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Abstract

In this report, we describe the technical details of our
submission to the EPIC-Kitchens-100 Unsupervised Do-
main Adaptation (UDA) Challenge in Action Recognition.
To tackle the domain-shift which exists under the UDA set-
ting, we first exploited a recent Domain Generalization
(DG) technique, called Relative Norm Alignment (RNA).
Secondly, we extended this approach to work on unlabelled
target data, enabling a simpler adaptation of the model to
the target distribution in an unsupervised fashion. To this
purpose, we included in our framework UDA algorithms,
such as multi-level adversarial alignment and attentive en-
tropy. By analyzing the challenge setting, we notice the
presence of a secondary concurrence shift in the data, which
is usually called environmental bias. It is caused by the ex-
istence of different environments, i.e., kitchens. To deal with
these two shifts (environmental and temporal), we extended
our system to perform Multi-Source Multi-Target Domain
Adaptation. Finally, we employed distinct models in our
final proposal to leverage the potential of popular video ar-
chitectures, and we introduced two more losses for the en-
semble adaptation. Our submission (entry ‘plnet’) is visible
on the leaderboard and ranked in 2nd position for ‘verb’,
and in 3rd position for both ‘noun’ and ‘action’.

1. Introduction
First person action recognition offers a wide range of op-

portunities and challenges, thanks to the use of wearable
devices to capture the current state of the user and of the
environment. Very often, indeed, the actions of the subject
are captured through a video-camera placed on the head
of the user. As a consequence, in contrast with most CV
tasks, the major feature of this scenario is that source data
is intrinsically characterized by rich multi-modal informa-
tion, thanks to the proximity of the sensor to the action
scene. As a result, sensor fusion between visual and au-

ditory cues can be a powerful method to fully exploit the
knowledge available in the data. However, the particular
setup of data collection also comes with several difficulties:
i) ego-motion represents a significant source of noise for
the dataset, because changes in head posture cause a shift
in the point-of-view and background. While from one side
this effect can be exploited as an intrinsic attention mecha-
nism, it may also introduce confusion between ego-motion
and the real action of the subject. An approach to mitigate
this effect could be to complement RGB data with other
motion-related sources, such as the optical flow; ii) model
predictions tend to be strongly correlated with the surround-
ing environment, which represents a bias in the dataset (usu-
ally referred to as environmental bias), thus resulting in de-
creased performances when the environment changes (e.g.
different kitchens). In this report, we discuss the idea that,
to fully exploit the potential of data sources, and to miti-
gate the performances drop across domains, it is crucial to
properly combine several sensing modalities, including au-
dio, video, and motion. This is particularly true for cross-
domain scenarios, where test data are extracted from a dif-
ferent distribution w.r.t. the training data (i.e. different users
and/or kitchens). Indeed, the effect of domain shift is not
consistent across different sensing modalities, and some of
them may suffer in some cases where others are more ro-
bust.

The reason is that domain shifts are not all of the same
nature. For instance, the optical flow is more focused on the
motion in the scene, rather than appearance, and is there-
fore less sensitive to environmental changes, thus showing
higher robustness than the visual modality when changing
environment [12]. On the other side, the domain shift of au-
ditory information is very different from the visual one (e.g.,
the sound of ‘cut’ will differ from a plastic to a wooden
cutting board). For all those reasons, the classifier should be
able to assess - depending on the conditions - which modal-
ity is more informative, and therefore should be considered
more for the final prediction.
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Figure 1: An overview of the proposed approach. It can be summarized in four main aspects: 1. Domain Generalization
through RNA-Net [15], 2. Unsupervised Domain Adaptation via Multi-Level Adversarial Alignment and entropy minimiza-
tion, 3. Multi-Source Multi-Target Domain Adaptation extension and 4. Ensemble Domain Adaptation losses.

To this purpose, authors of [15] recently proposed a
multi-modal framework, called Relative Norm Alignment
network (RNA-Net), which aims at progressively aligning
the feature norms of audio and visual (RGB) modalities
among multiple sources in a Domain Generalization (DG)
setting, where target data are not available during train-
ing. Interestingly, the authors showed that merely feed-
ing all the source domains to the network without applying
any adaptive techniques leads to sub-optimal performance,
while a multi-source domain alignment allows the network
to promote domain-agnostic features.

