
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Security Evaluation of Arduino Projects Developed by Hobbyist IoT Programmers / Corno, Fulvio; Mannella, Luca. - In:
SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 23:5(2023), pp. 1-23. [10.3390/s23052740]

Original

Security Evaluation of Arduino Projects Developed by Hobbyist IoT Programmers

Publisher:

Published
DOI:10.3390/s23052740

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2976611 since: 2023-03-06T12:24:53Z

MDPI

Citation: Corno, F.; Mannella, L.

Security Evaluation of Arduino

Projects Developed by Hobbyist IoT

Programmers. Sensors 2023, 23, 2740.

https://doi.org/10.3390/s23052740

Academic Editor: Jun Zhao

Received: 25 January 2023

Revised: 20 February 2023

Accepted: 27 February 2023

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Security Evaluation of Arduino Projects Developed by
Hobbyist IoT Programmers
Fulvio Corno and Luca Mannella *

Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
* Correspondence: luca.mannella@polito.it

Abstract: Arduino is an open-source electronics platform based on cheap hardware and the easy-to-
use software Integrated Development Environment (IDE). Nowadays, because of its open-source
nature and its simple and accessible user experience, Arduino is ubiquitous and used among hobbyist
and novice programmers for Do It Yourself (DIY) projects, especially in the Internet of Things (IoT)
domain. Unfortunately, such diffusion comes with a price. Many developers start working on this
platform without having a deep knowledge of the leading security concepts in Information and
Communication Technologies (ICT). Their applications, often publicly available on GitHub (or other
code-sharing platforms), can be taken as examples by other developers or downloaded and used
by non-expert users, spreading these issues in other projects. For these reasons, this paper aims
at understanding the current landscape by analyzing a set of open-source DIY IoT projects and
looking for potential security issues. Furthermore, the paper classifies those issues according to the
proper security category. This study’s results offer a deeper understanding of the security concerns in
Arduino projects created by hobbyist programmers and the dangers that may be faced by those who
use these projects.

Keywords: Arduino; cybersecurity; Do It Yourself (DIY); GitHub; Internet of Things (IoT); hobbyist
programmers; novice programmers; security analysis

1. Introduction

The proliferation of the Internet of Things (IoT) has led to a significant increase in
the use of microcontroller-based platforms such as Arduino. Arduino is an open-source
electronics platform that is based on inexpensive hardware and an easy-to-use software
development environment. It has become a popular choice among novice programmers
and hobbyists for building Do It Yourself (DIY) projects, especially in the IoT domain.
However, the simplicity and accessibility of Arduino also mean that many developers may
not have a deep understanding of the leading security concepts in the Information and
Communication Technology (ICT) field.

The rise in popularity of Arduino has led to a large number of open-source projects be-
ing developed and shared on various online platforms such as GitHub [1], Arduino Project
Hub [2], and Instructables [3]. These projects, often developed by hobbyist programmers,
can be easily downloaded, modified, and used by non-expert users, potentially leaving
them vulnerable to various types of attacks. Furthermore, as these projects are publicly
available, they may serve as practical examples for other hobbyist programmers to build
upon, potentially perpetuating any security issues.

This paper aims to understand the most common security issues in the most popular
open-source Arduino projects developed by hobbyist programmers and to classify them
according to their nature. To achieve this, a set of projects was retrieved from GitHub,
one of the largest code-hosting platforms in the world [4]. In addition to its diffusion, the
main advantage of using GitHub is that, compared with other similar platforms, it offers
advanced research functionalities that we exploited in our research. The findings of this

Sensors 2023, 23, 2740. https://doi.org/10.3390/s23052740 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052740
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9818-0999
https://orcid.org/0000-0001-5738-9094
https://doi.org/10.3390/s23052740
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052740?type=check_update&version=1

Sensors 2023, 23, 2740 2 of 23

study provide valuable insights into the security of Arduino projects developed by hobbyist
programmers and the potential risks for possible users of these projects.

The rest of this paper is structured as follows: Section 2 provides an overview of
the existing related literature. Section 3 describes the methodology used to conduct the
analysis. The reference classification, the research criteria, the approach used to classify the
security issues found in the projects, and the list of projects are presented in detail. Section 4
presents the analysis results, focusing on each security category in detail. It shows which
security issues are present in the projects according to the reference classification. Moreover,
Section 5 discusses the analysis results, highlighting the implications of the findings for
hobbyist programmers and users of Arduino projects. In the end, Section 6 summarizes the
main findings of the paper.

2. Related Work

As the number of connected devices continues to increase, Internet of Things (IoT)
systems’ security has been a growing concern in recent years. Indeed, according to a
report published by IoT Analytics [5], despite the chip shortage that started in 2020, the IoT
domain continues to grow. It is forecasted to have around 27 billion connected IoT devices
in 2025.

Among this massive variety of devices, one of the most popular platforms for building
IoT systems among hobbyist and novice programmers is Arduino, an open-source elec-
tronics platform based on inexpensive hardware and an easy-to-use software development
environment [6]. Indeed, not only is Arduino increasingly being adopted in many courses
(in both schools and universities) to introduce students to programming [7], but it is also
considered a tool that can help students to grow from hobbyists to professionals [8]. More-
over, the Arduino platform has been widely adopted for its simplicity and cost-effectiveness
in prototyping devices for a range of different industries, proving to be a valuable tool
for academics, hobbyists, and professionals in creating functional and energy-efficient
products [9]. Among them, there are also many examples of how Arduino is effective in
prototyping IoT systems [10,11].

Naturally, hobbyist programmers do not always have a deep understanding of the
main disciplines needed to develop good solutions in the field of Information and Com-
munication Technology (ICT) (e.g., software engineering, performance, reliability, and
usability). Among these subjects, this paper focuses on analyzing the cybersecurity aspects
of the projects developed by hobbyist programmers.

Indeed, the simplicity and accessibility of Arduino increase the risk that a project
could be developed without proper knowledge of the cybersecurity field. A previous study
has already shown how often novice IoT developers do not consider common security
issues when approaching an IoT project [12]. This lack of knowledge (or attention) has a
direct impact on the developed projects, increasing the opportunities for malicious users to
compromise IoT devices. Furthermore, it is noteworthy that a compromised device in a
network is dangerous for itself and potentially for all the other connected devices. Indeed,
some studies demonstrate how a compromised device can have an impact even on other
resources in the same network [13]. Moreover, a compromised machine can also be part of
a botnet [14] involved in Distributed Denial of Service attack (DDoS) such as the famous
Mirai botnet [15].

For these reasons, many scholars are conducting research to understand the security
situation of IoT systems [16,17]. According to their research, even if the security of IoT
devices has gradually risen, there is still work to be carried out to make these systems
secure. For instance, considering smart homes, an analysis conducted a few years ago on a
very large sample of dwellings (16 million) discovered how widespread they are and how
they are affected by well-known security vulnerabilities [18].

Discussing Arduino security specifically, other researchers have already studied
whether Arduino boards and other microcontrollers adopted in the IoT domain are secure.
For instance, Strobel et al. demonstrated why implementing sensitive applications on Com-

Sensors 2023, 23, 2740 3 of 23

mercial Off-the-Shelf (COTS) microcontrollers can lead to severe security problems [11].
Moreover, in another study, Alberca et al. showed how Arduino Yun—a dual-board micro-
controller capable of supporting Linux distribution designed to create IoT projects—can
be a victim of several attacks [19]. In addition, Audreay Ann Gendreau, in her paper
“Internet of Things: Arduino Vulnerability Analysis” [20], examines several types of at-
tacks and vulnerabilities related to the microcontroller world, with a specific focus on
Arduino devices.

Despite the amount of research that has been conducted on the security of Arduino-
based IoT systems, we were not able to find research specifically focused on the projects
developed by hobbyist programmers. By focusing on the security issue of open-source
projects developed by hobbyist developers—and classifying them according to the proper
category—this paper aims to provide valuable insights that can be used to improve the
security of Arduino-based IoT systems and consequently protect eventual end-users from
these potential risks.

To choose the proper classification method for the observed security issues, we ana-
lyzed the approach followed by recent literature. Similar classification tasks, in the litera-
ture, were conducted mainly according to the different layers of an IoT architecture [21,22],
to some particular security issues [22,23], or considering a few applications and specific
use-case scenarios [24]. For our purpose, we adopted the classification proposed by Pal
et al. in: “Security Requirements for the Internet of Things” [25]. Indeed, according to our
knowledge, this is one of the more complete threat models explicitly proposed for the IoT
domain. In Section 3.1, the paper better describes the adopted classification.

3. Materials and Methods

This section presents the methodology used to conduct the security analysis. Section 3.1
describes the reference classification used to classify the security issues found in the projects.
Section 3.2 explains the criteria used to select the projects. Section 3.3 describes the method-
ology adopted to conduct the analysis. In addition, Section 3.4 highlights the novelty and
contributions provided by the paper. To conclude, Section 3.5 presents those projects with
a brief description of each of them.

3.1. Project Classification

As we already discussed in Section 2, to classify the observed security threat, we
used the classification proposed by Pal et al., in “Security Requirements for the Internet
of Things” [25], one of the more complete threat models explicitly proposed for the IoT
domain. In their work, they address various aspects of the IoT environment and categorize
security threats and attacks into five areas (which could be overlapping):

1. Communications:

Attacks and threats related to the communication between the devices in wired or
wireless mediums (e.g., routing channels and data transmission).

