,t, x̂t) = 1

N

∑N
i=1 δx∗,t

i ,x̂t
i
. In the in-

ference process, on a given instance, the planted config-
uration is not known, and the best Bayesian estimator
is obtained by assuming that x∗,t is distributed accord-
ing to the posterior distribution. The best estimator of
the overlap x̂t,MMO is the one maximising the overlap
averaged over the posterior:

MOt(x̂
t) =

∑
xt

P (xt|O)Ot(x
t, x̂t) , (17)

which is achieved for x̂t,MMO
i = argmaxxt

i
(Pi,t(x

t
i|O).

The overlap Ot(x
∗,t, x̂t,MMO) provides a quantitative es-

timation of the accuracy of the Maximum Mean Over-
lap estimator x̂t,MMO. We compute this quantity, av-
eraged over the graph ensemble, and the realisation of
the planted configurations and of the observations:

EG,D[Ot(x̂
∗,t, x̂t,MMO)] .

Note that in our formalism, we have access the marginal
probability over planted and inferred configurations,
conditioned on the disorder D: Pi,t(x

∗,t
i , xti|D). How-

ever, as previously explained, fixing the disorder vari-
ables is sufficient to fix the planted configuration and
the observations O.
Minimum Mean Squared Error We also consider the

squared error (SE) at a given time t between the planted
configuration xt,∗ and an estimator x̂t:

SEt(x
∗,t, x̂) =

1

N

N∑
i=1

(x∗,ti − xi)
2.

As for the overlap, the best Bayesian estimator for
the squared error x̂t,MMSE is the one minimizing the
squared error averaged over the posterior:

MSEt(x̂
t) =

∑
xt

P (xt|O)SE(xt, x̂t) (18)

which is achieved for x̂t,MMSE
i =

∑
xt
i
Pi,t(x

t
i|O)xti. We

compute the average, over the graph ensemble and the
disorder, of the squared error between the planted con-
figuration and the MMSE estimator:

EG,D[SEt(x̂
∗,t, x̂t,MMSE)] .

Area Under the Curve (AUC) On a single instance,
the receiver operating characteristic (ROC) curve is
computed as follows. At a fixed time t, one computes for
each individual its marginal probability Pi(x

t
i = I|O).

For a given threshold ρ ∈ [0, 1], the true positive
rate TPR(ρ) (resp. false positive rate FPR(ρ)) is the
fraction of positive (resp. negative) individuals with
Pi(x

t
i = I|O) ≥ ρ. The ROC curve is the parametric

plot of TPR(ρ) versus FPR(ρ), with ρ the varying pa-
rameter. Note that the FNR (and therefore the ROC
curve) is undefined when all individuals are infected (all
positive). The area under the curve (AUC) can be inter-
preted as the probability that, picking one positive in-
dividual i and one negative individual j, their marginal
probabilities allows to tell which is positive and which
one is negative, i.e. that Pi(x

t
i = I|O) > Pj(x

t
j = I|O).

This allows us to compute the AUC under the Replica
Symmetric formalism.

F. Inferring the hyper-parameters

The prior parameters, with which the planted epi-
demic is generated, might not be accessible in the in-
ference process. In those cases, we propose to infer
them from the observations by approximately maximiz-
ing P (O|λI , γI) at fixed observations O. In this sec-
tion we provide an upper bound to the feasibility of
parameters inference. It is an upper bound because the
process is described for the ensemble case, i.e. for an
infinite sized contact graph. This means that also the
number of observations is infinite. The idea is to find
the most typical parameters γI , λI for the given set of
observations. For inferring γ we use the Expectation
Maximization (EM) method, an iterative scheme which
consists in separating the optimization process in two
steps:

1. At fixed BP messages, the update for γ at kth
iteration reads:

γk = argmax
γ

⟨logP (t, O|γ)⟩{µ}k
, (19)

where {µ}k is a shorthand for the set of all BP
messages at kth iteration.

2. At fixed γk, the messages are updated with BP
equations.

To understand (19) we recall the definition of the vari-
ational free energy:

F [Q](γ) := −⟨logP (t,O|γ)⟩Q + ⟨logQ(t)⟩Q (20)

The posterior distribution P (t|O, γ) can be shown to be
the distribution Q which minimizes F (see for example
[17]). If we evaluate averages with fixed BP messages,
then the dependency of F on γ is only on the first ad-
dend of the right hand side. Then the optimization on
γ reduces to equation (19). By setting to zero the first
derivative of (19) w.r.t. γ we have, for the kth iteration:

γk =
1

N

∑
i∈V

pI,ki (ti = 0|O) (21)
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Where pI,ki (ti = 0|O) is the posterior probability at
kth iteration of EM for individual i to have infection
time equal to 0 (i.e. to be the patient zero). The pro-
cedure we propose to include the inference of patient
zero probability is therefore to simply update γI with
equation (21) at every sweep of BP update on the popu-
lation. We could write equations for EM in λ, but they
would be more involved. We opted therefore to simply
perform a gradient descent (GD) on the Bethe Free en-
ergy. For the epidemic propagation on graph, the Bethe
free energy can be related to the normalization of the
BP messages and BP beliefs, respectively addressed as
zΨi→j and zΨi

:

FBethe =
∑
i∈V

(1

2
|∂i| − 1

)
log zΨi

− 1

2

∑
j∈∂i

log zΨi→j


Overall, the inference of prior hyper-parameters is done
by alternating one sweep of BP update of the messages
at fixed parameters (γI , λI) with one step of EM for γ
and one step of GD for λ.

III. RESULTS

In this section we explore the performance of infer-
ence tasks for the SI model. We consider two different
regimes:

1. When the parameters of the prior distribution are
known in the inference process. (Bayes optimal
setting)

2. When the parameters of the prior distribution are
not known, and are inferred.

The results are obtained by randomly initializing a pop-
ulation of BP messages and by iterating a population
dynamics algorithm, as described in appendix B. The
algorithm stops when the BP messages satisfy a sim-
ple convergence criterion on the marginals, which must
not fluctuate more than the square root of size of the
population. If convergence criterion is not reached, the
algorithm stops after a fixed number of maxiter sweeps
(typically we set the population size N ∼ 104 and the
total number of sweeps maxiter = 100). Convergence is
(almost always) reached when the prior is known (or in-
ferred), except for a rather interesting and unexpected
regime which is discussed later on. The algorithm shows
non-converge zones, as expected, also when the prior is
not known.

A. Results in the Bayes-Optimal case.

In this paragraph, we study several measures and es-
timators that quantify the hardness of inference, vary-

FIG. 2. Several measures: (first row: MMSE, second row:
MMO, third row: AUC) quantifying the hardness of epi-
demic inference, as a function of patient zero probability γ,
and infection probability λ. Each column corresponds to
three different times at which the quantities are computed
(from left to right: initial time t = 0, intermediate time
t = 4, and final time t = T = 8). The three measures display
the same behaviour, except for the initial time, when AUC is
able to capture for high values of λ and γ that observations
are not informative enough. Notice that MMSE quantifies
the error in inferring individual’s states, so it has a flipped
behaviour with respect to the other quantities (MMO and
AUC are high when inference performance is good). These
results were obtained for ER graph ensemble with average
degree 3.

ing epidemic parameters (transmission probability λ,
patient zero probability γ), but also the fraction of ob-
served individuals. We compare the Minimum Mean
Squared Error (MMSE), the Maximum Mean Overlap
(MMO), and the Area Under the ROC (AUC) (see sec-
tion II E for their definition), and the Bethe Free Energy
(Fe) associated with the posterior distribution P (t|O).
In Figure 2, we fix the fraction of unobserved individ-
uals (dilution) to dil = 0.5 (half the individuals are
observed). We set the observation time at final time
T = 8, and explore the space (γ, λ). MMSE, MMO
and AUC are computed at three different times (initial
time t = 0, intermediate time t = 4, and final time
t = T = 8). We can see that MMSE and MMO show
the same behaviour at all times. For very low infection
probability λ, and patient zero probability γ, we see
that MMSE is low (while MMO and AUC are high),
meaning that the information contained in the inferred
posterior distribution allows to recover the planted con-
figuration with good accuracy. In this regime, typically
seeds are surrounded by a small neighborhood of in-
fected individuals, well-separated from the other seeds,
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making inference task easy. For high values of patient
zero probability γ and infection λ, instead, the popu-
lation becomes completely infectious in few time steps.
Also in this regime, all the estimators show great per-
formance for intermediate (t=4) and final times, be-
cause the posterior marginals assign to every individual
a probability 1 of being infectious. The hard regime is
for intermediate values of γ, λ.