Including all the aforementioned considerations, we de-
veloped the method adopted in the challenge with the fol-
lowing steps (see also Figure 1):

1. RNA-Net was extended to the Flow modality, obtain-
ing remarkable results without accessing target data;

2. with further modifications, RNA-Net was adapted to
work with unlabelled target data under the standard
Unsupervised Domain Adaptation (UDA) setting;

3. the challenge’s setting was revisited by identifying
a new concurrent shift denominated ”environmental
bias”. Our framework was modified accordingly to
perform Multi-Source Multi-Target Domain Adapta-
tion;

4. the final submission was obtained by combining dif-
ferent model streams by means of DA-based losses,
namely Min-Entropy Consistency (MEC) and Com-
plement Entropy (CENT).

2. Our Approach
In this section, we first describe the DG approach used.

Then, we show our UDA framework and its extension for
Multi-Source Multi-Target Domain Adaptation. Finally, we

demonstrate how to re-define existing DA-based losses to
induce consistency between different architectures.

2.1. Domain Generalization

The multi-source nature of the proposed challenge set-
ting makes it perfect to deal with the domain shift using
DG techniques. Thus, we first exploited a method which
has been recently proposed to operate in this context, called
Relative Norm Alignment (RNA) [15]. This methods con-
sists of an audio-visual domain alignment at feature-level
through the minimization of a cross-modal loss function
(LRNA). The latter aims at minimizing the mean-feature-
norm distance between the audio and visual features norms
among all the source domains, and it is defined as

LRNA =

(
E[h(Xv)]

E[h(Xa)]
− 1

)2

, (1)

where h(xmi ) = (‖·‖2 ◦ fm)(xmi ) indicates the L2-norm
of the features fm of the m-th modality, E[h(Xm)] =
1
N

∑
xm
i ∈Xm h(xmi ) for the m-th modality and N denotes

the number of samples of the set Xm = {xm1 , ..., xmN}.
Authors of [15] proved that the norm unbalance between

different modalities might cause the model to be biased to-
wards the source domain that generate features with greater
norm, thus causing wrong predictions. Contrarily, by simul-
taneously solving the problem of classification and relative
norm alignment on different domains, the network extracts
a shared knowledge between the different sources, resulting
in a domain-agnostic model.

In our submission to the EPIC-Kitchen UDA challenge,
we extended the RNA-Net framework to the optical flow
modality, in order to exploit the multiple sources available
from the official training splits while showing the effective-
ness of RNA loss in a multi-source DG setting.
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2.2. Domain Adaptation

The UDA techniques embedded into our pipeline can be
divided in two main groups: feature-level and classifier-
level. The first aims at aligning the distribution of source
and target, and works at different levels of representation
(frames- and video-level); the latter, instead, reduces the
classifier’s uncertainty on target data.

Multi-Level Adversarial Alignment.
Following popular practices in unsupervised video do-

main adaption techniques, we integrate into our framework
an adversarial approach [3, 12], consisting of an extension
of the DANN [8] standard UDA image-based method. We
apply it at two different feature levels; frame- and video-
level. It entails the introduction of two separate branches in
our framework. Down-stream of said branches there are dis-
criminators that try to distinguish the two domains (source
and target). Contrarily, by maximising the corresponding
discriminator losses, the network learns feature representa-
tions invariant to both domains.

Attentive Entropy. In order to reduce the uncertainty
of the classifier on the target data, we minimize the atten-
tive entropy loss proposed in [3] as in [17]. This action
minimizes the entropy, resulting in a refinement of the clas-
sifier adaptation. The term ”attentive” refers to a loss re-
weighting approach that prioritizes videos with low domain
discrepancy by focusing on minimizing entropy for these
videos.

2.3. Multi-Source Multi-Target Domain Adaptation

The previous Epic Kitchen challenges [6, 5], as well as
the literature on unsupervised domain adaptation for first
person action recognition [13, 15, 14, 18, 16], reveal a
strong dependency of the models on the environment where
the actions are recorded. This problem, known as “envi-
ronmental bias”, causes a decrease in performance in oc-
currence of environment switches. As regards past action
recognition challenges, we see this behavior by comparing
performances of the models when tested on S1 (seen) and
S2 (unseen). In the setting proposed in [13], similar behav-
ior is observed, demonstrating the model’s low generaliza-
tion ability when tested on different kitchens.

The above considerations allow us to identify a sec-
ondary shift in this challenge, that occurs along with the
temporal shift. Indeed, the training data are collected from
different environments i.e. kitchens, thus introducing an en-
vironmental shift. As a result, we may rename the chal-
lenge setting Multi-Source Multi-Target Unsupervised Do-
main Adaptation.

To deal with this new setting we propose a novel frame-
work, which we call Multiple Spatio-Temporal Adversarial
Alignment (MSTAA), combining Multiple Temporal Ad-
versarial Alignment (MTAA) and Multiple Spatial Adver-
sarial Alignment (MSAA). MTAA is obtained by adopt-

ing 2K domain adversarial branches (where K indicates the
number of kitchens), aligning the source and the target dis-
tribution both at video- and frame-level for each kitchen. In-
stead, MSAA consists in adding another adversarial branch
with a k-dimension discriminator in order to align the distri-
bution of different kitchens and alleviate the environmental
bias issue.