2. Device/Services:

Attacks and threats related to the physical IoT devices and the associated low-level
services (e.g., battery).

3. Users:

Attacks and threats directed against the human beings involved in an IoT system (e.g.,
privacy and identity disclosure).

4. Mobility:

Attacks and threats mainly related to two different scenarios: when the specific
location of the device is known to the attacker and when the device is moved to a
different network, e.g., location-privacy and tracking.

5. Integration of Resources:

Sensors 2023, 23, 2740 4 of 23

Attacks and threats that could exist in heterogeneous infrastructures. For instance,
obtaining access to a resource is possible to obtain cascade access to other resources or
services.

These areas (called security categories) are divided into security issues. For each
security issue, the cited paper reports a non-exhaustive list of possible threats and attacks.

Inside the Communications security category, there are four security issues: Routing
attacks, Active attacks, Passive attacks, and Flooding. Routing attacks target routing protocols
and network traffic to disrupt or redirect information flow. Examples include blackhole,
wormhole, and pharming attacks. In an Active data attack, valid data packets are targeted
and altered or deleted, such as channel jamming and various forms of data tampering.
Passive data attacks aim to gain information without altering communications, such as
eavesdropping and traffic analysis. Flooding attacks involve introducing new packets into
the network, including SYN flooding attacks, which can also be considered a Denial of
Service (DoS) attack. DoS attacks are particularly concerning for IoT systems due to the
resource constraints of many IoT devices, as a small amount of false traffic can compromise
an IoT device [26].

Security threats in the Device/Services area can be broadly classified into four issues:
Physical Attacks, Device Subversion, Device Data Access, and Device Degradation. Physical
Attacks target the device itself and can include damage, disconnection, and destruction.
Device Subversion attacks involve taking full or partial control over an IoT device, either
individually or in large groups, and using it to cause malfunction or provide incorrect
outputs. Device Data Access attacks involve infecting one or more IoT devices and using
them to access sensitive data without the user’s knowledge. Furthermore, this kind of
attack is complicated to spot because devices usually seem to work as usual [26]. To
conclude, Device Degradation is a form of DoS attack that targets the functioning of devices
to prevent access to a service. These attacks can cause memory exhaustion and battery
corruption, compromising the entire system’s operations.

The security issues associated with Users are divided into four categories: Trust,
Data Confidentiality, Identity Management, and Behavioral Threats. Overall, these categories
of security threats related to users in the IoT highlight the importance of considering
human factors in securing the IoT. Trust-related attacks undermine the trust relationship
between devices, decreasing the system’s overall security. Among them, there are self-
promotion (a malicious node provides good recommendations for itself), bad-mouthing (a
malicious node provides bad recommendations against good nodes), and good-mouthing
attacks (malicious nodes provide good recommendations for other compromised nodes) on
other peers within the system. Data Confidentiality threats compromise users’ privacy and
personal information. Identity Management threats exploit the multiple identities of users in
the IoT to gain unauthorized access. Behavioral Threats are created by malicious or selfish
behaviors of the users via social engineering attacks. Among these issues, we can also find
free-rider attacks, in which the attacker benefits from the community without contributing
their share to the community.

Security issues related to Mobility can be broadly categorized into three main areas:
Dynamic Topology/Infrastructure, Tracking and Location Privacy, and Multiple Jurisdictions.
Dynamic Topology/Infrastructure issues include challenges in routing and transmitting data
due to the changing network structure and the resource-constrained nature of IoT devices.
Issues related to Tracking and Location Privacy have the potential for breaches of personal
privacy through the disclosure of a user’s geographical location and activities. Issues
related to Multiple Jurisdictions include challenges in managing and protecting users’ data
privacy due to the different regulations in different jurisdictions.

Security threats in the Integration of Resources area can be broadly classified into
three categories: Cross-Domain Administration, Cascading Resources, and Interoperability.
In Cross-Domain Administration, threats may arise from the cooperation and interaction
of components from different network domains. This behavior could result in insecure
networks and a lack of trust in network connections. Cascading Resources threats may occur

Sensors 2023, 23, 2740 5 of 23

when a low-level security breach cascades up to affect higher-level services and applications
that depend on the compromised component. For example, an attacker may be able to
gain access to a building by compromising a motion sensor in a home automation system.
Interoperability threats may arise from the need for multiple systems to work together and
the potential for attackers to exploit any issues in the IoT system. This behavior could
result in vulnerabilities as data are moved and communicated between components, such
as in a smart healthcare system where a patient’s private and sensitive information may
be compromised.

3.2. Research Criteria

To conduct this study, we searched for IoT Arduino-based open-source projects that
could be developed by a hobbyist programmer. We obtained the projects from GitHub, a
leading code-hosting platform that also offers advanced search capabilities [4].

Hence, we used these keywords: “Arduino”, “DIY”, and “IoT”. In addition, for IoT,
we also included the alternative spellings: “Internet of Things”, “Internet-of-Things”, and
“InternetOfThings” plus the term Ubiquitous Computing written in the following different
ways: “Ubi Comp”, “Ubi-Comp”, “UbiComp”, “Ubiquitous Computing”, “Ubiquitous-
Computing”, and “UbiquitousComputing”. Moreover, as alternative spellings of DIY,
we used “Do It Yourself”, “Do-It-Yourself”, and “DoItYourself”. Furthermore, we also
considered the words “Amateur”, “Hobby”, and “Hobbyist” in place of DIY.

GitHub searches for these keywords inside its metadata. Among them, there are the
repositories’ names, tags, and the “about” sections. The keyword can be present in any
of these fields to obtain that repository as a result. To provide an example, a repository
with “IoT” in its name, “Arduino” among its tags, and “DIY” inside its “about” will be
returned (like the project described in Section 3.5.6). We mixed these keywords, obtaining
70 different queries. All these keywords were executed, and we collected all the obtained
repositories. It was necessary to run many different queries because, currently, GitHub
does not support queries with more than five operators (i.e., no more than five AND, OR,
and NOT are allowed in a single query). The executed queries were case-insensitive.

However, a security issue in a project is more dangerous if we consider that other
users could also adopt such a project. To express their interest in a specific repository,
GitHub users can assign a “star” to them. Therefore, we used this rating to extract a set
of projects to analyze that could be reasonably downloaded and deployed by other users.
To be included in our analysis, a repository needed have a minimum of five stars. From
our point of view, this value is sufficiently high to demonstrate that some users found
that repository interesting (and that includes the possibility that they were also using it).
Furthermore, to try to identify projects developed by hobbyist programmers, we set an
upper threshold to the number of stars. Indeed, it is infrequent that a project realized by
a hobbyist developer achieves a considerable number of stars. Hence, we set this upper
threshold to 50 stars.

Exploring the repositories, we noticed that the keyword “Arduino” is often associ-
ated with similar and compatible microcontrollers (e.g., ESP8266 or ESP32). Considering
that these microcontrollers are strongly based on the Arduino architecture and can be
programmed using the Arduino Integrated Development Environment (IDE), they were
also included in our analysis.

On the contrary, we excluded from the analysis the repositories without code for
Arduino devices—i.e., they use the “Arduino” tag because they interact with Arduino-like
devices—and repositories that are documentation or libraries (considering that hobbyist or
novice developers rarely design libraries). We also excluded those projects that cannot be
considered as hobbyist projects anymore. For instance, we excluded projects managed by
more than three developers or with more than 3000 Single Lines of Code (SLoC). Moreover,
we excluded projects that do not use English as their primary language.

To summarize, our research criteria for matching public GitHub repositories are
as follows:

Sensors 2023, 23, 2740 6 of 23

• Research Keywords = [Arduino && IoT && DIY]

Alternative spellings and synonyms of IoT: “Internet of Things”, “Internet-of-
Things”, “InternetOfThings”, “Ubi Comp”, “Ubi-Comp”, “UbiComp”, “Ubiq-
uitous Computing”, “Ubiquitous-Computing”, and “UbiquitousComputing”.

Alternative spellings and synonyms of DIY: “Do It Yourself”, “Do-It-Yourself”,
“DoItYourself”, Amateur, “Hobby”, and “Hobbyist”.

• Stars = [5; 50]
• No libraries nor documentation
• Project must seem developed at the hobbyist level. For instance:

No more than 3 involved developers
No more than 3000 SLoC

• Written in English

In July 2021, we used the methodology previously outlined to search for relevant
projects on GitHub, resulting in the acquisition of 16 repositories. In Section 3.5, each
project will be briefly described. If not specified, each project is developed and maintained
by only one developer and requires internet connectivity.

3.3. Methodology

The methodology adopted in this research activity consisted of several steps. Firstly, we
selected the repositories for analysis based on the research criteria described in Section 3.2.
The next step was to analyze each project for potential security issues. A cybersecurity re-
searcher and two master’s students in computer engineering were responsible for analyzing
the repositories.

Preliminarily, a set of guidelines has been defined by the paper’s authors to ensure
consistency in the analysis. To provide some examples of those guidelines, for Active or
Passive attacks, the research team looked for encryption mechanisms that could prevent
such attacks. Indeed, without such protection, these attacks could always be feasible. For
the Data Confidentiality issues, the team looked for any kind of data related to the user
in the source code (e.g., personal data of the users). Instead, to consider a Cascading
Resources attack feasible, the team searched for usernames, passwords, access tokens, and
any information that could grant access to other resources beyond the Arduino board. Each
team member repeated the analysis process independently and systematically for each
security issue.