Note also that at t = 0, MMSE (respectively MMO)
is low (resp. high) for high values of γ. However, this
does not mean that inference performance is good in
this regime. Indeed for large γ, the majority of individu-
als are patients zero, and the other individuals are likely
to be infected before the observation time T . Therefore,
the observations are (almost) all positive, making im-
possible to distinguish the patients zero from the ones
infected at later time. Thus, MMSE at time t = 0 is
low because the marginal posteriors give high proba-
bility of being infected at t = 0, independently of the
transmission rate λ. However, the (few) non-patients
zero will remain undetected. A quantity that is sensi-
ble to this problem is the AUC, which at time t = 0 has
in fact a different behaviour with respect to the other
measures. Another (slightly) different quantity, for ex-
ample, is the AUC evaluated only on non observed in-
dividuals. When many observations are done, the AUC
is dominated by the observed individuals. Thus, evalu-

FIG. 3. A comparison between AUC evaluated on all in-
dividuals (AUC, first row) VS only unobserved individuals
(AUCNO, second row). The two measures have a very simi-
lar but not identical behaviour. In particular, at low dilution
(many observations) the AUCNO is systematically smaller
than the AUC as expected. This difference is more pro-
nounced for low values of λ, and at intermediate and final
time. These results are for ER graph ensemble, with av-
erage degree 3. We remark here that AUC is not 0.5 for
dilution equal to 1. In fact, ER graphs are heterogeneous
(with a Poisson law degree distribution). This implies that
some information about the probability of infection of each
node is contained in the graph itself. For example, the most
connected nodes have highest probability of being infected.
This allows to achieve some reconstruction also without any
observation (dil=1)

FIG. 4. The comparison between Sibyl algorithm (BP) for
a single instance of N = 300 (triangles), N = 3000 (dots),
and N = 30000 (squares) individuals, and the ensemble re-
sults obtained in the thermodynamic limit with population
dynamics (black solid line). The plots show the MMSE at
intermediate time t = 6, as function of the number of in-
fected at final time T = 8, which is a function of infection
parameters γ and λ. For this plot the patient zero probabil-
ity is fixed at γ = 0.15. The first row represents the MMSE
for Random Regular graphs (degree 3) while the second row
is for Erdös-Rényi (ER) with average degree 3. Each col-
umn instead is associated with a value of observations dilu-
tion dil : the first column is for dil = 0 (all observed) while
the second is for dil = 0.5. We see a very good agreement,
that increases with the size of the the single instance contact
graph, and that we checked to persist in the other observ-
ables (MMO and AUC).

ating AUC only on non observed individuals (AUCNO)
can be a useful tool to understand the predicting power
of the algorithm on individuals for which no informa-
tion is given. To see the difference between AUC and
AUCNO, we fix the patient zero probability γ = 0.1,
and study these two measures as a function of the in-
fection probability λ and the observations dilution dil
(i.e. the fraction of unobserved individuals), see Figure
3. We see that the two estimators behave differently, for
example at the intermediate time t = 4, for low dilution
(i.e. many observations) and low transmission rate λ.
In this regime, there are only few infected individuals at
the observation time (low γ and λ). While AUC is close
to 1, AUCNO is low, indicating that it is actually hard
to find who are the unobserved infected individuals.

Comparison with finite-size instances. It is natural
to wonder whether our ensemble results obtained in
the thermodynamic limit, with the RS cavity method,



9

FIG. 5. Free energy profile for two different regimes. Left
panel: as a function of patient zero probability γ and infec-
tion probability λ, at fixed dilution dil = 0.5. Right panel:
as a function of observations dilution dil and λ, at fixed pa-
tient zero probability γ = 0.1. The black part of the plot
corresponds to the regimes in which observations do not
bring any information, i.e. F ≃ 0. This happens obviously
at dil = 1 because no observation is done. However, also
for non-zero dilution, the free energy can be zero. When
the infection transmission λ is high enough, in fact, all the
individuals are infected at final time with probability al-
most equal to 1. Since for this plot the observations are
performed at final time, then they all simply register the
infectiousness of each individual, factually carrying no in-
formation with them. Only in the intermediate regimes, i.e.
when the numbers of infectious and susceptible individuals
are comparable to each others, observations carry informa-
tion. In this regime the free energy is non-zero and inference
is non trivial. The graph ensemble analyzed here is Erdös-
Rényi with average degree 3.

are consistent with large finite-size single instances. To
check this point, we initialized large sized (N = 30000)
graphs, and simulated discrete-time epidemic spread-
ing and observation protocol. We used Sibyl [5], which
is a Belief Propagation algorithm for calculating the
posterior marginals in single instance problems. We
computed the MMSE, and we compared it with the RS
predictions. An example is shown in Figure 4, showing
a good agreement between the RS predictions and the
results on a single large instance.

Information contained in the observations. All the
observables described so far are time-dependent quan-
tities, giving an estimation on how easy/hard it is to

infer the planted individual states x∗,ti at a given fixed
time t. It is useful to define a time-independent ob-
servable, which gives a general overview of the infer-
ence process. We opted to study the Bethe Free En-
ergy F = − logZ(D) = − logP (O), which can be ex-
pressed in terms of BP marginals (see its expression in
appendix A 6). It is the free energy associated with the
posterior distribution:

P (t|O) =
P (t,O)

P (O)
, (22)

where

P (O) =
∑
t

P (t,O) =
∑
t

P (O|t)P (t).

F = − logP (O) quantifies how informative the obser-
vations O are: the quantity P (O) is the sum of trajec-
tories (weighted with their prior probability) which are
compatible with the observation constraints O. Obser-
vations reduce the space of the possible trajectories; as
an extreme example, if we observed (noiselessly) every
individual at every time, the space of possible trajecto-
ries would collapse on a single trajectory (the planted
solution). The plots in Figure 5 show the free energy
in the two different regimes discussed above. The free
energy is obviously 0 for dil = 1 (no observation). How-
ever, it is close to 0 in other cases too, e.g. for high
values of λ. For those values, the infection spreads very
fast. As a consequence, at final time all the individuals
are infected. Thus, since the observations are taken at
final time, they do not bring valuable information on
the planted trajectory: they will always register a pos-
itive (infected) result for all individuals at final time.
In other words, all trajectories sampled from the prior
are compatible with the observation that all individu-
als are infected at time T . Note however that inference
can be easy in this regime, as it can be checked com-
paring Figure 5 with Figures 2 and 3 (for times t = 4
and t = 8). In this regime, although observations are
not informative, the prior is concentrated on few tra-
jectories (that are compatible with all individuals being
infected at times t = 4 and t = 8), making inference
task trivial. The interesting (and hard) regimes are at
intermediate/low values of γ and λ and for non-zero
dilution. In this regime, although observations are in-
formative (F positive) the prior is not concentrated on
few trajectories, making the inference a non-trivial task.