2.4. Ensemble UDA losses

For our final submission different models have been used
in order to fully exploit the potentiality of popular video ar-
chitectures. However, training individually each backbone
with standard UDA protocols would result in independently
adapted feature representations, which consequently vary
between different streams. Our intuition is that this aspect
could impact negatively the training process and the perfor-
mance on target data. Indeed, since the domain adaption
process acts on each architecture independently, naively
training the backbones separately would yield mismatch-
ing prediction logits on target data, which, when combined,
could increase the level of uncertainty of the model. For this
reason, we use the Min Entropy Consensus (MEC) loss, to
impose a consistency constraint between feature representa-
tions from various models. Then, re-purposing the existing
Complement Entropy (CENT) loss, we attempt to exploit
the target data samples based on the assumption that there
are some conditions in which it is easier to answer the ques-
tion ”Which classes does this action not belong to?” rather
than ”Which class does this action belong to?”.

Min Entropy Consensus (MEC loss). We extended the
loss proposed in [19] to encourage coherent predictions be-
tween different models. The resulting loss is defined as:

LMEC = − 1

m

m∑
i=1

1

b
max
y∈Y

∑
b

log pb(y|xti) (2)

where m is the cardinality of the batch size of the target
set, y is the predicted class, and log pb(y|xti) is the predic-
tion probability of the b-th backbone network. The intuitive
idea behind the proposed approach is to encourage different
backbones to have a similar predictions.

Complement Entropy (CENT). The Complement En-
tropy (CENT) loss aims at neutralizing the negative effects
on the final prediction of clips whose logits present high
degrees of uncertainty. It accomplishes this by “flattening”
the predicted probabilities of “complement classes”, i.e., all
classes except the predicted one. As a result, when predic-
tions are ensembled, the noise due to uncertainty on com-
plement classes is reduced. We refer to this loss as “com-
plement entropy” objective, as it consists in maximizing the
entropy for low-confident classes rather than minimizing it
for the most confident one, as standard entropy minimiza-
tion does. It is defined as:
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UNSUPERVISED DOMAIN ADAPTATION LEADERBOARD

Rank Verb Top-1 Noun Top-1 Action Top-1 Verb Top-5 Noun Top-5 Action Top-5

VI-I2R 1 57.89 40.07 30.12 83.48 64.19 48.10
Audio-Adaptive-CVPR2022 2 52.95 42.26 28.06 80.03 67.51 44.03
plnet 3 55.51 35.86 25.25 82.77 60.65 40.09
CVPR2021-chengyi 4 53.16 34.86 25.00 80.74 59.30 40.75
CVPR2021-M3EM 5 53.29 35.64 24.76 81.64 59.89 40.73
CVPR2021-plnet 6 55.22 34.83 24.71 81.93 60.48 41.41
EPIC TA3N [4] 8 46.91 27.69 18.95 72.70 50.72 30.53
EPIC TA3N SOURCE ONLY [4] 9 44.39 25.30 16.79 69.69 48.40 29.06

Table 1: Leaderboard results of EPIC-Kitchens Unsupervised Domain Adaptation Challenge. The results obtained by the
top-3 participants and the provided baseline methods are reported. Bold: highest result Underline: second highest result;
Green: our final submission.

UNSUPERVISED DOMAIN ADAPTATION

Verb Noun Action

Ensemble (E) Source Only 53.64 32.65 22.98

E-UDA 53.88 33.10 23.22

E+MEC 53.67 34.32 23.91

E+MEC+CENT 54.20 33.92 23.99

E-SMR+MEC+CENT 54.55 34.72 24.22

E-SMR+MEC+CENT+MTAA 54.09 33.72 23.77

E-SMR+MEC+CENT+MSTAA 54.01 34.82 24.24

Table 2: Results on the EPIC-Kitchen validation set.

DOMAIN GENERALIZATION

Target Verb Top-1 Verb Top-5

Source Only 7 44.39 69.69

EPIC TA3N [4] 3 46.91 72.70

RNA-Net [15] 7 47.96 79.54

EPIC TA3N+RNA-Net 3 50.40 80.47

Table 3: Results on the EPIC-Kitchen test set.