Each member of the team independently conducted a systematic manual analysis of
the repositories to identify and classify the security issues. The classification of the projects’
issues was based on the categories described in Section 3.1.

After the three independent analyses were conducted, the research team discussed
their findings and converged on a unique outcome. Any discrepancies in the findings were
resolved through further discussion and analysis. This methodology allowed us to conduct
a thorough and comprehensive analysis of the selected repositories and identify potential
security issues. The use of multiple researchers also ensured the reliability and validity of
the findings.

It is essential to specify that our analysis was focused on Arduino-like projects; there-
fore, we did not deeply investigate the security of possible included companion applica-
tions. In particular, we consider only the security issues related to the source code that
an Arduino-like device could execute. Furthermore, we reviewed only the source code
contained in the master/main branch without considering alternative branches.

Even if it would be interesting to evaluate even potential harm caused by each kind of
attack, it is almost impossible to know in advance the whole network setup of the end users
and the possible changes they made to the originally designed project. For this reason, this
analysis does not evaluate the severity of a successful attack. This paper specifies whether
each attack is reasonably feasible or not, independently of its risk.

Sensors 2023, 23, 2740 7 of 23

Even if we conducted our analysis to the best of our knowledge, cybersecurity is a very
complex subject. Therefore, we cannot guarantee that a project does not have a particular
security issue, even if we did not notice any vulnerability for a specific attack related to it.

3.4. Novelty and Contribution

This paper provides a source-code-level analysis of the security issues of Arduino-like
projects developed by hobbyist programmers. To the best of our knowledge, this is one of
the first studies to provide a systematic overview of the security threats that affect such
projects. By identifying and discussing the potential exploitation of these security issues,
we aim to provide scholars, developers, and users with insights into the risks associated
with this type of project.

In particular, one of the main contributions of the work lies in the identification of
the five security categories that can affect Arduino-like projects, which are based on the
classification proposed in the paper “Security Requirements for the Internet of Things: A
Systematic Approach” [25]. By analyzing how developed projects could fall into one of
these categories, we aim to provide a comprehensive and structured view of the security
threats that can affect these projects. Another important aspect of our work is the adoption
of a manual analysis of the source code of the selected repositories. This approach, together
with a qualitative understanding of the projects, allowed us to identify a wide range
of security issues. In addition, the involvement of three different people in the manual
analysis process ensured that multiple perspectives and levels of expertise were considered,
improving the reliability of our results.

Overall, we believe that our work provides a better understanding of the security
challenges faced by Arduino-like projects. Highlighting these issues, this paper can help
guide the development of more secure and resilient solutions.

3.5. Analyzed Projects

In this section, the paper presents the retrieved repositories. For each project, the
following are reported: a brief description of the project’s purpose, the number of stars
achieved by the repository when the project was downloaded, the approximate number of
Source Lines of Code (SLoC) written for the Arduino-like board, the number of involved
developers, and if the board has potentially direct access to the internet. Table 1 summarizes
the main specifications of all the involved projects.

Table 1. Summary of the projects involved in the security analysis.

ID GitHub Project Name Stars SLoC Contributors Internet Access

01 iotinator 8 ~2000 1 Yes
02 Probee 6 ~960 1 No
03 Arduino Commands 7 ~300 1 Yes
04 TwitterMoodLight 8 ~760 1 Yes
05 Smart-Farm 17 ~60 2 No
06 SmartOutlet-IOT 7 ~30 1 No
07 IKEA PS 2014 DIY Lamp 5 ~200 1 Yes
08 DIY-Weather-Station 6 ~70 1 Yes
09 Oscilloscope32 6 ~100 1 No
10 Mbus-han-kaifa 6 ~100 1 No

11 CounterStrike GlobalOffensive—
Ambilight-System 5 ~400 1 Yes

12 Regulator 12 ~2500 1 Yes
13 Pixel Cube 5 ~140 2 No
14 Control-Motors-with-Processing- 9 ~35 1 No
15 BatteryNode 21 ~500 1 Yes
16 Capacitive Soil Moisture Sensor 25 ~160 1 No

Sensors 2023, 23, 2740 8 of 23

3.5.1. Iotinator [27]

According to its developer, iotinator is “the DIY multipurpose home IoT solution
[. . .] an IoT application you can already use”. This project has around 2050 SLoC. It
is a master model designed to manage other slave modules programmed by the same
developer. On the download date, it had eight stars.

3.5.2. Probee [28]

Probee is an Arduino & Raspberry Pi Open Hardware robotic self-navigating car. This
project has more than 960 lines of code and is not connected to the internet. It is composed
of an Arduino and a Raspberry coupled together. The Arduino is connected to a motor, a
servo, a laser, a LED, an LCD display, and an ultrasonic sensor. On the download date, it
had six stars.

3.5.3. Arduino Commands [29]

Arduino Commands is an iOS App that allows users to control basic Arduino func-
tionalities through Wi-Fi/Ethernet using HTTP Requests. This repository contains the
code that has to be installed on the board to be governed by the app. This project has
around 300 SloC. It creates a local web server that can be used for interacting with onboard
components such as LED. On the download date, it had seven stars.

3.5.4. TwitterMoodLight [30]

This project asserts the general mood of people parsing public tweets available on the
web. The application then translates the mood into a color displayed by a lamp. Without
considering the imported libraries, this project has more than 760 lines of code. On the
download date, it had eight stars.

3.5.5. Smart-Farm [31]

According to its developers, this project is “a DIY project for managing a farm”. This
project was realized by two developers; it is not connected to the internet and, without
considering the imported libraries, has 60 SloC. The Arduino is connected to a temperature–
humidity sensor, an air motor, a solenoid valve, and an LCD display. On the download
date, it had 17 stars.

3.5.6. SmartOutlet-IOT [32]

According to its developer, this project is a “Home automation Proof of Concept
system that allows the user to control a device from any client connected to the Wi-Fi
network”. The Arduino receives radio-frequency commands from a Raspberry and enables
or disables a relay. The Arduino is not directly connected to the internet. The part of the
project related to Arduino is composed of 31 lines of code. On the download date, it had
seven stars.

3.5.7. IKEA PS 2014 DIY Lamp [33]

This project uses an ESP8266 to control the IKEA PS 2014 Lamp. The Arduino is
connected to a stepper motor, a lamp, and the Blynk platform [34] through the internet.
The project is composed of around 200 SloC. On the download date, it had five stars.

3.5.8. DIY-Weather-Station [35]

As the name suggests, this project is a homemade weather station. The involved
Arduino board is connected through the internet to the Blynk platform [34] and two
different sensors (a DHT11 and BMP180). The first one is a temperature and humidity
sensor, while the second sensor collects pressure, temperature, and altitude. Without
considering the included libraries, this project has around 70 lines of code. On the download
date, it had six stars.

Sensors 2023, 23, 2740 9 of 23

3.5.9. Oscilloscope32 [36]

This project aims to retrieve data from a smart meter (KAIFA MA105H2E AMS).
The project has more than 100 lines of code and is not connected to the internet. On the
download date, it had six stars.

3.5.10. Mbus-Han-Kaifa [37]

The purpose of this project is to retrieve data from a smart meter (KAIFA MA105H2E
AMS). The project has more than 100 lines of code, and it is not connected to the internet.
On the download date, it had six stars.

3.5.11. CounterStrike GlobalOffensive—Ambilight-System [38]

This project is designed to change some LEDs, reacting to the user’s in-game statistics
ina PC videogame called “Counterstrike: Global Offensive”. The project contains more
than 400 SloC. The Arduino fetches UDP packets from a local web server (which has to
be configured by the user) and then interacts with the connected LEDs. On the download
date, it had five stars.

3.5.12. Regulator [39]

This project is a DIY Arduino consumption regulator built to use excess solar power
for auxiliary heating. The solar power data are retrieved over SunSpec Modbus TCP. The
IoT monitoring is managed through the Blynk platform [34] and a local web server. Without
considering the imported libraries, the project has more than 2500 lines of code. On the
download date, it had 12 stars.

3.5.13. Pixel Cube [40]

This project is a DIY cube designed to track working activities. As declared by its two
developers, it is strongly inspired by other tracking services such a TimeFlip [41]. Each face
of the cube is associated with an activity; flipping the cube starts the time monitoring of that
specific activity. The board’s orientation and time monitoring information are processed by
a server-side Electron-Vue application [42]. The board is directly connected through the
serial port to the machine hosting the web application. Indeed, the application does not
have direct access to the internet. The code designed for running on the Arduino board is
around 140 SLoC. On the download date, it had five stars.

3.5.14. Control Motors with Processing [43]

The purpose of this project is to control a motor connected to an Arduino, taking
advantage of a companion application (called “Processing”) with a Graphical User Interface
(GUI). The machine equipped with the companion app is directly connected to the Arduino
board through a serial communication. Indeed, the board does not have direct access to
the internet. Without considering the imported libraries, the code running on the Arduino
board comprises around 35 SLoC. On the download date, it had nine stars.

3.5.15. BatteryNode [44]

This project aims to create a network of low-power IoT sensors. It is mainly composed
of two classes of elements: a gateway and a remote sensor. The gateway can manage
commands received both through Wi-Fi and MQTT [45] connections. Both these classes of
devices are connected to Wi-Fi. The gateway could collect several types of data from the
nodes, such as humidity, temperature, and pressure. Inside the repositories, many testing
examples are provided. For the purpose of this analysis, we focus our attention on the
previous two described components. The analyzed code is composed of around 500 SLoC.
On the download date, it had 21 stars.