More graph ensembles. The analysis shown so far
has been performed on Erdös-Rényi graphs. To study if
and how inference performance is affected by the graph
structure, we compared the results on three families of
graphs:

1. The Random Regular (RR) ensemble, where each
node has the same degree d;

2. The Erdös-Rényi (ER) ensemble. In the large size
limit, the degree distribution is a Poisson distri-
bution of average d;

3. A (truncated) fat tailed (FT) ensemble of graphs,
with a degree distribution p(d) = 1

Z
1

d2+a for d ∈
[dmin, dmax] and p(d) = 0 if d /∈ [dmin, dmax]. The
quantity Z is the normalization of the distribution
and the parameter a can be fixed by fixing the
average degree.
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FIG. 6. Comparing feasibility of inference for different graph
ensembles and for nonzero observation noise. First row: the
plots show the MMSE at time t = 6, with observations made
at final time T = 8, as functions of the patient zero proba-
bility γ and the infection probability λ. The three plots are
(from left to right) for Random Regular (RR), Erdös-Rényi
(ER) and Fat Tailed (FT) graph ensembles. The average
degree is fixed to 3 for the three ensembles examined. It can
be seen that the profiles share similarities, but the more the
degree distribution widens (from RR to ER to FT), the flat-
ter is the MMSE. This is due to the presence (or absence) of
high-degree nodes. In RR ensemble, all nodes have the same
degree, so for example we see that inference is more difficult
at low values of γ and values of λ. In this region, the pres-
ence of highly connected nodes simplifies inference because
they (and their neighbours) will probably be infectious at
time t=6. The dashed lines correspond to the cases studied
in Figure 4 at dilution 0.5. The only difference is in the
y-axis, which is λ for this plot and the number of infected
for the plots in Figure 4. Second row: the AUC as function
of observations’ dilution (dil) and false rate (fr). The AUC
decreases with fr and dil. The false positive rate and false
negative rate are assumed to be the same. The patient zero
probability is fixed to γ = 0.03 and the infection probability
is λ = 0.03. The ensemble graph is Random Regular with
degree 11.

The choice for the third graph ensemble allows for the
existence of highly connected nodes, while still being
handled by Belief Propagation (BP), since the distri-
bution of the degree is truncated to a finite maximum
value dmax. In Figure 6 (first row), we compare the
Minimum Mean Squared Error (MMSE) at time t = 6
for the three ensembles of graph. The average degree is
fixed to 3 in all three graph ensembles.

Noise in observations. When noise affects individ-
uals’ observations, the inference results get typically
worse. This can be seen in Figure 6 (second row), where
we studied the AUC as function of observations dilution
and noise (false rate, fr). For false rate equal to 0.5, the
observations carry no information, since they are wrong
half of the time. This is identical to set dilution to
dil = 1, i.e. not performing any observation. For inter-
mediate values, we see that increasing false rate and/or
dilution always leads to worse inference, as expected.

FIG. 7. Study of population dynamics, Monte Carlo and
number of clusters for zero-patience inference. We studied,
for a RR graph with degree 3, the convergence of popula-
tion dynamics (infinite graph) and Monte Carlo (finite-size
graph). It breaks down at around γ̃ ≃ 0.013. The black dots
represent the number of iterations for population dynamics
to reach convergence, normalized by the total number of it-
erations allowed. The continuous squared-marked lines rep-
resent the fraction of successful Monte Carlo runs. We say
that MC is successful every time it reaches a configuration
which satisfies the observations (see main text). The failure
of Monte Carlo coincides with BP failure. We conjecture
that this is due to Replica Symmetry Breaking. We think
that the main reason of this breakdown is because the space
in which a patient zero can be placed in the posterior be-
comes clustered (see Figure 8). To support this conjecture,
we plot the fraction of connected components of the sub-
graph of all the individuals that could be the patients zero
without violating the S observations. This number, as ex-
pected, grows sharply in the interval in which BP ceases to
converge. The failure of convergence arises when the num-
ber of possible zones to place the patient zero (continue,
blue line) becomes higher to the actual fraction of patients
zero (dotted, blue line). This suggests that when the num-
ber of zones in which a patient zero might be becomes larger
than the number of patients zero, then the problem becomes
hard, as illustrated in Figure 8.

Convergence-breakdown for low seed probability A
surprising behavior of the Belief Propagation equations
was observed in [8], for single instances at small val-
ues of γ, the patient zero probability. In fact, even
in the Bayes optimal conditions, BP stops to converge.
We checked that this breakdown of convergence is ac-
tually present even in the thermodynamic limit, using
our population dynamic algorithm. This lack of conver-
gence, therefore, seems to be related to a more profound
reason. To understand what is happening, we simpli-
fied the framework by setting the infection probability
λ to 1 and by observing all the individuals at final time.
In this regime, in Figure 7 the black dots represent the
number of iterations needed for the population dynam-
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FIG. 8. A 2D plot to visualize the geometric change under-
gone by the configuration space that could explain why pop-
ulation dynamics and Monte Carlo schemes stop to converge.
In this plot, obtained by simulating epidemic spreading in
a 2 dimensional lattice, we compare two scenarios. To the
right, γ is higher, namely there are more patients zero (green
dots). This implies that the number of infected (greed, red
and grey dots) is higher, so the number of S-observed in-
dividuals (no dots) is smaller. The patients zero can not
be too close to the S-observed individuals because the in-
fection probability is 1, so the observation constraint would
be violated. The red dots represent all the individual which
might be the patient zero according to the observations (i.e.
individuals tested I and not too close to S-observed individ-
uals). When the number of patients zero is lower, (left) the
number of S-observed individuals increases. So the possible
zones to accommodate patients zero (green plus red dots)
reduce and get clustered. This could create several sepa-
rated states of the posterior, each one corresponding to a
possible combination of placements of patients zero.

ics algorithm to converge. Around γ = γ̃ = 0.013 the
algorithm stops converging. An intuitive explanation to
explain this behaviour is the following: for γ around γ̃
at final time many individuals are observed infectious
(I) and a small (but extensive) part are observed sus-
ceptible (S). As λ = 1, the sole non-deterministic part
of the process is the initial state, so the inference prob-
lem reduces to guess the position of the patients zero.
The S individuals not only signal that they were not
infected in the epidemic process, but also that any pa-
tient zero must be at distance > T . For example, for a
RR graph, this excludes a sphere centered in S-observed
with d(d − 1)T−1 individuals. For γ around γ̃ these
spheres touch and intersect, so that the group of indi-
viduals eligible to be the patients zero gets separated
in clusters. In Figure 8 we give a plot in 2D of the
phenomenon. When the number of observed S is suffi-
ciently high, due to the fact that there are few patients
zero, the space in which patients zero could physically
be gets fragmented. To check that this is what actually
happens in a Random Regular graph, we initialized a
graph and counted the connected components in which
a patient zero could be present without violating the S
observations. This number actually sharply increases in
the decreasing γ direction, around γ̃, i.e. when the al-

gorithm stops converging. Further evidence of a phase
transition is given by Monte-Carlo dynamics. We im-
plemented a simple Monte Carlo simulation on a graph.
We first sampled the planted (ground truth) configura-
tion, from which we collected the observations. The ob-
servation protocol was set to observe all the individuals
at the final time T (without observation noise). Then
we started a Metropolis-Hasting Monte Carlo simula-
tion in order to sample a configuration satisfying all
the observations. To do so, we initialize a configuration
by doing a sample x of the prior distribution. The ini-
tialization configuration typically does not satisfy the
observations. So we make the following move: we ran-
domly select an individual and we change its t = 0 state
by sampling the I state with probability γ (and the S
state with probability (1−γ)). Subsequently, the initial
state configuration is evolved (deterministically, since
the infection probability is λ = 1). The configuration
at final time is then checked to be consistent with the
observations. In particular, we introduced the energy:

U = −
N∑
i=1

log p(oi|xTi ) (23)

Where x is the configuration and each oi is the observa-
tion on the ith individual. In principle p(oi|xTi ) should
be either 0 (when the configuration does not satisfy the
observations) or 1 (when the observation is satisfied).
In order to avoid infinite energy barriers, we introduced
a small noise in observations, which we reduced during
the Monte Carlo by means of an annealing procedure.
In other words, the energy is just a penalization for each
broken constraint. At each step, the move in the space
of initial states described above is made. The move is
accepted by following a standard Metropolis scheme.
The MC stops when the configuration satisfies all con-
straints. For each value of γ we repeated 60 times the
MC scheme and computed the fraction of runs in which
the algorithm was able to reach a configuration satis-
fying all observation constraints. We plot in Figure 7
the fraction of Monte Carlo processes that reached a
configuration of the posterior. We clearly see that this
quantity drops down around γ̃ . Due to the failure of
BP equations (for finite and infinite graph), the explo-
sion of possible patient zero zones and the failure of the
Monte Carlo scheme we conjecture Replica Symmetry
Breaking transition around γ̃.

B. Departing from Bayes-optimal conditions.

It is well known that when inference is performed
with imperfect knowledge of the prior distribution pa-
rameters, it is possible to observe a Replica Symmetry
Breaking (RSB) phase transition. This is due to the fact
that outside the Bayes optimality regime, the Nishimori
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FIG. 9. Ensemble algorithm breakdown outside Nishimori
condition. Keeping fixed λ∗ = 0.3 and the parameters γ∗ =
γI = 0.03, while instead moving the inference parameter
0.0 < λI < 0.8 and the dilution between 0 and 1 we see that
for high values of λI the algorithm does not converge and
provides nonphysical results for the free energy.

conditions are no longer guaranteed to be valid, see sec-
tion IIC. An RSB phase can manifest itself with a con-
vergence failure of the population dynamics algorithm,
which is based on the Replica Symmetry hypothesis.
This is exactly what we see in Figure 9. We recall that
we use a star (∗) to label the parameters with which the
planted configuration is generated, e.g. λ∗ is the true
infection probability, while λI is the infection proba-
bility used by the algorithm in the inference process.
For this plot we fixed γ∗ = γI (so we gave to the algo-
rithm the exact value of patient zero probability) and
we studied the free energy landscape by varying λI and
the observations dilution. There exists a zone in which
the number of iterations reaches the maximum allowed
number (which was set to 100). In this zone, the ob-
servables show an oscillating behaviour. This suggests
a breakdown of the algorithm validity, which may be
caused by an RSB phase transition. In any case, when
the prior is not known, some difficulties arise in epi-
demic inference. A good strategy to avoid them is to
infer the prior parameters, as shown in the next para-
graph.

Inferring epidemic prior’s parameters. We infer the
prior parameters by (approximately) minimizing the
Bethe Free Energy. In particular, for the patient zero
probability γ we use the Expectation Maximization
(EM) method. For the infection probability λ, instead,
we perform a gradient descent (GD) on the free energy.
This mixed strategy (EM for inferring γ and GD for
λ) was adopted due to its simplicity in terms of cal-
culations. To check if the method works, we studied
inference in the same conditions of Figure 2. We there-
fore fixed observations dilution to 0.5, and we explored
the space of patient zero probability γ∗ against infec-
tion probability λ∗. Initializing the inferring parame-
ters to γI = λI = 0.5, the results are shown in Figure
10. The plot shows a comparison between the observ-
ables computed by inferring the prior parameters and
their respective quantities in the Bayes optimal case,
i.e. the ones plotted in Figure 2 (first row) and Figure

FIG. 10. A comparison between the inference feasibility
(quantified here with MMMSE and Free Energy) in the case
in which prior’s parameters are known (first column) and
when instead they are learnt (second column). The quanti-
ties are represented as functions of the planted parameters
γ∗ and λ∗. In the first row the MMSE at intermediate time
t = 4 is plotted: on the left there is the Optimal Bayes re-
sult, already shown in Figure 2, while on the right there is
the result obtained when the infection and patient zero pa-
rameters λI and γI are learnt. On the second row the same
comparison (i.e. Bayes optimality on the left and hyper-
parameters’ learning on the right) is done for free energy. In
both cases (MMSE and Free Energy) the initial conditions
for the hyperparameters were set to λI = 0.5 and γI = 0.5.
The results are for the Erdös-Rényi ensemble with average
degree of 3. Observations are made at final time T = 8.

FIG. 11. The inferred prior parameters in function of their
respective planted quantities. The plot is obtained at zero
dilution (all individual observed) and for (uniformly) scat-
tered observations in time. In the left panel, patient zero
parameter γI is plotted in function of γ∗ for different values
of λ∗. The right panel’s lines are instead the values of the
infection λI as function of λ∗ for different values of γ∗.

5 (left). The prior parameters are learnt by minimiz-
ing the free energy, which agrees almost perfectly with
the optimal one. There is a strong agreement also for
other observables, as the MMSE, which we plotted at
time t = 4 To actually see how well the prior hyper-
parameters are inferred, we plot them in function of
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FIG. 12. Inference of prior parameters with the ensemble
code (Pop Dynamics) compared to the single instance result,
obtained running the Belief Propagation (BP) algorithm on
a contact network of N = 10000 nodes. The plot shows
the gradient descent in free energy with respect to the two
parameters γI and λI which respectively represent the pa-
tient zero and the infection probabilities. For the infection
λI the gradient descent is performed using the Sign Descen-
der technique with learning rate 0.01, while for γI we used
the Expectation Maximization method. The results are for
Erdös-Rényi (ER) graphs with average degree 3. All the in-
dividuals are observed at final time.

their planted respective quantity (see Figure 11). It is
again important to compare the results of prior param-
eters inference with the single instance results on finite
graphs. Indeed, the inference results shown so far are
for infinitely large graphs. The number of observations
is therefore infinite too. It is then crucial to see whether
for finite size graphs (and finite information) it is pos-
sible to achieve comparable results to the ensemble. In
Figure 12 we see that this is the case. We compare
the population dynamics and the single instance code
by analyzing step-by-step their gradient descent on the
patient zero and infection probabilities. The plot shows
that, as expected, the ensemble inference is more precise
due to infinite amount of information available. How-
ever, the values inferred by the single instance algorithm
are very close to the true ones.
Addressing biased observations In realistic contexts,

observations are not taken uniformly at random from
the population. This is because infected people might
manifest some symptoms, which push them to test
themselves. The probability of being observed is there-
fore typically higher for infected people than for sus-
ceptible ones. A first consequence is that the fraction
of infected individuals in the population is not equal
to the fraction of infected ones in the set of observed
individuals. If in the inference process this is not con-
sidered, the risk is to achieve low performance. Non
considering the bias of observations means to infer with
an incorrect prior parameter, i.e. outside of the Nishi-
mori conditions. To quantify this bias, we introduce p+,
the probability for an infected individual to be symp-

FIG. 13. Considering (and inferring) bias in observation al-
lows to recover Nishimori conditions and improves inference
performance. The bias is generated by symptomatic indi-
viduals, which are all assumed to be tested. The probability
for an infected individual of being symptomatic was set to
p+ = 0.5. Asymptomatic individuals can also be tested. For
this plot, the probability for an asymptomatic individual to
be randomly selected for a test was set to pr = 0.04. The left
plot shows the estimated fraction of infected individuals over
time. Considering the bias in the inference process allows to
reconstruct this function. On the right plot we compared in-
ference performance when the bias is considered VS when it
is neglected. Considering the bias systematically improved
the AUC. The patient zero probability was set to γ = 0.03
and the infection probability to λ = 0.25. The observations
are all performed at time T = 8.