LCENT =
1

N

N∑
i=1

H(ŷic̄)

= − 1

N

N∑
i=1

C∑
j=1,j 6=p

(
ŷij

1− ŷip
log

ŷij
1− ŷip

)

(3)

where N is the total number of samples in the batch, ŷip
represents the predicted probability of the class p with the
higher score for the i-th sample, i.e., ŷip = maxj(ŷij), and
H(·) is the entropy function computed on the prediction of
complement classes ŷic̄ (c̄ 6= p). The formulation is similar
to the one in [2], and we extend it to operate in an unsuper-

vised fashion.

3. Framework
In this section, we describe the architectures of the fea-

ture extractors used to produce suitable multi-modal video
embeddings, and the fusion stategies adopted to combine
them. Finally, we deepen the analysis describing the hyper-
parameters used for the training.

3.1. Architecture

Backbone. For our submission, we adopted three differ-
ent network configurations. In the first one, correspond-
ing to the RNA-Net framework in [15], we used the In-
flated 3D ConvNet (I3D), pre-trained on Kinetics [1], for
RGB and Flow streams, and a BN-Inception model [10]
pre-trained on ImageNet [7] for the auditory information.
Each feature extractor produces a 1024-dimensional repre-
sentation which is fed to an action classifier. In the sec-
ond configuration, we used BN-Inception models for all
the three streams, using pre-extracted features from a TBN
[12] model trained on EPIC-Kitchens-55. In the last con-
figurations, we used standard ResNet-50 architectures [9]
equipped with the Temporal Shift Module [11] pre-trained
on EPIC-Kitchens-55 1.

Multi-modal fusion strategies. In all the above men-
tioned configurations, each modality is processed by its own
backbone, and the corresponding extracted representations
are then fused following different strategies. For RNA-Net,
we followed a standard late fusion strategy, consisting in
averaging the final score predictions obtained from two dif-
ferent fully-connected layers (verb, noun) from each modal-
ity. In the other configurations, we adopted the recent mid-
fusion strategy, called Semantic Mutual Refinement sub-
module (SMR), proposed in [20], to generate a common
frame-embedding among the modalities. Then, using tem-

1https://github.com/epic-kitchens/
epic-kitchens-55-action-models
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λRNA λCENT λMEC γ β
1 0.31 0.22 0.003 0.75, 0.75, 0.75

Table 4: UDA losses hyper-parameters used during training.

poral pooling, we obtain a final video-embedding that is
sent to the verb and noun classifiers.

3.2. Implementation Details

We trained I3D and BN-Inception models with SGD op-
timizer, with an initial learning rate of 0.001, dropout 0.7,
and using a batch size of 128, following [15]. Instead,
when using pre-extracted features from ResNet50 or BN-
Inception, we trained the SMR modules on top of them for
45 epochs with an initial learning rate of 0.03, decayed af-
ter epochs 25 and 35 by a factor of 0.1. We used a batch
size of 128 with SGD optimizer. In Table 4 we report the
other hyper-parameter used. Specifically, we indicate with
λRNA, λCENT and λMEC the weights of RNA, CENT and
MEC losses respectively. In addition, we report the values
used to weight the attentive entropy loss (γ) and the domain
losses at different levels (β) for MSTAA.

4. Results and Discussion
In Table 1 we report our best performing model on the

target test, achieving the 2st position on ‘verb’, and the 3rd
on ‘noun’ and ‘action’. Meanwhile, in Tables 2 and 3 we
show an ablation of the proposed UDA and DG methods
described in section 2.

How well do DG approaches perform? The results
in Table 3 are obtained under the multi-source DG setting,
when target data are not available during training. Notice-
ably, RNA outperforms the baseline Source Only by up to
3% on Top-1 and 10% on Top-5, highlighting the impor-
tance of using ad-hoc alignment techniques to deal with
multiple sources in order to effectively extract a domain-
agnostic model. Moreover, it outperforms the recent UDA
technique TA3N [3] without accessing target data. Interest-
ingly, when combined with EPIC TA3N, it further improves
performance, proving the complementarity of RNA to other
existing UDA approaches.

In Table 2 it can be seen how the proposed UDA ap-
proaches improve Top-1 accuracy on all categories by up
to 1%. Although using an additional adversarial branch for
each kitchen does not appear to provide a significant im-
provement on the validation set, it increases the top-1 ac-
tion accuracy on the test set, allowing us to obtain the third
position in the challenge. Without MSTAA, the accuracy
on the action top-1 reaches just 24.83%. This outcome was
predictable given that the validation set is populated with
a different set of kitchens than the test set, whereas the
kitchens in the test set are the same as those used for the

target and source training. This aspect confirms the Multi-
Source Multi-Target Unsupervised Domain Adaptation set-
ting and the presence of two different shifts, the temporal
shift (2018-2020) and the environmental shift (among the
kitchens).
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