Sensors 2023, 23, 2740 10 of 23

3.5.16. Capacitive Soil Moisture Sensor [46]

According to its developer, this project is a “compact and battery-powered capacitive
soil moisture sensor”. This project communicates using an NRF24L01 component (that
supports 2.4 GHz radio communications). Furthermore, it is one of the very few projects
to show security protection. Indeed, the application could optionally be configured to
authenticate itself using an ATSHA204A [47] (a SHA-based crypto authentication device).
Without considering the imported libraries, the project has around 160 SLoC. On the
download date, it had 25 stars.

4. Results

We analyzed the repositories presented in Section 3.5 according to the classification
approach described in Section 3.1, following the procedure presented in Section 3.3. We
noticed that the most critical categories for the analyzed projects are reasonably the first
two (i.e., Communications and Device/Services), while the Users category is the less
affected one.

In the following subsections, thid paper discusses the five security categories and
associates each project with related security issues. For each security issue, we describe the
feasibility of an attack using one of the following labels:

1. Feasible: the attack could be conducted by a malicious user in certain circumstances
(e.g., it can be conducted only on the local network, or a stress test should be executed
to prove this issue’s feasibility).

2. Not Feasible: according to the described methodology, the security issue could not
be exploited on the analyzed project.

It is noteworthy that the concept of “feasible” and “not feasible” are defined according
to the adopted methodology, and a closer inspection (e.g., with a run-time analysis) could
uncover false positives and false negatives.

4.1. Communications

Communication is a central aspect of the IoT, linking users and devices. From the out-
comes of our analysis, we observed that the analyzed Arduino projects are very susceptible
to these types of attacks. This category includes these four security issues: Routing attacks,
Active attacks, Passive attacks, and Flooding.

Routing attacks are a type of cyber attack that targets a network’s routing protocols or
infrastructure in order to disrupt or manipulate the normal flow of traffic. This class of
threat can include redirecting traffic to a malicious destination, intercepting or modifying
traffic, or disrupting the ability of devices to communicate with one another. Routing attacks
can have a wide range of consequences, from temporary disruptions to more severe and
long-term effects such as data breaches or service outages. For instance, attackers can
conduct Routing attacks using ARP spoofing on a local network. This kind of attack is
complicated to counter, and we did not notice any particular protection against them in
any of the analyzed projects.

Active and Passive attacks can alter, modify, eavesdrop, or analyze the traffic sent or
received by the Arduino. If malicious users have access to the route used by a device to
reach another endpoint, they can always execute an Active attack, altering (and reasonably
invalidating) the transmitted data. However, if transmitted data are encrypted, it is much
more difficult for the attackers to conduct sophisticated attacks (because they cannot know
the structure of the data). Even if encryption could be executed even at the application level,
to better protect the data traffic on a local wireless network, users should at least enable a
robust Wi-Fi encryption standard such as Wireless Protected Access (WPA) 2. According to
the available source code, the analyzed projects never specify which kind of encryption
users should adopt. For this reason, we exclude this issue from the following table, and we
suppose that the Wi-Fi protocol is correctly configured with a proper standard at installation
time. On the other hand, to ensure that data are safe when transferred over the internet,
developers should use an encryption protocol such as Transport Layer Security (TLS) over

Sensors 2023, 23, 2740 11 of 23

HTTP or IPsec. No one of the analyzed projects seems to adopt such protections. However,
there is a project (Section 3.5.16) that could be optionally equipped with an SHA-based
crypto authentication module. If such a module is enabled, sent data are authenticated,
protecting the application from active attacks.

Flooding attacks are a type of network attack in which an attacker attempts to flood
a network or a target device with a large amount of traffic in order to overwhelm it and
cause it to become unavailable to legitimate users. This can be performed by using various
techniques such as ping floods, SYN floods, and UDP floods. Since many Arduino-like
devices have few computational resources, they can be easily targeted by (Distributed)
DoS attacks such as the previously cited ones. These attacks could even be conducted
from outside the local network if the Arduino device exposes a public service such as an
HTTP server. One of the easiest ways to handle this security issue is to configure a router
(or a firewall) to mitigate possible attacks. In the reviewed projects, this mechanism is
not mentioned. Moreover, we did not notice any kind of protection against them in the
source code.

Table 2 considers how the security issues affect the considered GitHub projects.

Table 2. “Communications” security issues inside the analyzed projects.

Github Project Routing Attacks Active Attacks Passive Attacks Flooding

iotinator Feasible:
e.g., ARP spoofing.

Feasible:
no data encryption in
transmission.

Feasible:
no data encryption in
transmission.

Feasible:
there is no declared
protection.

Probee Not Feasible:
no network connection.

Not Feasible:
no data transmission.

Not Feasible:
no data transmission.

Not Feasible:
no network connection.

Arduino
Commands

Feasible:
e.g., ARP spoofing.

Feasible:
connection to a local
HTTP server without
encryption.

Feasible:
connection to a local
HTTP server without
encryption.

Feasible:
there is no declared
protection.

TwitterMoodlight Feasible:
e.g., ARP spoofing.

Feasible:
no data encryption in
transmission.

Feasible:
no data encryption in
transmission.

Feasible:
there is no declared
protection.

Smart-Farm Not Feasible:
no network connection.

Not Feasible:
no data transmission.

Not Feasible:
no data transmission.

Not Feasible:
no network connection.

SmartOutlet-IOT

Feasible:
no network connection,
the attack has to be
conducted through RF
connection.

Feasible:
received data are not
encrypted.

Feasible:
received data are not
encrypted.

Feasible:
there is no declared
protection.

IKEA PS 2014 DIY
Lamp

Feasible:
e.g., ARP spoofing.

Feasible:
communication with
Blynk platform is not
encrypted.

Feasible:
communication with
Blynk platform is not
encrypted.

Feasible:
there is no declared
protection.

DIY-Weather-Station Feasible:
e.g., ARP spoofing.

Feasible:
Communication with
Blynk is not encrypted.

Feasible:
Communication with
Blynk is not encrypted.

Feasible:
there is no declared
protection.

Oscilloscope32 Not Feasible:
no network connection.

Not Feasible:
no data transmission.

Not Feasible:
no data transmission.

Not Feasible:
no network connection.

mbus-han-kaifa Feasible:
e.g., ARP spoofing.

Not Feasible:
no data transmission.

Not Feasible:
no data transmission.

Feasible:
there is no declared
protection.

Sensors 2023, 23, 2740 12 of 23

Table 2. Cont.

Github Project Routing Attacks Active Attacks Passive Attacks Flooding

CounterStrike
GlobalOffensive—
Ambilight-System

Feasible:
e.g., ARP spoofing.

Feasible:
connection to a local
HTTP server without
encryption.

Feasible:
connection to a local
HTTP server without
encryption.

Feasible:
there is no declared
protection.

Regulator Feasible:
e.g., ARP spoofing.

Feasible:
it uses Telnet;
communication with
Blynk is not encrypted.

Feasible:
it uses Telnet;
communication with
Blynk is not encrypted.

Feasible:
there is no declared
protection.

Pixel Cube

Not Feasible:
Arduino directly
connected through
serial port.

Not Feasible:
Arduino directly
connected through
serial port.

Not Feasible:
Arduino directly
connected through
serial port.

Feasible:
there is no declared
protection. The
connected machine
could be exploited to
flood the board.

Control-Motors-with-
Processing-

Not Feasible:
Arduino is directly
connected through
serial port.

Not Feasible:
Arduino is directly
connected through
serial port.

Not Feasible:
Arduino is directly
connected through
serial port.

Feasible:
there is no declared
protection. The
connected machine
could be exploited to
flood the board.

BatteryNode Feasible:
e.g., ARP spoofing.

Feasible:
received data are not
encrypted.

Feasible:
received data are not
encrypted.

Feasible:
there is no declared
protection.

Capacitive Soil
Moisture Sensor

Feasible:
no network connection,
the attack has to be
conducted through RF
connection.

Not Feasible:
If the crypto
authentication device is
enabled, messages
cannot be altered
(otherwise Feasible).

Feasible:
ATSHA204A provides
authentication, not
confidentiality (i.e.,
encryption).

Not Feasible:
data are never read,
only sent.

4.2. Device/Services

The following four security issues belong to this category: Physical Attacks, Device
Subversion, Device Data Access, and Device Degradation.

Starting with Physical Attacks, considering we are discussing DIY projects, these appli-
cations are not designed to work in critical scenarios. In the analyzed projects, we noticed
poor error management if a component is broken or disconnected. The same issue arises
when the Arduino-like board loses network connectivity. For these reasons, we consider
Physical Attacks to be always feasible, especially if the attacker has physical access to the
Arduino. Therefore, this security issue is not reported for each project in Table 2.

The Device Subversion issue includes attacks like device control or device capture. This
kind of attack can also be conducted by having physical access to the IoT device. Consid-
ering how easy it is to physically override an Arduino-like board’s source code through
its USB port, we can also view this attack as always feasible. Furthermore, controlling the
Arduino can also provide access to the devices, sensors, and actuators connected to that
board (directly or through the local network).