tomatic. We assume that all infected symptomatic in-
dividuals are tested. Asymptomatic individuals are in-
stead tested at random with probability pr. From this,
the probability for an infected individual to be tested,
with a positive test result is:

P (tested,positive|I) = (1− fr)(p+ + pr(1− p+))

and similarly:

P (tested,negative|I) = fr(p+ + pr(1− p+))

For susceptible states S:

P (tested,positive|S) = prfr

P (tested,negative|S) = pr(1− fr)

The unbiased case is recovered for p+ = 0. We want to
compare inference results when the bias p+ is consid-
ered and when instead is neglected. In Figure 13 (left
panel), we see a substantial overestimation of the infec-
tion when ignoring the bias. In the right panel, we see
that the AUC is systematically higher when the bias is
included. We finally inferred the bias p+ by minimiz-
ing the Free Energy (following exactly the same proce-
dure of the transmission rate’s inference). This process
allows to include the unknown bias without affecting
performances.
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IV. CONCLUSION

In this paper, we study the feasibility of inference
in epidemic spreading on a contact graph. Using the
Replica Symmetric cavity method, we give quantita-
tive predictions of several estimators (Minimum Mean
Square Error MMSE, Maximum Mean Overlap MMO,
and Area Under the ROC curve AUC), in different
regimes depending on the characteristics of the epi-
demics, the observations and the contact graph.

In the Bayes-optimal setting, we show that for a large
range of the model’s parameters, the RS predictions are
in good agreement with the results obtained on finite
size instances. It was noted in [8] that BP equations
did not converge on large instances in a particular re-
gion of the parameters (at low seed probability and high
rate transmission), a fact that is also confirmed by our
simulations. Our simulations in that region show a lack
of convergence of the cavity equations in the thermo-
dynamic limit (answering thus negatively to the conjec-
ture in [8] of it being to finite-size effects), and strongly
hinting to Replica Symmetry Breaking.

In the non-Bayes optimal setting (i.e. when the pa-
rameters of the posterior differ from the parameters
used in the prior), we observe a region where the it-
erative numerical resolution of the Replica Symmetric
cavity equations does not converge, suggesting the pres-
ence of a Replica Symmetry Breaking transition. We
show however that inferring parameters allowing to re-
cover performance comparable to the one obtained in
the Bayes optimal setting is possible with a simple it-
erative procedure, for a large range of the prior’s pa-
rameters. There are however situations in which one is
forced to work outside the Bayes optimal case (and for
which Replica Symmetry Breaking is to be expected):
e.g. when some parameters of the model are known only
approximately but are too many to infer, or when the

knowledge of the contact network itself is imperfect.

Averaging over correlated disorder within the frame-
work of the cavity method is the main technical issue
addressed in this paper. The strategy developed here
could be applied to more involved irreversible epidemic
models, such as the SIR and SEIR model. The main
limitation would be an increase of space size of the
dynamical variables: each compartment added would
come with a additional couple of transition times (one
planted and one inferred time). The strategy could be
applied more generally to any model in which disorder
can be decomposed into a set of local (independent)
random variables s, and a set of correlated variables τ
that can be computed from the first set. Note however
that each element of the correlated disorder τ should be
expressed only as a function of a local subset of τ and
s. In other words, there must exist a function:

ψ(τ |s) =
∏
i∈V

ψi(τi|τ∂i, s∂i) (24)

with arbitrary factors ψi, which for fixed s is non-zero
only for a given value τ .
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FIG. 14. The compact optimized version of BP equations. The µ messages are functions of ∝ T 2 values, since σ ∈ {0, 1, 2}
and c ∈ {0, 1}. For this reason we keep the population of µ messages. Each iteration of the optimized BP consists in
computing the ν message from a set of µ messages and after the extraction of disorder, according to equation (A13). Then
from the ν message, by performing the summation on the last argument described in equation (A14), the new µ message
is obtained.

Appendix A: BP equations and Bethe Free Energy

In this appendix we derive a simplified version of the BP equations (16) introduced in section IID. These
simplified equations (given in (A13) and (A14)) are over a set of modified messages represented in Figure 14.

1. Clamping

In the numerical resolution of the cavity equations, it will be convenient to introduce a horizon time T + 1
above which the epidemic evolution is not observed. This results in a modification of the function ψ∗ ensuring the
constraints on infection times:

ψ∗(τi, τ∂i, x
0
i , {sji}) = I[τi = δx0

i ,S
min(T + 1,min

l∈∂i
(τl + sli))] . (A1)

2. Simplifications

In order to simplify the BP equations 16, we will start by writing the functions ψ∗, ψ in a simplified way:

ψ∗(τ
(j)
i , τ

(i)
∂i , {sli}l∈∂i, x

0
i ) = δx0

i ,I
δ
τ
(j)
i ,0

+ δx0
i ,S

∏
l∈∂i

I[τ (j)i ≤ τ
(i)
l + sli]− δx0

i ,S
I[τ (j)i < T + 1]

∏
l∈∂i

I[τ (j)i < τ
(i)
l + sli]

(A2)
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and:

ψ(t
(j)
i , t

(i)
∂i ) =

∑
x0
i

γ(x0i )
∑

{sli}l∈∂i

∏
l∈∂i

w(sli)I[t(j)i = δx0
i ,S

min(T + 1, t
(i)
l + sli)]

= γδ
τ
(j)
i ,0

+ (1− γ)

[∏
l∈∂i

( ∞∑
s=1

w(s)I[t(j)i ≤ t
(i)
l + s]

)
− I[τ (j)i < T + 1]

∏
l∈∂i

( ∞∑
s=1

w(s)I[t(j)i < t
(i)
l + s]

)]

= γδ
τ
(j)
i ,0

+ (1− γ)

[∏
l∈∂i

a(t
(j)
i − t

(i)
l − 1)− I[τ (j)i < T + 1]

∏
l∈∂i

a(t
(j)
i − t

(i)
l )

]

= γ(t
(j)
i )

(∏
l∈∂i

a(t
(j)
i − t

(i)
l − 1)− ϕ(t

(j)
i )

∏
l∈∂i

a(t
(j)
i − t

(i)
l )

)
(A3)

where we have defined:

a(t) = (1− λ)tH(t)

γ(t) =

{
γ if t = 0

1− γ if t > 0
.

ϕ(t) =

{
0 if t = 0 or t = T + 1

1 if 0 < t < T + 1
.

(A4)

where H(t) is the Heaviside step function, with H(0) = 0. We also notice that the function Ψ constraints the

planted and inferred times of the incoming messages to the equality: τ
(k)
i = τ

(j)
i , and t

(k)
i = t

(j)
i for all k ∈ ∂i \ j.