Regarding Device Data Access, we observed that developers often store their Wi-Fi
networks’ sensitive information in plain-text strings inside these projects (i.e., the Service
Set Identifier (SSID) and the associated password). Therefore, having access to the Arduino
source code could often give access to the owner’s network (possibly opening the door to
more severe attacks). Indeed, we discovered that storing SSID and password in plain source
code is also implicitly suggested in official Arduino documentation [48]. Furthermore,
considering that these projects rarely encrypt data at rest, an attacker could also steal access

Sensors 2023, 23, 2740 13 of 23

tokens, or the Arduino Media Access Control (MAC) addresses, to execute an Identity
Spoofing attack. Moreover, when a web server is exposed, we did not notice any kind of
protection against replay attacks.

To conclude, regarding Device Degradation, the Arduino-like boards are usually con-
nected to the main power supply, so they are generally not affected by battery exhaustion
attacks. Nevertheless, considering the low resources of a traditional Arduino board (and the
lack of countermeasures in the reviewed projects), it is reasonable that the devices could fall
victim to other kinds of attacks belonging to this category (like a memory exhaustion attack).

Table 3 highlight how these security issues affect the analyzed GitHub projects.

Table 3. “Device/Services” security issues inside the analyzed projects.

Github Project Device Data Access Device Degradation

iotinator
Feasible:
access to sensitive information on the board
(such as Wi-Fi credentials).

Feasible:
e.g., using DoS attacks (such as SYN flooding).

Probee
Feasible:
access to sensitive information on the board
(Wi-Fi credentials are stored for compile time).

Not Feasible:
Arduino not connected to the network.

Arduino Commands
Feasible:
access to sensitive information on the board
(such as Wi-Fi credentials).

Feasible:
e.g., using DoS attacks (such as SYN flooding).

TwitterMoodlight
Feasible:
access to sensitive information on the board
(such as Wi-Fi credentials).

Not Feasible:
Arduino fetches only data from Twitter.

Smart-Farm
Feasible:
it is possible to get the data of the associated
sensors.

Not Feasible:
Arduino not connected to the network.

SmartOutlet-IOT Not Feasible:
no sensitive data.

Feasible:
through Radio Frequency messages [49].

IKEA PS 2014 DIY Lamp
Feasible:
access to sensitive information on the board
(such as Wi-Fi credentials or Blynk token).

Feasible:
the Arduino or motor could be broken.

DIY-Weather-Station
Feasible:
access to sensitive information on the board
(such as Wi-Fi credentials or Blynk token).

Not Feasible:
device “does not listen” for incoming
messages.

Oscilloscope32 Not Feasible:
no sensitive data.

Not Feasible:
no network connection.

mbus-han-kaifa
Feasible:
access to sensitive information on the board
(such as Wi-Fi credentials).

Not Feasible:
device “does not listen” for incoming
messages.

CounterStrike
GlobalOffensive—
Ambilight-System

Feasible:
access to sensitive information on the board
(such as Wi-Fi credentials).

Feasible:
e.g., using DoS attacks (such as SYN flooding).

Regulator
Feasible:
access to sensitive information on the board
(such as Wi-Fi credentials or Blynk tokens).

Feasible:
the Arduino or the sensors/actuators could be
broken.

Pixel Cube Not Feasible:
no sensitive data.

Feasible:
e.g., using DoS attacks (such as SYN flooding).

Control-Motors-with-
Processing-

Not Feasible:
no sensitive data.

Feasible:
e.g., using DoS attacks (such as SYN flooding).

BatteryNode
Feasible:
access to sensitive information on the boards
(such as Wi-Fi credentials).

Feasible:
e.g., using DoS attacks (such as SYN flooding).

Capacitive Soil
Moisture Sensor

Not Feasible:
no sensitive data.

Not Feasible:
device “does not listen” for incoming
messages.

Sensors 2023, 23, 2740 14 of 23

4.3. Users

Security threats related to Users can be divided into four categories: Trust, Data
Confidentiality, Identity Management, and Behavioral Threats.

Regarding Trust attacks, inside our pool of applications, we did not find scenarios
in which attacks such as self-promoting, good mouthing, or bad mouthing could have a
place. Clearly, as we already highlighted in Section 4.2, by overriding the source code of
the board, it is still possible to try to execute such attacks.

Considering Identity Management threats, there are usually no identities to manage in
these projects; therefore, this kind of threat is rarely present in the analyzed projects.

We also found the same situation for Data Confidentiality. Considering that there are no
identities to manage, there are almost no users’ confidential data. In only one application,
we found a piece of sensitive information stored as plain text: the cellphone number of
the admin users (necessary to receive notifications). If this information is stolen, on the
one hand, we can have Data Confidentiality issues (such as user impersonation, identity
spoofing, or phishing attack). On the other hand, an attacker could use this information,
for instance, to carry out a social engineering attack (which is a Behavioral Threat).

To conclude, the Behavioral Threats category, as previously discussed, includes social
engineering attacks. It is important to note that this type of attack is always a possibility
when user interaction is required for the project. Additionally, since these projects typically
lack authentication at the startup stage, any person in the same vicinity as the Arduino
device can use it, leaving room for a potential “free riding attack”, which is another type of
attack that falls under this category.

Table 4 illustrates how the described security issues can affect the considered GitHub
projects. In the table, we report only those projects with different behavior in one of the
previously cited security issues from the general description provided in this section.

Table 4. “Users” security issues in the analyzed projects.

Github Project Data Confidentiality Identity Management Behavioral Threats

iotinator
Feasible:
Phone numbers stored
in clear on the Arduino.

Not Feasible:
actually, all users are admins.

Feasible:
Social Engineering and Free Riding
attacks could always be feasible for
the analyzed projects.

Probee Not Feasible:
no sensitive data.

Not Feasible:
no users.

Not Feasible:
once started, there is no user
interaction.

DIY-Weather-Station Not Feasible:
no sensitive data.

Feasible:
stolen Blynk access token could be
used to authenticate other devices.

Not Feasible:
application reads data from sensors,
only.

IKEA PS 2014 DIY
Lamp

Not Feasible:
no sensitive data.

Feasible:
stolen Blynk access tokens could be
used to authenticate other devices.

Feasible:
Social Engineering and Free Riding
attacks could always be feasible for
the analyzed projects.

Regulator Not Feasible:
no sensitive data.

Feasible:
stolen Blynk access tokens could be
used to authenticate other devices.

Feasible:
Social Engineering and Free Riding
attacks could always be feasible for
the analyzed projects.

Capacitive Soil
Moisture Sensor

Not Feasible:
no sensitive data.

Not Feasible:
no users.

Not Feasible:
once started, there is no user
interaction.

4.4. Mobility

The security issues related to this category are the following three: Dynamic Topol-
ogy/Infrastructure, Tracking and Location Privacy, and Multiple Jurisdictions.

Sensors 2023, 23, 2740 15 of 23

As already specified in Section 3.3, we have conducted a source-code-level analysis of
the security issues belonging to each security category. Therefore, to identify potential secu-
rity vulnerabilities related to this security category, we have taken into account potential
undetected changes in network topology or disconnection of connected sensors/actuators.
We also considered what could happen if the network connection is lost. In addition, we
even examined if the developed applications could be tracked and if the data collected or
created by the application could be stored on servers under a different jurisdiction from the
one in which the Arduino board will be deployed.

Starting with the Dynamic Topology/Infrastructure issues, we found one project retriev-
ing information from a local server and a few projects interacting with other local devices.
In these projects, we observed no identity verification. Therefore, in those cases, moving
the device to another network could change the retrieved data and create an impact on the
developed application.

Regarding Tracking and Location Privacy issues, there are no projects in our pool that
use tracking and location functionality. Therefore, this security issue is not reported in
Table 4. However, if the Arduino board is connected to the internet, it is noteworthy that
an approximate location could always be retrieved from its IP address. To mitigate this
issue, the developer should adopt an obfuscation mechanism (e.g., using a Virtual Private
Network to access the internet).

To conclude, regarding Multiple Jurisdictions issues, we observed no collaborating
or coordinating disjointed networks of things in DIY projects (usually, such developers
create something “local”, designed to be used in their houses). However, including an
external online platform inside the project (e.g., Blynk) could create this kind of issue if the
deployed application is in a different country where the remote platform is hosted. In this
case, following the classification described at the beginning of Section 4, we consider this
issue to be relevant (feasible) if some data could be stored in different countries (e.g., cloud
services), or reasonably not relevant (not feasible) otherwise.

Table 5 presents how the discussed security issues affect the analyzed GitHub projects.
In this table, we used the same approach as Table 4; only relevant projects and security
issues are reported.

Table 5. “Mobility” security issues inside the analyzed projects.

Github Project Dynamic Topology/Infrastructure Multiple Jurisdictions

Probee Feasible:
the Arduino has to interact with a Raspberry.

Not Feasible:
no network connection.

Arduino commands Not Feasible:
no issues if local topology changes. Not Feasible

TwitterMoodlight Not Feasible:
no issues if local topology changes.

Feasible:
data retrieved from Twitter could be
relevant for data privacy.

Smart-Farm Not Feasible:
no issues if local topology changes. Not Feasible

SmartOutlet-IOT
Feasible:
it accepts radio frequency commands from
anyone.

Not Feasible

IKEA PS 2014 DIY Lamp Not Feasible:
no issues if local topology changes.

Feasible:
relying on Blynk platform could be
relevant for data privacy.

DIY-Weather-Station Not Feasible:
no issues if local topology changes.

Feasible:
relying on Blynk platform could be
relevant for data privacy.

Sensors 2023, 23, 2740 16 of 23

Table 5. Cont.

Github Project Dynamic Topology/Infrastructure Multiple Jurisdictions

Oscilloscope32 Not Feasible:
no issues if local topology changes. Not Feasible

Mbus-han-kaifa Not Feasible:
no issues if local topology changes. Not Feasible

CounterStrike
GlobalOffensive—Ambilight-System

Feasible:
the Arduino retrieves data from a local server. Not Feasible

Regulator
Feasible:
the Arduino interacts with Modbus TCP (no
authentication).

Feasible:
relying on Blynk platform could be
relevant for data privacy.

Pixel Cube
Feasible:
the Arduino interacts with another machine
through serial port (no authentication).

Not Feasible

Control-Motors-with-Processing-
Feasible:
the Arduino interacts with another machine
through serial port (no authentication).

Not Feasible

BatteryNode
Feasible:
the project is a network of devices that relies on a
gateway.

Not Feasible

Capacitive Soil Moisture Sensor Not Feasible:
no issues if local topology changes. Not Feasible

4.5. Integration of Resources

In IoT, the collection, processing, storage, and usage of data are highly dependent
on different infrastructures. The integration of these resources could be subject mainly
to these three categories of issues: Cross-Domain Administration, Cascading Resources, and
Interoperability.

Considering Cross-Domain Administration issues, we observed that the analyzed projects
do not involve many decentralized nodes. Indeed, the projects are mainly designed to work
on the users’ local networks. Moreover, in the analyzed projects, there are no particular
policies to be configured or identities to be managed. Therefore, this security issue is not
reported in Table 6.

Table 6. Integration of Resources security issues inside the analyzed projects.

Github Project Cascading Resources Interoperability

iotinator Feasible:
it is possible to have access to the website.

Feasible:
it is possible to have access to website’s data.

Probee
Feasible:
controlling the connected
devices/sensors/actuators.

Not Feasible:
no interaction with other resources.

Arduino Commands
Feasible:
controlling the connected
devices/sensors/actuators.

Not Feasible:
no peer resources, no available data.

TwitterMoodlight
Feasible:
controlling the connected
devices/sensors/actuators.

Not Feasible:
no peer resources, no available data.

Smart-Farm
Feasible:
controlling the connected
devices/sensors/actuators.

Not Feasible:
no interaction with other resources.

Sensors 2023, 23, 2740 17 of 23

Table 6. Cont.

Github Project Cascading Resources Interoperability

SmartOutlet-IOT Not Feasible:
read-only.

Not Feasible:
no interaction with other resources.

IKEA PS 2014 DIY Lamp Feasible:
Blynk platform auth token.

Feasible:
Blynk platform auth token.

DIY-Weather-Station Feasible:
Blynk platform auth token.

Feasible:
Blynk platform auth token.

Oscilloscope32 Feasible:
controlling the connected display.

Not Feasible:
no peer resources, no available data.

mbus-han-kaifa Feasible:
changing connected meter threshold values.

Feasible:
reading meter values.

CounterStrike
GlobalOffensive—Ambilight-
System

Feasible:
controlling the connected
devices/sensors/actuators.

Feasible:
obtaining data from the HTTP server.

Regulator Feasible:
Blynk platform auth token.

Feasible:
Blynk platform auth token.

Pixel Cube
Feasible:
controlling the connected
devices/sensors/actuators.

Feasible:
altering the normal working flow of the
connected application.

Control-Motors-with-
Processing-

Feasible:
controlling the connected
devices/sensors/actuators.

Not Feasible:
read only.

BatteryNode
Feasible:
controlling the connected
devices/sensors/actuators.

Feasible:
controlling the gateway it is possible to
override the source code of the connected
nodes Over-the-Air (OTA).

Capacitive Soil Moisture Sensor
Feasible:
controlling the connected
devices/sensors/actuators.

Feasible:
controlling the board it will be possible to
send altered information through RF module.

Regarding Cascading Resources issues, taking control of the Arduino device could give
the attacker access to that board’s data, functionalities, and capabilities. Furthermore, if
the Arduino has some sensors or actuators, they can be compromised as well. Considering
that some projects contain an access token to take advantage of the functionalities of the
Blynk platform, after compromising the board, malicious users could retrieve that token
and obtain access to the remote platform’s features.

To conclude, for Interoperability issues, we do not have projects with fog computing or
similar functionalities, so attacking an Arduino does not affect peer systems. However, an
Arduino is usually connected to many sensors, and having the possibility to control this
device could give access to their information. Furthermore, we must consider again that
some applications use an authentication token to contact the Blynk platform. With that
token, an attacker could have access to data stored on the external platform.

Table 6 considers how the security issues affect the considered GitHub projects.

4.6. Results Summary

The outcome of the conducted analysis is summarized in Table 7.

Sensors 2023, 23, 2740 18 of 23

Table 7. Summary of the security issues potentially present in each project divided by category.

ID GitHub Project Name Comm. Device/Services Users Mobility Int. of Resources Total

01 iotinator 4/4 2/2 2/3 0/2 2/2 10/13
02 Probee 0/4 1/2 0/3 1/2 1/2 3/13
03 Arduino Commands 4/4 2/2 1/3 0/2 1/2 8/13
04 TwitterMoodLight 4/4 1/2 1/3 1/2 1/2 8/13
05 Smart-Farm 0/4 1/2 1/3 0/2 1/2 3/13
06 SmartOutlet-IOT 4/4 1/2 1/3 1/2 0/2 7/13
07 IKEA PS 2014 DIY Lamp 4/4 2/2 2/3 1/2 2/2 11/13
08 DIY-Weather-Station 4/4 1/2 1/3 1/2 2/2 9/13
09 Oscilloscope32 0/4 2/4 1/3 0/2 1/2 4/13
10 mbus-han-kaifa 2/4 1/2 1/3 0/2 2/2 6/13

11 CounterStrike GlobalOffensive—
Ambilight-System 4/4 2/2 1/3 1/2 2/2 10/13

12 Regulator 4/4 2/2 2/3 2/2 2/2 12/13
13 Pixel Cube 1/4 1/2 1/3 1/2 2/2 6/13
14 Control-Motors-with-Processing- 1/4 1/2 1/3 1/2 1/2 5/13
15 BatteryNode 4/4 2/2 1/3 1/2 2/2 10/13
16 Capacitive Soil Moisture Sensor 2/4 0/2 0/3 0/2 2/2 4/13

5. Discussion

Our analysis was based on the threat model presented in [25]. This model is di-
vided into five security categories: Communications, Devices/Services, Users, Mobility, and
Integration of Resources. Those categories were further described in Section 3.1.

In this section, we describe some lessons learned about the behavior of hobbyist
developers from the conducted analysis. Table 8 reports a quantitative summary of the
observed security issues in the analyzed repositories.

Table 8. Summary of the security issues observed in the analyzed repositories. The table does not
consider those security issues not reported in the other tables.

Security Category Feasibility for
Each Category Security Issue Issue Not Feasible Issue Feasible

Communications 64%

Routing Attack 5 (31%) 11 (69%)
Active Attack 7 (44%) 9 (56%)
Passive Attack 6 (37%) 10 (63%)
Flooding 5 (31%) 11 (69%)

Device/Services 63%
Device Data Access 5 (31%) 11 (69%)
Device Degradation 7 (44%) 9 (56%)

Users 35%
Data Confidentiality 15 (94%) 1 (6%)
Identity Management 13 (81%) 3 (19%)
Behavioral Threats 3 (19%) 13 (81%)

Mobility 34%
Dynamic
Topology/Infrastructure 9 (56%) 7 (44%)

Multiple Jurisdiction 12 (75%) 4 (25%)

Integration of Resources 75%
Cascading Resources 1 (6%) 15 (94%)
Interoperability 7 (44%) 9 (56%)

To begin with, we observe that the three more relevant categories are Communications,
Device/Services, and Integration of Resources. Unfortunately, the fact that Users and Mobility
categories are not particularly relevant for the analyzed projects is not due to developers’
countermeasures. Indeed, most of the projects are self-contained, and often they do not
manage users’ data or multiple identities. If we consider the first three cited categories, the
frequency of having a feasible issue is much higher.

Sensors 2023, 23, 2740 19 of 23

Proceeding the discussion category by category, the first category to analyze is Commu-
nication. The average frequency that an issue belonging to this category could be present in
our Arduino project is 64% (the second highest value). Analyzing the Arduino-like projects,
we noticed that developers usually did not encrypt data in their DIY IoT applications.
However, encryption is particularly useful to avoid (or reduce) attacks belonging to this
category. Indeed, encryption could significantly reduce the impact of Active and Passive
attacks and mitigate some types of Routing Attacks. Arduino devices do not have native pro-
tection against Flooding attacks. According to what we read in the hobbyist programmers’
repositories, we did not find any special protection (even if we could not totally exclude the
possibility that some developers configured their routers to protect the Arduino). Generally
speaking, we even did not observe any kind of protection against passive attacks. Only
one project could optionally support the authentication of the sent data.