We can now re-write the first BP equation with the expression of ψ∗, ψ:

νΨi→j(Tij) =
γ(t

(j)
i )ξ(τ

(j)
i , t

(j)
i , ci)

zΨi→j

a(t(j)i − t
(i)
j − 1)δx0

i ,I
δ
τ
(j)
i ,0

∏
k∈∂i\j

∑
t
(i)
k

a(t
(j)
i − t

(i)
k − 1)

∑
τ
(i)
k

µk→Ψi
(Tki)


+a(t

(j)
i − t

(i)
j − 1)δx0

i ,S
I[τ (j)i ≤ τ

(j)
j + sji]

∏
k∈∂i\j

∑
t
(i)
k

a(t
(j)
i − t

(i)
k − 1)

∑
τ
(i)
k

µk→Ψi
(Tki)I[τ (j)i ≤ τ

(i)
k + ski]


−a(t(j)i − t

(i)
j − 1)δx0

i ,S
I[τ (j)i < T + 1]I[τ (j)i < τ

(j)
j + sji]

×
∏

k∈∂i\j

∑
t
(i)
k

a(t
(j)
i − t

(i)
k − 1)

∑
τ
(i)
k

µk→Ψi
(Tki)I[τ (j)i < τ

(i)
k + ski]


−ϕ(t(j)i )a(t

(j)
i − t

(i)
j )δx0

i ,I
δ
τ
(j)
i ,0

∏
k∈∂i\j

∑
t
(i)
k

a(t
(j)
i − t

(i)
k )
∑
τ
(i)
k

µk→Ψi
(Tki)


−ϕ(t(j)i )a(t

(j)
i − t

(i)
j )δx0

i ,S
I[τ (j)i ≤ τ

(j)
j + sji]

∏
k∈∂i\j

∑
t
(i)
k

a(t
(j)
i − t

(i)
k )
∑
τ
(i)
k

µk→Ψi
(Tki)I[τ (j)i ≤ τ

(i)
k + ski]


+ϕ(t

(j)
i )a(t

(j)
i − t

(i)
j )δx0

i ,S
I[τ (j)i < T + 1]I[τ (j)i < τ

(j)
j + sji]

×
∏

k∈∂i\j

∑
t
(i)
k

a(t
(j)
i − t

(i)
k )
∑
τ
(i)
k

µk→Ψi(Tki)I[τ
(j)
i < τ

(i)
k + ski]




(A5)
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where Tki = (τ
(i)
k , τ

(k)
i = τ

(j)
i , t

(i)
k , t

(k)
i = t

(j)
i ) in the r.h.s., due to the constraint on the incoming times (and

Tij = (τ
(j)
i , τ

(i)
j , t

(j)
i , t

(i)
j ) in the l.h.s.).

3. Summation over the planted times

We can see on the above equation that the r.h.s. depends on the planted time τ
(i)
j only through the sign:

σji = 1 + sgn(τ
(i)
j − τ

(j)
i + sji) (A6)

with the convention that sgn(0) = 0. We therefore introduce the notation :

ν̃Ψi→j(τ
(j)
i , σji, t

(j)
i , t

(i)
j ) = νΨi→j(τ

(j)
i , τ

(i)
j , t

(j)
i , t

(i)
j ) (A7)

for all τ
(i)
j such that σji = 1 + sgn(τ

(i)
j − τ

(j)
i + sji). We also introduce the message:

µ̃i→Ψj (σij , τ
(i)
j , t

(j)
i , t

(i)
j ) =

∑
τ
(j)
i

µi→Ψj (τ
(j)
i , τ

(i)
j , t

(j)
i , t

(i)
j )I[σij = 1 + sgn(τ

(j)
i − τ

(i)
j + sij)] (A8)

With these definitions, the BP equation becomes:

ν̃Ψi→j(T̃ij) = γ(t
(j)
i )ξ(τ

(j)
i , t

(j)
i , ci)

a(t(j)i − t
(i)
j − 1)δx0

i ,I
δ
τ
(j)
i ,0

∏
k∈∂i\j

∑
t
(i)
k

a(t
(j)
i − t

(i)
k − 1)

2∑
σki=0

µ̃k→Ψi(T̃ki)


+a(t

(j)
i − t

(i)
j − 1)δx0

i ,S
I[σji ∈ {1, 2}]

∏
k∈∂i\j

∑
t
(i)
k

a(t
(j)
i − t

(i)
k − 1)

2∑
σki=1

µ̃k→Ψi
(T̃ki)


−a(t(j)i − t

(i)
j − 1)δx0

i ,S
I[τ (j)i < T + 1]I[σji = 2]

∏
k∈∂i\j

∑
t
(i)
k

a(t
(j)
i − t

(i)
k − 1)µ̃k→Ψi(σki = 2, τ

(j)
i , t

(i)
k , t

(j)
i )


−ϕ(t(j)i )a(t

(j)
i − t

(i)
j )δx0

i ,I
δ
τ
(j)
i ,0

∏
k∈∂i\j

∑
t
(i)
k

a(t
(j)
i − t

(i)
k )

2∑
σki=0

µ̃k→Ψi
(T̃ki)


−ϕ(t(j)i )a(t

(j)
i − t

(i)
j )δx0

i ,S
I[σji ∈ {1, 2}]

∏
k∈∂i\j

∑
t
(i)
k

a(t
(j)
i − t

(i)
k )

2∑
σki=1

µ̃k→Ψi(T̃ki)


+ ϕ(t

(j)
i )a(t

(j)
i − t

(i)
j )δx0

i ,S
I[τ (j)i < T + 1]I[σji = 2]

∏
k∈∂i\j

∑
t
(i)
k

a(t
(j)
i − t

(i)
k )µ̃k→Ψi

(σki = 2, τ
(j)
i , t

(i)
k , t

(j)
i )




(A9)

where T̃ij = (τ
(j)
i , σji, t

(j)
i , t

(i)
j ), and T̃ki = (σki, τ

(k)
i = τ

(j)
i , t

(i)
k , t

(k)
i = t

(j)
i ) for all k ∈ ∂i \ j. In the above equation

we have dropped the normalization factor zΨi→j , since the message ν̃Ψi→j is not a probability but the value taken
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by the (normalized) BP message νΨi→j for any τ
(i)
j achieving the equality (A6). The other BP equation becomes:

µ̃i→Ψj
(σij , τ

(i)
j , t

(j)
i , t

(i)
j ) =

T+1∑
τ
(j)
i =0

µi→Ψj
(τ

(j)
i , τ

(i)
j , t

(j)
i , t

(i)
j )I[σij = 1 + sgn(τ

(j)
i − τ

(i)
j + sij)]

=

T+1∑
τ
(j)
i =0

νΨi→j(τ
(j)
i , τ

(i)
j , t

(j)
i , t

(i)
j )I[σij = 1 + sgn(τ

(j)
i − τ

(i)
j + sij)]

=

T+1∑
τ
(j)
i =0

ν̃Ψi→j(τ
(j)
i , σji = 1 + sgn(τ

(i)
j − τ ji + sji), t

(j)
i , t

(i)
j )I[σij = 1 + sgn(τ

(j)
i − τ

(i)
j + sij)]

(A10)

which gives for each value of σij :



µ̃i→Ψj
(0, τ

(i)
j , t

(j)
i , t

(i)
j ) = I[τj − sji > 0]

∑τ
(i)
j −sji
τ
(j)
i =0

ν̃Ψi→j(τ
(j)
i , σji = 2, t

(j)
i , t

(i)
j )

µ̃i→Ψj (1, τ
(i)
j , t

(j)
i , t

(i)
j ) = I[τj − sji ≥ 0]ν̃Ψi→j(τ

(j)
i = τ

(i)
j − sji, σji = 2, t

(j)
i , t

(i)
j )

µ̃i→Ψj
(2, τ

(i)
j , t

(j)
i , t

(i)
j ) =

∑T+1

τ
(j)
i =ζ+ij

ν̃Ψi→j(τ
(j)
i , σji = 1 + sgn(τ

(i)
j − τ ji + sji), t

(j)
i , t

(i)
j )

=
∑ζ−i

τ
(j)
i =ζ+i

ν̃Ψi→j(τ
(j)
i , σji = 2, t

(j)
i , t

(i)
j )

+I[τ (i)j + sji ≤ T + 1]ν̃Ψi→j(τ
(j)
i = τ

(i)
j + sji, σji = 1, t

(j)
i , t

(i)
j )

+I[τ (i)j + sji < T + 1]
∑T+1

τ
(j)
i =τ

(i)
j +sji+1

ν̃Ψi→j(τ
(j)
i , σji = 0, t

(j)
i , t

(i)
j )

(A11)

where ζ+i = max(0, τ
(i)
j − sij + 1), and ζ−i = min(T + 1, τ

(i)
j + sji − 1).