Considering the Device/Services category, the average frequency at which an issue in
this category is feasible is around 63%. In Section 4.2, we already highlighted how Physical
Attacks could affect Arduino devices. Indeed, they are easy to override and break. For this
reason, developers should be aware that physically protecting their devices is essential to
avoid many issues belonging to this category that could be executed when a malicious user
has physical access to the board (Physical Attacks, Device Subversion, and Device Data Access).
Moreover, these boards have limited resources, so they could be an easy target for DoS
attacks that could lead to Device Degradation. In some cases, we also noticed a couple of
battery-powered boards. For these projects, even a battery-exhaustion attack could lead to
Device Degradation. To conclude, even for this security category, encryption could mitigate
some of these issues. For instance, encrypting sensitive information can increase protection
against Device Data Access attacks. Indeed, encrypting (or at least obfuscating) sensitive
information such as network SSID and password is a best practice that we did not find in
the analyzed repositories.

The Users category is one of the two less affected categories in the analyzed projects.
Starting from the first security issue, we did not notice any project in which Trust issues
were relevant. Regarding Data Confidentiality issues, in our pool of projects, we rarely
found applications that store users’ sensitive information. For Identity Management issues,
we found some authentication tokens stored as plain strings in the analyzed applications.
Therefore, a malicious user could steal this token and have access to the platform to which
the token belongs. Behavioral Threats such as social engineering attacks are naturally almost
always possible if a malicious user can talk with the owner of the Arduino. Moreover, there
is no protection against free-riding attacks (no projects require user authentication to access
the project’s functionalities).

The Mobility category is the other less affected category. Starting from the Dynamic
Topology/Infrastructure security issues, even though we did not notice any authentication
strategy to verify the identity of the connected devices, many projects were quite self-
contained. For this reason, they are not subject to this class of threats. For Tracking and
Location Privacy issues, we saw that most projects did not use geolocation data. In this way,
if the application connects to the internet, an attacker could only obtain an approximate
location from the public IP address. The category of Multiple Jurisdiction issues is generally
not applicable to a DIY project developed to be used by the creators themselves. This
issue could be relevant if the programmers decide to take advantage of a foreign external
platform to develop an application to be used by many users.

To conclude, the last security category is Integration of Resources. This category has the
highest average frequency of finding a security issue. This is not surprising if we consider
that Arduino-like boards are often logically connected to other endpoints or physically
connected to sensors/actuators. However, considering that these connections rarely involve
many decentralized nodes, and having Cross Domain Administration issues is reasonably
uncommon. Conversely, Cascading Resources attacks are generally quite feasible. Indeed,
once the board is compromised, there are generally no authentication mechanisms between
the board and the connected resources. Moreover, some applications use an authentication

Sensors 2023, 23, 2740 20 of 23

token to obtain access to remote platforms’ functionalities. Since authentication tokens
are often hard-coded in the source code of the applications, they can be exploited not only
for cascading resources but also to have Interoperability issues. Indeed, by stealing this
token, malicious users can have the possibility of executing some actions in place of the
actual token’s owner. Furthermore, when the board takes advantage of functionalities
offered by other endpoints available in the same network, there is no need to steal such a
token. Therefore, compromising the board could offer a potential attacker the capability of
exploiting the services offered by these endpoints with negligible additional effort.

6. Conclusions

In this research, we have conducted a source-code level analysis of security issues in
DIY Arduino-like projects reasonably developed by hobbyist programmers. Our study is
focused on the source code that an Arduino-like device can execute.

Analyzing those repositories shows that novice developers rarely pay attention to
cybersecurity concepts. Therefore, we highlighted how many kinds of attacks are feasible
in the evaluated projects. Considering that these projects are freely available on the internet,
other users could download and install them on their own boards without considering
the potential security issues. Furthermore, novice developers could use these projects as
practical examples to develop their own. In this way, newly developed projects may take
these security issues with them. After this analysis, we can conclude that users should not
install this kind of DIY project lightly, especially if any (more crucial) systems are in the
same network.

In conclusion, this research is a first step towards a better understanding of security
issues in Arduino-like projects, and we hope that it will encourage further research in this
area. We believe that identifying potential security weaknesses in novice programmers’ IoT
projects can lead to the development of more secure systems in the future.

Future Work

As the number of IoT devices and projects continues to grow, it is crucial that we
continue to research and develop new methods for protecting these devices from potential
threats and support inexperienced programmers in their projects. Moving forward, we
plan to compare our findings with a set of static checkers. The comparison between our
findings and the outcome of these tools could even lead to the creation of a new static
checker that can detect security issues in Arduino-like projects. Additionally, we also plan
to observe which issues can be found through dynamic analysis. To conclude, we want to
try to estimate the severity in case a threat is exploited by an attacker in a smart home setup.

Author Contributions: Conceptualization, F.C. and L.M.; methodology, F.C. and L.M.; validation,
F.C.; investigation, L.M.; resources, L.M.; data curation, L.M.; writing—original draft preparation,
L.M.; writing—review and editing, F.C. and L.M.; visualization, L.M.; supervision, F.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by Fondazione CRT (Cassa di Risparmio di Torino)
and by project SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded
by the European Union—NextGenerationEU.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: When this paper was submitted, all the analyzed repositories were
freely available on GitHub. All the links are reported in the references.

Acknowledgments: We want to acknowledge the students who voluntarily contributed to the
analysis necessary to improve the outcome of this research activity.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Sensors 2023, 23, 2740 21 of 23

Abbreviations

ARP Address Resolution Protocol
COTS Commercial Off-the-Shelf
DDoS Distributed Denial of Service
DoS Denial of Service
DIY Do It Yourself
GHz gigahertz
GUI Graphical User Interface
ICT Information and Communication Technologies
IDE Integrated Development Environment
IoT Internet of Things
IP Internet Protocol
IPsec IP Security
HTTP Hypertext Transfer Protocol
HTTPS HTTP Secure
LCD Liquid Crystal Display
LED Light Emitting Diode
MAC Media Access Control
MQTT Message Queuing Telemetry Transport
OTA Over-the-Air
RF Radio Frequency
SHA Secure Hash Algorithm
SLoC Source Lines of Code
SSID Service Set Identifier
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
WPA Wireless Protected Access

References
1. GitHub. Available online: https://github.com/ (accessed on 18 January 2023).
2. Arduino Project Hub. Available online: https://projecthub.arduino.cc/ (accessed on 18 January 2023).
3. Instructables. Available online: https://www.instructables.com/ (accessed on 18 January 2023).
4. Gousios, G.; Vasilescu, B.; Serebrenik, A.; Zaidman, A. Lean GHTorrent: GitHub Data on Demand. In Proceedings of the 11th

Working Conference on Mining Software Repositories, Hyderabad, India, 31 May–1 June 2014.
5. Lueth, K.L.; Hasan, M.; Sinha, S.; Annaswamy, S.; Wegner, P.; Bruegge, F.; Kulezak, M. State of IoT—Spring 2022; Technical Report;

IoT Analytics: Hamburg, Germany, 2022.
6. Anand, N.; Puri, V. A review of Arduino board’s, Lilypad’s & Arduino shields. In Proceedings of the 3rd International Conference

on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016; IEEE: Piscataway, NJ,
USA, 2016.

7. El-Abd, M. A Review of Embedded Systems Education in the Arduino Age: Lessons learned and Future Directions. Int. J. Eng.
Pedagog. 2017, 7, 79–93. [CrossRef]

8. Wood, B.M.; Ganago, A.O. Using Arduino in Engineering Education: Motivating Students to Grow from a Hobbyist to a
Professional. In Proceedings of the ASEE Annual Conference & Exposition, Salt Lake City, UT, USA, 23–27 June 2018.

9. Kondaveeti, H.K.; Mathe, S.E. A systematic literature review on prototyping with Arduino: Applications, challenges, advantages,
and limitations. Comput. Sci. Rev. 2021, 40, 100364. [CrossRef]

10. Wadhwani, S.; Singh, U.; Singh, P.; Dwivedi, S. Smart Home Automation and Security System using Arduino and IOT. Int. Res. J.
Eng. Technol. (IRJET) 2018, 5, 1357–1359.

11. Kamaruddin, F.; Abd Malik, N.N.N.; Murad, N.A.; Latiff, N.M.A.A.; Yusof, S.K.S.; Hamzah, S.A. IoT-based intelligent irrigation
management and monitoring system using Arduino. TELKOMNIKA (Telecommun. Comput. Electron. Control) 2019, 17, 2378–2388.
[CrossRef]

12. Corno, F.; De Russis, L.; Mannella, L. Helping novice developers harness security issues in cloud-IoT systems. J. Reliab. Intell.
Environ. 2022, 8, 261–283. [CrossRef]

13. Kafle, K.; Moran, K.; Manandhar, S.; Nadkarni, A.; Poshyvanyk, D. Security in Centralized Data Store-based Home Automation
Platforms: A Systematic Analysis of Nest and Hue. ACM Trans. Cyber-Phys. Syst. 2020, 5, 1–27. [CrossRef]

https://github.com/
https://projecthub.arduino.cc/
https://www.instructables.com/
http://doi.org/10.3991/ijep.v7i2.6845
http://doi.org/10.1016/j.cosrev.2021.100364
http://doi.org/10.12928/telkomnika.v17i5.12818
http://doi.org/10.1007/s40860-022-00175-4
http://doi.org/10.1145/3418286

Sensors 2023, 23, 2740 22 of 23

14. Bertino, E.; Islam, N. Botnets and Internet of Things Security. Computer 2017, 50, 76–79. [CrossRef]
15. Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Invernizzi, L.;

Kallitsis, M.; et al. Understanding the Mirai Botnet. In Proceedings of the 26th USENIX Security Symposium (USENIX Security
17), Vancouver, BC, Canada, 16–18 August 2017.

16. Butun, I.; Österberg, P.; Song, H. Security of the Internet of Things: Vulnerabilities, Attacks, and Countermeasures. IEEE Commun.
Surv. Tutor. 2019, 22, 616–644. [CrossRef]

17. Strobel, D.; Oswald, D.; Richter, B.; Schellenberg, F.; Paar, C. Microcontrollers as (In)Security Devices for Pervasive Computing
Applications. Proc. IEEE 2014, 102, 1157–1173. [CrossRef]

18. Kumar, D.; Shen, K.; Case, B.; Garg, D.; Alperovich, G.; Kuznetsov, D.; Gupta, R.; Durumeric, Z. All Things Considered: An
Analysis of IoT Devices on Home Networks. In Proceedings of the 28th USENIX Security Symposium (USENIX Security 19),
Santa Clara, CA, USA, 14–16 August 2019.

19. Alberca, C.; Pastrana, S.; Suarez-Tangil, G.; Palmieri, P. Security Analysis and Exploitation of Arduino devices in the Internet of
Things. In Proceedings of the ACM International Conference on Computing Frontiers, Como, Italy, 16–18 May 2016.

20. Gendreau, A.A.; GCFE CISSP. Internet of Things: Arduino Vulnerability Analysis. Primer Secur. 2016, 14, 32–35.
21. Li, S.; Tryfonas, T.; Li, H. The Internet of Things: A security point of view. Internet Res. 2016, 26, 337–359. [CrossRef]
22. Abomhara, M.; Køien, G.M. Cyber Security and the Internet of Things: Vulnerabilities, Threats, Intruders and Attacks. J. Cyber

Secur. Mobil. 2015, 4, 65–88. [CrossRef]
23. Sicari, S.; Rizzardi, A.; Grieco, L.A.; Coen-Porisini, A. Security, privacy and trust in Internet of Things: The road ahead. Comput.

Netw. 2015, 76, 146–164. [CrossRef]
24. Alaba, F.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F. Internet of Things security: A survey. J. Netw. Comput. Appl. 2017, 88, 10–28.

[CrossRef]
25. Pal, S.; Hitchens, M.; Rabehaja, T.; Mukhopadhyay, S. Security Requirements for the Internet of Things: A Systematic Approach.

Sensors 2020, 20, 5897. [CrossRef] [PubMed]
26. Roman, R.; Zhou, J.; Lopez, J. On the features and challenges of security and privacy in distributed internet of things. Comput.

Netw. 2013, 57, 2266–2279. [CrossRef]
27. iotinator @ GitHub. Available online: https://github.com/reivaxy/iotinator (accessed on 19 January 2023).
28. Probee @ GitHub. Available online: https://github.com/Juicymo/iot-probee (accessed on 19 January 2023).
29. Arduino Commands @ GitHub. Available online: https://github.com/ios-dbrancam/ArduinoCmd (accessed on 19 Jan-

uary 2023).
30. TwitterMoodLight @ GitHub. Available online: https://github.com/HanYangZhao/MoodLight (accessed on 19 January 2023).
31. Smart-Farm @ GitHub. Available online: https://github.com/salimkhazem/Smart-Farm- (accessed on 19 January 2023).
32. SmartOutlet-IOT @ GitHub. Available online: https://github.com/ManolescuSebastian/SmartOutlet-IOT (accessed on 19

January 2023).
33. IKEA PS 2014 DIY Lamp @ GitHub. Available online: https://github.com/biagiobotticelli/IKEA_DIY_Lamp (accessed on 19

January 2023).
34. Blynk IoT Platform. Available online: https://blynk.io/ (accessed on 19 January 2023).
35. DIY-Weather-Station @ GitHub. Available online: https://github.com/NishantSahay7/DIY-Weather-Station (accessed on 20

January 2023).
36. Oscilloscope32 @ GitHub. Available online: https://github.com/TheAmadeus25/Oscilloscope32 (accessed on 20 January 2023).
37. mbus-han-kaifa @ GitHub. Available online: https://github.com/hagronnestad/mbus-han-kaifa (accessed on 20 January 2023).
38. CounterStrike GlobalOffensive—Ambilight-System @ GitHub. Available online: https://github.com/TheAmadeus25/

CounterStrike-GlobalOffensive-Ambilight-System (accessed on 20 January 2023).
39. Regulator @ GitHub. Available online: https://github.com/JAndrassy/Regulator (accessed on 20 January 2023).
40. Pixel Cube @ GitHub. Available online: https://github.com/mstrlaw/pixel_cube (accessed on 16 February 2023).
41. TimeFlip Website. Available online: https://timeflip.io/ (accessed on 16 February 2023).
42. Electron-Vue Repository. Available online: https://github.com/SimulatedGREG/electron-vue (accessed on 16 February 2023).
43. Control-Motors-with-Processing @ GitHub. Available online: https://github.com/salimkhazem/Control-Motors-with-

Processing- (accessed on 16 February 2023).
44. BatteryNode @ GitHub. Available online: https://github.com/happytm/BatteryNode (accessed on 16 February 2023).
45. OASIS MQTT Version 5.0 Documentation. Available online: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

(accessed on 17 February 2023).
46. Capacitive Soil Moisture Sensor @ GitHub. Available online: https://github.com/RonMcKay/capacitive-soil-moisture-sensor

(accessed on 16 February 2023).
47. ATSHA204A Microchip. Available online: https://www.microchip.com/en-us/product/ATsha204a (accessed on 17 Febru-

ary 2023).

http://doi.org/10.1109/MC.2017.62
http://doi.org/10.1109/COMST.2019.2953364
http://doi.org/10.1109/JPROC.2014.2325397
http://doi.org/10.1108/IntR-07-2014-0173
http://doi.org/10.13052/jcsm2245-1439.414
http://doi.org/10.1016/j.comnet.2014.11.008
http://doi.org/10.1016/j.jnca.2017.04.002
http://doi.org/10.3390/s20205897
http://www.ncbi.nlm.nih.gov/pubmed/33086542
http://doi.org/10.1016/j.comnet.2012.12.018
https://github.com/reivaxy/iotinator
https://github.com/Juicymo/iot-probee
https://github.com/ios-dbrancam/ArduinoCmd
https://github.com/HanYangZhao/MoodLight
https://github.com/salimkhazem/Smart-Farm-
https://github.com/ManolescuSebastian/SmartOutlet-IOT
https://github.com/biagiobotticelli/IKEA_DIY_Lamp
https://blynk.io/
https://github.com/NishantSahay7/DIY-Weather-Station
https://github.com/TheAmadeus25/Oscilloscope32
https://github.com/hagronnestad/mbus-han-kaifa
https://github.com/TheAmadeus25/CounterStrike-GlobalOffensive-Ambilight-System
https://github.com/TheAmadeus25/CounterStrike-GlobalOffensive-Ambilight-System
https://github.com/JAndrassy/Regulator
https://github.com/mstrlaw/pixel_cube
https://timeflip.io/
https://github.com/SimulatedGREG/electron-vue
https://github.com/salimkhazem/Control-Motors-with-Processing-
https://github.com/salimkhazem/Control-Motors-with-Processing-
https://github.com/happytm/BatteryNode
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://github.com/RonMcKay/capacitive-soil-moisture-sensor
https://www.microchip.com/en-us/product/ATsha204a

Sensors 2023, 23, 2740 23 of 23

48. Documentation on Arduino’s Official Website. Available online: https://www.arduino.cc/reference/en/libraries/wifi/wifi.
begin/ (accessed on 19 January 2023).

49. Presti, C.D.; Carrara, F.; Scuderi, A.; Lombardo, S.; Palmisano, G. Degradation Mechanisms in CMOS Power Amplifiers Subject to
Radio-Frequency Stress and Comparison to the DC case. In Proceedings of the IEEE 45th Annual International Reliability Physics
Symposium, Phoenix, AZ, USA, 15–19 April 2007; IEEE: Piscataway, NJ, USA, 2007.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.arduino.cc/reference/en/libraries/wifi/wifi.begin/
https://www.arduino.cc/reference/en/libraries/wifi/wifi.begin/

	Introduction
	Related Work
	Materials and Methods
	Project Classification
	Research Criteria
	Methodology
	Novelty and Contribution
	Analyzed Projects
	Iotinator B27-sensors-2210550
	Probee B28-sensors-2210550
	Arduino Commands B29-sensors-2210550
	TwitterMoodLight B30-sensors-2210550
	Smart-Farm B31-sensors-2210550
	SmartOutlet-IOT B32-sensors-2210550
	IKEA PS 2014 DIY Lamp B33-sensors-2210550
	DIY-Weather-Station B35-sensors-2210550
	Oscilloscope32 B36-sensors-2210550
	Mbus-Han-Kaifa B37-sensors-2210550
	CounterStrike GlobalOffensive—Ambilight-System B38-sensors-2210550
	Regulator B39-sensors-2210550
	Pixel Cube B40-sensors-2210550
	Control Motors with Processing B43-sensors-2210550
	BatteryNode B44-sensors-2210550
	Capacitive Soil Moisture Sensor B46-sensors-2210550

	Results
	Communications
	Device/Services
	Users
	Mobility
	Integration of Resources
	Results Summary

	Discussion
	Conclusions
	References