4. Summation over the inferred times

In order to reduce further the space of variables over which the BP messages are defined, we define the following
message:

µ′
i→Ψj

(σij , τ
(i)
j , cij , t

(i)
j ) =

∑
t
(j)
i

µ̃i→Ψj
(σij , τ

(i)
j , t

(j)
i , t

(i)
j )a(t

(i)
j − t

(j)
i − cij) , (A12)
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with cij ∈ {0, 1}. Using this definition, the first BP equation becomes:

ν̃Ψi→j(τ
(j)
i , σji, t

(j)
i , t

(i)
j ) = γ(t

(j)
i )ξ(τ

(j)
i , t

(j)
i , ci)

a(t(j)i − t
(i)
j − 1)δx0

i ,I
δ
τ
(j)
i ,0

∏
k∈∂i\j

[
2∑

σki=0

µ′
k→Ψi

(σki, τ
(k)
i , cki = 1, t

(k)
i )

]

+a(t
(j)
i − t

(i)
j − 1)δx0

i ,S
I[σji ∈ {1, 2}]

∏
k∈∂i\j

[
2∑

σki=1

µ′
k→Ψi

(σki, τ
(k)
i , cki = 1, t

(k)
i )

]

−a(t(j)i − t
(i)
j − 1)δx0

i ,S
I[τ (j)i < T + 1]I[σji = 2]

∏
k∈∂i\j

µ′
k→Ψi

(σki = 2, τ
(k)
i , cki = 1, t

(k)
i )

−ϕ(t(j)i )a(t
(j)
i − t

(i)
j )δx0

i ,I
δ
τ
(j)
i ,0

∏
k∈∂i\j

[
2∑

σki=0

µ′
k→Ψi

(σki, τ
(k)
i , cki = 0, t

(k)
i )

]

−ϕ(t(j)i )a(t
(j)
i − t

(i)
j )δx0

i ,S
I[σji ∈ {1, 2}]

∏
k∈∂i\j

[
2∑

σki=1

µ′
k→Ψi

(σki, τ
(k)
i , cki = 0, t

(k)
i )

]

+ ϕ(t
(j)
i )a(t

(j)
i − t

(i)
j )δx0

i ,S
I[τ (j)i < T + 1]I[σji = 2]

∏
k∈∂i\j

µ′
k→Ψi

(σki = 2, τ
(k)
i , cki = 0, t

(k)
i )


(A13)

The second BP equation becomes:



µ′(0, τ
(i)
j , cij , t

(i)
j ) = I[τj − sji > 0]

∑
t
(j)
i
a(t

(i)
j − t

(i)
i − cij)

∑τ
(i)
j −sji
τ
(j)
i =0

ν̃Ψi→j(τ
(j)
i , σji = 2, t

(j)
i , t

(i)
j )

µ′(1, τ
(i)
j , cij , t

(i)
j ) = I[τj − sji ≥ 0]

∑
t
(j)
i
a(t

(i)
j − t

(i)
i − cij)ν̃Ψi→j(τ

(j)
i = τ

(i)
j − sji, σji = 2, t

(j)
i , t

(i)
j )

µ′(2, τ
(i)
j , cij , t

(i)
j ) =

∑
t
(j)
i
a(t

(i)
j − t

(i)
i − cij)

[∑ζ−i

τ
(j)
i =ζ+i

ν̃Ψi→j(τ
(j)
i , σji = 2, t

(j)
i , t

(i)
j )

+I[τ (i)j + sji ≤ T + 1]ν̃Ψi→j(τ
(j)
i = τ

(i)
j + sji, σji = 1, t

(j)
i , t

(i)
j )

+ I[τ (i)j + sji < T + 1]
∑T+1

τ
(j)
i =τ

(i)
j +sji+1

ν̃Ψi→j(τ
(j)
i , σji = 0, t

(j)
i , t

(i)
j )

]
(A14)
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5. BP marginals

Once a fixed-point of the BP equations (A13,A14) is found, the BP marginal can be expressed as:

Pi(τi, ti) =
∑
τ∂i,t∂i

PΨi(τi, ti, τ∂i, t∂i)

=
1

ZΨi

∑
τ∂i,t∂i

ξ(τi, ti; ci)ψ
∗(τi, τ∂i ; {sli}l∈∂i, x

0
i )ψ(ti, t∂i)

∏
l∈∂i

µl→Ψi
(τl, τi, tl, ti)

=
1

ZΨi

γ(ti)ξ(τi, ti; ci)

(
δx0

i ,I
δτi,0

∏
l∈∂i

[
2∑

σli=0

µ′
l→Ψi

(σli, τi, cli = 1, ti)

]

+δx0
i ,S

∏
l∈∂i

[
2∑

σli=1

µ′
l→Ψi

(σli, τi, cli = 1, ti)

]
−δx0

i ,S
I[τi < T + 1]

∏
l∈∂i

µl→Ψi
(σli = 2, τi, cli = 1, ti)

−ϕ(ti)δx0
i ,I
δτi,0

∏
l∈∂i

[
2∑

σli=0

µ′
l→Ψi

(σli, τi, cli = 0, ti)

]

−ϕ(ti)δx0
i ,S

∏
l∈∂i

[
2∑

σli=1

µ′
l→Ψi

(σli, τi, cli = 0, ti)

]

+ ϕ(ti)δx0
i ,S

I[τi < T + 1]
∏
l∈∂i

µ′
l→Ψi

(σli = 2, τi, cli = 0, ti)

)

(A15)

6. Bethe Free Energy

The Bethe Free energy is written:

F = −
∑
i∈V

logZΨi
+

1

2

∑
i∈V

∑
j∈∂i

logZij (A16)

where ZΨi
is the normalisation of the BP marginal written above, and with:

Zij =
∑
Tij

νΨi→j(Tij)νΨj→i(Tij)

=
∑
Tij

νΨi→j(Tij)µj→Ψi
(Tij)

=
1

zΨi→j

∑
{Til}l∈∂i

Ψ({Til}l∈∂i)
∏
l∈∂i

µl→Ψi
(Til)

=
ZΨi

zΨi→j

(A17)

Where zΨi→j is the normalization of the BP message νΨi→j :

zΨi→j =
∑

{Til}l∈∂i

Ψ({Til}l∈∂i)
∏

k∈∂i\j

µk→Ψi(Tik)

=
∑

τ
(j)
i ,τ

(i)
j ,t

(j)
i ,t

(i)
j

ν̃(τ
(j)
i , σji = 1 + sgn(τ

(i)
j + sji − τ

(j)
i ), t

(j)
i , t

(i)
j )

(A18)
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where ν̃ is the un-normalized message defined in (A7). We obtain an expression of the free-energy in terms of the
normalisations ZΨi , zΨi→j :

F =
1

N

∑
i∈V

(
di
2

− 1

)
logZΨi

− 1

N

1

2

∑
i∈V

∑
j∈∂i

log zΨi→j (A19)

7. Entropy and Energy

To compute the entropy it is sufficient to subtract energy and free energy:

S = U − F

The energy is simply the average of the Hamiltonian:

H = −
∑
i

logψ −
∑
i

log ξ −
∑
i

logψ∗

U = −
∑
i

⟨logψ⟩ −
∑
i

⟨log ξ⟩ −
∑
i

⟨logψ∗⟩ =

= −
∑
i

⟨logψ⟩ .

U = −
∑
i

1

ZΨi

uΨi ,

with:

uΨi
:=

∑
{Tij}j∈∂i

∏
j∈∂i

mj→Ψi
(Tij)ψ(ti, t∂i)ψ

∗(τi, τ∂i)ξ(ti, τi) logψ(ti, t∂i).

Comparing this formula with the expression for ZΨi
:

ZΨi =
∑

{Tij}j∈∂i

∏
j∈∂i

mj→Ψi(Tij)ψ
∗(τi, τ∂i)ξ(ti, τi)ψ(ti, t∂i)

we see that the computation of the energy requires similar calculations to the ones already performed to compute
free energy. The only additional difficulty is in the logψ factor. Let us first trace over the planted variables. We
keep τi fixed: ∑

τ∂i

∏
j∈∂i

mj→Ψi
(Tij)ψ

∗(τi, τ∂i) =

=δx∗
i,0,I

δτi,0
∏
j∈∂i

∑
τj

mΨj→i(tj , ti, τj , τi)

+ δx∗
i,0,S

∏
j∈∂i

∑
τj

mΨj→i(tj , ti, τj , τi)I[τi ≤ τj + sji]

− I[τi ≤ T ]δx∗
i,0,S

∏
j∈∂i

∑
τj

mΨj→i(tj , ti, τj , τi)I[τi < τj + sji] =

=:

3∑
v=1

∏
j∈∂i

mv
j→Ψi

(ti, tj , τi)

So we have:

ZΨi
=

∑
ti,τi,{tj}j∈∂i

3∑
v=1

f
τi,x

∗
i,0

v

∏
j∈∂i

mv
j→Ψi

(ti, tj , τi)ξ(ti, τi)ψ(ti, t∂i)
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Now remember that the original message m and the compressed factor to node message ν are related by :

νψi→j(ti, tj , τi, 1 + sign(τj − τi + sji)) = mψi→j(ti, tj , τi, τj)

So the sums we have to compute are:

m0
j→Ψi

(ti, tj , 0) =
∑
τj

mΨj→i(tj , ti, τj , 0)

=
∑
τj

νψj→i(tj , ti, τj , 1 + sign(−τj + sij))

m1
j→Ψi

(ti, tj , τi) =
∑

τj≥τi−sji

mΨj→i(tj , ti, τj , τi) =

=
∑

τj≥τi−sji

νΨj→i(tj , ti, τj , 1 + sign(τi − τj + sij))

m2
j→Ψi

(ti, tj , τi) =
∑

τj>τi−sji

mΨj→i(tj , ti, τj , τi) =

=
∑

τj>τi−sji

νΨj→i(tj , ti, τj , 1 + sign(τi − τj + sij))

Notice that:

m1
j→Ψi

(ti, tj , τi) = m2
j→Ψi

(ti, tj , τi) + νΨj→i(tj , ti, τi − sji, 2).

Now it is time to deal with planted times. Let us observe that:

ψ(ti, t∂i) = γ(ti)(1− λ)S1
(
1− (1 ≤ ti ≤ T )(1− λ)S2

)
,

where:

γ(ti) = γδti,0 + (1− γ) (1− δti,0)

S1 :=
∑
j∈∂i

(ti − tj − 1)+

S2 :=
∑
j∈∂i

θ(ti − tj − 1)

We want to find the BP distribution of ti, S1, S2 in order to average over ψ logψ. We define:

F v,τik (ti, S1, S2) : =
∑

{tj}j≤k

∏
j≤k

mv
j→Ψi

(ti, tj , τi)δS1,
∑

j≤k(ti−tj−1)+δS2,
∑

j≤k θ(ti−tj−1)

Therefore:

F v,τik+1 (ti, S1, S2) =
∑

{tj}j≤k+1

∏
j≤k+1

mv
j→Ψi

(ti, tj , τi)δS1,
∑

j≤k+1(ti−tj−1)+δS2,
∑

j≤k+1 θ(ti−tj−1) =

=
∑
tk+1

mv
k+1→Ψi

(ti, tk+1, τi)
∑

{tj}j≤k

∏
j≤k

mv
j→Ψi

(ti, tj , τi)×

× δS1−(ti−tk+1−1)+,
∑

j≤k(ti−tj−1)+δS2−θ(ti−tk+1−1),
∑

j≤k θ(ti−tj−1) =

=
∑
tk+1

mv
k+1→Ψi

(ti, tk+1, τi)F
v,τi
k (ti, S1 − (ti − tk+1 − 1)+, S2 − θ(ti − tk+1 − 1))

and

F v,τi0 (ti, S1, S2) = δS1,0δS2,0
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and for our purposes we want to find F v,τi|∂i| (ti, S1, S2). Now we have an iterative scheme to compute the measure.

Once the function is found we simply have:

uΨi
=

∑
ti,τi:ξ(ti,τi)=1

3∑
v=1

f
τi,x

∗
i,0

v

∑
S1,S2

F v,τi|∂i| (ti, S1, S2)ψ(ti, S1, S2) logψ(ti, S1, S2)

Appendix B: Replica Symmetric Formalism

The aim of the cavity method is to characterize the typical properties of the probability measure (14) that we
recall here:

P ({Tij}(ij)∈E |D) =
1

Z(D)

∏
i∈V

Ψ({Til}l∈∂i;Di) ,

for typical random graphs and for typical realization of the disorder D = {Di}, in the thermodynamic limit
N → ∞. In the simplest version of the cavity method, called Replica Symmetric (RS), one assumes a fast decay of
the correlations between distant variables in the measure (14), in such a way that the BP equations (16) converge
to a unique fixed-point on a typical large instance, and that the measure (14) is well described by the locally
tree-like approximation. We consider a uniformly chosen edge (ij) ∈ E in a random contact graph G, and call Prs

the probability law of the fixed-point BP message µi→Ψj
thus observed. Within the decorrelation hypothesis of

the RS cavity method, the incoming messages on a given factor node are i.i.d. with probability Prs. This implies
that the probability law Prs must obey the following self-consistent equation:

Prs(µ) =

∞∑
d=0

rd
∑
Di

P (Di)
ˆ d∏

i=1

dprs(µi)δ(µ− fbp(µ1, . . . , µd;Di)) (B1)

where fbp(µ1, . . . , µd;Di) is a shorthand notation for the r.h.s. of equation (16), and p(Di) is distribution of the
local disorder Di = {{sli}l∈∂i, x0i , {εm}im=i} associated with a given node i. We numerically solved these equations
with population dynamics. Using the above simplifications, we are left with two types of BP messages: µ′

i→Ψj

is defined over the variable ((σij , τ
(i)
j , cij , t

(i)
j )) living in a space of size 6(T + 1)2, and ν̃Ψi→j is defined over the

variable (τ
(j)
i , σji, t

(j)
i , t

(i)
j ), living in a space of size 3(T +1)3. We store only a population of messages µi→Ψj , this

requires to keep in memory O(NT 2) numbers, with N the population size. Computing a new element µ of the
population requires in principle O(T 4) operations, but can be reduced to O(T 3) by computing the cumulants of
the temporary message ν.

1. Replica-Symmetric Free Energy

Once averaged over the graph and disorder, the Replica Symmetric prediction for the free-energy is:

FRS =
∑
d

pd

(
d

2
− 1

)∑
c

p(c)
∑
x

γ(x)

d∏
i=1

w(si)

ˆ d∏
l=1

dPRS(µl) logZΨi(µ1, . . . , µd;x, c, s1, . . . , sd)

− dav
2

∑
d

rd
∑
x

γ(x)
∑
c

pc
∑

s1,...,sd

d∏
k=1

w(sk)

ˆ d∏
k=1

dPRS(µk) log zΨi→j(µ1, . . . , µd;x, c, s1, . . . , sd)

(B2)
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